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1 Introduction

This paper develops a framework based on convex optimization and economic ideas
to formulate and solve by an index policy the problem of optimal dynamic ef-
fort allocation to a generic discrete-staterestless bandit (RB)(i.e. binary-action:
work/rest) project, elucidating a host of issues raised by Whittle (1988)’s semi-
nal work on the topic. The framework is deployed to address the solution by in-
dex policies of service-controlled make-to-order (MTO) and make-to-stock (MTS)
M/G/1 queues with convex backorder and stock holding cost rates, under dis-
counted and long-run-average (LRA) criteria. In the companion paper Niño-Mora
(2004) (see an abridged version in Niño-Mora (2003)), the single-project results
obtained here are used to address corresponding multi-project problems, yielding a
heuristic hedging point and index policy, along with a lowerbound on optimal cost.

Our proposed framework draws on and combines in a unifying setting ideas
from relatively autonomous areas, including: (i) convex optimization in mathemat-
ical programming; (ii) the economic theory of optimal resource allocation; (iii)
index policies for scheduling multiclass queues; (iv) index policies for multiarmed
bandits and their RBP extension; (v) polyhedral methods in stochastic scheduling;
and (vi) work conservation laws in service systems. To put our contributions in
context, we discuss below the relevant background.

1.1 Solution approaches to resource allocation problems

The prevailing solution approaches in the domains of static/deterministic and of
dynamic/stochastic resource allocation problems are radically distinct. In the for-
mer, the concern is to find a fixed allocation of resources optimizing a cost/reward
objective. Formulation and solution methods are those ofmathematical program-
ming (MP), which has proven widely successful, both in theory and practice. The
concepts ofconvexityand duality play central roles, both as analysis tools, and
as insightful bridges with economic interpretation. Convexity is the mathematical
counterpart of the economiclaw of diminishing returns (LDR), under which, as use
of a resource increases, itsmarginal productivitydiminishes. Duality relates to the
resource valuation problem, which is to find a resource’sshadow price, giving its
intrinsic value in the model at hand. Two fundamental results holding under the
LDR are: (i) a resource’s shadow price at a given use level equals its marginal
productivity; and (ii) to achieve an optimal allocation, use of a resource must be
increased as long as its price is lower than its marginal productivity, until both
coincide. The classic texts of Kantorovich (1965) and Koopmans (1957) provide
illuminating accounts of such ideas.

In the latter domain, the concern is to design apolicy for dynamic resource
allocation to competing activities, in asystemwhosestateevolves randomly over
time. The objective is to optimize a measure of average cost/reward performance.
The main modeling paradigm is furnished byMarkov decision processes (MDPs),
especially in thediscrete-state and -actioncase, to which we restrict attention.
See, e.g. Puterman (1994). The leading tool is thedynamic programming (DP)
technique, which uses theprinciple of optimalityto formulate a set ofBellman
equations, whose solution yields anoptimal policy. Extensive research efforts have
been devoted to their analytical solution in relatively simple models, by often ad hoc
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methods, and to their computational solution by general algorithms, such asvalue
andpolicy iteration. A deep connection between the MP and DP approaches was
revealed by d’Epénoux (1960) and Manne (1960), who showed that the Bellman
equations for a finite MDP can be formulated and solved as alinear programming
(LP) problem. The current status of the field remains, however, unsatisfactory.
Thus, no unifying analytical solution method has emerged. Also, application of
general algorithms is hindered by their computational demands (curse of dimen-
sionality). Further, even when a solution is available, it is often notclear how one
can gain from it insights of the kind provided by convexity and duality.

1.2 Index policies and MP approach to dynamic resource allocation

Limited research efforts have explored use of MP tools in dynamic and stochastic
resource allocation problems, mostly in the area ofstochastic scheduling(cf. Niño-
Mora (2001b)). The latter concerns the optimal dynamic allocation of resources to
stochasticprojects, which can represent a variety of entities, e.g. jobs or queues.

A notorious feature of such area is the optimality, in a wide range of models, of
policies characterized byallocation indices. In a typical result, to every projectk
is attached anindexνk(ik) depending only on its stateik, such that theindex pol-
icy which dynamically gives higher resource access priority toprojects with larger
index values is optimal. The optimal index often has an insightful economic inter-
pretation, being given by, e.g., a rate of expected cost reduction per unit expected
effort invested, or a critical subsidy for passivity or charge for activity.

While such results have have been obtained by ad hoc methods (e.g. inter-
change arguments), they have also been established (typically later) by LP argu-
ments. The latter are based on formulating LP constraints onperformance mea-
sures(e.g. mean delays). In tractable models, such constraints fully characterize the
achievable performance regionspanned by the performance vector underadmissi-
ble policies. This is a bounded polyhedron, whose vertices are achieved by priority
policies. The optimal vertex is characterized by indices, emerging in the construc-
tion of an optimaldual solution. In intractable models, available constraints give
a tractablerelaxation, whose dual solution may suggest a heuristic index policy.
Such program has been carried out in a variety of models for scheduling a multi-
class queue, and onmultiarmed bandit problems (MBPs)and extensions.

Table 1 highlights selected results in such vein, pointing out the evolution of
ideas used to obtain LP constraints, which we review next. The ground-breaking
work is due to Klimov (1974), who usedaggregate flow balanceto obtain an LP
formulation for the problem of scheduling a multiclassM/G/1 queue with feed-
back to minimize LRA linear holding costs. He gave anadaptive-greedy algorithm
to construct an optimaldualsolution in terms of astatic indexνk attached to classes
k. He then used LP duality to prove optimality of suchKlimov indexpolicy.

Coffman and Mitrani (1980) introduced a different LP formulation for theno-
feedbackcase of Klimov’s model. The LP variablesxk representmean delaysfor
each classk, while constraints formulatework conservation laws, extending results
of Kleinrock (1976, Ch. 3). The latter characterize the achievable performance
region of mean delays as apolymatroid, a well-known polyhedron in polyhedral
combinatorics introduced by Edmonds (1971). Optimality ofthegreedy algorithm
for LP over polymatroids thus explains thecµ-index rule’s (cf. Cox and Smith
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LP constraints Models & papers

Aggregate flow balance Multiclass (MC) queues (feedback)
Klimov (1974)

Strong conservation laws MC queues (no feedback)
Polymatroids Coffman and Mitrani (1980)

Federgruen and Groenevelt (1988)
Shanthikumar and Yao (1992)

Generalized conservation laws Klimov’s model, multiarmed bandits
Extended polymatroids Tsoucas (1991)

Bertsimas and Niño-Mora (1996)
Approximate conservation laws MC queues (feedback & parallel servers)

Extended polymatroids Dacre et al. (1999)
Glazebrook and Niño-Mora (2001)

Flow balance & average activity Restless bandits (RBs)
Lagrangian relaxation Whittle (1988), Bertsimas and Niño-Mora (2000)

Partial conservation laws (PCLs) RBs & MC queues (convex costs,
F -extended polymatroids finite state); Niño-Mora (2001a, 2002)

Diminishing returns & PCLs RBs & MC queues (convex costs, countable
Efficient work-cost frontier state); this paper, Niño-Mora (2004)

Table 1: LP formulations giving index policies for stochastic scheduling problems.

(1961)) for the scheduling problem.
The polymatroidal LP formulation was further investigatedby Federgruen and

Groenevelt (1988), and by Shanthikumar and Yao (1992), who explained such re-
sults through the framework ofstrong (work) conservation laws.

Coffman and Mitrani’s analysis was extended to Klimov’s model by Tsoucas
(1991), who characterized its achievable performance region as a new type of poly-
hedron (extended polymatroid). Bertsimas and Niño-Mora (1996) furnished the
theoretical foundation of such result, introducing the framework of generalized
conservation laws (GCLs). They further deployed GCLs to obtain a correspond-
ing result for thebranching bandit problem, encompassing the above models under
LRA and discounted criteria, and the classic MBP.

The MBP concerns the optimal dynamic allocation of effort toa collection of
projects, modeled as discounted binary-action (active/passive) discrete-state and -
time MDPs which can only change state when active, and one of which must be
engaged at each time. In a celebrated result, Gittins (1979)introduced an index
νk(ik) for each projectk depending only on its stateik, and proved optimality of
the resultingGittins indexpolicy. The GCL analysis in Bertsimas and Niño-Mora
(1996) yielded a new, LP-based proof of such result.

In some intractable models concerning the scheduling of a multiclass queue on
parallel servers, GCLs hold only in anapproximatesense. This yields a tractableLP
relaxationof the achievable performance region, and explicit suboptimality bounds
on heuristic index policies, which can be used to establish their asymptotic optimal-
ity in heavy traffic. See Glazebrook and Niño-Mora (2001) and Dacre et al. (1999).
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1.3 RBP, indexability, and queueing control applications

The restless bandit problem (RBP)extension of the MBP, where passive projects
can change state, is of prime concern in this paper. It provides a powerful modeling
paradigm at the expense of tractability, beingP-space hard. See Papadimitriou and
Tsitsiklis (1999). Whittle (1988) introduced an indexνk(ik) attached to arestless
bandit (RB) projectk, proposing as a heuristic the resulting index policy. The
Whittle indexemerges in the solution of arelaxed problem, which further gives
a performance bound, in terms of theLagrange multiplierfor an average-activity
constraint. Such policy is optimal in the MBP case, and asymptotically optimal
under certain conditions. See Weber and Weiss (1990).

Yet the Whittle index isnot defined for all RB projects, only for a restricted
class of so-calledindexableprojects. Whittle (1988) stated:

“... one would very much like to have simple sufficient conditions for
indexability; at the moment, none are known.”

Such scope limitation prompted Bertsimas and Niño-Mora (2000) to introduce a
different LP-based index policy, applying to finite-state projects, and a hierarchy
of LP relaxations, giving tighter bounds at increasing computational expense. The
indexability issue was taken up in Niño-Mora (2001a), where we extended GCLs
to introduce the framework ofpartial conservation laws (PCLs). Satisfaction of
PCLs by the performance measures of a stochastic schedulingproblem ensures op-
timality of index policieswith a postulated structure, underadmissible objectives.
Use of PCLs further yielded tractable sufficient conditionsfor indexability (PCL-
indexability), and an efficient algorithm for computing the Whittle index.

The polyhedral foundation of the PCL framework was developed in Niño-Mora
(2002). That paper introduced extensions of the Whittle index with a significantly
expanded scope, motivated by analysis of aqueueing admission controlmodel with
convex nondecreasingholding cost rates. It further introduced a characterization of
the index, underPCL-indexability, as an optimalmarginal rateof cost decrease per
unit effort increase; and a connection of PCL-indexabilitywith the LDR.

Yet the tools in Niño-Mora (2001a, 2002), relying on polyhedral methods, ap-
ply only to finite-stateprojects. Also, they only providesufficient conditionsfor
indexability, while it would be desirable to have a completeunderstanding of such
property. Both limitations are particularly severe in the important case of RBPs rep-
resenting scheduling problems in queueing systems. Thus, the problem of schedul-
ing a multiclass MTO/MTSM/G/1 queue to optimize LRA holding costs is read-
ily formulated as an RBP, with projects corresponding to queues for each class.
However, the Whittle index isnot defined for such projects under the LRA crite-
rion, as pointed out by Whittle (1996, Ch 14.7) himself, and by Veatch and Wein
(1996). The latter authors state:

“In contrast, the backorder problem is not indexable.ν(x) does not
exist (i.e. equals−∞) for all x. The difficulty is thatν is a La-
grange multiplier for the constraint on the time-average number of ac-
tive arms. For the backorder problem, any stable policy mustserve a
time-average ofρ classes, so relaxing this constraint does not change
the optimal value, and the Lagrange multiplier does not exist. In fact,
no scheduling problem with a fixed utilization will be indexable.”
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The author first proposed (at the 2000 Madison (Wisconsin) International Con-
ference on Stochastic Networks) to overcome such limitation by showing that the
Whittle index is well defined in the MTO case, under thediscounted criterion.
Then, taking the limit of the discounted Whittle index scaled by the discount fac-
tor as this vanishes gives a convenient LRA index. Such approach is deployed in
Ansell et al. (2003) and Glazebrook et al. (2003) in the MTOM/M/1 andM/G/1
cases by an ad hoc DP analysis, under the assumption that holding cost rates are
convex increasingin the queue’s state. Their approach, however, is hindered by
the following limitations: (i) the convex increasing holding cost rate assumption is
violated in the MTS case with backorders, where holding costrates are V-shaped
in the natural state ofnet backorderlevels; (ii) it does not yieldboundson opti-
mal cost under the LRA criterion, arguably more important inapplications than the
discounted one; (iii) it does not provide an independent concept of indexability un-
der the LRA criterion, as it relies on establishing indexability under the discounted
criterion, which is often technically cumbersome; and (iv)it does not clarify in-
terpretation of the limiting LRA index, as it is not proven that it yields an optimal
policy for the single-project LRA problem. We remark that, in complementary
work, Dusonchet and Hongler (2003) have calculated thediscountedWhittle index
for an MTSM/M/1 queue withlinear backorder and stock holding cost rates.

1.4 Contributions

Motivated by the issues discussed above, this paper presents the following contri-
butions: (i) a unifying definition of a project’smarginal productivity index (MPI),
characterizing optimal policies; (ii) acomplete characterizationof indexability(ex-
istence of the MPI) as satisfaction by the project of thelaw of diminishing returns
(to effort); (iii) sufficient indexability conditions based onpartial conservation laws
(PCLs), extending previous results of the author from the finite to the countable
state case; (iv) application to a semi-Markov project, including a new MPI for
a mixed long-run-average (LRA)/bias criterion, which exists in relevant queue-
ing control models where the index proposed by Whittle (1988) does not; and (v)
optimal MPI policies for service-controlled MTO and MTSM/G/1 queues with
convex backorder and stock holding cost rates, under discounted and LRA criteria.

1.5 Structure of the paper

The rest of the paper is organized as follows. Section 2 introduces our motivating
problem, concerning the scheduling of a multiclass MTO/MTSqueue. Section 3 in-
troduces the MPI policy approach to address the problem of optimal dynamic effort
allocation to a generic RB project. Section 4 develops PCL-based sufficient index-
ability conditions for countable-state projects. Section5 presents PCL-indexability
analyses of semi-Markov projects under several criteria. Section 6 addresses the
case of a service controlled MTOM/G/1 queue, while Section 7 investigates the
corresponding MTS model.
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2 Motivating problem

Consider a model for a single-product production-inventory facility. Orders of unit
size arrive as a Poisson process with rateλ. A single machine, which processes all
orders, makes a product unit in aproduction timedistributed as a random variable
with Laplace-Stieltjes transform (LST)ψ(·), having finite mean1/µ and variance
σ2. The arrival stream and production times are mutually independent. Denoting
by ρ = λ/µ the traffic intensity, we assume thestability conditionρ < 1.

The facility has afinite storage capacityfor storing up to and includings ≥ 0
finished items in afinished goods stock (FGS). Arriving orders finding the FGS
empty are placed in abackorder queue (BQ)of unlimited size. We denote byX−(t)
(resp.X+(t)) the size of the FGS (resp. BQ) at timet ≥ 0, and consider the system
stateto be the size of itsnet BQ,X(t) = X+(t) −X−(t). Thestate spaceis thus
N = {−s, . . . , 0, 1, . . .}. Notice that such setting encompasses thepure MTO case
(s = 0) and theMTS case with backorders(s ≥ 1).

A controller governs the system by choice of aproduction-inventory policyπ,
prescribing dynamically whether the machine is to be idle orworking. The policy
is drawn from the classΠ of admissible policies, which are: (i)nonpreemptive, i.e.
production of an item cannot be interrupted; thus, thedecision epoch sequencecon-
sists of order arrival epochs to an empty system, and productcompletion epochs;
(ii) nonanticipative, i.e. decisions depend on the history of the system up to and
including the present epoch; and (iii)stable, i.e. the policy must induce an equilib-
rium distribution on the state process, having finite moments of the required order.

Backorder and/or stock holding costs are incurred, separably across products.
Costs accrue at ratehi per unit time while the state isi ∈ N . We will refer to the
first and second-order differences∆hi , hi − hi−1 and∆2hi , ∆hi − ∆hi−1.
We impose the following requirements on cost rates.

Assumption 2.1 Holding cost rateshi satisfy the following:

(i) They are bounded below:inf{hi : i ∈ N} > −∞.

(ii) They are convex:∆2hi ≥ 0, for i ∈ N such thati− 2 ∈ N .

(iii) If ψ(·) has finite moments of up to orderm+1, thenhi = O(im) asi→ +∞.

Our prime concern will be theLRA production-inventory control problem, which
is to find a policyπ∗ ∈ Π attaining the minimum LRA valuef∗ of costs incurred.

f∗ = inf
π∈Π

lim
T→+∞

1

T
E

π

[∫ T

0
hX(t) dt

]
. (1)

In the MTS case, problem (1) seems to have been addressed in the literature
only in the special case where backorder and stock holding cost rates are linear. See,
Buzacott and Shanthikumar (1993, Ch. 4) and the references therein. In the MTO
case, Bertsekas (1987, Ch. 6.7) presents a DP-based analysis for anM/M/1 queue
with convexnondecreasingholding cost rates, under the discounted criterion.
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3 Optimal control of RB projects by index policies

3.1 Optimal project control problem

Consider a generic RB project, whose stateX(t) evolves randomly over timet ≥ 0
across thediscrete(finite or countable)state spaceN ⊆ Z. Control is exercised by
acentral planner, who observes the state at a sequence ofdecision epochst0 = 0 <
t1 < · · · < tn → +∞ asn → +∞, deciding at each whether asingle operator
is allocated to work (active action: a(tn) = 1), or is let to rest (passiveaction:
a(tn) = 0), in the followingperiod (a(t) = a(tn) for t ∈ [tn, tn+1)). We will refer
toX(t) anda(t) as thenatural stateandaction processes, and toXn = X(tn) and
an = a(tn) as theembedded processes. We will further refer to a period[tn, tn+1)
whereXn = i andan = a as an(i, a)-period, or i-period, as appropriate.

Action choice results from adoption of apolicyπ, drawn from a given classΠ
of nonanticipative admissible policies: each epoch’s choice must be based on the
embedded processes’ history. Amanageris in charge of policy implementation.

ClassΠ is assumed to beclosed under randomization. Given policiesπ, π′ ∈
Π, andq ∈ [0, 1], the policy resulting from a draw ofπ orπ′ with probabilitiesq and
1− q, denoted byqπ+(1− q)π′, is inΠ. We will refer to the classΠSD ⊂ Π (resp.
ΠSR ⊂ Π) of admissible stationary deterministic(resp. randomized) policies,
where the chosen action is a deterministic (resp. random) function of the state.

The project accruesholding costsover time, whose value under a policyπ ∈ Π
is evaluated by finitecost measurefπ. Theoptimal dynamic resource allocation
problemof concern is to find an admissible policy minimizing the latter:

Findπ∗ ∈ Π : fπ∗
= f∗ , inf {fπ : π ∈ Π} . (2)

3.2 Solution by threshold policies

Let us partitionN into thecontrollable state spaceN{0,1}, where active and pas-
sive actions differ on dynamics or costs; and theuncontrollable state spaceN{0},
otherwise, where we assume that the project is rested. A policy π ∈ ΠSD is thus
represented by theactive-state setS ⊆ N{0,1} where it engages the project. We
will then term it theS-active policy, writing, e.g.S ∈ ΠSD, fS. We assume both
N andN{0,1} to be consecutive-integer setsbounded below, i.e.

N ,
{
j ∈ Z : `0 ≤ j ≤ `1

}
and N{0,1} ,

{
j ∈ Z : `0 < j ≤ `1

}
,

for given−∞ < `0 < `1 ≤ +∞. Hence,N{0} = {`0}.
We aim to find an optimal policy to (2) within the class ofthreshold policies,

which engage the project in states above a criticalthreshold. Writing

Si ,

{
j ∈ N{0,1} : j > i

}
, i ∈ N,

threshold policies are characterized by the nestedactive-state set family

F , {Si : i ∈ N} .

We shall henceforth refer to them asF -policies, writing, e.g.fS for S ∈ F .
Our goals are: (i) elucidate conditions for existence of an optimal F -policy;

and (ii) find the latter. Our approach requires use of an appropriatework measure
gπ, evaluating labor effort. The following properties are assumed.
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Assumption 3.1

(i) F ⊂ ΠSD, i.e. F -policies are admissible.

(ii) Work measuregπ is bounded above:

sup {gπ : π ∈ Π} < +∞.

(iii) Cost measurefπ is bounded below:

inf {fπ : π ∈ Π} > −∞.

(iv) Work measuregSi is decreasing in threshold statei:

∆gSi , gSi − gSi−1 < 0, i ∈ N{0,1}. (3)

(v) Achievable work performance is spanned by threshold policies:

{gπ : π ∈ Π} =
⋃

i∈N{0,1}

[
gSi , gSi−1

]
.

We will further refer to the first-order differences of cost measurefSi :

∆fSi , fSi − fSi−1, i ∈ N{0,1}. (4)

3.3 Reformulation as convex resource allocation problem

We will develop an approach grounded on convex optimizationand economic re-
source allocation theory. Let theachievable work-cost (performance) regionbe

H ,
{
(b, z) ∈ R

2 : (b, z) = (gπ, fπ) for someπ ∈ Π
}
.

Its projections give theachievable work region

B , {b ∈ R : b = gπ for someπ ∈ Π} ,

and theachievable cost region

V , {z ∈ R : z = fπ for someπ ∈ Π} .

Convexity of such regions follows from the requirement thatΠ be closed under
randomization. It further extends to theirclosuresH̄, B̄ andV̄.

Theefficient work-cost frontieris given by

∂H ,
{
(b, z) ∈ H̄ : b ∈ B andz ≤ fπ for anyπ ∈ Π with gπ = b

}
.

This is characterized as the graph of(optimal) cost function

C(b) , inf {fπ : gπ = b, π ∈ Π} = inf {z : (b, z) ∈ H} , b ∈ B, (5)

whose convexity follows from that of regionH, so that

∂H = {(b, C(b)) : b ∈ B} .
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Note thatC(b) is the optimal cost performance under policies usingb work units.
We can now reformulate (2) as theconvex resource allocation problem

Find b∗ ∈ B : C(b∗) = f∗ , inf {C(b) : b ∈ B} , (6)

which is to find an optimal amountb∗ of work to be expended on the project.
To evaluateC(b) we will further address the followingb-work problem:

Findπ∗ ∈ Π with gπ∗
= b : fπ∗

= C(b) , inf {fπ : gπ = b, π ∈ Π} . (7)

In what follows, a policyπ ∈ Π will be said to beb-work feasibleif gπ = b.

3.4 Lagrangian multiplier analysis and decentralization

To addressb-work problem (7) we use themethod of Lagrange multipliers. Dual-
izing constraintgπ = b by multiplier ν ∈ R gives theLagrangian function

L
π
b (ν) , fπ + ν [gπ − b] = vπ(ν) − νb, (8)

defined forπ ∈ Π andν ∈ R, where

vπ(ν) , fπ + νgπ.

We interpretν as thewageearned by the operator per unit work performed. Thus,
vπ(ν) is the holding and labor costs value; andL π

b (ν) is the adjusted cost when
work expended above (resp. below)b units is paid (resp. sold) at wageν.

The corresponding unconstrainedLagrangian problemis

Findπ∗ ∈ Π : L
π∗

b (ν) = L
∗
b (ν) , inf {L π

b (ν) : π ∈ Π} . (9)

This is equivalent to the followingν-wage problem, which is to find a policy mini-
mizing the project’s holding and labor costs:

Findπ∗ ∈ Π : vπ∗
(ν) = v∗(ν) , inf {vπ(ν) : π ∈ Π} . (10)

The optimal values of problems (9) and (10) are related by

L
∗
b (ν) = v∗(ν) − νb. (11)

Notice that problem (10) includes (2), thus recovered as the0-wage problem.
Drawing on classic economic interpretation, we view problem (9) as adecen-

tralized planning relaxationof centrally plannedb-work problem (7), where: (i)
the planner quotes wageν to the manager; and (ii) this is left to autonomously
solveν-wage problem (10). This raises the possibility, discussedbelow, that the
planner can decentralize theb-work problem’s solution by wage choice.

3.5 Duality-based optimality conditions and shadow wages

To price the value of work inb-work problem (7) we will use thedual (or pricing)
problem, which is to find a wage maximizing the (concave) objectiveL ∗

b (ν):

Findν∗ ∈ R : L
∗
b (ν∗) = Q(b) , sup {L ∗

b (ν) : ν ∈ R} . (12)

We will further use theduality gapfor a policyπ and a wageν:

∆π
b (ν) , fπ − L

∗
b (ν) = vπ(ν) − v∗(ν). (13)

The next result follows immediately.
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Lemma 3.2 (Weak duality)

(a) Let policyπ ∈ Π beb-work feasible, and letν ∈ R. Then,L ∗
b (ν) ≤ fπ.

(b) Q(b) ≤ C(b).

Lemma 3.2 immediately yields the next result, giving a sufficient optimality
condition for theb-work problem and its dual, usingstrong duality(Q(b) = C(b)).

Lemma 3.3 (Sufficient optimality condition) Let π∗ ∈ Π be a b-work feasible
policy for which there is a wageν∗ ∈ R with ∆π∗

b (ν∗) = 0. Then:

(a) Policyπ∗ is optimal forb-work problem(7).

(b) Wageν∗ is optimal for its dual problem(12).

(c) Strong duality holds:Q(b) = C(b) = fπ∗
.

We shall henceforth refer to a wageν∗ satisfying the optimality condition in
Lemma 3.3 as ashadow wagefor theb-work problem. In the present setting, exis-
tence of a shadow wage is also necessary for optimality.

Lemma 3.4 (Necessary optimality condition)If π∗ is an optimal policy for the
b-work problem then there exists a corresponding shadow wageν∗.

Proof. It follows from convexity ofH via theseparating hyperplane theorem. 2

Remark 3.5 If the sufficient optimality condition in Lemma 3.3 holds, then:

(i) Theb-work problem’s solution can be decentralized. The plannerneeds only
quote wageν∗ to the manager, and let him solve theν∗-wage problem.

(ii) Geometrically, the line{(b′, z′) ∈ R
2 : z′ + ν∗b′ = vπ∗

(ν∗)} supportspoint(
b, fπ∗)

relative to convex work-cost regionH. See, e.g. Weitzman (2000).

(iii) If there is a unique shadow wageν∗ andC(·) is derivable atb, then

ν∗ = −
d

db
C(b). (14)

Thus,ν∗ is the marginal rate of cost decrease per unit increase in work ex-
pended, ormarginal productivity of work, in theb-work problem.

3.6 Indexability and the marginal productivity index

To relate the above analysis with threshold policies, we introduce below a tractable
project class, based on structure of solutions toν-wage problem (10) asν varies.

Definition 3.6 (F -indexability; MPI index) We say the project isF -indexable
(for fπ and gπ) if there is a nondecreasingindex ν∗i for i ∈ N{0,1} such that,
for each`0 < i < `1, theSi-active policy is optimal for theν-wage problem iff
ν ∈ [ν∗i , ν

∗
i+1]. We say thatν∗i is the project’smarginal productivity index (MPI).
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Notice that it is optimal (in theν-wage problem) to work in statei ∈ N{0,1}

iff wageν does not exceed MPIν∗i . The above definition extends a particular con-
cept ofindexability introduced by Whittle (1988). In economic terms, indexability
characterizes thedemand “curve” for work. It gives an optimal amount of work to
be expended (e.g.gSi), corresponding to a given wage (e.g. forν ∈ [ν∗i , ν

∗
i+1]).

The next result follows immediately.

Lemma 3.7 If the project isF -indexable then:

(a) Theν-wage problem’s optimal value can be represented as

v∗(ν) = inf
{
fSi + νgSi : i ∈ N

}
, ν ∈ R, (15)

and is hence piecewise linear concave and nondecreasing inν.

(b) The project’s MPI is given by

ν∗i = −
∆fSi

∆gSi
, i ∈ N{0,1}. (16)

3.7 Diminishing returns to work

We next address the issue of economic characterization of indexability. To prepare
the ground, we introduce here the class of projects obeying the economiclaw of
diminishing returns (LDR) to work, in a form consistent withF -policies.

Notice that we can define indexν∗i by (16) without assumingF -indexability.
We do so below. Define cost functionCF (·) : B → R by linear interpolation on
work-cost pairs

(
gS , fS

)
, for S ∈ F . Namely, forb ∈

[
gSi , gSi−1

]
, let

CF (b) , fSi + ν∗i
[
gSi − b

]
= qfSi−1 + (1 − q)fSi

= f qSi−1+(1−q)Si = fSq(i),
(17)

where

q =
b− gSi

−∆gSi
∈ [0, 1]; (18)

andSq
i ∈ ΠSR is the policy which, at statej ∈ N{0,1}, prescribes to: (i) engage

the project ifj > i; (ii) rest it if j < i; and (iii) engage it with probability (w.p.)q
and rest it w.p.1 − q if j = i. Hence, for suchb, CF (b) is the cost performance
achieved both by randomized policyqSi−1 + (1 − q)Si, and by policySq(i).

Definition 3.8 (F -diminishing returns) We say the project obeysF -diminishing
returns to workif (i) function CF (b) is convex, i.e. indexν∗i is nondecreasing; and
(ii) the b-work problem’s optimal cost function isC(b) = CF (b).

The next result follows immediately.

Lemma 3.9 If the project obeysF -diminishing returns to work, then:

(a) C(b) is the upper envelope of LagrangiansL
Si

b (ν∗i ) for i ∈ N{0,1}, i.e.

C(b) = max
{
fSi + ν∗i

[
gSi − b

]
: j ∈ N{0,1}

}
, b ∈ B, (19)

and is hence piecewise linear convex inb.

(b) Theb-work problem, forb ∈
[
gSi , gSi−1

]
, is solved bySq

i , with q as in(18).

12



3.8 Characterization of indexability via diminishing returns

Economic intuition suggests that the two project classes above must be closely
related. The next result establishes that they are, indeed,equivalent. See Figure 1.




 
gSi+1 gSi gSi−1b0 gN{0,1}
b

C(b0)

z

slope: MPI
ν∗i

achievable work-cost performance region
H

efficient work-cost frontier∂H

Figure 1: Indexability and diminishing returns.

Theorem 3.10 The project isF -indexable iff it obeysF -diminishing returns.

Proof. Suppose the project presentsF -diminishing returns. Then, for̀0 < i < `1:

ν∗i ≤ ν ≤ ν∗i+1 ⇐⇒
fSi − fSi−1

gSi−1 − gSi
≤ ν ≤

fSi+1 − fSi

gSi − gSi+1

⇐⇒ vSi (ν) = min
{
vSi+k (ν) : k = −1, 0, 1

}

⇐⇒ C
(
gSi
)

+ νgSi = min
{
C(gSi+k) + νgSi+k : k = −1, 0, 1

}

⇐⇒ C(gSi) + νgSi = min
{
C(b) + νb : b ∈

[
gSi+1 , gSi−1

]}

⇐⇒ C(gSi) + νgSi = min {C(b) + νb : b ∈ B}

⇐⇒ vSi (ν) = min {z + νb : (b, z) ∈ H}

⇐⇒ v∗ (ν) = vSi (ν) .

This establishes that the project isF -indexable.
Suppose now that the project isF -indexable. Letb ∈

[
gSi+1 , gSi

]
with i ∈

N{0,1}. Lettingq be given by (18), we can write
(
gS

q
i , fS

q
i

)
=
(
b, fS

q
i

)
=
(
b, CF (b)

)
. (20)

Hence,Sq
i is a feasible policy for theb-work problem. Furthermore, the duality gap

(cf. (13)) associated to policySq
i and wage rateν∗i is

∆
S

q
i

b (ν∗i ) = vS
q
i (ν∗i ) − v∗ (ν∗i ) = 0,

where the last identity follows byF -indexability. Hence, the sufficient optimality
condition in Lemma 3.3 holds, which gives, using (20), thatC(b) = CF (b). This
shows that the project obeysF -diminishing returns, and completes the proof.2
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4 Sufficient indexability conditions via PCLs

Suppose we aim to establishF -indexability of an RB project model fitting in the
above setting. We must then calculate indexν∗i by (16), and show that it is non-
decreasing. This anecessary, yet not sufficient, condition forF -indexability. It
remains (cf. Definition 3.6) to prove that, for each state`0 < i < `1 and wage
ν ∈ [ν∗i , ν

∗
i+1], theSi-active policy is optimal forν-wage problem (10).

We present below a framework for establishingF -indexability of an RB project,
via partial conservation laws (PCLs). Under the latter, it suffices to show nonde-
creasingness of indexν∗i . We introduced PCLs in Niño-Mora (2001a, 2002), in a
form restricted to finite-state projects, based on polyhedral methods. The approach
below pursues a different course, extending the scope to countable-state projects.

4.1 Decomposition and conservation laws

The PCL framework concerns an RB project as in Section 3, whose work (gπ)
and cost (fπ) measures decompose linearly in terms ofstate-action occupation
measuresxa,π

i ≥ 0. Here,xa,π
i is a measure of the time expended taking actiona

at i-periods under policyπ. The following conditions are required to hold.

Assumption 4.1 For any policyπ ∈ Π and statei ∈ N :

(i) If π takes the active action ati-periods, thenx0,π
i = 0.

(ii) If π takes the passive action ati-periods, thenx1,π
i = 0.

(iii) x0,Si

i > 0, andx1,Si−1

i > 0 (for i > `0).

The term “partial conservation laws (PCLs)” designates a set of properties of
performance measuresgπ andxa,π

i . In what follows, we will refer to ani-period
wherei ∈ S, for a givenS ⊆ N{0,1}, as anS-period, and writeSc = N{0,1} \ S.

Definition 4.2 (Partial conservation laws) We say the project’s performance mea-
sures satisfyPCLs relative toF -policies, or PCL(F ) for short, if there exist coef-
ficientswS

i > 0 (i ∈ N{0,1}, S ∈ F ) such that, for anyπ ∈ Π andS ∈ F :

(PCL1) gπ +
∑

i∈S

wS
i x

0,π
i ≥ gS , with “=” if π is passive atSc-periods.

(PCL2)
∑

i∈S

wS
i x

0,π
i ≥ 0, with “=” if π is active atS-periods.

Remark 4.3

(i) The term “partial” refers to the fact that (PCL1)–(PCL2)hold only for the
family of feasible setsS ∈ F . In thestrong conservation laws(cf. Shan-
thikumar and Yao (1992)) and thegeneralized conservation laws(cf. Bertsi-
mas and Niño-Mora (1996)), analogous laws hold forall subsetsS.

(ii) Satisfaction of PCL(F ) means that project control problem (2) is solved
by F -policies for a given family of linear performance objectives. Thus,
fπ = gπ +

∑
i∈S w

S
i x

0,π
i (resp.fπ =

∑
i∈S w

S
i x

0,π
i ) is minimized by any

policy prescribing to rest atSc-periods (resp. to work atS-periods).
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We will derive satisfaction of PCLs from the following requirements.

Assumption 4.4 There exist coefficientswS
i , cSi , for i ∈ N{0,1}, S ∈ F , such that:

(i) wS
i > 0, for i ∈ N{0,1} andS ∈ F .

(ii) Work decomposition laws: forπ ∈ Π andS ∈ F ,

gπ +
∑

i∈S

wS
i x

0,π
i = gS +

∑

i∈Sc

wS
i x

1,π
i .

(iii) Cost decomposition laws: forπ ∈ Π andS ∈ F ,

fπ +
∑

i∈Sc

cSi x
1,π
i = fS +

∑

i∈S

cSi x
0,π
i .

(iv) c
Sj−1

i − c
Sj

i =
c
Sj

j

w
Sj

j

[
w

Sj−1

i − w
Sj

i

]
, for i, j ∈ N{0,1}.

We will term coefficientwS
i (resp. cSi ) the (i, S)-marginal workload(resp.

(i, S)-marginal cost. The next result justifies such denominations.

Lemma 4.5 For S ∈ F , j1 ∈ S andj2 ∈ Sc, such thatS \{j1}, S ∪{j2} ∈ ΠSD:

(a) gS\{j1} + wS
j1
x

0,S\{j1}
j1

= gS = gS∪{j2} − wS
j2
x

1,S∪{j2}
j2

.

(b) fS\{j1} − cSj1x
0,S\{j1}
j1

= fS = fS∪{j2} + cSj2x
1,S∪{j2}
j2

.

Proof. The left (resp. right) identities forgS and forfS follow by letting π =
S \ {j1} (resp.π = S ∪ {j2}) in Assumption 4.4(ii, iii), respectively. 2

We will refer in what follows to theaggregatemarginal work and cost measures

W S,0,π ,
∑

i∈S

wS
i x

0,π
i , W S,1,π ,

∑

i∈Sc

wS
i x

1,π
i ,

CS,0,π ,
∑

i∈S

cSi x
0,π
i , CS,1,π ,

∑

i∈Sc

cSi x
1,π
i .

(21)

Remark 4.6

(i) Lemma 4.5(a) shows that Assumption 4.1(iii) is needed for consistency with
Assumption 3.1(iv), since

∆gSi = −wSi

i x
1,Si−1

i = −w
Si−1

i x0,Si

i < 0, i ∈ N{0,1}.

(ii) By Assumption 4.4(ii), (PCL1) in Definition 4.2 can be reformulated as

(PCL1) W S,1,π ≥ 0, with “=” if π is passive atSc-periods.

The next result follows immediately from the above.

Theorem 4.7 Under Assumptions4.1, 4.4(i, ii), PCL(F ) hold.
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4.2 PCL-indexability

Let us introduce coefficients

νS
i ,

cSi
wS

i

, i ∈ N{0,1}, S ∈ F , (22)

from which we defineindexν∗i by

ν∗i , νSi

i , i ∈ N{0,1}. (23)

We will termνS
i the(i, S)-marginal productivity rate. Thus, indexν∗i is the(i, Si)-

marginal, or(i, Si−1)-marginal, productivity rate.
The next result ensures that if the project isF -indexable, then indexν∗i is

indeed its MPI. See Lemma 3.7(b).

Lemma 4.8

ν∗i = νSi

i = ν
Si−1

i =
∆fSi

−∆gSi
, i ∈ N{0,1}.

Proof. The result follows from Lemma 4.5, using Assumption 4.1(iii). 2

We introduce next a tractable project class based on the above.

Definition 4.9 (PCL-indexability) We say the project isPCL(F )-indexableif:

(i) Assumptions 4.1 and 4.4 hold, and hence performance measures satisfy PCL(F ).

(ii) Index ν∗i is nondecreasing.

The main result is that a PCL(F )-indexable project is, indeed,F -indexable.

Theorem 4.10 (PCL indexability condition) If the project is PCL(F )-indexable
then it isF -indexable, andν∗i is its MPI.

To prove Theorem 4.10 we need several preliminary results. We start by relat-
ing marginal productivity rates to index values, which yields an index recursion.

Lemma 4.11 For i, j ∈ N{0,1}:

(a) νSi

j − ν∗i =
w

Si−1

j

wSi

j

[
ν

Si−1

j − ν∗i

]
.

(b) ν∗i+1 = ν∗i +
w

Si−1

i+1

wSi

i+1

[
ν

Si−1

i+1 − ν∗i

]
.

Proof. (a) Using Assumption 4.4(iv) we obtain that, fori, j ∈ N{0,1},

νSi

j − ν∗i =
cSi

j

wSi

j

− ν∗i =
c
Si−1

j − ν∗i

[
w

Si−1

j − wSi

j

]

wSi

j

− ν∗i =
w

Si−1

j

wSi

j

[
ν

Si−1

j − ν∗i

]
.

(b) This part follows by lettingj = i+ 1 in part (a). 2
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The next result represents marginal costs as finite linear combinations of marginal
workloads, involving coefficientsν∗i and∆ν∗i = ν∗i − ν∗i−1.

Lemma 4.12 For i, j ∈ N{0,1}:

(a) cSi−1

j = ν∗i w
Si−1

j +

j∑

k=i+1

w
Sk−1

j ∆ν∗k , i ≤ j.

(b) cSi

j = ν∗i w
Si

j −

i−1∑

k=j

wSk

j ∆ν∗k+1, i ≥ j.

Proof. (a) Fori < j, Assumption 4.4(iv) andsummation by partsgives

c
Sj

j = c
Si−1

j +

j∑

k=i

[
cSk

j − c
Sk−1

j

]
= c

Si−1

j +

j∑

k=i

ν∗k

[
wSk

j − w
Sk−1

j

]

= c
Si−1

j +
[
ν∗jw

Sj

j − ν∗i w
Si−1

j

]
−

j∑

k=i+1

w
Sk−1

j ∆ν∗k ,

whence the result follows (the casei = j is trivial).
(b) Forj < i (again, the casei = j is trivial), we have

cSi

j = c
Sj−1

j +

i∑

k=j

[
cSk

j − c
Sk−1

j

]
= c

Sj−1

j +

i∑

k=j

ν∗k

[
wSk

j − w
Sk−1

j

]

= c
Sj−1

j +
[
ν∗i w

Si

j − ν∗jw
Sj−1

j

]
−

i−1∑

k=j

wSk

j ∆ν∗k+1,

whence the result follows. This completes the proof. 2

The next result is an analog of Lemma 4.12 in terms of aggregate measures.

Lemma 4.13 Suppose the project is PCL(F )-indexable. Then, fori ∈ N{0,1}:

(a) CSi−1,0,π = ν∗i W
Si−1,0,π +

∑

k∈Si

W Sk−1,0,π∆ν∗k.

(b) CSi,1,π = ν∗i W
Si,1,π −

∑

k∈Sc
i−1

W Sk,1,π∆ν∗k+1.

Proof. (a) Using Lemma 4.12(a), we obtain

CSi−1,0,π ,
∑

j∈Si−1

c
Si−1

j x0,π
j =

∑

j∈Si−1

[
ν∗i w

Si−1

j +

j∑

k=i+1

w
Sk−1

j ∆ν∗k

]
x0,π

j

= ν∗i
∑

j∈Si−1

w
Si−1

j x0,π
j +

∑

k∈Si

∑

j∈Sk−1

w
Sk−1

j x0,π
j ∆ν∗k

= ν∗i W
Si−1,0,π +

∑

k∈Si

W Sk−1,0,π∆ν∗k ,
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where the interchange on the order of summation is justified,in the countable state
case, by the nonnegativity of the terms involved.

(b) Using Lemma 4.12(b) and arguing along the same lines as inpart (a) gives

CSi,1,π ,
∑

j∈Sc
i

cSi

j x
1,π
j =

∑

j∈Sc
i



ν∗i w
Si

j −
i−1∑

k=j

wSk

j ∆ν∗k+1



x1,π
j

= ν∗i
∑

j∈Sc
i

wSi

j x
1,π
j −

∑

k∈Sc
i−1

∑

j∈Sc
k

wSk

j x1,π
j ∆ν∗k+1

= ν∗i W
Si,1,π −

∑

k∈Sc
i−1

W Sk,1,π∆ν∗k+1,

which completes the proof. 2

4.3 Workload reformulation and indexability proof

The next result is the cornerstone of our indexability proof. It formulates the differ-
ence betweenν-wage problem (10)’s objective under an arbitray policy andunder
anF -policy as a linear combination of aggregate work measures.

Lemma 4.14 (Workload reformulation) Suppose the project is PCL(F )-indexable.
Then, for any statè0 < i < `1, wageν ∈ R and policyπ ∈ Π, the objective of
ν-wage problem(10) can be represented as

vπ(ν) = vSi(ν) +W Si,1,π [ν − ν∗i ] +W Si,0,π
[
ν∗i+1 − ν

]

+
∑

k∈Si+1

W Sk−1,0,π∆ν∗k +
∑

k∈Sc
i−1

W Sk,1,π∆ν∗k+1.

Proof. Using in turn Assumption 4.4(iv) and Lemma 4.13 gives

fπ = fSi + CSi,0,π − CSi,1,π = fSi + ν∗i+1W
Si,0,π − ν∗i W

Si,1,π

+
∑

k∈Si+1

W Sk−1,0,π∆ν∗k +
∑

k∈Sc
i−1

W Sk,1,π∆ν∗k+1.

On the other hand, by Assumption 4.4(iv) we have

gπ = gSi +W Si,1,π −W Si,0,π.

The required expression forvπ(ν) = fπ + νgπ follows directly by substitution
of the above formulae forfπ andgπ. 2

We can now prove the main result of this section.

Proof of Theorem 4.10. Let `0 < i < `1 andπ ∈ Π. It follows immediately
from Lemma 4.14 and Definition 4.9 that, forν ∈ [ν∗i , ν

∗
i+1],

vπ(ν) ≥ vSi(ν).

This (cf. Definition 3.6) completes the proof.2

The next result characterizes the MPI as a locally optimal marginal productivity
rate, in a dual min/max relation.
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Theorem 4.15 Suppose the project is PCL(F )-indexable. Then,

min
j∈Si−1

ν
Si−1

j = ν
Si−1

i = ν∗i = νSi

i = max
j∈Sc

i

νSi

j , i ∈ N{0,1}.

Proof. By Lemma 4.12(a), we have that, fori, j ∈ N{0,1} with i ≤ j,

ν
Si−1

j = ν∗i +

j∑

k=i+1

w
Sk−1

j

w
Si−1

j

∆ν∗k ,

whence the “min” identity readily follows.
By Lemma 4.12(b), we have that, fori, j ∈ N{0,1} with i ≥ j,

νSi

j = ν∗i −

i−1∑

k=j

wSk

j

wSi

j

∆ν∗k+1,

whence the “max” identity follows. 2

Remark 4.16 In Theorem 4.15:

(i) The “max” identity characterizes MPIν∗i as the maximum(j, Si)-marginal
productivity rate over statesj ∈ Sc

i .

(ii) The “min” identity characterizesν∗i as the minimum(j, Si−1)-marginal pro-
ductivity rate over statesj ∈ Si−1.

4.4 MPI characterization under V-shaped marginal workloads

We have found that, in a variety of applications, marginal workloads areV-shaped,
in the following sense, which implies an alternative characterization of the MPI.

Assumption 4.17wSk

i is V-shaped ask varies, being minimized atk = i, i.e.

w
S

`0

i ≥ w
S

`0+1

i ≥ · · · ≥ wSi

i ≤ w
Si+1

i ≤ · · · , i ∈ N{0,1}.

We need the following preliminary result.

Lemma 4.18 Suppose the project is PCL(F )-indexable and Assumption4.17holds.
Then, for fixedi ∈ N{0,1}, ν

Sj

i is nondecreasing in threshold statej, i.e.

ν
Sj

i ≥ ν
Sj−1

i , j ∈ N{0,1}, with “=” if j = i.

Proof. The equality part follows by Lemma 4.8(b). As for the inequality, reformu-
lating the identity in Lemma 4.11(a) gives that, fori, j ∈ N{0,1},

ν
Sj

i − ν
Sj−1

i =

(
w

Sj−1

i

w
Sj

i

− 1

)(
ν

Sj

i − ν∗j

)
. (24)

Consider the casej ≥ i+ 1. Then, by Assumption 4.17 and the “max” identity
in Theorem 4.15, the two factors in the right-hand side (RHS)of (24) are nonposi-
tive, and hence their product is nonnegative.
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Consider now the casej ≤ i. Then, drawing on index monotonicity and the
“min” identity in Theorem 4.15 gives

ν∗j ≤ ν∗j+1 ≤ ν
Sj

i ,

so the second factor in the RHS of (24) is nonnegative; Assumption 4.17 shows that
the first factor is nonnegative. Hence, so is their product, completing the proof. 2

Theorem 4.19 (Alternative MPI characterization) Suppose the project is PCL(F )-
indexable and Assumption4.17holds. Then, the MPI has the characterization

min
S∈F : Sc3i

νS
i = ν∗i = max

S∈F :S3i
νS

i , i ∈ N{0,1}. (25)

Proof. By Lemma 4.18 we can write, forj1 ∈ Si−1 andj2 ∈ Sc
i−1,

ν
Sj1

i ≥ νSi

i = ν∗i = ν
Si−1

i ≥ ν
Sj2

i ,

which implies

min
j∈N :Sc

j3i
ν

Sj

i = ν∗i = max
j∈N :Sj3i

ν
Sj

i , i ∈ N{0,1}.

The latter identities are readily reformulated into the required result. 2

Remark 4.20 In Theorem 4.19:

(i) The “max” identity characterizes MPIν∗i as the maximum(i, S)-marginal
productivity rate overF -policiesS that are active ati-periods. This extends
to RBs Gittins (1979)’s index characterization for non-restless bandits.

(ii) The “min” identity characterizes MPIν∗i as the minimum(i, S)-marginal
productivity rate overF -policiesS that are passive ati-periods.

5 PCL-indexability analysis of a semi-Markov project

This section specializes the PCL-indexability framework to a semi-Markov project,
under three relevant performance criteria, including a newone. The main result is
that to establish PCL(F )-indexability it suffices to check the following conditions.

Assumption 5.1

(i) Positive marginal workloads:wS
i > 0, i ∈ N{0,1}, S ∈ F .

(ii) Nondecreasing index:ν∗i ≤ ν∗i+1, `0 < i < `1.

Consider a semi-Markov RB project satisfying Assumption 3.1. WhenXn = i
andan = a is chosen, the joint distribution of the lengthtn+1 − tn of the ensuing
(i, a)-period and stateXn+1 is given by thetransition distribution

Qa
ij(t) , P {tn+1 − tn ≤ t,Xn+1 = j | Xn = i, an = a} ,
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with associated LST

βa,α
ij , E

[
1{Xn+1=j}e

−α(tn+1−tn) | Xn = i, an = a
]

=

∫ ∞

0
e−αt dQa

ij(t)

andone-period transition probabilities

pa
ij , P {Xn+1 = j | Xn = i, an = a} = lim

t→+∞
Qa

ij(t) = lim
α↘0

βa,α
ij .

FromQa
ij(t) we obtain the distribution of the length of an(i, a)-period,

F a
i (t) , P {tn+1 − tn ≤ t |Xn = i, an = a} =

∑

j∈N

Qa
ij(t),

having LST

βa,α
i , E

[
e−α(tn+1−tn) | Xn = i, an = a

]
=
∑

j∈N

βa,α
ij

satisfying
sup {βa,α

i : i ∈ N, a ∈ {0, 1}} < 1,

and finite mean

ma
i , E [tn+1 − tn | Xn = i, an = a] =

∫ ∞

0
t dF a

i (t),

with
inf {ma

i : i ∈ N, a ∈ {0, 1}} > 0.

The evolution of processX(t) within an(i, a)-period is characterized by

p̂a
ij(t) , P {X(tn + t) = j |Xn = i, an = a, tn+1 − tn > t} ,

the probability that statej is occupiedt time units after a decision epoch, given that
the next epoch has not occurred yet.

The project accrues holding costs at rateha
j per unit time while it occupies state

j and actiona prevails. Holding cost rates are assumed to bebounded below:

inf
{
ha

j : j ∈ N, a ∈ {0, 1}
}
> −∞; (26)

5.1 Discounted criterion

We start with theexpected total discounted (ETD)criterion, with factorα > 0.
LettingE

π
i [·] be expectation underπ starting ati, the ETD value of costs accrued is

fπ
i , E

π
i

[∫ ∞

0
h

a(t)
X(t)e

−αt dt

]
,

and the ETD amount of work expended is

gπ
i , E

π
i

[∫ ∞

0
a(t)e−αt dt

]
.

21



We consider the initial state to be drawn from a probability mass functionp =
(pi)i∈N . Denoting byE

π
p

[·] the corresponding expectation, we will use theETD
cost measureand theETD work measuregiven, respectively, by

fπ , E
π
p

[∫ ∞

0
h

a(t)
X(t)e

−αt dt

]
=
∑

i∈N

pif
π
i .

and

gπ , E
π
p

[∫ ∞

0
a(t)e−αt dt

]
=
∑

i∈N

pig
π
i .

We now reformulate the model intodiscrete time, as in Puterman (1994, Ch.
11), using coefficientsβa

ij andβa
i as defined above (where now factorα is implicit),

and

ma
i , E

[∫ tn+1−tn

0
e−αt dt | Xn = i, an = a

]
=

1 − βa
i

α
,

cai , E

[∫ tn+1−tn

0
ha

X(t)e
−αt dt | Xn = i, an = a

]
.

Notice thatcai (resp.ma
i ) is the ETD cost (resp. time) accrued over an(i, a)-period;

βa
i is the state- and action-dependent discrete-time discountfactor; andβa

ij is the
discounted one-period transition probability fromi to j undera.

We can use the above coefficients to characterize measuresgS
i andfS

i , for given
S ∈ F , as the unique solutions to the linear equation systems given next.

Lemma 5.2 (Evaluation equations)For everyS ∈ F :

(a)






gS
i = m1

i +
∑

j∈N

β1
ijg

S
j if i ∈ S

gS
i =

∑

j∈N

β0
ijg

S
j if i ∈ N \ S.

(b)






fS
i = c1i +

∑

j∈N

β1
ijf

S
j if i ∈ S

fS
i = c0i +

∑

j∈N

β0
ijf

S
j if i ∈ N \ S.

We will use asETD state-action occupation measurethe ETD number of(j, a)-
periods spanned under policyπ, given by

xa,π
j , E

π
p

[
∞∑

n=0

1{Xn = j, an = a} e−αtn

]

=
∑

i∈N

pix
a,π
ij ,

where

xa,π
ij , E

π
i

[
∞∑

n=0

1{Xn = j, an = a} e−αtn

]

.

We will write xa,π = (xa,π
j )j∈N , gπ = (gπ

i )i∈N , fπ = (fπ
i )i∈N , ma =

(ma
j )j∈N , ca = (caj )j∈N and Ba = (βa

ij)i,j∈N ; and forS, S′ ⊆ N , Ba
SS′ =
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(βa
ij)i∈S,j∈S′ , fπ

S = (fπ
i )i∈S . We can thus represent work and cost measuresgπ

andfπ aslinear performance measures, by

gπ = x1,πm1 =
∑

j∈N

m1
jx

1,π
j

fπ = x0,πc0 + x1,πc1 =
∑

a∈{0,1}

∑

j∈N

cajx
a,π
j .

(27)

It is well known in MDP theory that measuresxa,π
j satisfy the set of linear equa-

tions given next, formulatingdetailed flow balanceidentities. LetI = (δij)i,j∈N ,
whereδij is Kronecker’s delta, be the identity matrix indexed byN .

Lemma 5.3 (ETD detailed flow balance)For any policyπ ∈ Π,

x0,π
(
I − B0

)
+ x1,π

(
I − B1

)
= p.

Denote by〈a, S〉 the policy taking actiona in the initial period, and following
theS-active policy afterwards. We define theETD (i, S)-marginal workloadby

wS
i , g

〈1,S〉
i − g

〈0,S〉
i =

{
gS
i − g

〈0,S〉
i if i ∈ S

g
〈1,S〉
i − gS

i if i ∈ Sc,

= m1
i +

∑

j∈N

(β1
ij − β0

ij)g
S
j ,

(28)

the marginal increase in ETD work expended resulting from using policy 〈1, S〉
instead of〈0, S〉, starting ati. We further define theETD (i, S)-marginal costby

cSi , f
〈0,S〉
i − f

〈1,S〉
i =

{
f
〈0,S〉
i − fS

i if i ∈ S

fS
i − f

〈1,S〉
i if i ∈ Sc,

= c0i − c1i +
∑

j∈N

(
β0

ij − β1
ij

)
fS

j ,
(29)

the marginal cost decrease resulting from using policy〈0, S〉 instead of〈1, S〉.
As in (22)–(23), and under Assumption 5.1(i), we define theETD(i, S)-marginal

productivity rateand theETD indexby νS
i = cSi /w

S
i andν∗i = νSi

i , respectively.
We will need the following result.

Lemma 5.4 For everyS ∈ F :

(a) wS
S = (ISN − B0

SN )gS and wS
Sc = m1

Sc − (IScN − B1
ScN )gS .

(b) cS
S = c0

S − (ISN − B0
SN )fS and cS

Sc = (IScN − B1
ScN )fS − c1

Sc .

Proof. It follows from Lemma 5.2 and (28)–(29). 2

Define ETD aggregate measuresW S,0,π, W S,1,π, CS,0,π andCS,1,π by (21).
We next establish satisfaction of work and cost decomposition laws.

Lemma 5.5 Under any policyπ ∈ Π:
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(a) Workload decomposition laws:

gπ +W S,0,π = gS +W S,1,π, S ∈ F .

(b) Cost decomposition laws:

fπ + CS,1,π = fS + CS,0,π, S ∈ F .

Proof. (a) Using Lemma 5.3, Lemma 5.2(a), Lemma 5.4(a), andx1,π

`0
= 0, gives

0 =
[
x0,π(I −B0) + x1,π (I − B1) − p

]
gS

= x0,π(I − B0)gS + x1,π
[
(I − B1)gS − m1

]
− pgS + x1,πm1

= x
0,π
S wS

S − x
1,π
Sc wS

Sc − gS + gπ.

(b) Using Lemma 5.2(b), Lemma 5.3, Lemma 5.4(b), andx1,π

`0
= 0, gives

0 =
[
x0,π(I − B0) + x1,π (I − B1) − p

]
fS

= x0,π
[
(I − B0)fS − c0

]
+ x1,π

[
(I − B1)fS − c1

]

− pfS + x0,πc0 + x1,πc1

= −x
0,π
S cS

S + x
1,π
Sc cS

Sc − fS + fπ.

2

The next result establishes Assumption 4.4(iv).

Lemma 5.6 Suppose Assumption 5.1(i) holds. Then, for everyj ∈ N{0,1}:

(a) f
Sj

i − f
Sj−1

i = ν∗j

[
g

Sj−1

i − g
Sj

i

]
, i ∈ N .

(b) c
Sj−1

i − c
Sj

i = ν∗j

[
w

Sj−1

i − w
Sj

i

]
, i ∈ N{0,1}.

Proof. (a) We have, takingπ = Sj−1 andS = Sj in Lemma 5.5(a, b):

g
Sj−1

i = g
Sj

i + w
Sj

j x
1,Sj−1

ij , i ∈ N,

f
Sj−1

i + c
Sj

j x
1,Sj−1

ij = f
Sj

i , i ∈ N.

Hence,

f
Sj

i − f
Sj−1

i = c
Sj

j x
1,Sj−1

ij =
c
Sj

j

w
Sj

j

w
Sj

j x
1,Sj−1

ij =
c
Sj

j

w
Sj

j

[
g

Sj−1

i − g
Sj

i

]
.

(b) Using part (a) we have that, fori ∈ N{0,1}:

c
Sj−1

i − c
Sj

i =
∑

j∈N

(
β1

ij − β0
ij

)(
f

Sj

i − f
Sj−1

i

)

= ν∗j
∑

j∈N

(
β1

ij − β0
ij

) (
g

Sj−1

i − g
Sj

i

)
= ν∗j

(
w

Sj−1

i − w
Sj

i

)
.

This completes the proof. 2
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We can now give the main result for the ETD criterion.

Theorem 5.7 Under Assumption 5.1, the project is PCL(F )-indexable relative to
the ETD criterion, andν∗i is its discounted MPI.

Proof. Assumption 4.1 holds. Assumption 5.1(i) and Lemmas 5.5–5.6 ensure sat-
isfaction of Assumption 4.4. Hence, part (i) of Definition 4.9 holds, as does its part
(ii) by Assumption 5.1(ii). The proof is completed by invoking Theorem 4.10. 2

5.2 Long-run average criterion

We turn now to thelong-run average (LRA)criterion, which we address by drawing
on the above results, using avanishing discount approach. For clarity, we include
factorα in the notation above. The followingergodicityconditions are required.

Assumption 5.8

(i) For every statei ∈ N , theSi-active policy induces on embedded Markov
chainXn the single positive recurrent classSi ∪ {i}.

(ii) Policies inΠ arestable, in that there exist finite measuresxa,π
j , fπ andgπ,

independent of the initial statei, given for any policyπ ∈ Π by

xa,π
j , lim

α↘0
αxa,π,α

j = lim
n→+∞

1

n
E

π
i

[
n∑

k=0

1{Xk = j, ak = a}

]

,

fπ , lim
α↘0

αfπ,α
i = lim

t→+∞

1

t
E

π
i

[∫ t

0
h

a(s)
X(s) ds

]
,

gπ , lim
α↘0

αgπ,α
i = lim

t→+∞

1

t
E

π
i

[∫ t

0
a(s) ds

]
.

(iii) For everyi ∈ N{0,1} andS ∈ F , there exist finitewS
i andcSi given by

wS
i , lim

α↘0
wS,α

i = lim
t→+∞

{
E
〈1,S〉
i

[∫ t

0
a(s) ds

]
− E

〈0,S〉
i

[∫ t

0
a(s) ds

]}
,

cSi , lim
α↘0

cS,α
i = lim

t→+∞

{
E
〈0,S〉
i

[∫ t

0
h

a(s)
X(s) ds

]
− E

〈1,S〉
i

[∫ t

0
h

a(s)
X(s) dt

]}
.

As the above notation suggests, we will usefπ, gπ andxa,π
j as the LRA cost,

work, and state-action occupation measures, respectively.
We define theLRA(i, S)-marginal workloadand theLRA(i, S)-marginal cost

as the limitswS
i andcSi in Assumption 5.8(iii), respectively. Thus,wS

i (resp. cSi )
is the expected long-run cumulative marginal increase (resp. decrease) in work
expended (resp. in holding cost accrued) resulting from using policy〈1, S〉 instead
of 〈0, S〉 (resp.〈0, S〉 instead of〈1, S〉), starting ati.

Provided Assumption 5.1(i) holds, we define theLRA(i, S)-marginal produc-
tivity rateand theLRA indexby νS

i = cSi /w
S
i andν∗i = νSi

i , respectively.
The main result for the LRA criterion is as follows.
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Theorem 5.9 Under Assumption 5.1, the project is PCL(F )-indexable relative to
the LRA criterion, andν∗i is its LRA MPI.

Proof. It is readily verified that Assumptions 4.1–4.4 hold. As an example, Lemmas
5.5–5.6 immediately yield LRA counterparts, by taking appropriate limits asα
vanishes. Hence, Definition 4.9 holds and, by Theorem 4.10, the result follows. 2

5.3 Mixed LRA/bias criterion

In several models, such as that in Section 2, the LRA MPI discussed abovedoes not
exist. Such is the case in countable-state models where the LRA fraction of time
the project must be worked on isconstant, as often occurs in queueing systems. We
propose here to overcome such problem by introducing a new,mixed LRA/bias cri-
terion, where cost measures are as in the LRA case, but work measurescorrespond
to Blackwell (1962)’sbias criterion. For a review on mixed criteria in MDPs see
Feinberg and Shwartz (2002).

In addition to Assumption 5.8, we require the following conditions to hold.

Assumption 5.10

(i) There existsρ ∈ (0, 1) such that, for any policyπ ∈ Π and statei ∈ N ,

ρ = lim
α↘0

αgπ,α
i = lim

t→+∞

1

t
E

π
i

[∫ t

0
a(s) ds

]
,

and there exists a finite measuregπ
i given by

gπ
i , lim

α↘0

{
gπ,α
i −

ρ

α

}
= E

π
i

[∫ ∞

0
(a(t) − ρ) dt

]
.

(ii) For everyi ∈ N{0,1} andS ∈ F , there exists a finitewS
i given by

wS
i , lim

α↘0

wS,α
i

α
= lim

t→+∞
t

{
E
〈1,S〉
i

[∫ t

0
a(s) ds

]
− E

〈0,S〉
i

[∫ t

0
a(s) ds

]}
.

We interpretbiasmeasuregπ
i as the expected total cumulativeexcess workex-

pended over the LRA nominal allocationρ, under policyπ, starting ati. Again, as
in the ETD criterion, we will consider that the initial stateX(0) is drawn from a
probability mass functionp, and define thebias work measureby

gπ , lim
α↘0

{
gπ,α −

ρ

α

}
= E

π
p

[∫ ∞

0
(a(t) − ρ) dt

]
.

Further, notice that Assumption 5.10(ii) implies that thewS
i ’s defined for the

LRA criterion in Assumption 5.8(iii) are zero, being hence of no use in the PCL
framework. Instead, we will use asbias (i, S)-marginal workloadthe new coeffi-
cientwS

i defined in Assumption 5.10(ii), representing the limiting (as time grows to
infinity) time-scaled marginal increase in expected work expended resulting from
using policy〈1, S〉 instead of〈0, S〉, starting ati.

Measuresfπ and xa,π
j , and marginal costscSi are defined according to the

LRA criterion. Provided Assumption 5.1(i) holds, we define theLRA/bias(i, S)-
marginal productivity rateand theLRA/bias indexby νS

i = cSi /w
S
i andν∗i = νSi

i .
The main result for the mixed LRA/bias criterion is as follows.
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Theorem 5.11 Under Assumption 5.1, the project is PCL(F )-indexable relative to
the LRA/bias criterion, andν∗i is its LRA/bias MPI.

Proof. The result follows along the lines of Theorem 5.9, by takingappropriate
limits as the discount factor vanishes in the results for theETD criterion. 2

6 Optimal MPI policy for control of an MTO queue

This section draws on the above to carry out aPCL-indexability analysisof the pure
MTO case of the model described in Section 2. Notice thatN{0} = {0}.

In the analyses below we draw on standard results on theM/G/1 queue. See,
e.g. (Kleinrock 1975, Ch. 5). We will refer to the number-in-system processL(t)
for anM/G/1 queue operated under the standard (S0-active) policy. Our main
concern is to establishF -indexability under the LRA/bias criterion of Section 5.3.
We will draw on preliminary results for the discounted criterion.

6.1 Preliminary results: Discounted criterion

We start with the ETD criterion of Section 5.1, under factorα > 0. Since active
and passive one-period discount factors are now constant, we will denote them by

β1 = ψ(α) and β0 =
λ

α+ λ
.

Similarly, we will denote the ETD lengths of active and passive periods by

m1 =
1 − β1

α
and m0 =

1 − β0

α
=

1

α+ λ
.

Let aj denote the discounted probability thatj customers arrive during a ser-
vice. Theaj ’s are characterized by theirz-transform

a∗(z) ,

∞∑

j=0

ajz
j = ψ(α+ λ− λz).

Notice that
a∗(1) = β1. (30)

From theaj ’s one can readily obtain the discounted transition probabilities βa
ij .

We will further use the distribution of the length of a busy period starting with
one customer, under the standard policy. Its LST’s valueφ = φ(α) is characterized
as the unique solution0 < φ < 1 of the fixed-point equation

a∗(φ) = φ. (31)

For example, in theexponential service-timecase, the latter equation becomes

µ

α+ µ+ λ(1 − φ)
= φ, i.e. λφ2 − (α+ λ+ µ)φ+ µ = 0.

Denoting the discriminant byd =
√

(α+ λ+ µ)2 − 4λµ, the two solutions are

φ1 =
α+ λ+ µ− d

2λ
and φ2 =

α+ λ+ µ+ d

2λ
. (32)

27



Since0 < φ1 < 1 < φ2, the required solution isφ = φ1.
Note:

φ1φ2 =
1

ρ
and φ1 + φ2 =

α+ λ+ µ

λ
.

Work and marginal work measures

We address next calculation and analysis of ETD work and marginal work measures
gS
i andwS

i . We will use the fact that, for eachk ≥ 0,X(t) is aregenerative process
under theSk-active policy, having asrenewal epochsthose whereleast recurrent
statek is hit, which marks the completion of acycle.

We will make use of theETD time to hit state 0starting ati ≥ 1 under the
standard policy, and of theETD recurrence time to 0(starting at 0), denoted by
Mi0 andM00, respectively. TheMi0’s are characterized by the recursion

Mi0 =





M10 + φMi−1,0 if i ≥ 2
1 − φ

α
if i = 1.

whose solution is

Mi0 =
1 − φi

α
, i ≥ 1.

Further, we have

M00 =
1 − β0φ

α
=
α+ λ− λφ

α(α+ λ)
. (33)

We will also make use of theETD busy time during a cycle(underS0), given by

B00 = β0M10.

MeasuresgSk

i are represented next in terms ofgS0

0 , by standard arguments.

Lemma 6.1 For i ≥ 0:

(a) gS0

i =
1

α
−

(1 − β0)φ
i

α(1 − φβ0)
=

1

α
−

φi

α+ λ− λφ
=





Mi0 + φigS0

0 if i ≥ 1
B00

αM00
if i = 0.

(b) For k ≥ 1, gSk

i =

{
βk−i

0 gS0

0 if 0 ≤ i < k

gS0

i−k if i ≥ k.

The next result characterizes discounted marginal work measureswS
i .

Lemma 6.2 For i, k ≥ 1:

(a) wS0

i = (1 − β0)Mi0 =
1 − φi

α+ λ
=





wS0

1 + φwS0

i−1 if i ≥ 2
1 − φ

α+ λ
if i = 1.

(b) wSk

i =

{
wS0

i−k if i > k

w
Sk−i+1

1 if 2 ≤ i ≤ k.
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(c) wSk

1 =






a0

φ
wS0

1 if k = 1

(1 − β0)m1 + β0w
Sk−1

1 +

∞∑

j=k+1

ajw
S0

j−k if k ≥ 2.

Proof. (a) Using (28), Lemma 6.1, andMi+1,0 = Mi0 + φiM10, gives, fori ≥ 1:

wS0

i , g
〈1,S0〉
i − g

〈0,S0〉
i = gS0

i − β0 g
S0

i+1

=
[
Mi0 + φigS0

0

]
− β0

[
Mi+1,0 + φi+1gS0

0

]

=
[
Mi0 + φigS0

0

]
− β0

[
Mi0 + φiM10 + φi+1gS0

0

]
= (1 − β0)Mi0.

(b) This part follows from (28) and Lemma 6.1(b).
(c) Fork = 1, use Lemma 6.1(b), (30) and (31) to get:

wS1

1 , g
〈1,S1〉
1 − g

〈0,S1〉
1 = m1 +

∞∑

j=0

ajg
S1

j − gS1

1

= m1 + a0β0g
S0

0 +

∞∑

j=1

ajg
S0

j−1 − gS0

0

= m1 + a0β0g
S0

0 +

∞∑

j=1

aj

[
1

α
−

(
1

α
− gS0

0

)
φj−1

]
− gS0

0

= m1 + a0β0g
S0

0 +
1

α

∞∑

j=1

aj −
1

φ

(
1

α
− gS0

0

) ∞∑

j=1

ajφ
j − gS0

0

= m1 + a0β0g
S0

0 +
1

α
[β1 − a0] −

1

φ

(
1

α
− gS0

0

)
(φ− a0) − gS0

0

=
a0

φ

[
1 − φ

α
− (1 − β0φ)gS0

0

]
=
a0

φ
wS0

1 .

Let nowk ≥ 2. Using Lemma 6.1(b) we can write

wSk

1 , g
〈1,Sk〉
1 − g

〈0,Sk〉
1 = m1 +

∞∑

j=0

ajg
Sk

j − gSk

1

= m1 +
k−1∑

j=0

ajg
Sk

j +
∞∑

j=k

ajg
Sk

j − gSk

1

= m1 + β0

k−1∑

j=0

ajg
Sk−1

j +

∞∑

j=k

ajg
Sk−1

j−1 − g
Sk−1

0

= m1 + β0



wSk−1

1 −m1 −
∞∑

j=k

ajg
Sk−1

j + g
Sk−1

1



+
∞∑

j=k

ajg
Sk−1

j−1 − g
Sk−1

0

= (1 − β0)m1 + β0w
Sk−1

1 +

∞∑

j=k

aj

[
g

Sk−1

j−1 − β0g
Sk−1

j

]

= (1 − β0)m1 + β0w
Sk−1

1 +

∞∑

j=k+1

ajw
S0

j−k.
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wS0

1 → wS1

1 → wS2

1 → wS3

1 → · · ·

↓ ↘ ↘ ↘ ↘

wS0

2 wS1

2 wS2

2 wS3

2

. . .
↓ ↘ ↘ ↘ ↘

wS0

3 wS1

3 wS2

3 wS3

3

. . .
↓ ↘ ↘ ↘ ↘
...

. . . . . . . .. . . .

Figure 2: Direction of calculations for marginal workloadswSk

i .

This completes the proof. 2

Remark 6.3 Lemma 6.2 yields a recursion for calculating ETD marginal work-
loadswSk

i , for i ≥ 1, k ≥ 0. The calculation’s backbone consists ofpivot terms
wSk

1 , for k ≥ 0. Calculations proceed in the order indicated by arrows in Figure 2.

The next result shows that ETD marginal workloads are positive, as required.

Proposition 6.4 ETD marginal workloadswSk

i satisfy Assumption5.1(a).

Proof. The result follows by induction onk using the recursions in Lemma 6.2.2

Cost and marginal cost measures

We proceed to calculate the required ETD cost and marginal cost measuresfS
i and

cSi . In the analyses below, we include in the notation the holding cost rate sequence
relative to which cost measures are defined, when this is different from the original
sequenceh = (h0, h1, . . .), writing hi = (hi, hi+1, . . .) for i ≥ 0. We will further
refer to sequences of first- and second-order differences∆hi, ∆2hi.

Analogously as in the above analyses, we will make use of theETD cost to hit
0 starting ati > 0 under the standard policy , denoted byVi0(·), and of theETD
cost accrued over a cycle, denoted byV00(·).

The next result characterizes ETD measuresfS
i (h), via standard arguments.

Lemma 6.5

(a) fS0

i =





Vi0 + φifS0

0 if i ≥ 1
V00

αM00
if i = 0.

(b) fSk

i =

{
fS0

i−k(h
k) if i ≥ k

m0(hi + · · · + βk−i−1
0 hk−1) + βk−i

0 fS0

0 (hk) if 0 ≤ i < k.

Proof. (a) By standard arguments, we have

fS0

i = Vi0 + φifS0

0 , i ≥ 1

fS0

0 =
1 − β0

α
h0 + β0f

S0

1 .
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Solving forfS0

0 andfS0

1 gives

fS0

0 =
1 − β0

α(1 − β0φ)
h0 +

β0V
S0

10

1 − β0φ

fS0

1 =
(1 − β0)φ

α(1 − β0φ)
h0 +

V S0

10

1 − β0φ
,

whence the result follows, using (33).
Part (b) is trivial. 2

The next result characterizes the required ETD marginal costs cSi .

Lemma 6.6

(a) cS0

i = m0(hi − φih0) + β0Vi0(∆h1) − (1 − β0)Vi0, for i ≥ 1.

(b) cSk

i = cS0

i−k(h
k), i > k.

Proof. (a) We have, fori ≥ 1,

cS0

i , f
〈0,S0〉
i − f

〈1,S0〉
i = m0hi + β0f

S0

i+1 − fS0

i

= m0hi + β0

[
Vi+1,0 + φi+1fS0

0

]
−
[
Vi0 + φifS0

0

]

= m0(hi − φih0) + β0Vi0(∆h1) − (1 − β0)Vi0,

where we have used (29), Lemma 6.5(a),Vi+1,0 = Vi0(h
1) + φiV10, and

fS0

0 = m0h0 + β0f
S0

1 = m0h0 + β0

[
V10 + φfS0

0

]
.

Part (b) follows from (29) and Lemma 6.5(b). 2

The next result gives representations for indexν∗i = c
Si−1

i /w
Si−1

i .

Proposition 6.7 For i ≥ 1:

ν∗i = ν1(h
i−1)

=

(
λ+

α

1 − φ

)
E0

[∫ ∞

0
e−αt

{
∆hL(t)+i −

α

λ

(
hL(t)+i−1 − hi−1

)}
dt

]

=

(
λ+

α

1 − φ

){
E0

[∫ ∞

0
e−αthL(t)+i dt

]
− E1

[∫ ∞

0
e−αthL(t)+i−1 dt

]}

Proof. The first identity follows from Lemma 6.2(b) and Lemma 6.6(b). The sec-
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ond identity follows from Lemma 6.2(a) and Lemma 6.6(a), through

ν1(h
i−1) =

m0(hi − φhi−1) + β0V10(∆hi) − (1 − β0)V10(h
i−1)

(1 − β0)M10

=
V00(∆hi) +m0(1 − φ)hi−1 − (1 − β0)V10(h

i−1)

(1 − β0)M10

=
M00

m0M10

V00(∆hi) +m0(1 − φ)hi−1 − αm0V10(h
i−1)

αM00

=
M00

m0M10

V00(∆hi) − αm0V10(h
i−1 − hi−11)

αM00

=
M00

m0M10

{
V00(∆hi)

αM00
−

1 − β0

β0

V00(h
i−1 − hi−11)

αM00

}

=
α+ λ(1 − φ)

1 − φ
E0

[∫ ∞

0
e−αt

{
∆hL(t)+i −

α

λ

(
hL(t)+i−1 − hi−1

)}
dt

]

where1 denotes a sequence of1’s, and we have used

V10(hi−11) = M10hi−1 =
1 − φ

α
hi−1.

The third identity follows from

ν∗i =
fSi

i − f
Si−1

i

g
Si−1

i − gSi

i

=
fS0

0 (hi) − fS0

1 (hi−1)

gS0

1 − gS0

0

.

2

Remark 6.8

1. If one can show that indexν∗i is nondecreasing under Assumption 2.1, then
Theorem 5.7 (using Proposition 6.4) shows that it is indeed the discounted
MPI. We emphasize that such result isnot neededfor our analysis in Section
6.2 of indexability under the LRA/bias criterion, which is our prime concern.

2. In thelinear holding cost casehj = cj, j ≥ 0, or h = ce, we can use Bell
(1971)’s classic accounting argument to write

αfS0

i = c

[
i+

λ

α
− α

β1

1 − β1
gS0

i

]
, i ≥ 0.

Substitution in the second identity in Proposition 6.7 gives theconstantMPI

ν∗i = c
β1

1 − β1
, i ≥ 1. (34)

The latter agrees with the optimaldiscountedcµ-index rulefor scheduling a
multiclassM/G/1 queue with linear holding costs.

3. We readily obtain the following limitingα-scaled index

νLRA
i , lim

α↘0
αν∗i = µE [∆hL+i] .

It seems reasonable to considerνLRA
i an index corresponding to the LRA

criterion. Section 6.2 will show thatνLRA
i is indeed the MPI corresponding

to a new, LRA-bias criterion.
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In the exponential service case, we obtain a remarkably simpler evaluation of
the ETD index, from which its monotonicity is apparent. Letτ be a random stop-
ping time having an exponential distribution with rateα, independent of process
{L(t) : t ≥ 0}. Let z1 = ρφ1 < ρ, whereφ1 is given by (32). Recall that, if
L(0) = 0, thenL(τ) has a geometric distribution with success probability1 − z1.

Theorem 6.9 Suppose the service time distribution is exponential and Assumption
2.1holds. Then, the model isF -indexable under the ETD criterion, having MPI

ν∗i = µE0

[∫ ∞

0
e−αt∆hL(t)+i dt

]
=
µ

α
E0

[
∆hL(τ)+i

]

=
µ

α
(1 − z1)

∞∑

j=0

∆hj+iz
j
1, i ≥ 1.

Proof. Letτ0 > be the first time to hit0 for L(t). Drawing on elementary properties
of theM/M/1 queue, including the strong Markov property, we have, fori ≥ 1:

E1

[
hL(τ)+i−1

]
= E1

[
hL(τ)+i−1 | τ0 > τ

]
P1 {τ0 > τ}

+ E1

[
hL(τ)+i−1 | τ0 ≤ τ

]
P1 {τ0 ≤ τ}

= E0

[
hL(τ)+i

]
P1 {τ0 > τ}

+ E0

[
hL(τ)+i−1 | τ0 ≤ τ

]
P1 {τ0 ≤ τ} .

Hence, we can write

E0

[
hL(τ)+i−1

]
− E1

[
hL(τ)+i−1

]
= P1 {τ0 < τ}E0

[
∆hL(τ)+i

]

= φ1E0

[
∆hL(τ)+i

]
.

Now, substitution into the last identity forν∗i in Proposition 6.7, gives, after simpli-
fication, the required identities. It is now immediate that the index is nondecreasing
under Assumption 2.1. Therefore, by Theorem 5.7,ν∗i is the ETD MPI. 2

Remark 6.10 In the exponential service case:

1. It is easily shown thatαν∗i is decreasing in discount factorα. It is insightful
to consider the limitingα-scaled indices

νLRA
i , lim

α↘0
αν∗i = µE [∆hL+i] ,

νmyopic
i , lim

α↗+∞
αν∗i = µ∆hi.

Notice that it is natural to interpretνmyopic
i as amyopic index.

2. For a quadratic cost ratehj = cj2 we obtain the MPI

ν∗i =
cµ

α

[
2i− 1 +

2z1
1 − z1

]
, i ≥ 1. (35)

The corresponding LRA and myopic indices are

νLRA
i = cµ

[
2i− 1 +

2ρ

1 − ρ

]
,

νmyopic
i = cµ [2i− 1] .

Notice that term2ρ/(1 − ρ) in νLRA
i accounts for long-term congestion.
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6.2 LRA/bias criterion

We now address indexability under the LRA/bias criterion ofSection 5.3. We will
draw on the ETD measures above, which we will write making factor α explicit.

The next result characterizesbias(or excess) work measuresgSk

i , gSk .

Lemma 6.11

(a) For i ≥ 0, gS0

i =






gS0

0 +
i

µ
if i ≥ 1

−λ
σ2 + 1/µ2

2(1 − ρ)
if i = 0.

(b) For k ≥ 1, i ≥ 0, gSk

i = gS0

0 +
i− k

µ
.

(c) For k ≥ 0, gSk = gS0

0 +
E [X(0)] − k

µ
.

Proof. (a, b) The results follow by subtractingρ/α from ETD measuresgSk ,α
i in

identities of Lemma 6.1, and taking limits asα vanishes, using l’Hôpital’s rule.
(c) This part follows easily applying (a, b) togSk =

∑∞
i=0 pig

Sk

i . 2

The next result characterizesbias marginal workloadswSk

i . Note that belowaj

denotes theundiscountedprobability thatj customers arrive during a service.

Lemma 6.12 For i, k ≥ 1:

(a) wS0

i =
Mi0

λ
=

1/λ

1 − ρ

i

µ
=






1/λ

1 − ρ

1

µ
+ wS0

i−1 if i ≥ 2

1/λ

1 − ρ

1

µ
if i = 1.

(b) wSk

i =

{
wS0

i−k if i > k

w
Sk−i+1

1 if 2 ≤ i ≤ k.

(c) wSk

1 =






a0w
S0

1 if k = 1

1

λµ
+ w

Sk−1

1 +

∞∑

j=k+1

ajw
S0

j−k if k ≥ 2.

Proof. To obtain the stated identities it suffices to divide byα > 0 the correspond-
ing discounted identities in Lemma 6.2, and take limits asα vanishes. 2

Remark 6.13 As in the ETD case (cf. Remark 6.3), Lemma 6.2 yields a recursion
for calculating bias marginal workloadswSk

i . See Figure 2.

The next result establishes the required properties of biasmarginal workloads.

Proposition 6.14 Bias marginal workloadswSk

i satisfy the following:

(a) They are positive, i.e. Assumption5.1holds.
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(b) They are V-shaped, satisfying Assumption4.17with strict inequalities.

Proof. (a) The result follows by induction using Lemma 6.12. See Remark 6.13.
(b) We have, using Lemma 6.12(a, b) that, for1 ≤ k ≤ i− 1:

wSk

i − w
Sk−1

i = wS0

i−k − wS0

i−k+1 = −
1

λµ(1 − ρ)
< 0.

Also, using Lemma 6.12(b, c) gives that, fork ≥ 1:

wSk

k − w
Sk−1

k = wS1

1 − wS0

1 = − (1 − a0)w
S0

1 < 0,

where the inequality follows fromwS0

1 > 0 (part (a)) anda0 < 1.
Furthermore, part (a) and Lemma 6.12(b, c) give that, fork ≥ i+ 1,

wSk

i −w
Sk−1

i = w
Sk−i+1

1 − w
Sk−i

1 =
1

λµ
+

∑

j=k−i+2

ajw
S0

j−k+i−1 > 0.

This completes the proof. 2

We next address calculation of LRA cost measures. LetL be a random variable
having theequilibrium distributionof the number in system for theM/G/1 queue
of concern, under the standard (S0) policy. The next result follows immediately.

Lemma 6.15
fSi = E [hL+i] , i ≥ 0.

The next result characterizes the required LRA marginal costs cSi . TermsV10

below are undiscounted counterparts of corresponding terms in Section 6.1.

Lemma 6.16

(a) cS0

i =
hi − h0

λ
+ Vi0(∆h1), i ≥ 1.

(b) cSk

i = cS0

i−k(h
k), i > k.

Proof. The result follows by lettingα vanish in Lemma 6.6’s identities. 2

The following result gives representations for indexν∗i = c
Si−1

i /w
Si−1

i .

Proposition 6.17

ν∗i = ν∗1(hi−1) =
∆hi/λ+ V10(∆hi)

wS0

1

= µE [∆hL+i] , i ≥ 1.

Proof. Scale byα identities in Proposition 6.7 and letα vanish to get the result.2

We can finally present the main result of this section.

Theorem 6.18 Under Assumption2.1:

(a) The model isF -indexable under the LRA/bias criterion, having MPIν∗i =
µE [∆hL+i], for i ≥ 1.
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(b) MPI ν∗i has the characterization(25) in Theorem4.19.

Proof. (a) This part follows from Theorem 5.11, using Proposition6.14(a) to en-
sure positivity of bias marginal workloads, and expressionν∗i = µE [∆hL+i] in
Proposition 6.17 to ensure nondecreasingness of the index.

(b) This part follows from Theorem 4.19 using Proposition 6.14(b). 2

Remark 6.19

(i) For a linear cost ratehj = cj, the LRA/bias MPI isν∗i = cµ, consistently
with thecµ-index rulefor scheduling a multiclassM/G/1 queue.

(ii) For aquadratic cost ratehj = cj2, the LRA/bias MPI has the evaluation

ν∗i = cµ

[
2i− 1 +

2ρ+ λ2(σ2 − 1/µ2)

1 − ρ

]
, i ≥ 1.

(iii) Denoting byν∗,mi the LRA/bias MPI under cost rateshj = jm, j ≥ 0, where
m ≥ 1 is an integer, we readily obtain the evaluation

ν∗,mi = µ
m−1∑

k=0

(
m

k

){
im−k − (i− 1)m−k

}
E

[
Lk
]
, i ≥ 1.

Notice that if, e.g.,hj = c0 + c1j + c2j
2, thenν∗i = c1ν

∗,1
i + c2ν

∗,2
i .

(iv) Suppose costs are given customer-wise, by a polynomialcost rateh(T ) on
the current delayT accrued by a customer. To use the above results, we can
obtain anequivalent holding cost ratehj by drawing on Marshall and Wolff
(1971)’s extension of Little’s law forM/G/K queues.

7 Optimal MPI policy for control of an MTS queue

We next extend the above analysis to the MTS cases ≥ 1 of Section 2’s model.
Notice thatN{0} = {−s}. Investigation of indexability reduces to the MTO case in
Section 6. This follows by Morse (1958)’s classic argument,showing that analysis
of an MTS queue reduces to that of a related MTO queue. Thus, itsuffices to
consider the state processY (t) = X(t) + s ≥ 0, corresponding to the number-
in-system of an MTOM/G/1 queue. ProcessX(t) under theSi-active policy is
equivalent to processY (t) under theSi+s policy, for eachi ∈ N . It follows that all
the results derived in Section 6 for the MTO case carry over tothe MTS case.

We thus obtain from Theorem 6.18 the following result under the LRA/bias
criterion. LetL be as in Theorem 6.18. As before, we writeh0 = (h0, h1, . . .).

Theorem 7.1 Under Assumption2.1:

(a) The model isF -indexable under the LRA/bias criterion, having MPI

ν∗i = µE [∆hL+i]

=






ν∗i (h0) if i ≥ 1

ν∗1(h0)P{L > −i} + µ
−i∑

j=0

∆hi+jP{L = j} if i ≤ 0.

(36)
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(b) MPI ν∗i has the characterization(25) in Theorem4.19.

Proof. The results follow from the above discussion via Theorem 6.18. To obtain
the second case in (36) we use the fact thatL | L ≥ j ∼ L + j, for j ≥ 0, where
∼ denotes equality in distribution. Hence, fori ≤ 0:

E [∆hL+i] = E [∆hL+i | L > −i] P{L > −i} +
−i∑

j=0

E [∆hL+i | L = j] P{L = j}

= E [∆hL+1] P{L > −i} +

−i∑

j=0

∆hi+jP{L = j},

which yields the result. 2

While our focus in on the LRA/bias criterion, it is insightful to consider in-
dexability under the discounted criterion in the exponential service case. From
the above discussion and Theorem 6.9 we readily obtain the next result (where we
include discount factorα > 0 in the notation). Letz1, τ be as in Theorem 6.9.

Theorem 7.2 Suppose service times are exponential and Assumption2.1 holds.
Then, the model isF -indexable under the ETD criterion, having MPI

να,∗
i =

µ

α
E
[
∆hL(τ)+i

]

=






να,∗
i (h0) if i ≥ 1

να,∗
1 (h0)z−i+1

1 +
µ(1 − z1)

α

−i∑

j=0

∆hi+jz
j
1 if i ≤ 0.

(37)

Remark 7.3

(i) For i ≥ 1, ν∗i (h0) is theMTO MPI obtained in the previous Section. Thus,
the first case in (36) shows thatthe MTS MPI extends the MTO MPI. This
agrees with a result of Ha (1997) for the linear cost exponential service case.

(iii) Under linear FGS holding costs(hj = −cFj, j ≤ −1), we obtain the MPI

ν∗i =

{
ν∗i (h0) if i ≥ 1{
ν∗1(h0) + cFµ

}
P {L ≥ −i+ 1} − cFµ otherwise.

(38)

(iii) Consider thelinear costscase,hj = cBj for j ≥ 0, andhj = −cFj for
j ≤ −1, wherecB, cF > 0. We readily obtain from (36) the MPI evaluation

ν∗i =

{
cBµ if i ≥ 1[(
cB + cF

)
P {L ≥ −i+ 1} − cF

]
µ otherwise.

(39)

In theM/M/1 case, substitutingP{L ≥ j} = ρj above gives the index

ν∗i =

{
cBµ if i ≥ 1[(
cB + cF

)
ρ−i+1 − cF

]
µ otherwise.
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Remarkably, the latter is themyopic(T) indexof Peña-Pérez and Zipkin (1997,
p. 926), which they obtain by a look-ahead argument. It has been shown in
de Véricourt et al. (2000) that such index characterizes the optimal policy for
a multiclass make-to-stock queue in a limited region of the state space. It is
insightful to further evaluate the myopic index as in Remark6.10:

νmyopic
i , lim

α→+∞
ανα,∗

i = µ∆hi =

{
cBµ if i ≥ 1

−cFµ otherwise,

i.e. it recovers the index derived by Wein (1992) by a heavy-traffic analysis.

(iv) The MPI characterizes the condition under which the MTScapability can
improve performance relative to MTO operation: Such will bethe case iff
ν∗0 > 0. Using (36), and assuming∆h0 < 0 < ν∗1 (h0), we obtain

ν∗0 > 0 ⇐⇒ ρ >
−µ∆h0

ν∗1(h0) − µ∆h0
. (40)

In the linear cost case, the latter condition reduces to

ρ >
cF

cB + cF . (41)

The MTO vs. MTS issue is thus resolved bytraffic load condition(40): in
light traffic (ρ ≈ 0), MTO suffices; inheavy traffic(ρ ≈ 1), MTS is better.

(v) The MPI characterizes the optimal threshold level(s). For i ≤ −1, theSi-
active policy (produce whenX−(t) < −i) is optimal ifν∗i+1 > 0 andν∗i ≤ 0.
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