539 research outputs found

    InfoTech Update, Volume 13, Number 2, March/April 2004

    Get PDF
    https://egrove.olemiss.edu/aicpa_news/5003/thumbnail.jp

    Migration from client/server architecture to internet computing architecture

    Get PDF
    The Internet Computing Architecture helps in providing a object-based infrastructure that can be used by the application developers to design, develop, and deploy the ntiered enterprise applications and services. For years of distributed application development, the Internet Computing Architecture has helped in providing various techniques and infrastructure software for the successful deployment of various systems, and established a foundation for the promotion of re-use and component oriented development. Object-oriented analysis is at the beginning of this architecture, which is carried through deploying and managing of finished systems. This architecture is multi-platform, multi-lingual, standards-based, and open that offers unparalleled integration capability. And for the development of mission critical systems in record time it has allowed for the reuse of the infrastructure components. This paper provides a detailed overview of the Internet Computing Architecture and the way it is applied to designing systems which can range from simple two-tier applications to n-tier Web/Object enterprise systems. Even for the best software developers and managers it is very hard to sort through alternative solutions in today\u27s business application development challenges. The problems with the potential solutions were not that complex now that the web has provided the medium for large-scale distributed computing. To implement an infrastructure for the support of applications architecture and to foster the component-oriented development and reuse is an extraordinary challenge. Further, to scale the needs of large enterprises and the Web/Internet the advancement in the multi-tiered middleware software have made the development of object-oriented systems more difficult. The Internet Computing Architecture defines a scaleable architecture, which can provide the necessary software components, which forms the basis of the solid middleware foundation and can address the different application types. For the software development process to be component-oriented the design and development methodologies are interwoven. The biggest advantage of the Internet Computing Architecture is that developers can design object application servers that can simultaneously support two- and three-tier Client/Server and Object/Web applications. This kind of flexibility allows different business objects to be reused by a large number of applications that not only supports a wide range of application architectures but also offers the flexibility in infrastructure for the integration of data sources. The server-based business objects are managed by runtime services with full support for application to be partitioned in a transactional-secure distributed environment. So for the environments that a supports high transaction volumes and a large number of users this offers a high scaleable solution. The integration of the distributed object technology with protocols of the World Wide Web is Internet Computing Architecture. Alternate means of communication between a browser on client machine and server machines are provided by various web protocols such as Hypertext Transfer Protocol and Internet Inter-ORB Protocol [NOP]. Protocols like TCP/IP also provides the addressing protocols and packetoriented transport for the Internet and Intranet communications. The recent advancements in the field of networking and worldwide web technology has promoted a new network-centric computing structure. World Wide Web evolves the global economy infrastructure both on the public and corporate Internet\u27s. The competition is growing between technologies to provide the infrastructure for distributed large-scale applications. These technologies emerge from academia, standard activities and individual vendors. Internet Computing Architecture is a comprehensive, open, Network-based architecture that provides extensibility for the design of distributed environments. Internet Computing Architecture also provides a clear understanding to integrate client/server computing with distributed object architectures and the Internet. This technology also creates the opportunity for a new emerging class of extremely powerful operational, collaboration, decision support, and e-commerce solutions which will catalyze the growth of a new networked economy based on intrabusiness, business -to-business (B2B) and business-to-consumer (B2C) electronic transactions. These network solutions would be able to incorporate legacy mainframe systems, emerging applications as well as existing client/server environment, where still most of the world\u27s mission-critical applications run. Internet Computing Architecture is the industry\u27s only cross-platform infrastructure to develop and deploy network-centric, object-based, end-to-end applications across the network. Open and de facto standards are at the core of the Internet computing architecture such as: Hyper Text Transfer Protocol (HTTP)/ Hyper Text Markup Language (HTML)/ Extensible Markup Language (XML) and Common Object Request Broker Architecture (CORBA). It has recognition, as the industry\u27s most advanced and practical technology solution for the implementation of a distributed object environment, including Interface Definition Language (IDL) for languageneutral interfaces and Internet Inter Operability (MOP) for object interoperability. Programming languages such as JAVA provides programmable, extensible and portable solutions throughout the Internet Computing Architecture. Internet Computing Architecture not only provides support, but also enhances ActiveX/Component Object Model (COM) clients through open COM/CORBA interoperability specifications. For distributed object-programming Java has also emerged as the de facto standard within the Internet/Intranet arena, making Java ideally suited to the distributed object nature of the Internet Computing Architecture. The portability that it offers across multi-tiers and platforms support open standards and makes it an excellent choice for cartridge development across all tiers

    University of Wollongong Campus News 18 October 1995

    Get PDF

    IS Strategy in SMEs Using Organizational Capabilities: The CPX Framework

    Get PDF
    Developing appropriate information systems strategies (ISS) is vital, yet problematic, especially for small firms given their organizational context. However, resource-based theory may offer a solution. Building on earlier work that identified the potential from resource-based strategy for ISS, this paper considers the role of core capabilities in organizations competing in dynamic markets. Core capabilities are deconstructed into competences, processes and externalities to enable identification of future information systems. A fourth element of the analysis, evaluation, provides an opportunity to address issues that affect potential solutions. These four components form the \u27CPX framework\u27. The framework is applied to a case firm to demonstrate its value within the overall development of an ISS. Discussion of the framework\u27s potential and issues for future research are identified

    RANCANG BANGUN APLIKASI PEMBELAJARAN ANAK USIA DINI BERBASIS ANDROID

    Get PDF
    Pendidikan Prasekolah sangat berperan besar dalam mendukung pertumbuhan dan perkembangan jasmani dan rohani anak didik sebelum memasuki jenjang sekolah dasar. Salah satu alternatif untuk mendukung meningkatkan pembelajaran prasekolah tersebut adalah dengan memanfaatkan perangkat mobile Android yang saat ini sedang berkembang pesat. Aplikasi ini menggunakan dasar pemrograman Adobe ActionScript 3.0 pada Flash dengan OS android yang digunakan Froyo (2.2) keatas. Pembelajaran pada sistem ini dimulai dengan menampilkan pilihan menu pembelajaran abjad, angka, warna, bentuk, suara hewan, dan menggambar. Kemudian sistem menampilkan pembelajaran sesuai dengan pilihan yang dilakukan oleh user. Sistem menampilkan pembelajaran dengan dukungan gambar disertai suara yang menjelaskan materi pembelajaran yang sedang ditampilkan. Aplikasi preschool basic berbasis Android ini dapat memberikan manfaat bagi anakanak prasekolah

    Research and Technology Highlights 1995

    Get PDF
    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate both the broad range of research and technology (R&T) activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research. An electronic version of the report is available at URL http://techreports.larc.nasa.gov/RandT95. This color version allows viewing, retrieving, and printing of the highlights, searching and browsing through the sections, and access to an on-line directory of Langley researchers

    Asymmetric Load Balancing on a Heterogeneous Cluster of PCs

    Get PDF
    In recent years, high performance computing with commodity clusters of personal computers has become an active area of research. Many organizations build them because they need the computational speedup provided by parallel processing but cannot afford to purchase a supercomputer. With commercial supercomputers and homogenous clusters of PCs, applications that can be statically load balanced are done so by assigning equal tasks to each processor. With heterogeneous clusters, the system designers have the option of quickly adding newer hardware that is more powerful than the existing hardware. When this is done, the assignment of equal tasks to each processor results in suboptimal performance. This research addresses techniques by which the size of the tasks assigned to processors is a suitable match to the processors themselves, in which the more powerful processors can do more work, and the less powerful processors perform less work. We find that when the range of processing power is narrow, some benefit can be achieved with asymmetric load balancing. When the range of processing power is broad, dramatic improvements in performance are realized our experiments have shown up to 92% improvement when asymmetrically load balancing a modified version of the NAS Parallel Benchmarks\u27 LU application

    PhosCalc: A tool for evaluating the sites of peptide phosphorylation from Mass Spectrometer data

    Get PDF
    © 2008 MacLean et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
    corecore