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1 Introduction

This paper develops a framework based on convex optimizatid economic ideas
to formulate and solve by an index policy the problem of oplirdynamic ef-
fort allocation to a generic discrete-statstless bandit (RB{i.e. binary-action:
work/rest) project, elucidating a host of issues raised Qyitilé (1988)'s semi-
nal work on the topic. The framework is deployed to addresssthiution by in-
dex policies of service-controlled make-to-order (MTOY amake-to-stock (MTS)
M/G/1 queues with convex backorder and stock holding cost ratederudis-
counted and long-run-average (LRA) criteria. In the conirampaper Nifio-Mora
(2004) (see an abridged version in Niflo-Mora (2003)), thgls-project results
obtained here are used to address corresponding mulégbnmjoblems, yielding a
heuristic hedging point and index policy, along with a lolweund on optimal cost.

Our proposed framework draws on and combines in a unifyirttingeideas
from relatively autonomous areas, including: (i) convekmjzation in mathemat-
ical programming; (ii) the economic theory of optimal resmuallocation; (iii)
index policies for scheduling multiclass queues; (iv) ikgelicies for multiarmed
bandits and their RBP extension; (v) polyhedral methodsdohastic scheduling;
and (vi) work conservation laws in service systems. To putcantributions in
context, we discuss below the relevant background.

1.1 Solution approaches to resource allocation problems

The prevailing solution approaches in the domains of gtltterministic and of
dynamic/stochastic resource allocation problems areadgidistinct. In the for-
mer, the concern is to find a fixed allocation of resourceguipiing a cost/reward
objective. Formulation and solution methods are thoseathematical program-
ming (MP) which has proven widely successful, both in theory andtfmacThe
concepts ofconvexityand duality play central roles, both as analysis tools, and
as insightful bridges with economic interpretation. Codityeis the mathematical
counterpart of the economiaw of diminishing returns (LDRunder which, as use
of a resource increases, itgrginal productivitydiminishes. Duality relates to the
resource valuation problenwhich is to find a resource'shadow pricegiving its
intrinsic value in the model at hand. Two fundamental reshtilding under the
LDR are: (i) a resource’s shadow price at a given use levealsdgits marginal
productivity; and (ii) to achieve an optimal allocation,eusf a resource must be
increased as long as its price is lower than its marginal yoddty, until both
coincide. The classic texts of Kantorovich (1965) and Koapm(1957) provide
illuminating accounts of such ideas.

In the latter domain, the concern is to desigpdicy for dynamic resource
allocation to competing activities, ingystemwhosestateevolves randomly over
time. The objective is to optimize a measure of averagerewstfd performance.
The main modeling paradigm is furnished kharkov decision processes (MDPS)
especially in thediscrete-state and -actionase, to which we restrict attention.
See, e.g. Puterman (1994). The leading tool isdyw@amic programming (DP)
technique, which uses th@rinciple of optimalityto formulate a set oBellman
equationswhose solution yields apptimal policy Extensive research efforts have
been devoted to their analytical solution in relatively giemodels, by often ad hoc



methods, and to their computational solution by generairélgns, such asalue
andpolicy iteration A deep connection between the MP and DP approaches was
revealed by d’Epénoux (1960) and Manne (1960), who sholwatthe Bellman
equations for a finite MDP can be formulated and solved lagear programming

(LP) problem. The current status of the field remains, howevesatisfactory.
Thus, no unifying analytical solution method has emerget¢soAapplication of
general algorithms is hindered by their computational dedaaturse of dimen-
sionality). Further, even when a solution is available, it is oftenciear how one

can gain from it insights of the kind provided by convexitydatuality.

1.2 Index policies and MP approach to dynamic resource allation

Limited research efforts have explored use of MP tools inaglyic and stochastic
resource allocation problems, mostly in the aresto€hastic schedulingf. Nifio-
Mora (2001b)). The latter concerns the optimal dynamiccallion of resources to
stochastigrojects which can represent a variety of entities, e.g. jobs or gseu

A notorious feature of such area is the optimality, in a wialege of models, of
policies characterized bgllocation indices In a typical result, to every projeét
is attached aimdexvy (i) depending only on its state, such that théndex pol-
icy which dynamically gives higher resource access prioritgrtiects with larger
index values is optimal. The optimal index often has an ims$it economic inter-
pretation, being given by, e.g., a rate of expected costctamuper unit expected
effort invested, or a critical subsidy for passivity or apafor activity.

While such results have have been obtained by ad hoc metleagisiiiter-
change argumen)sthey have also been established (typically later) by Ldgt-ar
ments. The latter are based on formulating LP constraintgesformance mea-
sures(e.g. mean delays). In tractable models, such constraitiyscharacterize the
achievable performance regi@mpanned by the performance vector unaeémissi-
ble policies This is a bounded polyhedron, whose vertices are achieyedadrity
policies. The optimal vertex is characterized by indiceserging in the construc-
tion of an optimaldual solution. In intractable models, available constraintsgi
a tractablerelaxation whose dual solution may suggest a heuristic index policy.
Such program has been carried out in a variety of models fegdsding a multi-
class queue, and anultiarmed bandit problems (MBPahd extensions.

Table 1 highlights selected results in such vein, pointingtbe evolution of
ideas used to obtain LP constraints, which we review nexe ghound-breaking
work is due to Klimov (1974), who useaygregate flow balanct obtain an LP
formulation for the problem of scheduling a multiclad&/G /1 queue with feed-
back to minimize LRA linear holding costs. He gaveaataptive-greedy algorithm
to construct an optimalual solution in terms of &tatic index,, attached to classes
k. He then used LP duality to prove optimality of su€limov indexpolicy.

Coffman and Mitrani (1980) introduced a different LP for@idn for theno-
feedbackcase of Klimov's model. The LP variablas. representmean delaysor
each clasg, while constraints formulateork conservation lawsxtending results
of Kleinrock (1976, Ch. 3). The latter characterize the achble performance
region of mean delays aspolymatroid a well-known polyhedron in polyhedral
combinatorics introduced by Edmonds (1971). Optimalityhefgreedy algorithm
for LP over polymatroids thus explains tlag-index rulés (cf. Cox and Smith



\ LP constraints \ Models & papers

Aggregate flow balance Multiclass (MC) queues (feedback)
Klimov (1974)
Strong conservation laws MC queues (no feedback)
Polymatroids Coffman and Mitrani (1980)

Federgruen and Groenevelt (1988)
Shanthikumar and Yao (1992)

Generalized conservation laws Klimov’s model, multiarmed bandits
Extended polymatroids Tsoucas (1991)
Bertsimas and Nifio-Mora (1996)

Approximate conservation laws MC queues (feedback & parallel servers)

Extended polymatroids Dacre et al. (1999)
Glazebrook and Nifio-Mora (2001)
Flow balance & average activity Restless bandits (RBs)
Lagrangian relaxation Whittle (1988), Bertsimas and Nifio-Mora (200
Partial conservation laws (PCLS$) RBs & MC queues (convex costs,
Z-extended polymatroids finite state); Nifio-Mora (2001a, 2002)
Diminishing returns & PCLs RBs & MC queues (convex costs, countable
Efficient work-cost frontier state); this paper, Nifio-Mora (2004)

Table 1: LP formulations giving index policies for stochasicheduling problems.

(1961)) for the scheduling problem.

The polymatroidal LP formulation was further investigatgdFedergruen and
Groenevelt (1988), and by Shanthikumar and Yao (1992), wptamed such re-
sults through the framework strong (work) conservation laws

Coffman and Mitrani’s analysis was extended to Klimov’s rbly Tsoucas
(1991), who characterized its achievable performancenegs a new type of poly-
hedron éxtended polymatro)d Bertsimas and Nifio-Mora (1996) furnished the
theoretical foundation of such result, introducing thenfeavork of generalized
conservation laws (GCLs)They further deployed GCLs to obtain a correspond-
ing result for thebranching bandit problemrencompassing the above models under
LRA and discounted criteria, and the classic MBP.

The MBP concerns the optimal dynamic allocation of efforatoollection of
projects, modeled as discounted binary-action (actiesipa) discrete-state and -
time MDPs which can only change state when active, and onehafhamust be
engaged at each time. In a celebrated result, Gittins (1@if@duced an index
vy (i) for each projeck depending only on its state, and proved optimality of
the resultingGittins indexpolicy. The GCL analysis in Bertsimas and Nifio-Mora
(1996) yielded a new, LP-based proof of such result.

In some intractable models concerning the scheduling ofldatass queue on
parallel servers, GCLs hold only in approximatesense. This yields a tractalil®
relaxationof the achievable performance region, and explicit subuglity bounds
on heuristic index policies, which can be used to estaltishr asymptotic optimal-
ity in heavy traffic. See Glazebrook and Nifio-Mora (20019 &xacre et al. (1999).




1.3 RBP, indexability, and queueing control applications

Therestless bandit problem (RBRxtension of the MBP, where passive projects
can change state, is of prime concern in this paper. It pesvédpowerful modeling
paradigm at the expense of tractability, beygpace hardSee Papadimitriou and
Tsitsiklis (1999). Whittle (1988) introduced an index(i ) attached to aestless
bandit (RB) projectk, proposing as a heuristic the resulting index policy. The
Whittle indexemerges in the solution of @laxed problemwhich further gives
a performance boundn terms of theLagrange multiplierfor an average-activity
constraint. Such policy is optimal in the MBP case, and adgtigally optimal
under certain conditions. See Weber and Weiss (1990).

Yet the Whittle index isnot defined for all RB projects, only for a restricted
class of so-callethdexableprojects. Whittle (1988) stated:

“... one would very much like to have simple sufficient coiuis for
indexability; at the moment, none are known.”

Such scope limitation prompted Bertsimas and Nifio-Mo@0(@ to introduce a
different LP-based index policy, applying to finite-stat®jpcts, and a hierarchy
of LP relaxations, giving tighter bounds at increasing cataponal expense. The
indexability issue was taken up in Nifio-Mora (2001a), vehere extended GCLs
to introduce the framework gfartial conservation laws (PCLs)Satisfaction of
PCLs by the performance measures of a stochastic schegumbbtem ensures op-
timality of index policieswith a postulated structurainderadmissible objectives
Use of PCLs further yielded tractable sufficient conditiémsindexability (PCL-
indexability), and an efficient algorithm for computing the Whittle index

The polyhedral foundation of the PCL framework was develdpeNifio-Mora
(2002). That paper introduced extensions of the Whittlexnith a significantly
expanded scope, motivated by analysis gfiaueing admission controlodel with
convex nondecreasirplding cost rates. It further introduced a charactematf
the index, undePCL-indexability as an optimamarginal rateof cost decrease per
unit effort increase; and a connection of PCL-indexabilith the LDR.

Yet the tools in Niflo-Mora (2001a, 2002), relying on polghed methods, ap-
ply only to finite-stateprojects. Also, they only providsufficient conditiongor
indexability, while it would be desirable to have a completglerstanding of such
property. Both limitations are particularly severe in thgbrtant case of RBPs rep-
resenting scheduling problems in queueing systems. Theigroblem of schedul-
ing a multiclass MTO/MTS\V//G/1 queue to optimize LRA holding costs is read-
ily formulated as an RBP, with projects corresponding tougsefor each class.
However, the Whittle index isot defined for such projects under the LRA crite-
rion, as pointed out by Whittle (1996, Ch 14.7) himself, agdveatch and Wein
(1996). The latter authors state:

“In contrast, the backorder problem is not indexabléx) does not
exist (i.e. equals—oo) for all . The difficulty is thatv is a La-
grange multiplier for the constraint on the time-averagmber of ac-

tive arms. For the backorder problem, any stable policy reeste a
time-average op classes, so relaxing this constraint does not change
the optimal value, and the Lagrange multiplier does nottekisfact,

no scheduling problem with a fixed utilization will be indéka.”

5



The author first proposed (at the 2000 Madison (Wisconstermational Con-
ference on Stochastic Networks) to overcome such limitalip showing that the
Whittle index is well defined in the MTO case, under tliscounted criterion
Then, taking the limit of the discounted Whittle index schly the discount fac-
tor as this vanishes gives a convenient LRA index. Such agprds deployed in
Ansell et al. (2003) and Glazebrook et al. (2003) in the MIXPM /1 andM /G /1
cases by an ad hoc DP analysis, under the assumption thadnalokst rates are
convex increasingn the queue’s state. Their approach, however, is hindeyed b
the following limitations: (i) the convex increasing haidi cost rate assumption is
violated in the MTS case with backorders, where holding casts are V-shaped
in the natural state afiet backorderevels; (i) it does not yieldboundson opti-
mal cost under the LRA criterion, arguably more importardplications than the
discounted one; (iii) it does not provide an independenteptof indexability un-
der the LRA criterion, as it relies on establishing indekgbunder the discounted
criterion, which is often technically cumbersome; and (ivwloes not clarify in-
terpretation of the limiting LRA index, as it is not proveratht yields an optimal
policy for the single-project LRA problem. We remark that, domplementary
work, Dusonchet and Hongler (2003) have calculatedltteounted/Nhittle index
foran MTSM /M /1 queue withlinear backorder and stock holding cost rates.

1.4 Contributions

Motivated by the issues discussed above, this paper pseenfollowing contri-
butions: (i) a unifying definition of a projectsarginal productivity index (MPJ)
characterizing optimal policies; (ii)@mplete characterizatioof indexability (ex-
istence of the MPI) as satisfaction by the project of i of diminishing returns
(to effort); (iii) sufficient indexability conditions badenpartial conservation laws
(PCLs) extending previous results of the author from the finiteh® ¢ountable
state case; (iv) application to a semi-Markov project, udalg a new MPI for
a mixed long-run-average (LRA)/bias criteriowhich exists in relevant queue-
ing control models where the index proposed by Whittle (J98&s not; and (v)
optimal MPI policies for service-controlled MTO and MT8/G/1 queues with
convex backorder and stock holding cost rates, under disedwand LRA criteria.

1.5 Structure of the paper

The rest of the paper is organized as follows. Section 2dnites our motivating
problem, concerning the scheduling of a multiclass MTO/MjliBue. Section 3 in-
troduces the MPI policy approach to address the problemtohapdynamic effort
allocation to a generic RB project. Section 4 develops P&&eld sufficient index-
ability conditions for countable-state projects. Secbgresents PCL-indexability
analyses of semi-Markov projects under several criteriecti8n 6 addresses the
case of a service controlled MT@ /G/1 queue, while Section 7 investigates the
corresponding MTS model.



2 Motivating problem

Consider a model for a single-product production-inventacility. Orders of unit
size arrive as a Poisson process with raté single machine, which processes all
orders, makes a product unit irpeoduction timedistributed as a random variable
with Laplace-Stieltjes transform (LST)(-), having finite mear /x. and variance
o2. The arrival stream and production times are mutually iedejent. Denoting
by p = A/p the traffic intensity, we assume th&bility conditionp < 1.

The facility has dinite storage capacitfor storing up to and including > 0
finished items in dinished goods stock (FGSArriving orders finding the FGS
empty are placed inldackorder queue (BQf unlimited size. We denote by ~ (¢)
(resp.X T (t)) the size of the FGS (resp. BQ) at time> 0, and consider the system
stateto be the size of iteet BQ X (t) = X" (t) — X~ (t). Thestate spacés thus
N ={-s,...,0,1,...}. Notice that such setting encompassesaine MTO case
(s = 0) and theMTS case with backorde(s > 1).

A controller governs the system by choice gbraduction-inventory policyr,
prescribing dynamically whether the machine is to be idlevorking. The policy
is drawn from the clasH of admissible policieswhich are: (i)nonpreemptivei.e.
production of an item cannot be interrupted; thus,dbeision epoch sequencen-
sists of order arrival epochs to an empty system, and prashropletion epochs;
(i) nonanticipative i.e. decisions depend on the history of the system up to and
including the present epoch; and (&fable i.e. the policy must induce an equilib-
rium distribution on the state process, having finite momeithe required order.

Backorder and/or stock holding costs are incurred, sepaeainoss products.
Costs accrue at rafg per unit time while the state ise N. We will refer to the
first and second-order differencésh; £ h; — h;_; andA%h; =2 Ah; — Ah;_1.
We impose the following requirements on cost rates.

Assumption 2.1 Holding cost rates; satisfy the following:
(i) They are bounded belovinf{h; : i € N} > —oc.
(i) They are convexA2h; > 0, fori € N such that — 2 € N.
(iii) If ¢ (-) has finite moments of up to order+1, thenh; = O(i"™) asi — +oo.

Our prime concern will be theRA production-inventory control problemwwhich
is to find a policynr* € II attaining the minimum LRA valug* of costs incurred.

P | T
= ing i 72| [ v ] @
In the MTS case, problem (1) seems to have been addressed litetlature
only in the special case where backorder and stock holdisgates are linear. See,
Buzacott and Shanthikumar (1993, Ch. 4) and the referehegsih. In the MTO
case, Bertsekas (1987, Ch. 6.7) presents a DP-based arfatysn)/ /M /1 queue
with convexnondecreasindnolding cost rates, under the discounted criterion.



3 Optimal control of RB projects by index policies

3.1 Optimal project control problem

Consider a generic RB project, whose stétg) evolves randomly over time> 0
across theliscrete(finite or countable¥tate spaceV C Z. Control is exercised by
acentral planner who observes the state at a sequenaieofsion epochg = 0 <
t1 < -+ < t, — 400 asn — +oo, deciding at each whethersingle operator
is allocated to work dctive action: a(t,) = 1), or is let to rest fpassiveaction:
a(t,) = 0), in the followingperiod (a(t) = a(ty,) for t € [t,, tn+1)). We will refer
to X (¢) anda(t) as thenatural stateandaction processesand toX,, = X(¢,) and
an, = a(t,) as theembedded processe#/e will further refer to a periodt,,, ¢, +1)
whereX,, =i anda,, = a as an(i, a)-period, or i-period, as appropriate.

Action choice results from adoption ofpmlicy =, drawn from a given clasd
of nonanticipative admissible policiegach epoch’s choice must be based on the
embedded processes’ historymfanageris in charge of policy implementation.

ClasslII is assumed to belosed under randomizatiorGiven policiesr, 7’ €
I1, andg € [0, 1], the policy resulting from a draw af or 7’ with probabilitiesg and
1 — ¢, denoted by + (1 — ¢)=/, is inII. We will refer to the clas$I°P ¢ II (resp.
ISR < II) of admissible stationary deterministigesp. randomizedl policies,
where the chosen action is a deterministic (resp. randontfifan of the state.

The project accruelsolding costover time, whose value under a poligye 11
is evaluated by finiteost measurg’™. Theoptimal dynamic resource allocation
problemof concern is to find an admissible policy minimizing thedatt

Findn* e Il: f™ = f* 2 inf{f": 7 € II}. 2)

3.2 Solution by threshold policies

Let us partitionV into thecontrollable state spac&/{®!}, where active and pas-
sive actions differ on dynamics or costs; and timeontrollable state spacd {0}
otherwise, where we assume that the project is rested. Aypolic TI5P is thus
represented by thactive-state ses C N1%1} where it engages the project. We
will then term it theS-active policy writing, e.g. S € TI5P, 5. We assume both
N and N{%1} to be consecutive-integer sétsunded belowi.e.

N2{jez:°<j<¢} and NOB2Lje7. 0 <j<i'),

for given —oco < (0 < (' < 4-00. Hence N0} = {¢0},
We aim to find an optimal policy to (2) within the classtbfeshold policies
which engage the project in states above a critizgdshold Writing

Sié{jeN{Ovl}:jm}, i€ N,
threshold policies are characterized by the neatdive-state set family
F 2 {S;:ic N}.

We shall henceforth refer to them #&-policies writing, e.g.f* for S € .Z.

Our goals are: (i) elucidate conditions for existence of ptinoal .% -policy;
and (ii) find the latter. Our approach requires use of an gpjate work measure
g™, evaluating labor effort. The following properties areuamssd.
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Assumption 3.1
() .# c 115D, i.e. Z-policies are admissible.
(i) Work measuregy™ is bounded above:

sup{g" : m € II} < +o0.

(iii) Cost measuref™ is bounded below:
inf {f™: 7 e€Il} > —o0.

(iv) Work measurey®: is decreasing in threshold state

Ag¥ & g% — g1 <0, e N0} 3)

(v) Achievable work performance is spanned by thresholétigs!:

Firem= (U %65,
ieN10,1}

We will further refer to the first-order differences of costasuref::

AfSE - pSm, e NO, ©)

3.3 Reformulation as convex resource allocation problem

We will develop an approach grounded on convex optimizadiod economic re-
source allocation theory. Let ttaehievable work-cost (performance) regioa

H£ {(bz) €R?: (b,2) = (g7, f7) for somer € I} .
Its projections give thachievable work region
B2 {bcR:b=g" for somer € I},
and theachievable cost region
VE{z€R:z= f"forsomer € II} .

Convexity of such regions follows from the requirement thabe closed under
randomization. It further extends to thelosuresH, B andV.
Theefficient work-cost frontieis given by

OH £ {(b,z) e H:beBandz < f™ foranyr € Il with g™ = b} .
This is characterized as the graph(ogptimal) cost function
Ch)yLinf{fT:g"=brecll}=inf{z:(bz) cH}, beB, (5
whose convexity follows from that of regidfi, so that

OH = {(b,C(b)) : b B}.

9



Note thatC'(b) is the optimal cost performance under policies ugimgork units.
We can now reformulate (2) as thenvex resource allocation problem

Findb* € B: C(b*) = f* 2 inf {C(b) : b € B}, (6)

which is to find an optimal amoumt of work to be expended on the project.
To evaluate”'(b) we will further address the following-work problem

Findr* e ITwith g™ =b: f™ =C(b) 2 inf{f": 9" =brecl}. (7)

In what follows, a policyr € II will be said to be)-work feasiblaf g™ = b.

3.4 Lagrangian multiplier analysis and decentralization

To addres$-work problem (7) we use theethod of Lagrange multiplierdDual-
izing constrainy™ = b by multiplier v € R gives theLagrangian function

LEW) 2 [Tt vlgT b = v (v) — v, ®)
defined forr € II andr € R, where
v (v) 2 [T+ vg”.
We interpretr as thewageearned by the operator per unit work performed. Thus,
v™(v) is the holding and labor costs value; aixf" (v) is the adjusted cost when

work expended above (resp. belonits is paid (resp. sold) at wage
The corresponding unconstrainedgrangian problems

Findr* e I1: & (v) = &' (v) £ inf {LT(v) : 7 € 11} . (9)
This is equivalent to the following-wage problemwhich is to find a policy mini-
mizing the project’s holding and labor costs:
Findr* € IT: o™ (v) = v*(v) 2 inf {0 (v) : 7 € T} (10)
The optimal values of problems (9) and (10) are related by
2 (v) =v*(v) —vb. (11)

Notice that problem (10) includes (2), thus recovered a$Hwvage problem

Drawing on classic economic interpretation, we view probl®) as adecen-
tralized planning relaxatiorof centrally plannedb-work problem (7), where: (i)
the planner quotes wageto the manager; and (ii) this is left to autonomously
solve v-wage problem (10). This raises the possibility, discudseldw, that the
planner can decentralize thevork problem’s solution by wage choice.

3.5 Duality-based optimality conditions and shadow wages

To price the value of work im-work problem (7) we will use thdual (or pricing)
problem which is to find a wage maximizing the (concave) objectié(v):

Findv* € R: .4 (v*) = Q(b) = sup {.L (v) : v € R}. (12)
We will further use thealuality gapfor a policyr and a wage:
AT(v) £ 7= L (v) =v"(v) = v (v). (13)

The next result follows immediately.

10



Lemma 3.2 (Weak duality)

(a) Let policyr € II beb-work feasible, and let € R. Then, 2" (v) < f7.
(b) Q(b) < C(b).

Lemma 3.2 immediately yields the next result, giving a sigfit optimality
condition for theb-work problem and its dual, usirgrong duality(Q(b) = C(b)).

Lemma 3.3 (Sufficient optimality condition) Let 7* € II be ab-work feasible
policy for which there is a wage* € R with Ag*(u*) = 0. Then:

(a) Policy 7* is optimal forb-work problem(7).
(b) Wagev* is optimal for its dual problen{12).

(c) Strong duality holdsQ(b) = C(b) = f™ .

We shall henceforth refer to a wagé satisfying the optimality condition in
Lemma 3.3 as ahadow wagéor the b-work problem. In the present setting, exis-
tence of a shadow wage is also necessary for optimality.

Lemma 3.4 (Necessary optimality condition)If 7#* is an optimal policy for the
b-work problem then there exists a corresponding shadow wéage

Proof. It follows from convexity ofH via theseparating hyperplane theorem O

Remark 3.5 If the sufficient optimality condition in Lemma 3.3 holdseth

(i) The b-work problem’s solution can be decentralized. The plameeds only
guote wage’* to the manager, and let him solve thewage problem.

(i) Geometrically, the ling{(¥/,2') € R? : 2/ 4+ v*V = v™ (v*)} supportspoint
(b, f©) relative to convex work-cost regidii. See, e.g. Weitzman (2000).

(iii) If there is a unique shadow wagé& andC'(-) is derivable ab, then

d
*=——C(b). 14
v* = () (14)
Thus,v* is the marginal rate of cost decrease per unit increase ik @or

pended, omarginal productivity of workin theb-work problem.

3.6 Indexability and the marginal productivity index

To relate the above analysis with threshold policies, wedice below a tractable
project class, based on structure of solutions-t@age problem (10) ag varies.

Definition 3.6 (% -indexability; MPIl index) We say the project is#-indexable
(for ™ and ¢™) if there is a nondecreasinigdex v for i € N{%} such that,
for each/® < i < ¢!, the S;-active policy is optimal for the--wage problem iff
v € [vf,vi,]. We say that is the project'smarginal productivity index (MPI)

11



Notice that it is optimal (in the-wage problem) to work in statee N{0:1}
iff wage v does not exceed MRJ*. The above definition extends a particular con-
cept ofindexabilityintroduced by Whittle (1988). In economic terms, indexapil
characterizes thdemand “curve” for work It gives an optimal amount of work to
be expended (e.g"°), corresponding to a given wage (e.g. foe [v}, Vi)

The next result follows immediately.

Lemma 3.7 If the project is% -indexable then:
(a) Thev-wage problem’s optimal value can be represented as
v'(v) =inf {f% +vg% i e N}, veR, (15)
and is hence piecewise linear concave and nondecreasing in
(b) The project’s MPI is given by

*

AfS:
I/A

f=-Rg i€ N{OL} (16)

3.7 Diminishing returns to work

We next address the issue of economic characterizatiordekability. To prepare
the ground, we introduce here the class of projects obeyiagetonomidaw of
diminishing returns (LDR) to workn a form consistent with¥ -policies.

Notice that we can define index by (16)without assuming? -indexability.
We do so below. Define cost functiaft” () : B — R by linear interpolation on
work-cost pairgg”, %), for S € .#. Namely, forb € [¢%, g%1], let

C7(b) £ [+ v [¢% —b] = af 5t + (1 - g) f*

— qui—l‘F(l*Q)Si — qu(i)’ (17)

where
_b-g¥
1= T8
andS? € I3} is the policy which, at statg € N1%!}, prescribes to: (i) engage
the project ifj > 4; (i) restitif j < ¢; and (iii) engage it with probability (w.p.y
and rest it w.p.1 — ¢ if j = i. Hence, for sucth, C7 (b) is the cost performance
achieved both by randomized poligy;_1 + (1 — ¢).S;, and by policyS9(7).

€ [0,1]; (18)

Definition 3.8 (#-diminishing returns) We say the project obey% -diminishing
returns to workif (i) function C (b) is convex, i.e. index;" is nondecreasing; and
(ii) the b-work problem’s optimal cost function i§(b) = C7 (b).

The next result follows immediately.
Lemma 3.9 If the project obeys# -diminishing returns to work, then:
(a) C(b) is the upper envelope of Lagrangiaii§”: (v;) for i € N1}, i.e,
C(b) = max {fSi g% —b] g€ N{O’l}} L beB, (19)
and is hence piecewise linear convexin

(b) Theb-work problem, foi € [¢%, g%-1], is solved bys?, with ¢ as in(18).

12



3.8 Characterization of indexability via diminishing returns

Economic intuition suggests that the two project classewealmust be closely
related. The next result establishes that they are, indmpdyalent. See Figure 1.

Z A

achievable work-cost performance regio
H

slope: MPI
C(bo) %
o) [ !
! efficient work-cost frontiepH

| L ! | | | |
gSH—l gSi bo gSi—l gN{Ovl} b

v

Figure 1: Indexability and diminishing returns.

Theorem 3.10 The project is% -indexable iff it obeys7 -diminishing returns.

Proof. Suppose the project preser&diminishing returns. Then, faf’ < i < ¢!

fSi _ fSifl f5¢+1 _ fSi

S
s i (v) = min {USi+k (v): k=-1,0, 1}
= C(¢%) + vg% = min {C(g%+) + vg¥i+k : k= —1,0,1}
— C(¢°) + vg® = min {C)+vb:be [gSi-H’gSi—l]}
— C(¢°") +vg® = min {C(b) + vb: b € B}
— 0% (v) =min{z +vb: (b, z) € H}
= v* (v) = v ().

This establishes that the project#-indexable.

Suppose now that the project.i-indexable. Let € [¢%+1, g% ] with i €
N1{01} Letting ¢ be given by (18), we can write

(65, 15) = (6, 157) = (b.C7 ). (20)
Hence,S! is a feasible policy for thé-work problem. Furthermore, the duality gap

(cf. (13)) associated to polic§? and wage rate;" is

A W) = oS () — vt () =0,

where the last identity follows by#-indexability. Hence, the sufficient optimality
condition in Lemma 3.3 holds, which gives, using (20), thgb) = C7 (b). This
shows that the project obeyB-diminishing returns, and completes the proofd

13



4 Sufficient indexability conditions via PCLs

Suppose we aim to establish-indexability of an RB project model fitting in the
above setting. We must then calculate ind¢xby (16), and show that it is non-
decreasing. This aecessaryyet not sufficient condition for.Z-indexability. It
remains (cf. Definition 3.6) to prove that, for each stéte< i < ¢! and wage
v € [vf,vf,], theS;-active policy is optimal for-wage problem (10).

We present below a framework for establishigigindexability of an RB project,
via partial conservation laws (PCLs)Under the latter, it suffices to show nonde-
creasingness of index’. We introduced PCLs in Nifio-Mora (2001a, 2002), in a
form restricted to finite-state projects, based on polyhletiethods. The approach
below pursues a different course, extending the scope tatable-state projects.

4.1 Decomposition and conservation laws

The PCL framework concerns an RB project as in Section 3, e/lazk (™)
and cost (™) measures decompose linearly in termssti#te-action occupation
measures:;”™ > 0. Here,z"" is a measure of the time expended taking action
ati-periods under policyr. The following conditions are required to hold.

Assumption 4.1 For any policyr € IT and statei € N

(i) If = takes the active action atperiods, thenzc?”T =0.

(i) If = takes the passive action aperiods, themil’” =0.

1,81

(iiiy 2% >0, andz; %" > 0 (for i > £0).

The term “partial conservation laws (PCLs)” desighatestatproperties of
performance measureg” andz;"". In what follows, we will refer to an-period
wherei € S, for a givenS C N1} as anS-period and writeS¢ = N{%.1}\ §.

Definition 4.2 (Partial conservation laws) We say the project’s performance mea-
sures satisffPCLs relative ta% -policies or PCL(%) for short, if there exist coef-
ficientswy > 0 (i € N{%1} S € .#) such that, for anyr € Tl andS € .7:

(PCLL) g™ + > wial™ > g%, with “="if 7 is passive af°-periods.
ics
(PCL2) > wia™ > 0, with “="if  is active atS-periods.
ies
Remark 4.3

() The term “partial” refers to the fact that (PCL1)—(PCL®)Id only for the
family of feasible setsS € .#. In the strong conservation law&f. Shan-
thikumar and Yao (1992)) and tlgeneralized conservation lawsf. Bertsi-
mas and Nifio-Mora (1996)), analogous laws holddibisubsetsS.

(i) Satisfaction of PCL&) means that project control problem (2) is solved
by .#-palicies for a given family of linear performance objeetv Thus,
7= g+ iegwia)™ (resp. fT = Y, cgwix)™) is minimized by any
policy prescribing to rest ai“-periods (resp. to work &i-periods).

14



We will derive satisfaction of PCLs from the following regaiments.
Assumption 4.4 There exist coefficienis?, ¢, fori € N1%1}, S ¢ ., such that:
(i) wy >0,fori e N0 andS e .7

(i) Work decomposition laws: for € Il and S € %,

g +Zw5 Oﬂ_g +Zw5 177'

€S 1€S¢

(iii) Cost decomposition laws: far € I andS € .%

Sl?T_S SO?T
2 T =) T

1€S¢ €S

. ; ; c ; ; ..
(iv) cfﬁl — cl-SJ = —= [wfﬁl — wisj], fori,j € N{O-1},

< <.

We will term coefficientw; (resp. ¢f) the (i, S)-marginal workload (resp.
(7, S)-marginal cost The next result justifies such denominations.

Lemma 4.5 For S € .Z, j; € S andjs € S¢, such thatS\ {j;}, SU {j.} € TI5P:

S s OS\{ P SU{j wS oYzt
(a) g \{]1} +w J1 g g U{JQ} j2 _]2 J2

(b) S\t — s OS\{]l} — 5= f5u{32}+c 1SU{]2}

Proof. The left (resp. right) identities fog® and for f° follow by letting = =

S\ {1} (resp.m = S U {j2}) in Assumption 4.4(ii, iii), respectively. |

We will refer in what follows to theaggregatemarginal work and cost measures

1
WS,O,?T L E w?x?ﬂ" WS,I,?T A E w;sxivﬂ"

1€S 1€S5¢ (21)
CSOWAZCS 07T7 CS,lJrA ZCS 17T.
€S eS¢

Remark 4.6

() Lemma 4.5(a) shows that Assumption 4.1(iii) is needad:tmsistency with
Assumption 3.1(iv), since

Agsz — _wSixLSifl — ’I,USZ 1 OS < 0 ’L c N{O,l}.

(i) By Assumption 4.4(ii), (PCL1) in Definition 4.2 can befoemulated as
(PCL1) WL > 0, with “=" if 7 is passive as¢-periods.

The next result follows immediately from the above.

Theorem 4.7 Under Assumptiond.1, 4.4(i, ii), PCL(¥) hold.
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4.2 PCL-indexability

Let us introduce coefficients

S

VS A % ic NOB g¢ 7, (22)
3

from which we definendexv; by

vi 2y e N (23)
We will term v the (i, .S)-marginal productivity rate Thus, index; is the(s, S;)-
marginal, or(z, S;—1)-marginal, productivity rate.

The next result ensures that if the project#sindexable, then index; is
indeed its MPI. See Lemma 3.7(b).

Lemma 4.8 s
v, =V, =, ! :Tgsi’ ZEN{O’l}.
Proof. The result follows from Lemma 4.5, using Assumption 4i{(ii O

We introduce next a tractable project class based on theeabov
Definition 4.9 (PCL-indexability) We say the project iBCL(#)-indexableif:
(i) Assumptions 4.1 and 4.4 hold, and hence performanceunessatisfy PCLE).
(if) Index v} is nondecreasing.
The main result is that a PCE{)-indexable project is, indeed? -indexable.

Theorem 4.10 (PCL indexability condition) If the project is PCL&)-indexable
then it is.# -indexable, and/; is its MPI.

To prove Theorem 4.10 we need several preliminary resultsstéft by relat-
ing marginal productivity rates to index values, which giebn index recursion.

Lemma 4.11 For i, j € N{0:1}:

wSifl
Si ox_ J Si—1_x
(@ v —v = " v; I/Z-].
J
wSz’—l
* ok i+1 Si—1 *
(b) vip =vi+—5 [ i+l T Vz‘}-

i+1

Proof. (a) Using Assumption 4.4(iv) we obtain that, foj € N {01},

CSi Csi_l — V;( |:’w$i_1 — U}S’Li| wsi_l
Si x _ x _ J J J x _ J Si—1 *
Vii—Vi =5 Vi = S L -l LA ZH [
wj wWj Wj
(b) This part follows by letting = ¢ + 1 in part (a). O
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The next result represents marginal costs as finite lingabgwations of marginal
workloads, involving coefficients! andAv; = v} — v}

7 i—1"

Lemma 4.12 For i, j € N{0:1}:

J
Si—1 % Si—1 Sk-1 * . .
@ ¢ =viwT + E w; Avy, <.
k=i+1

1
(b) ' =vjwl =Y wFAvpy, P>

.

J

T
<

Proof. (a) Fori < j, Assumption 4.4(iv) andummation by partgives

J

Se  Sk-1| _ Sia s [ Sp . Sk—1

[cj ¢ }—cj + E Vi |Wj w;
k=i

J

_ Si—1 x S; x Sic1| Sk—1 A %

=c; —l—[l/jwj Vi wj g w;" " Avy,
k=i+1

whence the result follows (the case- j is trivial).
(b) Forj < i (again, the case= j is trivial), we have

i i
Si Sj—l Z Sk o Sk—1 _ Sj_l Z * Sk _ Sk_1
¢t =¢ + ¢ ¢; =¢j + Vi |w; w;
k=j k=j
i—1
_ Si— % S; % Sj-1 Sk A L *
=c; T+ [Z/iwj — vjw; —ij Avyp,q,
k=j

whence the result follows. This completes the proof. O

The next result is an analog of Lemma 4.12 in terms of aggeagaiasures.
Lemma 4.13 Suppose the project is PCH)-indexable. Then, for e N{0:1}:

(@) CSi—1,0m — V;WSFLOJF + Z W5k7170,7TAV;;.
keS;

Si, 1w _  xyp7Si, 1w Sk,1,m *
(b) CObm =y Sebm — N WwERLTAYE
keS;_ |

Proof. (a) Using Lemma 4.12(a), we obtain

J
Si_1,0,m & Si—1_0m _ *, Sio1 Sk—1 x| 07
c = E ¢y = E viw;' E w;" T Avy | x;

JESi—1 JESi—1 k=i+1
% Si—1_0,m Sk—1_0,m *
=v; g w; T x + g g w7 Ay

JESi—1 keS; jE€ESK—1
_ I/;‘WSi—laOﬂr + E WSk—l,O,WAV11<7
kES;
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where the interchange on the order of summation is justifietthe countable state
case, by the nonnegativity of the terms involved.
(b) Using Lemma 4.12(b) and arguing along the same lines parin(a) gives

i—1
Sj,l,ﬂé S 1,71'_ * S Sk * 1,7
Com R Yy drayT = ) vyt = ) witAvi |
JESS JESE k=j
_ox S; 1w S 1A %
=vi D wieyT = ) ) wpta A,
JESY keS;_ | jeS;,
:VZ'*WS“I’”— Z WS’“L”AVZer
kess |
which completes the proof. O

4.3 Workload reformulation and indexability proof

The next result is the cornerstone of our indexability prdéofiormulates the differ-
ence between-wage problem (10)’s objective under an arbitray policy ander
an.#-policy as a linear combination of aggregate work measures.

Lemma 4.14 (Workload reformulation) Suppose the project is PCH)-indexable.
Then, for any staté® < i < ¢!, wager € R and policyn € II, the objective of
v-wage problen{10) can be represented as

V(1) = v (V) + WL [y — ¥ 4 W0 (Vi — v

)

+ Y WEHROTA 4 Y WAL
kESit1 keSs 4

Proof. Using in turn Assumption 4.4(iv) and Lemma 4.13 gives
f7r _ fSi + CSZ',OJT o CSZ',LTI' _ fSi + V;+1WSZ',O,7T o V;WSZ',LTI'

+ Z WS’“*“O’”AVZ—I— Z WS’“L“AVZH.
k65i+1 k‘ESiC_l

On the other hand, by Assumption 4.4(iv) we have
gﬂ' — gSZ' + WSZ',LTI' o WSi,O,ﬂ'.

The required expression fof (v) = f™ + vg¢™ follows directly by substitution
of the above formulae fof ™ andg™. O

We can now prove the main result of this section.

Proof of Theorem 4.10. Let/° < i < ¢! andr € II. It follows immediately
from Lemma 4.14 and Definition 4.9 that, fore v/, u;k“],

o™ (v) > vV (v).

This (cf. Definition 3.6) completes the proaf.
The next result characterizes the MPI as a locally optimagymal productivity
rate, in a dual min/max relation.
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Theorem 4.15 Suppose the project is PCE)-indexable. Then,

.S S . o
min v} = =0 =07 = maxy)t, i€ NOM
J€Si—1 jese 7

Proof. By Lemma 4.12(a), we have that, forj € N{%} with i < j,

Sk—1
wj

J
Sic1 % *
Vj =Vt Z Si—1 Ayk’
k=i+1 W

whence the “min” identity readily follows.
By Lemma 4.12(b), we have that, farj € N{%1} with i > j,

i=1 Sk
Si % J *
I/j7 _V’i _ZEAV]{+1’
k=35 J
whence the “max” identity follows. O

Remark 4.16 In Theorem 4.15:

(i) The “max” identity characterizes MR}’ as the maximungj, S;)-marginal
productivity rate over statese S .

(i) The “min” identity characterizes as the minimuntj, S;_;)-marginal pro-
ductivity rate over statege S;_1.
4.4 MPI characterization under V-shaped marginal workloads

We have found that, in a variety of applications, marginatkhmads arev/-shaped
in the following sense, which implies an alternative chegazation of the MPI.

Assumption 4.17 wiSk is V-shaped a% varies, being minimized &t = i, i.e.

wséo > w$50+1 > -

S; Sit1 . 0,1
i > i sz Swz §7 ZGN{ }
We need the following preliminary result.

Lemma 4.18 Suppose the project is PCH)-indexable and Assumpti@gnl7holds.
Then, for fixed € N{0:1}, yZ.Sj is nondecreasing in threshold stagi.e.

je N with“="if j=i.

Proof. The equality part follows by Lemma 4.8(b). As for the inééyareformu-
lating the identity in Lemma 4.11(a) gives that, foj € N{0:1}

S
Sj i _ [wi Sj * 24
v,? —u T = s 1) (w —v) (24)

w;

Consider the casg> i + 1. Then, by Assumption 4.17 and the “max” identity
in Theorem 4.15, the two factors in the right-hand side (R6f§24) are nonposi-
tive, and hence their product is nonnegative.
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Consider now the casg < i. Then, drawing on index monotonicity and the
“min” identity in Theorem 4.15 gives

S
* * j
Vi SV S,

= Vi

so the second factor in the RHS of (24) is nonnegative; Assiomg.17 shows that
the first factor is nonnegative. Hence, so is their produrpeting the proof. O
Theorem 4.19 (Alternative MPI characterization) Suppose the project is PCH)-

indexable and Assumptighl7holds. Then, the MPI has the characterization

min v0 =v = max v’, ie N (25)

ScF:Sei Y SeF:Sai

Proof. By Lemma 4.18 we can write, fgr € S;_; andj, € S,

ijl Zyisi =v :yisifl ZuiSjQ,
which implies
jeJr\fn:iéliaz‘ ViSj == jerl{fl:aéai ViSj’ ie N,
The latter identities are readily reformulated into theuieed result. O

Remark 4.20 In Theorem 4.19:

(i) The “max” identity characterizes MRI* as the maximunts, S)-marginal
productivity rate over¥ -policies S that are active atperiods. This extends
to RBs Gittins (1979)’s index characterization for nontless bandits.

(i) The “min” identity characterizes MPY; as the minimum(¢, S)-marginal
productivity rate over# -policies S that are passive atperiods.

5 PCL-indexability analysis of a semi-Markov project

This section specializes the PCL-indexability framewark semi-Markov project,
under three relevant performance criteria, including a ope. The main result is
that to establish PCLE)-indexability it suffices to check the following conditien

Assumption 5.1
(i) Positive marginal workloadsys >0, i€ N{%} §¢c 7.
(i) Nondecreasing indexz" < vy, ;,  <i</(h

Consider a semi-Markov RB project satisfying Assumptidh 3VhenX,, =i
anda,, = a is chosen, the joint distribution of the length,; — ¢,, of the ensuing
(i,a)-period and stat&,, ;; is given by thetransition distribution

?j(t) ép{thrl —tn <t,Xnt1=17J | Xn =1,an :a},
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with associated LST

ﬂ?"a A E [I{Xn+1:j}e*a(tn+1*tn) ‘ Xn = i’an = a} = /0 efat dQ?j(t)

andone-period transition probabilities
Pl = P{Xng1 = | Xn =d,an =a} = lim Qf(t) = i%ﬁﬂa-

From@y;(t¢) we obtain the distribution of the length of &1 a)-period,

FR(t) 2P {tnpr — tn <t X =i,an =a} = > Q%(1),

JEN
having LST
0 s |, =y =a] =
JEN
satisfying

sup{B"* :i e N,ae {0,1}} <1,

and finite mean

with
inf {m¢ :i € N,a € {0,1}} > 0.

The evolution of procesX (¢) within an (i, a)-period is characterized by
py(t) EP{X(ty + 1) = | Xn = i,an = a,tpi1 — by > 1},

the probability that statgis occupied time units after a decision epoch, given that
the next epoch has not occurred yet.

The project accrues holding costs at reffeper unit time while it occupies state
4 and actioru prevails. Holding cost rates are assumed tbdended below

inf {h} :j € N,a € {0,1}} > —oc; (26)

5.1 Discounted criterion

We start with theexpected total discounted (ETDjiterion, with factora: > 0.
Letting ET[-] be expectation under starting ati, the ETD value of costs accrued is

« 2 [ [ iy dt} |

and the ETD amount of work expended is

gr 2 ET {/ a(t)e” dt] .
0
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We consider the initial state to be drawn from a probabiliggssfunctionp =
(pi)ien. Denoting byET [-] the corresponding expectation, we will use &ED
cost measurand theETD work measurgiven, respectively, by

T T * a(t) e~ T
f éEp[/O hie tdt] > pif

iEN

and

[oe)
g & Eg [/ a(t et dt] szgl .
0 iEN

We now reformulate the model inttiscrete timeas in Puterman (1994, Ch.
11), using coefficients; and3} as defined above (where now factois implicit),

and
tnt1—tn 1 — B¢
E|:/ e_atdt’Xn:i7an:a:|: 5@7
0 [0

tn+1_tn
E {/0 hg((t)e_o‘t dt | X, =1,a, = a} )

Notice thatc? (resp.m{) is the ETD cost (resp. time) accrued over(am)-period;
B is the state- and action-dependent discrete-time disdastdr; andg;; is the
discounted one-period transition probability freno j undera.

We can use the above coefficients to characterize meagueesi £, for given
S € %, as the unique solutions to the linear equation systems giesgt.

a
m;

lI>

lI>

a
G

Lemma 5.2 (Evaluation equations) For everysS € %

S=mi+> Blg ifies
(a) JEN
=Y 845 ifieN\S.
\ JEN
(fF=c+)_p5f] ifies
(b) JEN
=+ p0f fieN\S
jEN

We will use a€ETD state-action occupation meastine ETD number ofj, a)-
periods spanned under poligy given by

o0
‘T?m— £ }Eﬂ. Z 1{Xn = ja ap = CL} eatn] sz 'U ;
n=0 iEN
where
o0
?f £ ET Z WX, =j,a, =a} eat"] .
n=0

We will write x*™ = (257)jen, 8" = (9] ien, £7 = (f])ien, m® =
(m$)jen, ¢* = (¢f)jen andB® = (B%);jen; and for S, 5" C N, Bgg =
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@ ):csqics T8 = (fM)ics. We can thus represent work and cost measyfes
i ES,]ES S i c
and /™ aslinear performance measures, by

1
g" =x"m' = E mjz; "
JEN
a _.a,T

f7r — X0,7rc0 +X1,7rc1 — § E :ijj

ac{0,1} jEN

(27)

Itis well known in MDP theory that measure?” satisfy the set of linear equa-
tions given next, formulatingetailed flow balancédentities. Letl = (9;;); jen,
whered;; is Kronecker’s delta, be the identity matrix indexed /By

Lemma 5.3 (ETD detailed flow balance)For any policyr € II,
x"™ (I -BY) +x"" (I-B') =p.

Denote by(a, S) the policy taking actior in the initial period, and following
the S-active policy afterwards. We define tBE D (i, S)-marginal workloadby
S8 LS _ 08 _ {gf — g™ ifies

(28)

wA

JEN
the marginal increase in ETD work expended resulting froingugolicy (1, .5)
instead of(0, S), starting at. We further define th&TD (i, S)-marginal costby

{f§075> — 15 ifies
- S _ (1,5) if 7 c
=1 if i € S¢, (29)

gfLS) — g ifiese,

FO8) _ 18)

— - ch+ Y (5 - o) 15,
jEN
the marginal cost decrease resulting from using palicys) instead of(1, S).
Asin (22)—(23), and under Assumption 5.1(i), we defineBi® (i, S)-marginal
s

S A
c; =

productivity rateand theETD indexby v = ¢ /w? andv; = v, respectively.

We will need the following result.
s

Lemma 5.4 For everyS € .#:
(Isen — Bhey)g”.

(@) wo = (Isy —B%y)g® and w2. = m}.
(b) c2 =c% — (Isy — B2y)f® and cge = (Isey — Bheny)f® — che.
O

Proof. It follows from Lemma 5.2 and (28)—(29).

Define ETD aggregate measurds® 0™, W17 CS0.7 and C51™ by (21).
We next establish satisfaction of work and cost decomposléws.

Lemma 5.5 Under any policyr € II.
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(a) Workload decomposition laws:

g7r + WS,OJr _ gS + WS,l,Tl" Sec.F

(b) Cost decomposition laws:

[T O = 54 0% Se F
Proof. (a) Using Lemma 5.3, Lemma 5.2(a), Lemma 5.4(8.),@2!376: 0, gives

0=[x""(1-B%) +x""(I-B') -p|]g”
0,71'(1 o BO)gS + Xl,ﬂ' [(I _ Bl)gS _ m1:| _ pgS + Xl,ﬂml

0 S
_xS”wS—xSchc g+ g .

(b) Using Lemma 5.2(b), Lemma 5.3, Lemma 5.4(b), abﬂ = 0, gives
0= [x""(I-B° +x""(I-B') —p|f°
XO,TK‘ [(I o BO)fS _ CO] +X1,7r [(I o Bl)fS _ Cl]
_pfS+X0ﬂcO +X17r 1

0,
e —Xsﬂ—cg + XSC CSC - fS + fﬂ-

The next result establishes Assumption 4.4(iv).

Lemma 5.6 Suppose Assumption 5.1(i) holds. Then, for eyeryN {0:1}:

S, S S, .
(@) fZ‘J_fZ‘] {917 l—gij}, 1€ N.
(b) cfjfl —cZ-Sj =v; {wisjfl —w;s]}, ie N1},

Proof. (a) We have, taking = S;_; andS = S; in Lemma 5.5(a, b):

S'fl S; S, 1,5',1 .
i] :gZ]+w]]xZ]] , ’LGN’
S'*l S 1,5',1 S .
fl‘] +cj]xij] :fi]’ i€ N.
Hence
S;
Sj Sj—1 _ S; L,Sj—1 5 S; 1,551 Cj Sj_1 S;
£ = fi = € Ly = 5 Wi =5 Y% -9, -
J J
(b) Using part (a) we have that, fore N{0:1}:
-1 Sj _ 1 0 S; S; 1
-l =2 (B =) <fi - f;
jEN
ok 1 0 Sj-1 Si\ o x (,,Si-1 Sj
- jz(ij_ﬁij)<gi —gi)—vj(wi —w).
JEN

This completes the proof.
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We can now give the main result for the ETD criterion.

Theorem 5.7 Under Assumption 5.1, the project is PCEJ-indexable relative to
the ETD criterion, and/ is its discounted MPI.

Proof. Assumption 4.1 holds. Assumption 5.1(i) and Lemmas 5&GeBsure sat-
isfaction of Assumption 4.4. Hence, part (i) of Definitio®4holds, as does its part
(if) by Assumption 5.1(ii). The proof is completed by invalgi Theorem 4.10. O

5.2 Long-run average criterion

We turn now to théong-run average (LRAgriterion, which we address by drawing
on the above results, usingvanishing discount approachror clarity, we include
factor« in the notation above. The followingrgodicityconditions are required.

Assumption 5.8

(i) For every state € N, the S;-active policy induces on embedded Markov
chain X, the single positive recurrent claSsuU {i}.

(i) Policies inII arestable in that there exist finite measure$™, ™ andg”,
independent of the initial stategiven for any policyr € II by

1 n
a,m A e a0 1 i _ _
S il{% oz = nkrfoo nE’ LE_OI{Xk 7, a a}] ,

T AT mo 1 - ta(s)
Jr= lmafi = I S E UO hrx(s) ds|

1 t
™A i Y i _Eﬁ/ ds| .
9" = limag™ = lm 2B | a(s) ds

(iiiy Foreveryi ¢ N{O} andS € .7, there exist finitav;’ andc? given by

t t
w £ lim wf’o‘ = lim {EgLS) [/ a(s) ds] - E@{O,S} [/ a(s) ds] } ,
a\O t—+o00 0 0
t t
¢ 2 lim & = lim {EY / o) ds| — S / ) dt] b
aN\0 * t——+o00 v 0 (s) ¢ 0 (s)

As the above notation suggests, we will ysg g™ andz;" as the LRA cost,
work, and state-action occupation measures, respectively

We define the.RA (i, S)-marginal workloadand theLRA (i, S)-marginal cost
as the limitsw? andcy in Assumption 5.8(iii), respectively. Thus;® (resp. )
is the expected long-run cumulative marginal increasep(retecrease) in work
expended (resp. in holding cost accrued) resulting fromgugolicy (1, .S) instead
of (0, S) (resp.(0,.S) instead of(1, S)), starting at.

Provided Assumption 5.1(i) holds, we define ttReA (i, S)-marginal produc-
tivity rate and theLRA indexby v° = ¢f /w? andv? = v, respectively.

The main result for the LRA criterion is as follows.
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Theorem 5.9 Under Assumption 5.1, the project is PCEJ-indexable relative to
the LRA criterion, and’; is its LRA MPI.

Proof. Itis readily verified that Assumptions 4.1-4.4 hold. As aaraple, Lemmas
5.5-5.6 immediately yield LRA counterparts, by taking agpiate limits asa
vanishes. Hence, Definition 4.9 holds and, by Theorem 4h#Qesult follows. O

5.3 Mixed LRA/bias criterion

In several models, such as that in Section 2, the LRA MPI dised abovdoes not
exist Such is the case in countable-state models where the LRAdraof time
the project must be worked ondsnstant as often occurs in queueing systems. We
propose here to overcome such problem by introducing améwd LRA/bias cri-
terion, where cost measures are as in the LRA case, but work measurespond

to Blackwell (1962)'sbias criterion. For a review on mixed criteria in MDPs see
Feinberg and Shwartz (2002).

In addition to Assumption 5.8, we require the following ciimhs to hold.

Assumption 5.10
(i) There existe € (0, 1) such that, for any policyt € IT and state € N,

1 t
p=limag “= lim —ET [/ a(s) ds} )
a\,0 0

and there exists a finite measygegiven by

g £ lim {gf’a - ﬁ} — ET UOOO (a(t) — p) dt] .

(07

(i) Foreveryi ¢ N1l andS € .#, there exists a finites?’ given by

w® wsy [ [ 0s) [ [*
lim —4+— = lim t{Ei ’ {/ a(s)ds} -E> {/ a(s)ds]}.
a\0 « t——+00 0 0

We interpretbias measurgy] as the expected total cumulatiegcess worlex-
pended over the LRA nominal allocatignunder policyr, starting at. Again, as
in the ETD criterion, we will consider that the initial stat&(0) is drawn from a
probability mass functiop, and define théias work measurby

g éc{i{%{g”’o‘— g} =Ej] [/OOO (a(t) — p) dt] .

Further, notice that Assumption 5.10(ii) implies that the's defined for the
LRA criterion in Assumption 5.8(iii) are zero, being hendeno use in the PCL
framework. Instead, we will use dmas (7, S)-marginal workloadthe new coeffi-
Cientwf defined in Assumption 5.10(ii), representing the limitiag {ime grows to
infinity) time-scaled marginal increase in expected worgended resulting from
using policy(1, S) instead of(0, .S), starting at.

Measuresf™ and x;” and marginal costs&;9 are defined according to the
LRA criterion. Provided Assumption 5.1(i) holds, we defihe LRA/bias(i, .S)-
marginal productivity rateand theLRA/bias indexy v° = ¢ /w? andv; = v

The main result for the mixed LRA/bias criterion is as folkw

S a

w;
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Theorem 5.11 Under Assumption 5.1, the project is PCEJ-indexable relative to
the LRA/bias criterion, and; is its LRA/bias MPI.

Proof. The result follows along the lines of Theorem 5.9, by takiqgpropriate
limits as the discount factor vanishes in the results fol&m® criterion. O

6 Optimal MPI policy for control of an MTO queue

This section draws on the above to carry oBt@L-indexability analysisf the pure
MTO case of the model described in Section 2. Notice Mgt = {0}.

In the analyses below we draw on standard results ofiji€'/1 queue. See,
e.g. (Kleinrock 1975, Ch. 5). We will refer to the numbersystem process ()
for an M/G/1 queue operated under the standa$g-4ctive) policy. Our main
concern is to establisk -indexability under the LRA/bias criterion of Section 5.3.
We will draw on preliminary results for the discounted aiit@.

6.1 Preliminary results: Discounted criterion

We start with the ETD criterion of Section 5.1, under facior- 0. Since active
and passive one-period discount factors are now constanyilvdenote them by

A
p1=¢(a) and By DY
Similarly, we will denote the ETD lengths of active and pasgieriods by
1-5 1

and mg =

mq

_ 1-53
a a+ N\

Let a; denote the discounted probability thatustomers arrive during a ser-
vice. Thea;’s are characterized by theirtransform

a*(z) & Zajzj =Y+ A —N\z2).
=0

Notice that
a*(1) = pi. (30)
From thea;’s one can readily obtain the discounted transition prdtigsi 57’
We will further use the distribution of the length of a busyipd starting with
one customer, under the standard policy. Its LST’s value ¢(«) is characterized
as the unique solutiod < ¢ < 1 of the fixed-point equation

a’(¢) = ¢. (31)
For example, in thexponential service-timease, the latter equation becomes

o
a+pu+ M1 —9)

=¢, i.e. A\®—(a+A+p)p+p=0.

Denoting the discriminant by = /(« + A + p)2 — 4\u, the two solutions are

a+A+pu—d

a+A+u+d
2X '

and ¢y = o

¢ = (32)
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Sincel < ¢1 < 1 < ¢9, the required solution i = ¢;.

Note:

1 a+ A+
¢1¢2=; and ¢1+¢2=%-

Work and marginal work measures

We address next calculation and analysis of ETD work and ima&rggork measures
gf andwf. We will use the fact that, for eadh> 0, X (¢) is aregenerative process
under theS-active policy, having agenewal epochshose wherdeast recurrent
statek is hit, which marks the completion ofeycle

We will make use of th€eTD time to hit state Gtarting ati > 1 under the
standard policy, and of thETD recurrence time to Qstarting at 0), denoted by
M;o and My, respectively. Thé/;y's are characterized by the recursion

Mo+ ¢M;—1o ifi>2
Mipo=<1—
0=11-9¢ if i =1.
(6%

whose solution is A
1—¢° .
MiO = , 7 Z 1.
(6%

Further, we have
1—ﬂ0¢ _ Oé+)\—)\¢

ala+ )
We will also make use of thETD busy time during a cyclk@inderSy), given by

Moy =

(33)

Boo = Bo M.
Measure@f’“ are represented next in termsggf’, by standard arguments.

Lemma 6.1 Fori > 0:

2 i . 1S .
@ oL (s 1 et [Mokdan Tzt
g; a  a(l —¢f) a at+A—X\o Od\;o TN
00

k—i So .
S g, |f0§’t<k
(b) Fork > 1,0k =470 0~
9:° if i > k.

The next result characterizes discounted marginal worksoreaw: .

Lemma 6.2 Fori, k > 1:

. So So e
1— ¢ wy? 4+ ow;?, ifi>2
So
@) w;* = (1 —Bo)Mio Y 1+)\ —_—
[0

So .

iy ifi>k

) w4 ek

(b) v {wfk-l“ if2<i<k.
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(©) w

Proof. (a) Using (28), Lemma 6.1, and; o =

@0, So

w
1
sk ¢

SO 2 (1,50) <0,So>

gz - gz

ST A <1,Sl> 051
wi' = — g

91

j=k+1

- Bo 9z+1
= [Mio + <75i96%} Bo [ i+1,0 + qﬁ’“gf)qo]
= [Mio + <75i96%} Bo [ w0+ ' My + ¢ g SO] =(1-By)M

(b) This part follows from (28) and Lemma 6.1(b).
(c) Fork = 1, use Lemma 6.1(b), (30) and (31) to get:

ifk=1

o
(1~ Boymi + Bow;* ™ + > ajwfﬂk if k> 2.

Mo + ¢* My, gives, fori > 1:

=my —i—Za]g —gls1

=mi + aoﬁoggo + Z ajgjsfl

S0 v [1 1
= m1 + aofog; +Zaj <\

j=1

j=1

S
_900

690> ¢j_1:| _ 9690

1 (o]
= m1 + aofogy’ +;Z“j P (— — 9% )Z“]W -9’
j=1

=my + aoﬁogaq

_@[1—¢
¢

0+l[ﬂl_a0]
(6%

— = ﬂosb)ggo] =

1/1
- a <a —96%> (¢ — ao) —950
%o, So

¢

1 -

Let nowk > 2. Using Lemma 6.1(b) we can write

Sk
wy

A

1,8 0,Sk)
g§ k)_g§ k)

k—1 00

S S S

mit a6 + ) a6 — ot
=~ prd

o0
= my +Zajgfk _gfk

[e.e]
S, S S,
m1+ﬂoza3 k1+zajgjill_gok1
Jj=0 j=

m1 + Bo wl S —m

Za]gjk 1+

Sk— S
(1= Bo)ma + Bowy ™™ +Z“] [9]1611

J=k

o]
Sk—
= (1 — ﬂo)ml —|— ﬂowlk ! + Z a]wffk

j=h+1

29

o0
Sk 1 Sk—l k—
91 + Z a;9;—1 — Y0

ﬂogsk 1]



wlso — w131 — wls2 — wf3 —
LN N\ N\ N

wQSO wgl w252 ZU‘;S
LN N\ N\ N

wgo w?l wgg wgqs
LN N\ N\ N

Figure 2: Direction of calculations for marginal workloadﬁ’“.

This completes the proof. O

Remark 6.3 Lemma 6.2 yields a recursion for calculating ETD marginark~o
|0adSwfk, fori > 1, k > 0. The calculation’s backbone consistspi¥ot terms
wfk, for k£ > 0. Calculations proceed in the order indicated by arrows gufé 2.

The next result shows that ETD marginal workloads are pesitis required.

Proposition 6.4 ETD marginal workloadsuis’“ satisfy AssumptioB.1(a)

Proof. The result follows by induction ok using the recursions in Lemma 6.20

Cost and marginal cost measures

We proceed to calculate the required ETD cost and margirstimeasureg;” and
cis. In the analyses below, we include in the notation the hgldivst rate sequence
relative to which cost measures are defined, when this isrdift from the original
sequencér = (hg, hy,...), writing h® = (h;, h;y1,...) for i > 0. We will further
refer to sequences of first- and second-order differefde’s A2h’.

Analogously as in the above analyses, we will make use oEfi@ cost to hit
0 starting at: > 0 under the standard policy , denoted By(-), and of theETD
cost accrued over a cygldenoted by (-).

The next result characterizes ETD measyfigéh), via standard arguments.

Lemma 6.5
o Voo iz
@ f°= Voo —
if 7 =0.
OéMOO
So k T
() gov = S o ik
mo(hi-l—'--ﬂ-ﬁoizi hk_l)—l—ﬂoil Oo(hk) If0§i< k.

Proof. (a) By standard arguments, we have
=Vt fye, ix1

1 —Bo
30 =~ ho + G-
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Solving for f5° and £ gives

so_ _1=05o ho -+ BoVig)
O all-He) T 1-bod
so . (1—Po)o ho + Vie!
L al=5e) T 1 Ged
whence the result follows, using (33).
Part (b) is trivial. O

The next result characterizes the required ETD margin&tcﬁs

Lemma 6.6
@) ¢ =mo(hi — ¢'ho) + BoVio(Ah') — (1 — o) Vio, fori > 1.
(b) &% =, (WF), >k
Proof. (a) We have, foi > 1,
cfo & pl0%0) _ S0 — pon; + Bofo = 1
_ i+1 £So i S0
= moh; + Bo [V¢+1,0+¢ fo ] - [Vi0+¢ 0 }
= mo(h; — ¢"ho) + BoVio(AhY) — (1 — Bo)Vio,

where we have used (29), Lemma 6.5(8),1,0 = Vio(h') + ¢'V3o, and
150 = mohg + Bof1° = moho + Go [Vlo + ¢foso} .
Part (b) follows from (29) and Lemma 6.5(b). O
The next result gives representations for inggx= '~ /w. "

Proposition 6.7 For ¢ > 1:

vi =wn(h'")
= (rr o) mo| [ e et —
= <)\ + 1_ ¢> EO [A e {AhL(t)+Z \ (hL(t)+Z,1 hz—l)} dt:|

= ()\ + L) {EO |:/ e_o‘thL(t)H dt:| — El |:/ e_o‘thL(t)H_l dt:| }
1-9 0 0

Proof. The first identity follows from Lemma 6.2(b) and Lemma 6)6(bhe sec-
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ond identity follows from Lemma 6.2(a) and Lemma 6.6(a)otlgh

Vl(hifl) — mO(hi - ¢hi71) + ﬂovlo(Ahi) - (1 - ﬁo)vlo(hi_l)

(1 — Bo) Mo

_ Voo(Ah") +mo(1 — ¢)hi—1 — (1 — Bo)Vip(h'1)

B (1 = Bo)Mig

Moo Voo(Ah') +mo(1 = ¢)hi—1 — ameVip(h'™1)

~ moMag aMoo

My Voo(Ah') —amgVig(h'~! — ki 1)

-~ moMig aMoo

My {Voo(Ahi) 1= By Voo(b'™" — h;11) }

~ moMy | aMo Bo aMoo

= WEO [/o e {AhL(t)Jri - % (hi)+i-1 — hz’fl)} dt}
wherel denotes a sequence B$, and we have used

1 —
Vio(hi—11) = Myohi—1 = T¢hi—1-

The third identity follows from

Si Si— 3 —
¥ — fl _fz‘ ! _ fégo(hz) - ffo(hl 1)
910 — gg°

(2

T Sia S;
g; —g;"

Remark 6.8

1. If one can show that index’ is nondecreasing under Assumption 2.1, then
Theorem 5.7 (using Proposition 6.4) shows that it is indéeddiscounted
MPI. We emphasize that such resulhist neededor our analysis in Section
6.2 of indexability under the LRA/bias criterion, which isrgorime concern.

2. In thelinear holding cost casé,; = cj, j > 0, orh = ce, we can use Bell
(1971)’s classic accounting argument to write

A p
S . 1 S .
af =c Z—i—a—al_ﬂlgio , 1>0.
Substitution in the second identity in Proposition 6.7 gitteeconstantMPI
* /81 .
* > 1. 34
VZ Cl _ 517 ? — ( )

The latter agrees with the optimdiscounted:p-index rulefor scheduling a
multiclass)M /G /1 queue with linear holding costs.

3. We readily obtain the following limiting.-scaled index

yIRA & O1{1\mo av; = pE [Ahry].

It seems reasonable to considér** an index corresponding to the LRA
criterion. Section 6.2 will show thaxiLRA is indeed the MPI corresponding
to a new, LRA-bias criterion.
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In the exponential service case, we obtain a remarkablylsmewaluation of
the ETD index, from which its monotonicity is apparent. kdbe a random stop-
ping time having an exponential distribution with rateindependent of process
{L(t) : t > 0}. Letz; = pp1 < p, whereg, is given by (32). Recall that, if
L(0) = 0, thenL(7) has a geometric distribution with success probability z;.

Theorem 6.9 Suppose the service time distribution is exponential arslidption
2.1holds. Then, the model i -indexable under the ETD criterion, having MPI

v = uko [/0 e Ahp )4 dt} = gEO [Ahg () yi]

[e§)
(1 — Z1) ZAhj-i-iz{v 7 Z 1.
7=0

Q1I=

Proof. Letr, > be the first time to hio for L(¢). Drawing on elementary properties
of the M /M /1 queue, including the strong Markov property, we have; for1:
E1 [hrirysio1] = E1 [peysiot | 70> 7] Pr{mo > 7}
+E1 [hrrysio1 | 0 < 7] Pi{m < 7}
= Eo [hr(r)1i) Pr{m0 > 7}
+Eo [hp(rysio1 | 70 < 7] Pi{mo <7},

Hence, we can write

Eo [hr(r)+i-1] = E1 [hrryiz1] = Pi{ro < 7} Eo [Ahp(r)1]
= ¢1Eo [Ahp(r)4i] -
Now, substitution into the last identity fot in Proposition 6.7, gives, after simpli-

fication, the required identities. It is now immediate theg index is nondecreasing
under Assumption 2.1. Therefore, by Theorem 5;7is the ETD MPI. 0

Remark 6.10 In the exponential service case:

1. Itis easily shown thatv; is decreasing in discount factot It is insightful
to consider the limitingv-scaled indices

myopic A
i =

I = uAh,.
a oo E T H

Notice that it is natural to interpref‘lyOpiC as amyopic index
2. For a quadratic cost ratg = ¢j* we obtain the MPI

2
u;*:%[Qz‘—lJrl_lel], i> 1. (35)

The corresponding LRA and myopic indices are
2
I/ZLRA:C,LL [21’—1—1——1) }7
I—-p
yYOPIC — ey (20 — 1]

Notice that tern2p/(1 — p) in v-R4 accounts for long-term congestion.
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6.2 LRA/bias criterion

We now address indexability under the LRA/bias criteriorSettion 5.3. We will
draw on the ETD measures above, which we will write maklngdm explicit.
The next result characterizbsas (or excesswork measuregZ , gk

Lemma6.11
g5+ 2 ifi > 1
. S _
(a') F0r2201gi0— 0.2+1/M2 .
—A——— ifi=0.
2(1-p)

i — k
(b) Fork21,i20,gi5k:g§0+z '

E|X -
(© Fork = 0,g% = g + =X CUZE,

Proof. (a, b) The results follow by subtracting/a from ETD measuregs’“
identities of Lemma 6.1, and taking limits asvanishes, using I'Hopital’s rule.
(c) This part follows easily applying (a, b) to* = pran pigfk. O

The next result characterizbgas marginal workloadsuis’“. Note that below:,
denotes theindiscountegprobability thatj customers arrive during a service.

Lemma6.12 For i, k > 1:

VAL s ifiso
A2 P>
My 1A i | LoPH -
@) wir — Mo _ A
A L—pp
LN
—ppu
So o
. ifi>k
b wsk: wz—k.
(b) w; {wﬁzﬂ if2 <i<k.
aowfo ifk=1
Se_ ) 1
(©) wy E—i—wfkl—i— Z a,jw 0, ifk>2.

j=k+1

Proof. To obtain the stated identities it suffices to dividedoy- 0 the correspond-
ing discounted identities in Lemma 6.2, and take limitsramnishes. O

Remark 6.13 As in the ETD case (cf. Remark 6.3), Lemma 6.2 yields a reonrsi
for calculating bias marginal workloadaf’“. See Figure 2.

The next result establishes the required properties ofrbaginal workloads.
Proposition 6.14 Bias marginal workloadsuis’“ satisfy the following:

(a) They are positive, i.e. Assumptibri holds.
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(b) They are V-shaped, satisfying Assumptoh?with strict inequalities.

Proof. (a) The result follows by induction using Lemma 6.12. SemRi 6.13.
(b) We have, using Lemma 6.12(a, b) that, fox £ < i — 1.

Sk . Skoi So So 1
w; w; Wil — Wikt )\M(l _ p)
Also, using Lemma 6.12(b, c) gives that, foe> 1:
wf’“ — wfk_l = wlsl - wfo =—(1-—ap) wfo <0,

where the inequality follows from)fO > 0 (part (a)) andyy < 1.
Furthermore, part (a) and Lemma 6.12(b, c) give thatkfor: + 1,

Sk Sk-1 Sk—it1 Sk—i
i i 1 —w

21,50
+ Z ajwj7k+i71>0.
j=k—i+2

L
=
This completes the proof. O

We next address calculation of LRA cost measures./Lis¢ a random variable
having theequilibrium distributionof the number in system for th&/ /G /1 queue
of concern, under the standarg)] policy. The next result follows immediately.

Lemma 6.15
S =Elhpy], i>0.

The next result characterizes the required LRA marginalsaq% TermsVyg
below are undiscounted counterparts of correspondingstari8ection 6.1.
Lemma 6.16

h; —h
(@) ¢ = == O 4 Vio(AhY), i>1.

(b) % =, (W¥), >k

i i—
Proof. The result follows by lettingy vanish in Lemma 6.6’s identities. O

The following result gives representations for indgx= c‘.gi‘l/wisi‘l.

2

Proposition 6.17
_ Ahi/X + Vig(ARY)

v = vi(hi™) —
1

= pE[Ahpy], > 1.

Proof. Scale by identities in Proposition 6.7 and letvanish to get the result. O
We can finally present the main result of this section.
Theorem 6.18 Under Assumptio.1:

(a) The model is#-indexable under the LRA/bias criterion, having MP1 =
/,LE [AhL+i]1 for ¢ > 1.
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(b) MPI v has the characterizatio(25) in Theorem4.19

Proof. (a) This part follows from Theorem 5.11, using Propositébh4(a) to en-
sure positivity of bias marginal workloads, and expressipn= plE [Ahr 4] in
Proposition 6.17 to ensure nondecreasingness of the index.

(b) This part follows from Theorem 4.19 using Propositioh/gb). O

Remark 6.19

(i) For alinear cost rateh; = cj, the LRA/bias MPI isv] = cp, consistently
with the cu-index rulefor scheduling a multiclasd//G/1 queue.

(i) For aquadratic cost rateh; = cj2, the LRA/bias MPI has the evaluation

2p + N(0® —1/p?)
L=p

Vi*:cu[%—1+ ], i>1.
(iii) Denoting byv;”™ the LRA/bias MPI under cost ratés = j™, j > 0, where
m > 1is an integer, we readily obtain the evaluation

m—1
yom = ) Lk -y kLR (] i
N A e

Notice that if, €.9.h; = co + c1j + 252, thenv? = 1! + e,

(iv) Suppose costs are given customer-wise, by a polynocast ratei(7) on
the current delay” accrued by a customer. To use the above results, we can
obtain anequivalent holding cost rate; by drawing on Marshall and Wolff
(1971)'s extension of Little’s law fol/ /G /K queues.

7 Optimal MPI policy for control of an MTS queue

We next extend the above analysis to the MTS case 1 of Section 2's model.
Notice thatN{% = {—s}. Investigation of indexability reduces to the MTO case in
Section 6. This follows by Morse (1958)’s classic argumshgwing that analysis
of an MTS queue reduces to that of a related MTO queue. Thusiffices to
consider the state proce$qt) = X (¢) + s > 0, corresponding to the number-
in-system of an MTQV//G/1 queue. ProcesX (¢) under theS;-active policy is
equivalent to process (¢) under theS;, ; policy, for eachi € N. It follows that all
the results derived in Section 6 for the MTO case carry ovénddTS case.

We thus obtain from Theorem 6.18 the following result under LRA/bias
criterion. LetL be as in Theorem 6.18. As before, we witiié= (hg, hy, .. .).

Theorem 7.1 Under AssumptioR.1:
(a) The model is#-indexable under the LRA/bias criterion, having MPI
vi = pE [Ahp ]

v*(h if 4
*(h?) ‘ ifi>1 (36)

vi(WO)P{L > —i} +p Y Ahy P{L =34} ifi<0.
j=0
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(b) MPI v has the characterizatio(25) in Theorem4.19

Proof. The results follow from the above discussion via Theoreh®.6To obtain
the second case in (36) we use the fact thatL > j ~ L + j, for j > 0, where
~ denotes equality in distribution. Hence, oK 0:

E[Ahpii] =E[Ahpy | L >~ P{L > ~i} + Y E[Ahry | L= j]P{L = j}
§=0

=E[Ahp] P{L > —i} + > AhiP{L = j},
j=0

which yields the result. O

While our focus in on the LRA/bias criterion, it is insighitfto consider in-
dexability under the discounted criterion in the exporadrgervice case. From
the above discussion and Theorem 6.9 we readily obtain tkteresult (where we
include discount factotr > 0 in the notation). Letq, 7 be as in Theorem 6.9.

Theorem 7.2 Suppose service times are exponential and Assumgtibholds.

Then, the model is7-indexable under the ETD criterion, having MPI
v = BB [Ahy (]

V" (h?) | ifi>1 (37)

- yf’*(ho)szl + 7M(1 ; 2) jZZOAthz{ if 2 <0.

Remark 7.3

() For: > 1, y;*(ho) is theMTO MPI obtained in the previous Section. Thus,
the first case in (36) shows thtte MTS MPI extends the MTO MPThis
agrees with a result of Ha (1997) for the linear cost expaaksgrvice case.

(iii) Under linear FGS holding costgh; = —cFj, j < —1), we obtain the MPI
J

. vi(h?) ifi>1
i F . E . (38)
{vi(h°) + Fu} P{L > —i+ 1} — . otherwise.

(i) Consider thelinear costscase,h; = Bj for j > 0, andh; = —cFj for
j < —1, wherecB, ¢F > 0. We readily obtain from (36) the MPI evaluation
B ifi>1
=411 | o (39)
[(B+F)P{L>—i+1} — | n otherwise.

In the M /M /1 case, substituting{L > j} = p’ above gives the index

JE Bu ifi>1
- [(B+cF)p= —cF] 1 otherwise.
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Remarkably, the latter is thayopic(T) indexf Pefia-Pérez and Zipkin (1997,
p. 926), which they obtain by a look-ahead argument. It has shown in
de Véricourt et al. (2000) that such index characterizesfitimal policy for
a multiclass make-to-stock queue in a limited region of théesspace. It is
insightful to further evaluate the myopic index as in Renm&dO:

myopic A {CB,u ifi>1

lim av"" = pAh; =

a—-+00

—c e otherwise,
i.e. it recovers the index derived by Wein (1992) by a heasffit analysis.

(iv) The MPI characterizes the condition under which the MEpability can
improve performance relative to MTO operation: Such willthe case iff
vg > 0. Using (36), and assuminyhy < 0 < v5(h"), we obtain

—pAhg

T >0<=p>———. 40
0 O 7 VE0) — uliho “o
In the linear cost case, the latter condition reduces to
F
C
> . 41
P B F (41)

The MTO vs. MTS issue is thus resolved trgffic load condition(40): in
light traffic (p ~ 0), MTO suffices; inheavy traffic(p ~ 1), MTS is better.

(v) The MPI characterizes the optimal threshold level(9r F< —1, the S;-
active policy (produce wheX ~(t) < —i)is optimal ifv/, ; > 0 andv; < 0.
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