5 research outputs found

    Mapping Fluctuations of Hispar Glacier, Karakoram, using Normalized Difference Snow Index (NDSI) and Normalized Difference Principal Component Snow Index (NDSPCSI)

    Get PDF
    Investigation of the fluctuations in the snow-covered area of the major glaciers of the Karakoram range is essential for proper water resource management in Pakistan, since its glaciers are responding differently to the rising temperatures. The objective of this paper is to map snow covered area of Hispar glacier in Hunza river basin for the years 1990, 2010 and 2018. Two techniques, (NDPCSI) Normalized Difference Principal Component Snow Index and (NDSI) Normalized Difference Snow Index were used. Hispar glacier of the Hunza basin has lost 114 km2 of its ice cover area, during the last 28 years, with an alarming annual retreat rate of 1.67 km2 of glacier ice from 1990 to 2018. Hunza basin experienced a +1°C rise in both mean minimum and mean maximum temperature during 2007 to 2018.as a result, Karakorum ice reserves have been affected by rising temperature of the region. Due to temperature rise, retreat of snowcovered area of Hispar, Karakoram mountain range shows a shift in the cryospheric hazard zone

    Modeling supraglacial lake drainage and its effects on the seasonal evolution of the subglacial drainage system in a tributary glacier setting

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2021This work aims to gain a better understanding of the relationship between glacier motion and water distributed through subglacial drainage systems. A numerical scheme (GlaDS) is used to model both inefficient and efficient drainage systems to see which dominates after the draining of a supraglacial lake on a synthetic glacier that is made up of an outline that features a main branch and a tributary. The geometry is based on the surgetype Black Rapids Glacier (Ahtna Athabascan name: Da lu'itsaa'den) in Alaska, where a lake develops in the higher ablation zone, and drains rapidly early in the melt season. It has also been observed that this lake drainage causes a twofold or threefold speed-up of the main branch, with some acceleration of the lower-lying Loket tributary. This speed-up can be considered a surrogate for a surge, which also initiates in the main branch, while, during times of quiescence, the ice flow on the tributary is dominant. We investigate the effects of varying timing and volume inputs of lake drainage with a focus on its effects beneath the tributary. We find that the response of the glacier depends on the seasonal timing, the amount of water from the draining lake, and its location on or near the margins of the glacier. Results show that an inefficient drainage system is the cause of the glacier speed-up, both when the lake drains rapidly or when there is an extended time in drainage, at any time of the season. The speed signals vary throughout the glacier depending on the location of the lake relative to that of an evolved efficient drainage system

    The 2015 surge of Hispar Glacier in the Karakoram

    Get PDF
    The Karakoram mountain range is well known for its numerous surge-type glaciers of which several have recently surged or are still doing so. Analysis of multi-temporal satellite images and digital elevation models have revealed impressive details about the related changes (e.g., in glacier length, surface elevation and flow velocities) and considerably expanded the database of known surge-type glaciers. One glacier that has so far only been reported as impacted by surging tributaries, rather than surging itself, is the 50 km long main trunk of Hispar Glacier in the Hunza catchment. We here present the evolution of flow velocities and surface features from its 2015/16 surge as revealed from a dense time series of SAR and optical images along with an analysis of historic satellite images. We observed maximum flow velocities of up to 14 m d−1 (5 km a−1) in spring 2015, sudden drops in summer velocities, a second increase in winter 2015/16 and a total advance of the surge front of about 6 km. During a few months the surge front velocity was much higher (about 90 m d−1) than the maximum flow velocity. We assume that one of its northern tributary glaciers, Yutmaru, initiated the surge at the end of summer 2014 and that the variability in flow velocities was driven by changes in the basal hydrologic regime (Alaska-type surge). We further provide evidence that Hispar Glacier has surged before (around 1960) over a distance of about 10 km so that it can also be regarded as a surge-type glacier
    corecore