316 research outputs found

    Towards an Integrated Conceptual Design Evaluation of Mechatronic Systems: The SysDICE Approach

    Get PDF
    National audienceMechatronic systems play a significant role in different types of industry, especially in trans- portation, aerospace, automotive and manufacturing. Although their multidisciplinary nature provides enormous functionalities, it is still one of the substantial challenges which frequently impede their design process. Notably, the conceptual design phase aggregates various engi- neering disciplines, project and business management fields, where different methods, modeling languages and software tools are applied. Therefore, an integrated environment is required to intimately engage the different domains together. This paper outlines a model-based research approach for an integrated conceptual design evaluation of mechatronic systems using SysML. Particularly, the state of the art is highlighted, most important challenges, remaining problems in this field and a novel solution is proposed, named SysDICE, combining model based system engineering and artificial intelligence techniques to support for achieving efficient design

    Software Systems Engineering for Cyber Physical Production Systems

    Get PDF
    This project solves the problem of easy adaption and usage of CPPS by small scale industries, With this project it has been tried to develop a methodology of requirement engineering for CPPS system and finally the whole system. We have developed the approach right from requirement engineering to mapping into IEC61499 function blocks and then to deployment to a physical devices. This work can be a good foundation and support for scientific communities or industialist to easily implement requirement engineering of a small scale systems for CPPS and thus build a 21st century production system with this and reap its enormous benefits.Cyber physical production systems are the future of production systems not only in europe but in the entire world. It brings with itself huge benefits and popularly attributes to Industry 4.0 also. These are automated systems where physical systems are monitored and controlled by computer based algorithms in real time. Traditional systems have certain disadvantages and are limited in terms of hours of operation as it is governed by manpowers and the type of products that can be produced without making much changes in the production configuration and the speed of production of products. In europe, a lot of research is going on, particularly in germany and in the United states too for upgrading major physical systems and manufacturing systems. Some examples of such systems are smart factory, smart grid, autonomous automobile systems, automatic pilot avionics, robotics systems etc. The main goal of this thesis is to define a set of methodologies for easing the process of implementation of the CPPS(cyber physical production systems) system on small and medium industries so that the adoption rate for such industries can be high. There is no methodology yet particularly for CPPS systems for small and medium industries, although we have methodologies in place for large industries. In order to do so, first study was done for challenges in developing a requirement engineering process in section 3 and how it is different from a typical software system. An approach has been developed based on existing information available on large systems and CPPS and some software engineering frameworks like MODAF and TOGAF. A proposal for the process and some diagrams and tools has been made in section 4. To validate the proposed approach we have taken a synthetic test case of a pizza production system and implemented all the approaches to transform it into a cyber physical production system right from requirement and UML diagrams to the final function block approach. With this set of approaches,there is now a basis for software development methodology for small and medium industries particularly. With these approaches the adoption rate can be really high for such industries bringing out traditional industries more to the 21st century forefront

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Interface between SysML and Sequence Planner Language for Formal Verification

    Get PDF
    This paper presents a method and software for interfacing Systems Modeling Language (SysML) and Sequence Planner Language (SPL). Exchange of information between different software tools is of major interest for modern manufacturing industries from early design to final implementation. SysML, with its structure as a common platform, can then be interfaced with other domain-specific modeling tools to achieve information exchange. This paper presents a method to interface SysML with a recently introduced language for operation sequences called Sequence Planner Language (SPL). By this method, necessary information from behavioral constructs of SysML model are extracted and structured in SPL. This language, being a formal, graphical language,can be used to formally verify the system for any blocking states. An academic and an industrial model developed in SysML are tested using the interface implementation and the results show that information from SysML can be visualized in SPL and formally verified to have no blocking states
    • …
    corecore