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Decomposing highly edge-connected graphs into
homomorphic copies of a fixed tree

Martin Merker∗

April 9, 2016

Abstract

The Tree Decomposition Conjecture by Barát and Thomassen states that for
every tree T there exists a natural number k(T ) such that the following holds: If
G is a k(T )-edge-connected simple graph with size divisible by the size of T , then
G can be edge-decomposed into subgraphs isomorphic to T . So far this conjecture
has only been verified for paths, stars, and a family of bistars. We prove a weaker
version of the Tree Decomposition Conjecture, where we require the subgraphs
in the decomposition to be isomorphic to graphs that can be obtained from T by
vertex-identifications. We call such a subgraph a homomorphic copy of T . This
implies the Tree Decomposition Conjecture under the additional constraint that
the girth of G is greater than the diameter of T . As an application, we verify the
Tree Decomposition Conjecture for all trees of diameter at most 4.

1 Introduction

Let H be a graph. An H-decomposition of a graph G is a partition of its edge-set
into subgraphs isomorphic to H. In 2006, Barát and Thomassen [2] made the following
conjecture:

Conjecture 1.1. For every tree T on m edges, there exists a natural number k(T ) such
that the following holds:

If G is a k(T )-edge-connected simple graph with size divisible by m, then G has a
T -decomposition.

The conjecture trivially holds if T is a single edge. It is easy to see that edge-
connectivity 1 suffices for a decomposition into paths of length 2, see for example [11]
or [17]. When the conjecture was made, these were the only two cases known to be true.
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Thomassen [16, 17, 20] verified the conjecture for paths of length 3 and for paths whose
length is a power of 2. Botler, Mota, Oshiro, and Wakabayashi [5, 6] proved it for the
path of length 5 and also extended the result to paths of any given length. Another
proof of the conjecture for paths of any length was found by Bensmail, Harutyunyan,
and Thomassé [4].

The results on the weak k-flow conjecture by Thomassen [18] imply that the con-
jecture holds for all stars. It was further verified for the bistar on 4 edges with degree
sequence (3, 2, 1, 1, 1) by Barát and Gerbner [1]. More generally, Thomassen [19] proved
the conjecture for all bistars where the degrees of the two non-leaves differ by 1.

The aim of this paper is to prove a weaker version of Conjecture 1.1 with a less
restrictive notion of H-decompositions. Let us say that H is a homomorphic copy of G
if it can be obtained from G by identifying some of its vertices and keeping all edges.
Equivalently, H is a homomorphic copy of G if there exists a homomorphism from G
to H that is bijective on the edge sets. In particular, a homomorphic copy of G always
has the same size as G, and every graph isomorphic to G is also a homomorphic copy
of G.

Definition 1.2. Let H and G be graphs. An H∗-decomposition of G is a partition of
the edge-set of G into homomorphic copies of H.

Clearly every H-decomposition is also an H∗-decomposition. If T is a tree, then
a T ∗-decomposition is also a T -decomposition provided that the graph we decompose
has large girth: If T ′ is a homomorphic copy of a tree T , but not isomorphic to T , then
there exist two vertices u, v in T that have the same image in T ′. Since we require
the homomorphism to preserve all edges, the path between u and v gets mapped to a
closed walk in T ′. In particular, there exists a cycle in T ′ whose length is at most the
distance between u and v in T . Thus, if the girth of G is greater than the diameter of
T , then every T ∗-decomposition of G is also a T -decomposition.

The following weakening of Conjecture 1.1 is the main result of this paper.

Theorem 1.3. For every tree T on m edges, there exists a natural number kh(T ) such
that the following holds:

If G is a kh(T )-edge-connected graph with size divisible by m, then G has a T ∗-
decomposition.

In particular, if d is the diameter of T , then every kh(T )-edge-connected graph G
with girth greater than d has a T -decomposition.

Recently, a full proof of Conjecture 1.1 has been obtained by the author in joint
work with Bensmail, Harutyunyan, Le, and Thomassé [3]. Theorem 1.3 plays a crucial
role in that proof since the T ∗-decomposition constructed here serves as a starting point
for the construction of a T -decomposition. For more details, we refer the reader to the
thesis of the author [14].

Notice that we allow graphs with multiple edges in Theorem 1.3, while Conjec-
ture 1.1 only holds for simple graphs: The graph nK2 consisting of two vertices joined by
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n edges has edge-connectivity n, but the only tree T for which it has a T -decomposition
is K2, a single edge. However, the graph nK2 is itself a homomorphic copy of any tree
on n edges, and it has a T ∗-decomposition for any tree T whose size divides n.

The main ingredients of the proof of Theorem 1.3 are the results on the weak k-flow
conjecture combined with the existence of spanning trees with small degrees.

In Section 2 we collect the necessary tools for the proof of Theorem 1.3. The main
idea of the proof is explained in Section 3, while the technical details can be found in
Section 4. As an immediate consequence of Theorem 1.3, we get that Conjecture 1.1
holds for trees of diameter at most 3. An explicit upper bound on the necessary edge-
connectivity for these trees is derived in Section 5. In Section 6, we verify Conjecture 1.1
for all trees of diameter 4.

2 Methods

Unless stated otherwise, all graphs in this paper are finite and loopless, but may have
multiple edges. We write V (G) and E(G) for the vertex set and edge set of a graph G
respectively, and e(G) for the number of edges of G. We denote the degree of a vertex
v in G by d(v,G), or by d(v) if the graph is clear from the context. If the graph is
directed, we denote the outdegree of a vertex v by d+(v) and the indegree by d−(v).
We write Pk for the path on k vertices, thus Pk has length k − 1.

An important tool for working with edge-connected graphs is the following reduction
method due to Mader. Let v be a vertex in a graph G, and let e = vu1, f = vu2 be two
edges incident with v. A lifting of the pair {e, f} is the operation of removing e and f
from G and adding a new edge u1u2 if u1 ̸= u2. If u1 = u2, then lifting {e, f} is the same
as removing e and f from G. Now let v be a vertex of even degree. A lifting of v is the
operation of pairing up the edges incident with v, lifting each pair and deleting v. We
say that the lifting is connectivity-preserving, if the edge-connectivity of the resulting
graph is not smaller than the edge-connectivity of G. We shall use the following version
of Mader’s Theorem which was proved by Frank [9].

Theorem 2.1. [9, 13] Let v be a vertex of even degree in a graph G. If v is not incident
with a cut-edge, then there exists a connectivity-preserving lifting at v.

Another useful consequence of large edge-connectivity is the existence of edge-
disjoint spanning trees. If a graph contains k edge-disjoint spanning trees, then it
is clearly k-edge-connected. Conversely, Nash-Williams [15] and Tutte [21] indepen-
dently proved that large edge-connectivity implies the existence of many edge-disjoint
spanning trees.

Theorem 2.2. [15, 21] Let k be a natural number. If G is a 2k-edge-connected graph,
then G contains k edge-disjoint spanning trees.
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Apart from many edge-disjoint spanning trees, large edge-connectivity also guaran-
tees the existence of spanning trees with small vertex degrees. This has been investi-
gated by several authors [7, 8, 10, 22]. Small-degree spanning trees have already been
used by Thomassen [16, 17, 20] and by Barát and Gerbner [1] to prove special cases of
Conjecture 1.1.

Our main interest is to prove the existence of k(T ). Since the method presented
here will not result in the best possible upper bound on k(T ), we shall avoid the use of
stronger but more technical statements for the sake of simplicity. The following theorem
was proved by Ellingham, Nam, and Voss [8] and is sufficient for our purposes.

Theorem 2.3. [8] Let k be a natural number. If G is a 4k-edge-connected graph, then
G has a spanning tree T such that d(v, T ) < d(v,G)/k for every v ∈ V (G).

Repeated application of Theorem 2.3 also guarantees the existence of highly edge-
connected subgraphs with small degrees.

Lemma 2.4. Let k and q be natural numbers. If G is a graph with 4kq edge-disjoint
spanning trees, then G has a spanning q-edge-connected subgraph H such that d(v,H) <
d(v,G)/k for every v ∈ V (G).

Proof. Let Gi consist of 4k of the spanning trees for i ∈ {1, . . . , q}. By Theorem 2.3,
for each Gi we can find a spanning tree Ti with d(v, Ti) < d(v,Gi)/k. Let H be the
union of T1, . . . , Tq. Now H is q-edge-connected and we have

d(v,H) =

q∑
i=1

d(v, Ti) <
1

k

q∑
i=1

d(v,Gi) ≤
1

k
d(v,G).

Another important tool is a recent result on orientations modulo k. It was proved
by Thomassen [18] that every (2k2+k)-edge-connected graph G has an orientation such
that every vertex gets a prescribed outdegree modulo k, provided that the sum of all
prescribed outdegrees is congruent to e(G) modulo k. Lovász et al. [12] improved the
bound on the edge-connectivity to 3k − 3 for k odd, and to 3k − 2 for k even.

Theorem 2.5. [12] Let G be a graph with m edges, k be a natural number, and p :
V (G) → Z be a function satisfying

∑
v∈V (G) p(v) ≡ m (mod k). If G is (3k − 2)-

edge-connected, then there exists an orientation of the edges of G such that d+(v) ≡
p(v) (mod k) for every v ∈ V (G).

As an application of Theorem 2.5, it was shown by Thomassen [19] that a highly
edge-connected bipartite graph G with size divisible by k can be decomposed into two k-
edge-connected graphs G1 and G2 such that in G1 all vertices of A have degree divisible
by k, and in G2 all vertices of B have degree divisible by k. Using the same proof, we
can even achieve that both G1 and G2 have arbitrarily large edge-connectivity, which
has also been used by Botler et al. [6].
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Proposition 2.6. [6, 19] Let m and ℓ be natural numbers, G be a bipartite graph on
vertex classes A1 and A2, and suppose the size of G is divisible by m. If G has 3m−2+2ℓ
edge-disjoint spanning trees, then G can be decomposed into two spanning subgraphs G1

and G2 such that each Gi contains ℓ edge-disjoint spanning trees and all vertices of Ai

have degree divisible by m in Gi, for i ∈ {1, 2}.

Proof. Let H1 and H2 each be the union of ℓ of the spanning trees, and let G′ be the
graph on the remaining edges. For v in Ai define p(v) = m− d(v,Hi). Observe that∑

v∈V (G′)

p(v) ≡ −|E(H1)| − |E(H2)| ≡ |E(G′)| (mod m) .

Since G′ is (3m − 2)-edge-connected, we can apply Theorem 2.5 to orient its edges so
that each vertex v has outdegree congruent to p(v) modulo m. For i ∈ {1, 2}, let Gi be
the union of Hi and all edges oriented from Ai to A3−i.

It was shown independently by Barát and Gerbner [1] and by Thomassen [19] that
it is sufficient to prove Conjecture 1.1 for bipartite graphs. Their proofs show that the
following is true.

Theorem 2.7. [1, 19] Let T be a tree on m edges. If G is a (4k + 8m2m+3)-edge-
connected graph, then G can be decomposed into a k-edge-connected bipartite graph G′

and a graph H that admits a T -decomposition.

In particular, it is sufficient to prove Theorem 1.3 for bipartite graphs. Combined
with Proposition 2.6, we may even assume that all vertices on one side of the partition
have degree divisible by m.

3 Proof strategy for Theorem 1.3

The general idea of the proof of Theorem 1.3 is the following. Given a tree T with
m edges, let TA and TB be the two vertex classes induced by a proper 2-colouring of
V (T ). We may assume that TB contains a leaf of T . We denote the non-leaves in TA

by t1, . . . , ta and the non-leaves in TB by ta+1, . . . , ta+b. We colour the edges of T with
colours 1, . . . ,m so that no two edges receive the same colour. For i ∈ {1, . . . , a + b},
we denote the set of colours at vertex ti by T (i). Let T (a+ b+ 1) be the set of colours
which are not contained in T (i) for any i ∈ {a+1, . . . , a+ b}. Notice that T (a+ b+1)
is non-empty since TB contains a leaf.

To find a T ∗-decomposition of a bipartite graph G, it is sufficient to find an edge-
colouring of G such that certain degree equations are satisfied. We write di(v) to denote
the degree of a vertex v in colour i (that is, in the subgraph induced by the edges with
colour i). For every i ∈ {1, . . . , a + b}, we consider a set of equations involving the
colours in T (i), namely dj(v) = dk(v) for every j, k ∈ T (i). However, we do not need
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these equations to be satisfied at every vertex of G. If A and B are the vertex classes
of G, then we want the vertices in A to satisfy the equations involving T (1), . . . , T (a),
and the vertices in B to satisfy the equations involving T (a+ 1), . . . , T (a+ b).

Definition 3.1. Let G be a bipartite graph on vertex classes A and B. We say an
edge-colouring of G with colours 1, . . . ,m is T -equitable, if

• for every v ∈ A, i ∈ {1, . . . , a} and j, k ∈ T (i) we have dj(v) = dk(v), and

• for every v ∈ B, i ∈ {a+ 1, . . . , a+ b} and j, k ∈ T (i) we have dj(v) = dk(v).

Lemma 3.2. Let G be a bipartite graph on vertex classes A and B. If G admits a
T -equitable colouring then G has a T ∗-decomposition.

Proof. We prove by induction on m that we can decompose G into coloured homomor-
phic copies of T so that, for every homomorphic copy of T , the vertices corresponding
to TA lie in A. There is nothing to show for m = 1, so we may assume m ≥ 2. We may
also assume that the edge of T coloured m is incident with t1 in TA and with a leaf in
TB. Let T ′ be the tree we get by deleting this edge, and let G′ be the graph we get
by deleting all edges with colour m in G. Now G′ satisfies the corresponding equations
for T ′, so we can find a decomposition into coloured homomorphic copies of T ′ that are
all oriented the same way. Since every vertex v of G in A satisfies dj(v) = dk(v) for
j, k ∈ T (1), the number of copies of T ′ where v is the image of t1 is the same as the
number of edges coloured m at v. Thus we can extend every homomorphic copy of T ′

to a homomorphic copy of T , resulting in a T ∗-decomposition.

As noted at the end of Section 2, it suffices to prove Theorem 1.3 for bipartite
graphs G with vertex classes A and B where all vertices in A have degree divisible
by m. In this situation we can construct an edge-colouring where the vertices in A
satisfy an even stronger condition than required in the lemma above, namely that they
have the same degree in each colour. In other words, we are going to construct an
edge-colouring with colours 1, . . . ,m such that

di(v) =
1

m
d(v) (1)

for v ∈ A, i ∈ {1, . . . ,m}, while the vertices in B satisfy the same equations as in
Lemma 3.2. This means that in the corresponding T ∗-decomposition, for every x, y ∈ TA

and v ∈ A, the number of homomorphic copies where v is the image of x is the same
as the number of homomorphic copies where v is the image of y.

The existence of such an edge-colouring is an easy consequence of the following
theorem, which is proved in Section 4.

Theorem 3.3. For all natural numbers m and λ, there exists a natural number f(m,λ)
such that the following holds:
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If m1, . . . ,mb+1 are positive integers satisfying m = m1 + . . . + mb+1, and if G
is an f(m,λ)-edge-connected bipartite graph on vertex classes A and B in which all
vertices in A have degree divisible by m, then we can decompose G into b+ 1 spanning
λ-edge-connected subgraphs G1, . . . , Gb+1 such that

• d(v,Gi) =
mi

m
d(v,G) for v ∈ A and i ∈ {1, . . . , b+ 1}, and

• d(v,Gi) is divisible by mi for v ∈ B and i ∈ {1, . . . , b}.

Notice that it is not possible to achieve that also d(v,Gb+1) is divisible by mb+1 for
v ∈ B, since for example all of m1, . . . ,mb+1 could be even, but B could have vertices
of odd degree.

Using Theorem 3.3, we can easily construct a T -equitable edge-colouring of G.

Theorem 3.4. Let d be a natural number and G be a bipartite graph on vertex classes
A and B in which all vertices in A have degree divisible by m. If G is f(m,md)-
edge-connected, where f denotes the function defined by Theorem 3.3, then G admits a
T -equitable edge-colouring such that the minimum degree in each colour is at least d.

Proof. For i ∈ {1, . . . , b + 1}, let mi = |T (a + i)|. Notice that every colour appears in
precisely one of T (a + 1), . . . , T (a + b + 1), so we have m = m1 + . . . + mb+1. Thus,
we can apply Theorem 3.3 to get a decomposition of G into md-edge-connected graphs
G1, . . . , Gb+1 such that d(v,Gi) =

mi

m
d(v,G) for v ∈ A, i ∈ {1, . . . , b + 1}, and d(v,Gi)

is divisible by mi for v ∈ B, i ∈ {1, . . . , b}.
For i ∈ {1, . . . , b}, every vertex of Gi has degree divisible by mi, so we can split each

vertex of Gi and obtain an mi-regular graph G′
i. We also split each vertex in Gb+1 into

vertices of degree mb+1 and possibly one vertex of degree less than mb+1, resulting in a
graph G′

b+1. A well-known result by König states that every k-regular bipartite graph
has a proper edge-colouring with k colours. Thus, there exists a proper edge-colouring
of G′

i with the mi colours in T (a+ i) for every i ∈ {1, . . . , b+ 1}. This corresponds to
an edge-colouring of Gi such that

dj(v,Gi) =
1

mi

d(v,Gi) =
1

m
d(v,G)

for v ∈ A, i ∈ {1, . . . b+1} and j ∈ T (a+i). By construction, we also have dj(v) = dk(v)
for v ∈ B, i ∈ {1, . . . , b}, j, k ∈ T (a + i), so the colouring is T -equitable. Since the
minimum degree of Gi is at least md, the minimum degree in each color in G is at
least d.

Now the main result of this paper follows immediately.

Proof of Theorem 1.3. We may assume by Proposition 2.6 and Theorem 2.7 that G is
a bipartite graph on vertex classes A and B, and that every vertex in A has degree
divisible by m. If G is f(m,m)-edge-connected, where f denotes the function defined
by Theorem 3.3, then G admits a T -equitable colouring by Theorem 3.4. Thus, G has
a T ∗-decomposition by Lemma 3.2.
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4 Proof of Theorem 3.3

The following lemma is an easy application of Theorem 2.1 and Theorem 2.5. It is a
slight generalization of an argument that was already used by Thomassen [19] to prove
Conjecture 1.1 for a class of bistars.

Lemma 4.1. Let G be a (3k − 2)-edge-connected bipartite graph on classes A and B,
where each vertex in A has even degree. For every function p : B → Z satisfying∑

v∈B

p(v) ≡ e(G)

2
(mod k) ,

there exists a subgraph H of G with
d(v,H) = 1

2
d(v,G) for v ∈ A, and

d(v,H) ≡ p(v) (mod k) for v ∈ B.

Proof. By Theorem 2.1, we can lift each vertex in A so that the resulting graph G′ is
still (3k− 2)-edge-connected. By Theorem 2.5, we can orient the edges of G′ such that
each vertex v has outdegree congruent to p(v) modulo k. We can also orient the edges
of G such that every directed edge of G′ corresponds to a directed path of length 2 in
G. This yields an orientation of G where each vertex v in B has outdegree congruent to
p(v) modulo k, and each vertex in A has the same out- and indegree. Now the subgraph
consisting of the edges oriented from B to A is as required.

The case where we want the subgraph H to contain only 1/m of the edges at every
vertex in A, for some m ≥ 3, can easily be reduced to the case m = 2.

Proposition 4.2. Let m and k be natural numbers with m ≥ 2, and let G be a bipartite
graph on classes A and B with 12km edge-disjoint spanning trees, where each vertex in
A has degree divisible by m. For every function p : B → Z satisfying∑

v∈B

p(v) ≡ e(G)

m
(mod k) ,

there exists a subgraph H of G with
d(v,H) = 1

m
d(v,G) for v ∈ A and

d(v,H) ≡ p(v) (mod k) for v ∈ B.

Proof. By Lemma 2.4, we can find a spanning 3k-edge-connected subgraph G′ with
d(v,G′) < 1

m
d(v,G). We add some edges of G to G′ to get a graph G′′ ⊆ G in which

all vertices in A have degree exactly 2
m
d(v,G). Now we can use Lemma 4.1 to find a

subgraph H of G′′ with d(v,H) = 1
2
d(v,G′′) = 1

m
d(v,G) for v ∈ A, and d(v,H) ≡ p(v)

modulo k for v ∈ B.
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To get a decomposition into several graphs as in Theorem 3.3, we want to use
induction. To do so, we need that G − E(H) still has large edge-connectivity. The
following lemma shows that this can be achieved by increasing the edge-connectivity
of G.

Lemma 4.3. Let k, m and λ be natural numbers with m ≥ 2. Let G be a bipartite
graph on classes A and B with 8λm2 + 12km edge-disjoint spanning trees, where each
vertex in A has degree divisible by m. For every function p : B → Z satisfying∑

v∈B

p(v) ≡ e(G)

m
(mod k) ,

there exists a decomposition of G into λ-edge-connected subgraphs G1 and G2 with
d(v,G1) =

1
m
d(v,G) for v ∈ A and

d(v,G1) ≡ p(v)(mod k) for v ∈ B.

Proof. Let H1 and H2 each be the union of 4λm2 of the spanning trees, and let H3

be the union of the remaining spanning trees. By Lemma 2.4, we can find a spanning
λ-edge-connected subgraph H ′

i of Hi satisfying

d(v,H ′
i) <

1

m2
d(v,Hi) <

1

m2
d(v,G) (2)

for i ∈ {1, 2}, and a spanning 3k-edge-connected subgraph H ′
3 of H3 satisfying

d(v,H ′
3) <

1

m
d(v,H3) <

1

m
d(v,G) . (3)

We are going to colour the edges of G with colours 1 and 2 so that for i ∈ {1, 2} the
graph Gi induced by the edges coloured i will be as required. As before, we denote the
degree of a vertex v in colour i by di(v).

We start by colouring all edges in H ′
1 with colour 1, and all edges in H ′

2 with colour
2. This ensures that both G1 and G2 will be λ-edge-connected. We also want

(m− 1)d1(v) = d2(v) (4)

to hold for v ∈ A. For every vertex in A, we colour more of its edges with colours 1 or
2 so that (4) is satisfied. We do it in such a way that the number of edges we colour is
minimal. By (2), we can give colour 1 to edges incident with v until d1(v) =

1
m2d(v,G),

and colour 2 to other edges incident with v until d2(v) =
m−1
m2 d(v,G). Thus, for every

v ∈ A, we colour 1
m
d(v,G) edges incident with v. Because of (3), we can assume that

all these coloured edges are outside of H ′
3. Let G′ be the graph consisting of all edges

we have coloured so far, and let G′′ be the graph induced by the remaining edges. In
particular, G′ satisfies (4) and G′′ contains H ′

3. In G′ every vertex in A has degree
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divisible by m, so this must also be the case in G′′. Since d(v,G′) = 1
m
d(v,G) for

v ∈ A, we have d(v,G′′) = m−1
m

d(v,G) ≥ 1
2
d(v,G). Thus,

d(v,H ′
3) <

1

m
d(v,G) ≤ 2

m
d(v,G′′)

for every v ∈ A. Now we repeat the argument from the proof of Proposition 4.2: We
find a subgraph G′′′ of G′′ containing H ′

3 and satisfying d(v,G′′′) = 2
m
d(v,G′′) for v ∈ A.

Let p′ : B → Z be the function defined by p′(v) = p(v)− d1(v,G
′) for v ∈ B. Note that∑

v∈B

p′(v) ≡
∑
v∈B

(p(v)− d1(v,G
′)) ≡ e(G)

m
− e(G′)

m
≡ e(G′′)

m
≡ e(G′′′)

2
(mod k) .

By Lemma 4.1, we can find a subgraph H of G′′′ satisfying

d(v,H) =
1

2
d(v,G′′′) =

1

m
d(v,G′′)

for v ∈ A, and d(v,H) ≡ p′(v) modulo k for v ∈ B. We colour the edges of H with
colour 1 and the remaining edges of G′′ with colour 2. Together with the edge-colouring
of G′, this completes the construction of G1 and G2. Observe that, for v ∈ A,

d(v,G1) = d1(v,G
′) + d(v,H)

=
1

m2
d(v,G) +

1

m
d(v,G′′)

=
1

m2
d(v,G) +

m− 1

m2
d(v,G)

=
1

m
d(v,G) .

For v ∈ B, we have d(v,G1) ≡ d1(v,G
′)+p′(v) ≡ p(v) (mod k), so G1 is as desired.

Repeated application of Lemma 4.3 results in the following proposition.

Proposition 4.4. For all natural numbers k,m, and λ, there exists a natural number
fk(m,λ) such that the following holds:

If G is a fk(m,λ)-edge-connected bipartite graph on vertex classes A and B, in which
all vertices in A have degree divisible by m, and p1, . . . , pm−1 are functions pi : B → Z
satisfying ∑

v∈B

pi(v) ≡
e(G)

m
(mod k)

for i ∈ {1, . . . ,m− 1}, then there exists a decomposition of G into m spanning λ-edge-
connected subgraphs G1, . . . , Gm such that

d(v,Gi) =
1
m
d(v,G) for v ∈ A and i ∈ {1, . . . ,m}, and

d(v,Gi) ≡ pi(v) (mod k) for v ∈ B and i ∈ {1, . . . ,m− 1}.
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Proof. We use induction on m. By Theorem 2.2 and Lemma 4.3, the statement is true
for m = 2 and fk(2, λ) = 64λ + 48k. Thus, we may assume m ≥ 3 and fk(m − 1, λ)
exists. Set

fk(m,λ) = 16fk(m− 1, λ)m2 + 24km .

If G is fk(m,λ)-edge-connected, then we can use Lemma 4.3 to decompose G into
fk(m−1, λ)-edge-connected subgraphs G′ and Gm−1 such that d(v,Gm−1) = d(v,G)/m
for v in A and d(v,Gm−1) ≡ pm−1(v) modulo k for v in B. Now we can use the induction
hypothesis for m− 1 with functions p1, . . . , pm−2 to decompose G′ into m− 1 spanning
λ-edge-connected subgraphs G1, . . . , Gm−2, Gm satisfying the conditions above. These
graphs together with Gm−1 decompose G as desired.

Now Theorem 3.3 follows easily.

Proof of Theorem 3.3. For a partition P of m into parts m1, . . . ,mb+1, we define π(P )
to be the product of m1, . . . ,mb+1. We are going to show that every fπ(P )(m,λ)-edge-
connected graph has a decomposition satisfying the conditions in the conclusion of
Theorem 3.3, where fπ(P ) is the function defined by Proposition 4.4. Since there are
only finitely many partitions of m into positive integers, we can then choose f(m,λ) as
the maximum of all values fπ(P )(m,λ) over all partitions P of m.

Let m = m1 + . . .+mb+1 be a partition of m into positive integers, and let k be the
product of m1, . . . ,mb+1. Let G be fk(m,λ)-edge-connected. We pick some function
q : B → Z satisfying ∑

v∈B

q(v) ≡ e(G)

m
(mod k) ,

and we apply Proposition 4.4 with p1 = . . . = pm−1 = q to get λ-edge-connected graphs
H1, . . . , Hm satisfying d(v,Hi) = 1

m
d(v,G) for v ∈ A, i ∈ {1, . . . ,m}, and d(v,Hi) ≡

q(v) (mod k) for v ∈ B, i ∈ {1, . . . ,m − 1}. We construct graphs G1, . . . , Gb+1 such
that Gi is the union of precisely mi of the graphs Hj, every Hj is contained in precisely
one of the Gi, and Gb+1 contains Hm. Now we have

d(v,Gi) =
mi

m
d(v,G)

for v ∈ A, i ∈ {1, . . . , b+ 1}, and

d(v,Gi) ≡ miq(v) (mod k)

for v ∈ B, i ∈ {1, . . . , b}. Since mi divides k for i ∈ {1, . . . , b}, we have that d(v,Gi) is
divisible by mi for v ∈ B, i ∈ {1, . . . , b}, so the graphs G1, . . . , Gb+1 are as desired.
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5 Trees of diameter 3

Let T be a tree of diameter 3. As before, it is sufficient to consider the case where
the simple graph G we want to decompose is bipartite. In particular, we can assume
that the girth of G is at least 4. Thus, every T ∗-decomposition of G is also a T -
decomposition of G, and so Theorem 1.3 immediately implies Conjecture 1.1 in this
case. In the following we are going to take a closer look at the value k(T ) resulting
from the proof of Theorem 1.3.

Let S(k, ℓ) denote the bistar with two adjacent vertices of degree k and l respectively,
and all other vertices having degree 1. Every tree of diameter 3 is isomorphic to a bistar
S(k, ℓ) for some natural numbers k and ℓ with 1 < k ≤ ℓ.

Proposition 5.2 below is a special case of Theorem 3.3. We give a direct proof
here to get a better edge-connectivity. For this we use the following strengthening of
Theorem 2.3, which is Corollary 21 in [8]: For every ε with 0 < ε < 1, if G is ⌈4

ε
⌉-

edge-connected, then G has a spanning tree T such that d(v, T ) < εd(v,G) for every
v ∈ V (G). We combine this result with the idea used in the proof of Lemma 2.4 to get
the following lemma.

Lemma 5.1. Let q be a natural number, and ε a real number with 0 < ε < 1. If G is
a graph with ⌈4

ϵ
⌉q edge-disjoint spanning trees, then G has a spanning q-edge-connected

subgraph H such that d(v,H) < εd(v,G) for every v ∈ V (G).

The proof of Proposition 5.2 is very similar to the proof of Proposition 4.2.

Proposition 5.2. Let k and ℓ be natural numbers with 1 < k ≤ ℓ, and let m = k+ℓ−1.
Assume G is a bipartite graph on vertex classes A and B where all vertices in A have
degree divisible by m. If G has 3ℓ⌈ 2m

k−1
⌉ edge-disjoint spanning trees, then G has a

decomposition into two graphs G1 and G2 such that

• d(v,G1) =
k−1
m

d(v,G) for v ∈ A, and

• d(v,G2) is divisible by ℓ for v ∈ B.

Proof. By Lemma 5.1, we can find a spanning 3ℓ-edge-connected subgraph G′ with
d(v,G′) < 2(k−1)

m
d(v,G). Since 2(k − 1) < m, we can add some edges of G to G′ to get

a graph G′′ ⊆ G in which every vertex v ∈ A has degree precisely 2(k−1)
m

d(v,G). Let
p : B → Z be the function defined by p(v) = d(v,G). Observe that∑

v∈B

p(v) ≡ e(G) ≡ e(G)− ℓ

m
e(G) ≡ m− ℓ

m
e(G) ≡ k − 1

m
e(G) ≡ e(G′′)

2
(mod ℓ) ,

so we can apply Lemma 4.1 with the function p. The resulting subgraph G1 of G′′

satisfies d(v,G1) =
1
2
d(v,G′′) = k−1

m
d(v,G) for v ∈ A, and d(v,G1) ≡ p(v) modulo ℓ for

v ∈ B. Let G2 denote the graph G − E(G1), then d(v,G2) = d(v,G) − d(v,G1) ≡ 0
modulo ℓ for v ∈ B, so the graphs G1 and G2 are as desired.
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Given a decomposition of a graph G into graphs G1 and G2 as above, we immediately
get an S(k, ℓ)-decomposition by the same arguments as in Section 3: We edge-colour
G2 with ℓ colours so that every vertex has the same degree in each colour, and we edge-
colour G1 with k− 1 different colours so that every vertex in A has the same degree in
all k + ℓ − 1 colours. Now we get an S(k, ℓ)-decomposition by Lemma 3.2, where the
vertices of degree k lie in A and the vertices of degree ℓ lie in B.

Thomassen [19] proved that every 180k4-edge-connected bipartite simple graph with
size divisible by 2k has an S(k, k + 1)-decomposition. Combining Proposition 5.2 with
Proposition 2.6, we get the following stronger result.

Theorem 5.3. Let k and ℓ be natural numbers with 1 < k ≤ ℓ, and let m = k + ℓ− 1.
Every (12ℓ⌈ 2m

k−1
⌉ + 6m − 4)-edge-connected bipartite graph with size divisible by m has

an S(k, ℓ)-decomposition.
In particular, every (72k + 164)-edge-connected bipartite simple graph with size di-

visible by 2k has an S(k, k + 1)-decomposition.

Proof. By Theorem 2.2, G contains (6ℓ⌈ 2m
k−1

⌉ + 3m − 2) edge-disjoint spanning trees.
By Proposition 2.6, G can be decomposed into two graphs G1 and G2 satisfying the
conditions of Proposition 5.2. This yields an S(k, ℓ)-decomposition as described above.

To see that the second part of the statement holds, note that for ℓ = k+ 1 we have

12ℓ

⌈
2m

k − 1

⌉
+ 6m− 4 = 12(k + 1)

(
4 +

⌈
4

k − 1

⌉)
+ 12k − 4

= 60k + 44 + 12(k + 1)

⌈
4

k − 1

⌉
= 72k + 56

for k ≥ 5. It is easy to check that (k+1)
⌈

4
k−1

⌉
≤ k+10 holds for k ∈ {2, 3, 4}, resulting

in the general bound 12ℓ
⌈

2m
k−1

⌉
+ 6m− 4 ≤ 72k + 164.

For trees of diameter 3 the general reduction to the bipartite case from Proposi-
tion 2.7 was done more efficiently by Thomassen.

Theorem 5.4. [19] Let T be a tree on m edges with diameter 3, and let k be a natural
number. If G is a (4k + 16m(m+ 1))-edge-connected graph, then G can be decomposed
into a k-edge-connected bipartite graph G′ and a graph H that admits a T -decomposition.

Thomassen proved that every 784k4-edge-connected simple graph with size divisible
by 2k has a S(k, k + 1)-decomposition. Combining Theorem 5.3 with Theorem 5.4, we
get the following more general result.

Theorem 5.5. Let k and ℓ be natural numbers with 1 < k ≤ ℓ, and let m = k + ℓ− 1.
Every 112m2-edge-connected graph of size divisible by m has an S(k, ℓ)-decomposition.
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For the proof, it suffices to see that 112m2 ≥ 4k′ + 16(m2 +m), where k′ = 12(m−
k + 1)

⌈
2m
k−1

⌉
+ 6m− 4.

For k = ℓ = 2, the bistar S(k, ℓ) is a path of length 3. This special case was
investigated by Thomassen [16], who showed that every 171-edge-connected simple
graph with size divisible by 3 admits a P4-decomposition. In the proof it was shown
that every 2-edge-connected bipartite simple graph where all vertices on one side have
degree divisible by 3 admits a decomposition into paths of length 3. Note that for m
odd 3m−3+2ℓ edge-disjoint spanning trees suffice in Proposition 2.6, so every bipartite
simple graph with 10 edge-disjoint spanning trees has a P4-decomposition. Replacing
this part in Thomassen’s proof, we get that every 63-edge-connected simple graph with
size divisible by 3 can be decomposed into paths of length 3.

6 Trees of diameter 4

Let T be a tree of diameter 4. We may assume that the graph G we want to decompose
is bipartite and thus has girth at least 4, so the only problem is that some homomorphic
copies in the T ∗-decomposition might contain 4-cycles. To take care of this, we shall
start with a T ∗-decomposition and try to improve it by switching leaf edges between
different homomorphic copies. It is essential that Theorem 3.3 results in a decompo-
sition where every vertex has a large degree in every colour, so that we have enough
freedom to make switches. This method can be used whenever the girth of G is at
least the diameter of T . Before we see how this strategy works in a general setting, we
investigate the path of length 4. Notice that the minimum degree condition in the next
proposition cannot be omitted, since a cycle of length 4 satisfies all other conditions.

Proposition 6.1. Let G be a bipartite simple graph on vertex classes A and B with
size divisible by 4, where the vertices in A have even degree.

If G is 2-edge-connected, then G has a P ∗
5 -decomposition.

If G is 2-edge-connected and the vertices in A have minimum degree 4, then G has
a P5-decomposition.

Proof. We lift the vertices in A in such a way that the resulting graph G′ is still 2-
edge-connected. Since G′ is connected and has an even number of edges, it is possible
to orient its edges so that every vertex has even outdegree. Indeed, it suffices to see
that G′ can be decomposed into paths of length 2, and one can orient each such path
so that its central vertex has outdegree 2. Every directed edge in G′ corresponds to a
directed path of length 2 in G. We colour the first edge of each of these directed paths
in G red and the second edge blue. Now every vertex in A has the same degree in red
and blue, and the vertices in B have even degree in red.

We first pair up the red edges at every vertex in B arbitrarily, these will be the two
middle edges of the paths of length 4. For each red path of length 2, we need to add a
blue edge to each of its ends. Since the vertices in A have the same degree in red and
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blue, we can find a pairing up of the blue edges and the ends of the red paths resulting
in a P ∗

5 -decomposition. This proves the first part of the proposition, so we may now
assume that the vertices in A have minimum degree 2d for some d ≥ 2.

Let x be a vertex in B. We say that a homomorphic copy of P5 has a conflict at x,
if x is incident with both blue edges of that copy. We pair each red edge with a blue
edge such that the number of conflicts, and thus the number of 4-cycles, is minimal.

Suppose there is a conflict at some vertex x in B. Consider the directed graph D(x)
where the vertices are the homomorphic copies of P5 in our decomposition. For two
homomorphic copies T1 and T2, we add an edge oriented from T1 to T2 in D(x) for
every a ∈ A such that ax is a blue edge of T1, and there is a vertex b ∈ B for which
ab is a blue edge of T2. The idea is that it is then possible to switch the blue edge ax
of T1 with the blue edge ab of T2, obtaining T ′

1 and T ′
2, so that T ′

1 has no conflict at x.
Notice that such a switch might create a new conflict at x, but not at any other vertex
(possibly T ′

2 might have a conflict at x).
In D(x), each vertex has either outdegree 0 (if x is not a leaf in the homomorphic

copy), or it has at least outdegree d−1. Notice that every vertex with positive outdegree
has indegree at most 1, since the corresponding homomorphic copy has at most one
blue edge not incident with x, say ab with a ∈ A, b ∈ B, and there is at most one
homomorphic copy in which ax is a blue edge.

Since we assumed there is a conflict at x, there is a vertex v in D(x) with outdegree
at least 2(d− 1) and indegree 0. Let X be the set of vertices we can reach from v via
a directed path, including v. Suppose every vertex in X has positive outdegree, then
the subgraph induced by X contains at least (|X| + 1)(d − 1) edges. However, it can
contain at most |X| − 1 edges, since every vertex has indegree at most 1, and v has
indegree 0. Thus, there is a directed path in D(x) from v to a vertex of outdegree 0,
and making the switches corresponding to the edges on this path reduces the number
of conflicts by 1, contradicting our assumption.

Thomassen [17] showed that every 1010
1014

-edge-connected graph of size divisible by
4 has a decomposition into paths of length 4. Using the proposition above, this bound on
the edge-connectivity can be significantly improved. By Proposition 2.6, every bipartite
simple graph with 14 spanning trees and size divisible by 4 can be decomposed into
two graphs satisfying the conditions of Proposition 6.1. Combining this with the first
part of Thomassen’s proof we can conclude that every 107-edge-connected graph of size
divisible by 4 has a P5-decomposition.

Conjecture 1.1 can be restated as follows: For every tree T on m edges, and every
natural number g with g ≥ 3, there exists a natural number k(T, g) such that every
k(T, g)-edge-connected simple graph with girth at least g and size divisible by m has
a T -decomposition. The existence of k(T, 4) is equivalent to the existence of k(T ) by
Theorem 2.7. If d denotes the diameter of T , then we know by Theorem 1.3 that
k(T, d + 1) exists. The following theorem shows that also k(T, d) exists. This verifies
Conjecture 1.1 for trees of diameter 4.
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Theorem 6.2. Let T be a tree of size m and diameter d. There exists a natural number
k(T, d) such that every k(T, d)-edge-connected simple graph G with girth at least d and
size divisible by m has a T -decomposition.

Proof. We may assume as usual that G is bipartite on vertex classes A and B and that
all vertices in A have degree divisible by m. We are going to show that it suffices for G
to be f(m, 2m)-edge-connected, where f is the function defined by Theorem 3.3.

If d is odd, thenG has girth at least d+1, so the conclusion follows from Theorem 1.3.
Thus, we may assume that d is even. Let TA and TB be the two vertex classes defined by
a proper 2-colouring of T . We may assume that TB contains the ends of every longest
path in T , since d is even. We colour the edges of T that are incident with leaves in TB

blue, and the remaining edges red.
Let λ be a natural number with λ ≥ 2m, and assume G is f(m,λ)-edge-connected.

As in the proof of Theorem 1.3, we can use Theorem 3.3 and Lemma 3.2 to get a T ∗-
decomposition, where all vertices in TA correspond to vertices in A in the homomorphic
copies. We colour the edges of G red and blue according to the colour of the edge they
correspond to in T . Notice that by the proof of Theorem 1.3, the subgraph Gb+1 in
Theorem 3.3 corresponds precisely to the edges coloured blue in G, so every vertex in
A is incident with at least λ blue edges.

Since G has girth d, the only way a homomorphic copy can fail to be an isomorphic
copy of T is if it contains a cycle of length d or, equivalently, two blue edges intersecting
at a vertex in B. As in the previous proof, we shall repair this by switching one of the
blue edges with a blue edge from another homomorphic copy. We are not going to
make any changes to the red edges, every red part of a homomorphic copy in the
T ∗-decomposition will be the red part of an isomorphic copy in the T -decomposition.

For x ∈ B, a conflict at x is a pair of blue edges contained in the same homomorphic
copy of T such that both of them are incident with x. Notice that one homomorphic
copy may have several conflicts at x. Out of all T ∗-decompositions we can get by
switching blue edges between copies of our original T ∗-decomposition, we choose one
for which the number of conflicts is minimal.

Suppose there is a conflict at some vertex x ∈ B. Consider the directed graph D(x)
where the vertices are the homomorphic copies of T in the T ∗-decomposition. For two
homomorphic copies T1 and T2, we add an edge oriented from T1 to T2 in D(x) for
every a ∈ A, b ∈ B − V (T1) such that ax is a blue edge of T1 and ab is a blue edge of
T2. Again, the idea is to switch the blue edge ax of T1 with the blue edge ab of T2 to
decrease the number of occurences of x in T1. Notice that such a switch might create a
new conflict at x, but since b is not contained in T1 it will not create a conflict at any
other vertex. Since less than m of the blue edges at a are incident with another vertex
of T1, there are at least λ −m blue edges we can choose for the switch. In particular,
every vertex of positive outdegree in D(x) has outdegree at least λ−m.

Let v be a vertex ofD(x) corresponding to a homomorphic copy containing a conflict
at x, so v has outdegree at least 2(λ − m). Let X denote the set of vertices in D(x)
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we can reach from v via a directed path, including v. If every vertex in X has positive
outdegree, then the subgraph induced by X has more than (λ−m)|X| edges. However,
every vertex of D(x) has indegree at most ℓ, where ℓ denotes the number of blue edges
of T . Thus, the graph induced by |X| has less than ℓ|X| edges, which is at most
(λ−m)|X| for λ ≥ 2m. This shows that there must be a vertex u of outdegree 0 in X.
Now making the switches corresponding to the edges of the directed path from v to u
results in a T ∗-decomposition with fewer conflicts, contradicting our assumption.

Corollary 6.3. For every tree T with size m and diameter at most 4, there exists a
natural number k(T ) such that every k(T )-edge-connected graph with size divisible by
m has a T -decomposition.
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