910 research outputs found

    Restless bandit marginal productivity indices I: singleproject case and optimal control of a make-to-stock M/G/1 queue

    Get PDF
    This paper develops a framework based on convex optimization and economic ideas to formulate and solve by an index policy the problem of optimal dynamic effort allocation to a generic discrete-state restless bandit (i.e. binary-action: work/rest) project, elucidating a host of issues raised by Whittle (1988)Žs seminal work on the topic. Our contributions include: (i) a unifying definition of a projectŽs marginal productivity index (MPI), characterizing optimal policies; (ii) a complete characterization of indexability (existence of the MPI) as satisfaction by the project of the law of diminishing returns (to effort); (iii) sufficient indexability conditions based on partial conservation laws (PCLs), extending previous results of the author from the finite to the countable state case; (iv) application to a semi-Markov project, including a new MPI for a mixed longrun-average (LRA)/ bias criterion, which exists in relevant queueing control models where the index proposed by Whittle (1988) does not; and (v) optimal MPI policies for service-controlled make-to-order (MTO) and make-to-stock (MTS) M/G/1 queues with convex back order and stock holding cost rates, under discounted and LRA criteria

    Restless bandit marginal productivity indices II: multiproject case and scheduling a multiclass make-to-order/-stock M/G/1 queue

    Get PDF
    This paper develops a framework based on convex optimization and economic ideas to formulate and solve approximately a rich class of dynamic and stochastic resource allocation problems, fitting in a generic discrete-state multi-project restless bandit problem (RBP). It draws on the single-project framework in the author's companion paper "Restless bandit marginal productivity indices I: Single-project case and optimal control of a make-to-stock M/G/1 queue", based on characterization of a project's marginal productivity index (MPI). Our framework significantly expands the scope of Whittle (1988)'s seminal approach to the RBP. Contributions include: (i) Formulation of a generic multi-project RBP, and algorithmic solution via single-project MPIs of a relaxed problem, giving a lower bound on optimal cost performance; (ii) a heuristic MPI-based hedging point and index policy; (iii) application of the MPI policy and bound to the problem of dynamic scheduling for a multiclass combined MTO/MTS M/G/1 queue with convex backorder and stock holding cost rates, under the LRA criterion; and (iv) results of a computational study on the MPI bound and policy, showing the latter's near-optimality across the cases investigated

    RESTLESS BANDIT MARGINAL PRODUCTIVITY INDICES II: MULTIPROJECT CASE AND SCHEDULING A MULTICLASS MAKE-TO-ORDER/-STOCK M/G/1 QUEUE

    Get PDF
    This paper develops a framework based on convex optimization and economic ideas to formulate and solve approximately a rich class of dynamic and stochastic resource allocation problems, fitting in a generic discrete-state multi-project restless bandit problem (RBP). It draws on the single-project framework in the author´s companion paper “Restless bandit marginal productivity indices I: Single-project case and optimal control of a make-to-stock M/G/1 queue”, based on characterization of a project´s marginal productivity index (MPI). Our framework significantly expands the scope of Whittle (1988)´s seminal approach to the RBP. Contributions include: (i) Formulation of a generic multi-project RBP, and algorithmic solution via single-project MPIs of a relaxed problem, giving a lower bound on optimal cost performance; (ii) a heuristic MPI-based hedging point and index policy; (iii) application of the MPI policy and bound to the problem of dynamic scheduling for a multiclass combined MTO/MTS M/G/1 queue with convex backorder and stock holding cost rates, under the LRA criterion; and (iv) results of a computational study on the MPI bound and policy, showing the latter´s near-optimality across the cases investigated.

    Performance Evaluation of Stochastic Multi-Echelon Inventory Systems: A Survey

    Get PDF
    Globalization, product proliferation, and fast product innovation have significantly increased the complexities of supply chains in many industries. One of the most important advancements of supply chain management in recent years is the development of models and methodologies for controlling inventory in general supply networks under uncertainty and their widefspread applications to industry. These developments are based on three generic methods: the queueing-inventory method, the lead-time demand method and the flow-unit method. In this paper, we compare and contrast these methods by discussing their strengths and weaknesses, their differences and connections, and showing how to apply them systematically to characterize and evaluate various supply networks with different supply processes, inventory policies, and demand processes. Our objective is to forge links among research strands on different methods and various network topologies so as to develop unified methodologies.Masdar Institute of Science and TechnologyNational Science Foundation (U.S.) (NSF Contract CMMI-0758069)National Science Foundation (U.S.) (Career Award CMMI-0747779)Bayer Business ServicesSAP A

    RESTLESS BANDIT MARGINAL PRODUCTIVITY INDICES I: SINGLEPROJECT CASE AND OPTIMAL CONTROL OF A MAKE-TO-STOCK M/G/1 QUEUE

    Get PDF
    This paper develops a framework based on convex optimization and economic ideas to formulate and solve by an index policy the problem of optimal dynamic effort allocation to a generic discrete-state restless bandit (i.e. binary-action: work/rest) project, elucidating a host of issues raised by Whittle (1988)´s seminal work on the topic. Our contributions include: (i) a unifying definition of a project´s marginal productivity index (MPI), characterizing optimal policies; (ii) a complete characterization of indexability (existence of the MPI) as satisfaction by the project of the law of diminishing returns (to effort); (iii) sufficient indexability conditions based on partial conservation laws (PCLs), extending previous results of the author from the finite to the countable state case; (iv) application to a semi-Markov project, including a new MPI for a mixed longrun-average (LRA)/ bias criterion, which exists in relevant queueing control models where the index proposed by Whittle (1988) does not; and (v) optimal MPI policies for service-controlled make-to-order (MTO) and make-to-stock (MTS) M/G/1 queues with convex back order and stock holding cost rates, under discounted and LRA criteria.

    Analytic approach for reflected Brownian motion in the quadrant

    Get PDF
    Random walks in the quarter plane are an important object both of combinatorics and probability theory. Of particular interest for their study, there is an analytic approach initiated by Fayolle, Iasnogorodski and Malyshev, and further developed by the last two authors of this note. The outcomes of this method are explicit expressions for the generating functions of interest, asymptotic analysis of their coefficients, etc. Although there is an important literature on reflected Brownian motion in the quarter plane (the continuous counterpart of quadrant random walks), an analogue of the analytic approach has not been fully developed to that context. The aim of this note is twofold: it is first an extended abstract of two recent articles of the authors of this paper, which propose such an approach; we further compare various aspects of the discrete and continuous analytic approaches.Comment: 19 pages, 5 figures. Extended abstract of the papers arXiv:1602.03054 and arXiv:1604.02918, to appear in Proceedings of the 27th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Krakow, Poland, 4-8 July 2016 arXiv admin note: text overlap with arXiv:1602.0305

    Pilot interaction with automated airborne decision making systems

    Get PDF
    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered
    corecore