7,462 research outputs found

    Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Get PDF
    The work in Chapter 2 is motivated by Tutte and Jaeger\u27s pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {lcub}2, 3{rcub}, if (G, sigma) is (k -- 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015).;Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥.;Tutte\u27s 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.;The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with.;∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two

    Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree

    Get PDF
    The Tree Decomposition Conjecture by Bar\'at and Thomassen states that for every tree TT there exists a natural number k(T)k(T) such that the following holds: If GG is a k(T)k(T)-edge-connected simple graph with size divisible by the size of TT, then GG can be edge-decomposed into subgraphs isomorphic to TT. So far this conjecture has only been verified for paths, stars, and a family of bistars. We prove a weaker version of the Tree Decomposition Conjecture, where we require the subgraphs in the decomposition to be isomorphic to graphs that can be obtained from TT by vertex-identifications. We call such a subgraph a homomorphic copy of TT. This implies the Tree Decomposition Conjecture under the additional constraint that the girth of GG is greater than the diameter of TT. As an application, we verify the Tree Decomposition Conjecture for all trees of diameter at most 4.Comment: 18 page

    The Williams Conjecture is false for irreducible subshifts

    Full text link
    We show the Williams Conjecture is false for irreducible shifts of finite type by examining relative sign-gyration numbers of conjugacies between shifts with no points of period one or two.Comment: 14 pages, published versio

    Low-energy spectrum of N = 4 super-Yang-Mills on T^3: flat connections, bound states at threshold, and S-duality

    Get PDF
    We study (3+1)-dimensional N=4 supersymmetric Yang-Mills theory on a spatial three-torus. The low energy spectrum consists of a number of continua of states of arbitrarily low energies. Although the theory has no mass-gap, it appears that the dimensions and discrete abelian magnetic and electric 't Hooft fluxes of the continua are computable in a semi-classical approximation. The wave-functions of the low-energy states are supported on submanifolds of the moduli space of flat connections, at which various subgroups of the gauge group are left unbroken. The field theory degrees of freedom transverse to such a submanifold are approximated by supersymmetric matrix quantum mechanics with 16 supercharges, based on the semi-simple part of this unbroken group. Conjectures about the number of normalizable bound states at threshold in the latter theory play a crucial role in our analysis. In this way, we compute the low-energy spectra in the cases where the simply connected cover of the gauge group is given by SU(n), Spin(2n+1) or Sp(2n). We then show that the constraints of S-duality are obeyed for unique values of the number of bound states in the matrix quantum mechanics. In the cases based on Spin(2n+1) and Sp(2n), the proof involves surprisingly subtle combinatorial identities, which hint at a rich underlying structure.Comment: 28 pages. v2:reference adde
    corecore