5 research outputs found

    A persistent scatterer interferometry procedure to monitor urban subsidence

    Get PDF
    This paper describes a Persistent Scatterer Interferometry procedure for deformation monitoring. Its more original part concerns an approach to estimate the atmospheric phase component. The procedure can be used to monitor deformation areas that are relatively small and are surrounded by stable areas. The proposed procedure is described step by step. The procedure can be applied using SAR data coming from different sensors. However, in this work we discuss results obtained using Sentinel-1 data. A case study is described, where the deformation is caused by water pumping associated with construction works. In this case study, a stack of 78 Sentinel-1 images were analysed. The main part of the paper concerns the analysis of the atmospheric component. A comprehensive characterization of this component is first described, considering the original non-filtered phases. This is followed by the characterization of the residual filtered phases. This analysis highlights the goodness of the proposed procedure. This is further confirmed by the analysis of two deformation time series. The procedure can work with any type of deformation phenomena, provided that its spatial extension is sufficiently small

    A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping

    Get PDF
    In this study, we evaluated the predictive performance of an adaptive neuro-fuzzy inference system (ANFIS) with six different membership functions (MFs). Using a geographic information system (GIS), we applied ANFIS to land subsidence susceptibility mapping (LSSM) in the study area of Amol County, northern Iran. As a novelty, we derived a land subsidence inventory from the differential synthetic aperture radar interferometry (DInSAR) of two Sentinel-1 images. We used 70% of surface subsidence deformation areas for training, while 30% were reserved for testing and validation. We then investigated regions that are susceptible to subsidence via the ANFIS method and evaluated the resulting prediction maps using receiver operating characteristics (ROC) curves. Out of the six different versions, the most accurate map was generated with a Gaussian membership function, yielding an accuracy of 84%.(VLID)286360

    The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis

    No full text
    In this work, ground deformation of the Shanghai coastal area is inferred by using the multiple-satellite Differential Synthetic Aperture Radar interferometry (DInSAR) approach, also known as the minimum acceleration (MinA) combination algorithm. The MinA technique allows discrimination and time-evolution monitoring of the inherent two-dimensional components (i.e., with respect to east-west and up-down directions) of the ongoing deformation processes. It represents an effective post-processing tool that allows an easy combination of preliminarily-retrieved multiple-satellite Line-Of-Sight-projected displacement time-series, obtained by using one (or more) of the currently available multi-pass DInSAR toolboxes. Specifically, in our work, the well-known small baseline subset (SBAS) algorithm has been exploited to recover LOS deformation time-series from two sets of Synthetic Aperture Radar (SAR) data relevant to the coast of Shanghai, collected from 2014 to 2017 by the COSMO-SkyMed (CSK) and the Sentinel-1A (S1-A) sensors. The achieved results evidence that the Shanghai ocean-reclaimed areas were still subject to residual deformations in 2016, with maximum subsidence rates of about 30 mm/year. Moreover, the investigation has revealed that the detected deformations are predominantly vertical, whereas the east-west deformations are less significant

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    corecore