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Abstract 

This study analyses the behaviour of an actively surging glacier, Hispar, in Pakistan 

using remote sensing methods. We used 15m panchromatic band of Landsat 8 OLI 

from 2013 - 2017 to assess the changes in glacier velocity, glacier geomorphology 

and supraglacial water bodies. For the velocity estimation, correlation image analysis 

(CIAS) was used, which is based on normalized cross-correlation (NCC) of satellite 

data. On-screen digitization was employed to quantify changes in the glacier 

geomorphology and dynamics of supraglacial water bodies on the glacier. Our 

velocity estimates indicate that the upper part of the glacier is presently undergoing 

an active surge which not only affects the debris distribution but also impacts the 

development of supraglacial water bodies. Velocities in the actively surging part of 

the main glacier trunk and its three tributaries reach up to ~900 m yr-1. The surge of 

Hispar also impacts the distribution of supraglacial debris causing folding of the 

medial moraines features present on the glacier surface. Changes in the number and 

size of supraglacial lakes and ponds was also observed during the observation 

period from 2013-2017.  

 

Keywords: Glacier surge; Karakoram; Supraglacial water bodies; Glacier velocity 
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1. Introduction  

Glacier surges have been reported from many areas of the world including the 

Canadian and Russian High Arctic, Svalbard, Iceland, Greenland, Alaska and parts 

of the Himalaya (Sevestre and Benn, 2015). These surge-type glaciers go through 

an active phase and a quiescent phase.  While the active phase is characterised by 

recurring non-steady flow that can last for a few months to years, the quiescent 

phase lasts longer, typically tens to few hundreds of years (Meier and Post, 1969). 

Karakoram glacier surges are poorly understood (Hewitt, 2005). The glacier 

velocities of surge-type glaciers in Karakoram during active phase increase by up to 

200% than during the quiescent phase (Hewitt, 1969). Peak velocities of around 2 

km yr-1during summer months have been observed (Quincey et al., 2015). Majority 

of the surge type glacier have been reported to vary between 12 and 25 km in length 

(Hewitt, 1969) and are often fed by tributary glaciers (Hewitt, 2007). There is a 

positive correlation between surge-type glaciers and glacier length, area, perimeter, 

average width, debris cover and orientation (Barrand and Murray, 2006). Insignificant 

changes in debris cover, indicative of stable mass budget of glaciers in Hunza river 

basin, has been recently reported  (Herreid et al. 2015; Bolch et al. 2017). The 

season of Karakoram glacier surge initiation varies. Some surges develop extremely 

quickly (Kick, 1958; Gardner and Hewitt, 1990) while others develop gradually over 

several years (Quincey et al., 2011).  These surges can result in huge advance of 

the glacier snout (km-scale), over a short time span (weeks to months). It has been 

suggested that Karakoram glacier surges may be triggered by change in thermal 

conditions (Hewitt, 2007) that coincide with warming driven by long-duration 

precipitation patterns (Quincey et al., 2011), although other studies advocated 

changes in hydrological conditions as a possible trigger mechanism for glacier 
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surges in the region (Copland et al., 2011; Mayer et al., 2011). However, it is 

pertinent to mention that the glacial hydrological regimes are controlled by the 

thermal regimes. 

 Drawing on data from eight glaciers, Quincey et al. (2015) suggested that no 

single classical mechanism is able to comprehensively describe the flow-instability of 

surge-type glaciers in Karakoram. Their analysis did not find any evidence of 

seasonal control on the initiation of glacier surges in the region. They suggested that 

these surge events are triggered by a blend of hydrological and thermal processes.  

 Here we present new data concerning glacier velocity and changes in the 

surface character of a surge-type glacier in Pakistan, the Hispar Glacier. Hispar is a 

~50 km long surge-type glacier (Copland et al 2011; Hewitt 2005), located in the 

Karakoram Mountains (Lat: 36.02-36.32 N; Lon: 75.02-75.55 E) in Gilgit Baltistan 

province of Pakistan (Figure 1). The mountains enclosing Hispar and its tributaries 

are characterized by very steep snow-covered cliffs rising to slope angles of 77o 

which result in numerous snow avalanches feeding the glacier. The altitudinal extent 

of Hispar Glacier is 3088 to 7113 m amsl. Taking snow-line as an approximation of 

equilibrium line altitude (ELA), the ELA of the Hispar glacier lies at an elevation of 

4956 m amsl.  The Hispar River originates from the melt waters of the glacier. The 

glacier topography was first surveyed by Workman (1910) in 1908 who reported the 

presence of thick debris cover and crevasses across the ablation zone of the glacier. 

The snout of the glacier lies 2.42 km east of Hispar village at an altitude of 3088 m 

amsl. Hispar ascends with a gentle gradient in south easterly direction for 50 km to 

the highest point - Hispar pass (5335 m amsl), where it meets the upper extremity of 

the Biafo Glacier. 

2. Data and Methods: 
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2.1. Data:  

Landsat 8 OLI panchromatic band images with a spatial resolution of 15m, acquired 

between 2013 and 2017, were used for velocity estimation and glacial 

geomorphological mapping. Autumn images were chosen as they have the least 

snow and cloud cover in this region. The details of the datasets are given in Table 1.  

2.2. Velocity: 

Glacier surface velocity was estimated using a feature-tracking method based 

on automatic matching of satellite image pairs. A number of feature-tracking 

techniques have been applied in glaciological studies, including normalized cross-

correlation (NCC), Fourier cross-correlation, least squares matching, phase 

correlation and orientation correlation (Kääb, 2005; Heid and Kääb, 2012). The 

present study used the correlation image analysis (CIAS) algorithm (Kääb and 

Vollmer, 1999) for glacier velocity estimation. This cross-correlation algorithm 

computes the displacement of prominent glacier surface features on two satellite 

images acquired at different points in time (Kääb and Vollmer, 2000) as:  
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 The   in the equation is the double cross-correlation function. The 

coordinates in the test and reference block are represented by (i, k) and (j, l) 

respectively. The spatial grey value function in the test block is represented by s and 

s, l, k is the corresponding grey value at location (i, k). Similarly m, j, l is the grey 

value at location (j, l) in the reference block represented by grey level function m. T is 
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the sum of grey values of the test or reference block, and N is the number of pixels 

of the test or reference block (Nref = Ntest). 

 Owing to its operational simplicity and robustness, CIAS is reliable for glacier 

velocity estimation (Heid and Kääb, 2012). The velocity measurements in NCC are 

carried out by systematically correlating a block of pixel values from reference image 

(so-called ‘reference block’) to the pixel values in the test block. Landsat 8 OLI 

satellite images from 2013 - 2017 were used in the present study. The panchromatic 

band of both the images with 15m spatial resolution and sufficient visual contrast 

were utilised to estimate horizontal velocities. The horizontal displacements were 

then estimated automatically in two steps. First, in the orthorectified satellite image of 

time 1, a block of pixels, whose ground coordinates are known, is chosen as 

reference block. Based on the reference block, corresponding image pixels, called 

test block, are searched in the image of time 2.  

 The differences in central pixel coordinates of the reference and test block 

directly give the horizontal displacement between the images under consideration. 

The accuracy of NCC method employed in CIAS is +1 pixel, which is 15m in our 

case (Kääb and Vollmer, 2000). For the calculation of velocity of the Hispar glacier 

the reference block size of 15 pixels and a search area size of 50 pixels at a grid of 

100 m was used (Paul et al. 2017).  

 

2.3. Glacial geomorphology: 

Debris cover mapping on the glacier surface was carried out using on-screen 

digitization (OSD) at 1:25000 scale using the satellite images from 2013-2017. OSD 

with cognitive inputs from the analyst was employed due to its advantage over digital 

classification algorithms in delineation of different landscape features in a 
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topographically rugged terrain where clouds and shadows pose problems in 

interpreting image elements (Rashid et al. 2010; Rashid and Abdullah, 2016). We 

also delineated lateral and medial moraines of the Hispar Glacier so that the effects 

of the surge could be better understood. 

2.4. Supraglacial water bodies: 

Supraglacial water bodies were also delineated using OSD at 1:25000 scale 

on the satellite images from 2013-2017. Owing to the medium resolution of data, we 

could only delineate those water bodies as polygons which had an area of more than 

0.5 hectare (Ha). The supraglacial water bodies with a surface area greater than 0.5 

hectare (Ha) were classified as lakes while water bodies with an area less than 0.5 

Ha were digitized as point features and classified as ponds. A change detection 

analysis was then carried out to assess the change in both area and number of 

ponds for the 5-year period of observation (September 2013 to September 2017). 

 

3. Results: 

3.1.  Velocity Changes: 

The trunk glacier can be divided into three different zones with differential velocity 

regimes (Figure 3). The zone 1 (Z1) between the snout and tributary T1 had the 

lowest velocities during the assessment period. The average velocity in this zone is 

~30 m yr-1. The zone 2 (Z2) that extends from just above the convergence of T1 with 

the main trunk to point B just below the ice fall has highest average velocity of ~500 

m yr-1 (Figure 2, 3).  The next ~6 km above from ice fall to the upper reaches of the 

accumulation zone comprise the third zone (Z3) where the average velocity is ~40 m 

yr-1. 
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Surface velocities for the main trunk of Hispar glacier are at their highest near the 

ice fall (Figure 2). The tributary glaciers move at similar velocities to that of the trunk 

glacier. The velocity estimates revealed that the mean velocity of the main glacier 

trunk increased from 275 m yr-1 during 2013-14 to 344 m yr-1 during 2014-15. The 

mean velocity increased slightly by 10 m yr-1 reaching a maximum of 355 m yr-1 in 

2015-16 before significant decelerating to 222 m yr-1 during 2016-17 period. The 

analysis of the velocity estimates and the visual inspection of the satellite data 

suggest that the surge started to build by 2013-2014 with the velocity increasing to 

910 m yr-1, the highest in the entire observation period of 5 years from 2013-2017 

(Figure 2a). The surge wave, however, remained restricted to the accumulation zone 

on Hipsar Glacier, above the confluence with T4 (Figure 3). Relatively low velocities 

are seen below the confluence with T4 to the snout (Figure 2a, 3). Velocities on the 

Hispar Glacier are similar during the next observation period (2014-15) to those in 

the period 2013-14, although the surge wave advanced to the confluence with T1. 

Below this point there are negligible changes in the velocity between the two 

observation periods (Figure 2b). Although a small decrease in the maximum velocity 

from 910 m yr-1 in 2013-2014 to 863 m yr-1 in 2014-2015 was observed, the average 

velocity remained similar. The average velocity of the Hispar Glacier slightly 

increased in the year 2015-2016 compared to the previous periods of 2013-2014 and 

2014-15 (Figure 2c). The surge front still persisted and protruded to its maximum up 

to the confluence with tributary T1 during the 2015-16 assessment period before 

sharply retreating back during 2016-17 period (Figure 2d). The surge front emerging 

near T4 at an altitude of ~3970 m amsl in 2013 moved down the glacier by ~10 km 

reaching the confluence point of T1 with the main glacier in 2016. The velocity 

pattern of the tributaries for the year 2015-2016 did not change much compared to 
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the previous assessment periods. Although no significant change in the velocity of 

the glacier snout was observed, inspection of the optical satellite data revealed that 

the glacier had expanded laterally. The analysis of the velocity maps of the Hispar 

Glacier suggest that that active phase of the surge started in the year 2013-2014, 

probably initiated by the acceleration of the T4 and T5 tributaries. The deformation of 

the medial moraine of the glacier trunk, a common characteristic of the surging 

tributaries at the confluence of these tributaries, also suggests their influence on the 

flow instability of glacier trunk (Paul et al., 2017). The Hispar Glacier trunk started to 

move at the similar velocity to that of its tributaries from 2013-14 to 2015-15 period. 

Our analysis suggests that the surface velocity of the glacier drastically decreases 

below point A (Figure 3) to the terminus and that the surge front never extended 

beyond T1, indicated by very low velocities of less than 1 m yr-1 in this zone. The 

velocity of the contributing tributaries (T4 and T5, Figure 2, 3) that converge with the 

main trunk below the icefall are considerably higher resulting in the initiation of the 

accelerated flow of glacier trunk. The mean velocity of the main glacier trunk during 

2013-2014 was 280 m yr-1 while the tributaries T4 and T5 moved at 445 m yr-1 and 

340 m yr-1 respectively.   

In addition, Figure 2 indicates that the ice dynamics of the main glacier trunk is 

largely governed by the northern tributaries (T4 and T5). The influence of the 

northern tributaries is delimited by deformation of medial moraines originating from 

the main glacier trunk. Out of the five northern tributaries, the influence of the T4 and 

T5 is indicated by the development of a bulge and migration of the central moraine 

running along the main glacier trunk (Figure 2, 3). The bulge and migration of the 

central flow line again at the convergence of the T1 tributary with the main glacier 

trunk suggest comparatively higher velocity and ice flux of the tributary (Figure 3). It 
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is in this region most of the supraglacial ponds are formed as the surge front has 

never reached as far as this region in recent years (Gardelle et al., 2013; Paul et al., 

2017). The surge of Hispar glacier did not propagate beyond T1 that could be 

explained by escape of water through the glacier bed as suggested by Smith et al. 

(2002), resulting in the drop of the basal water pressure and consequent halt in 

glacier surge. 

3.2. Changes in glacial surface features 

We analysed the optical satellite data from 2013 to 2017 for glacier surface 

changes.  Distinct changes were observed in the supraglacial features from 2013 to 

2015 (Figure 4).  Very few surface features and the associated changes are 

recognisable on the satellite images of 2016 and 2017 which could be attributed to 

the cessation of the surge in that period. As such we provide here the detailed 

discussion on the glacier surface dynamics between 2013 and 2015. 

Our analysis indicated that between September 2013 and September 2015 

the glacier surface debris became concentrated in the lower ablation zone of the 

glacier. The formation and variations in the distinct features of looped and folded 

medial moraines also suggest the active surge phase of the glacier. On the glacier 

as whole, the area of debris cover reduced from ~118 km2 to ~95 km2, equivalent to 

a ~ 19% decrease from 2013 to 2017 (Figure 4). We note that the 2015 image has 

more snow cover than the others so we supplemented the debris delineation using 

high resolution Google Earth data. The reduction or complete disappearance of 

debris cover could be attributed to opening of numerous crevasses thereby 

transporting the debris into an englacial system (Bolch et al. 2017), a typical surge 

related phenomena. Distinct features, including  looped and folded medial moraines, 

a characteristic feature of surge type glaciers (Meier and Post., 1969, Grant et al., 
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2009), were also observed and mapped from the satellite imagery of 2015 (Figure 4). 

Such features were very sparse or at least not identifiable on satellite imagery of 

2013, providing further evidence that the glacier entered its surge phase between 

September 2013 and September 2015. The influence of the northern tributaries on 

the glacier dynamics is more pronounced than the tributaries on the southern side, 

indicated by migration of the central moraine running along the main glacier trunk 

(Figure 4). The shift and bulging of the central moraine is more prominent near the 

confluence of T4 with the main glacier where migration of 80 m in the central 

moraine is observed. 

The lateral expansion of the glacier tongue and the forward movement of 

surface features is also very prominent on the satellite images. Even though, the 

contributing tributaries do not show any significant change in their width, however a 

significant change in the width of the main glacier trunk was observed between 2013 

and 2017. The expansion of the main glacier trunk was more evident below T4. 

Lateral expansion by 140 m from 2013 to 2017 was observed between T2 and T3. 

The lateral expansion continued as the glacier moved further downwards. An 

expansion of 240 m in the lateral extents of the glacier was observed near the 

confluence of T1 with the main glacier. The lateral expansion was limited to T1 as 

the surge front does not reach beyond this point. A mass wave related to the glacier 

surge front travelling down the glacier is clearly revealed from the satellite images 

between 2013 and 2015. The reduction and disappearance of the glacier ponds is 

also visible on the satellite images. 

3.3. Changes in supraglacial water bodies 

The supraglacial water bodies on the glacier were mapped as ponds and 

lakes; 183 supraglacial water bodies were identified on the glacier surface on the 
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September 2013 satellite image, out of which 165 (with area< 0.5 ha) were classified 

as ponds and the remaining 18 (with area > 0.5 ha) as lakes. The analysis of 

supraglacial water bodies revealed that they have reduced considerably both in 

number and size from 2013 to 2017 (Table 2, Figure 5). The number of supraglacial 

water bodies reduced from 183 in 2013 to 48 in 2017, corresponding to an area 

change of 121.63 Ha. The number of supraglacial lakes reduced from 18 to 4 while 

the number of supraglacial ponds reduced from 165 to 44 during the analysis period. 

This corresponds to an area change of 9.40 Ha and 22.0 Ha for lakes and ponds 

respectively. The disappearance and reduction of supraglacial water bodies from 

2013 to 2017 again suggests accelerated velocity and ice flux, a characteristic of 

active surges, in 2017 compared to that of 2013. Glacier fracturing during the surge 

allows the accumulated water to either enter into englacial hydrological system or 

escape through the glacier bed. As a result, reduction or complete disappearance of 

many water bodies was observed post surge.   

4. Conclusions  

We have identified a surge of Hispar Glacier in the Karakoram between September 

2013 and 2015. During the surge, velocities in the main trunk of Hispar Glacier 

reached a maximum of ~900 m yr-1. The analysis of velocity together with the 

characteristic surge-type glacier features such as folded and contorted debris 

structures also indicate that the Hispar Glacier was in its active surge phase between 

September 2013 and September 2015. The rapid velocities were accompanied not 

only by changes in the surface debris distribution but also by a reduction in the 

number and size of supraglacial lakes and ponds between 2013 and 2015. It was 

further demonstrated that the flow instability on the main trunk of Hispar glacier is 

determined by the dynamics of the tributary glaciers.  
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 Figure Captions: 

Figure 1: Location of Hispar Glacier in the Karakoram. Background elevation data is 

from ASTER GDEM v2.  

Figure 2: Annual velocity estimates (m yr-1) of Hispar glacier based on Landsat 8 OLI 

satellite data for (a) 2013-14 (b) 2014-15, (c) 2015-16 and (d) 2016-17. 

Figure 3: The Hispar glacier after the surge. The  surge front is indicated by the red 

arrow and the glacier terminus is indicated by the blue arrow. Letters indicate 

different velocity zones explained in the text and the tributaries (T1 to T5) of the 

glacier. 

Figure 4: Glacial geomorphological features of Hispar Glacier mapped from Landsat 

8 OLI from 2013-2017. The panels on the left (a-e) are Landsat False Colour 

Composite (FCC) image of Landsat 8 OLI and the panels with an asterisk (*) on the 

right (a*-e*) depict the glacial geomorphic features for the corresponding year. (a) 

2013, (b) 2014, (c) 2015, (d) 2016 and (e) 2017 

Figure 5: Mapping of supraglacial water bodies from Landsat 8 OLI satellite images 

(a) 2013, (b) 2014, (c) 2015, (d) 2016, and (e) 2017 
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Fig. 2 
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Fig. 3 
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Fig. 4
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Fig. 5 
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Table 1: Characteristics of datasets used in the study 
 
Scene ID Sensor Date 

LC81490352013250LGN00 Landsat 8 OLI 09 September, 2013 

LC81490352014253LGN01 Landsat 8 OLI 10 September, 2014 

LC81490352015256LGN00 Landsat 8 OLI 13 September, 2015 

LC81490352016275LGN01 Landsat 8 OLI 01 October, 2016 

LC81490352017213LGN00 Landsat 8 OLI 01 August, 2017 

 

 
 
 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

 

Table 2: Changes in supraglacial water bodies on Hispar Glacier between 2013 
and 2017. Numbers in brackets indicate area of ponds and lakes in Hectares 
 
 2013 2014 2015 2016 2017 Change (2013-2017) 

Ponds 165 (66) 103(51.5) 67 (26.8) 41(20.5) 44(22) 121(40) 

Lakes 18 (87.03 ) 16 (70.30) 6 (17.71) 5(5.14) 4(9.40) 14 (77.63) 

Total 183 (153.03) 119(121.8 ) 73 (44.51) 46 (25.64) 48(31.4) 135 (121.63) 
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Highlights: 

 Remote sensing methods were used to assess changes in the velocity of 

Hispar Glacier between 2013 and 2017 

 A glacier surge impacted the distribution of supraglacial debris and medial 

moraines  

 Changes in supraglacial water bodies were estimated from 2013-2017 

 Flow instability is controlled by the dynamics of the tributary glaciers of Hispar 

Glacier 


