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1. Introduction

Given current economical and environmental concerns, it is of great importance to
develop efficient Closed-Loop Supply Chains (CLSC). A CLSC integrates a reverse flow
into the traditional forward chain in order to take back, re-process and re-sell product
returns, either in the original primary market or in another secondary market. The
question is where to locate all the required processes and how much product flow to
assign to each process, such that a maximum profit and an excellent service in terms
of delivery time can be guaranteed. As outlined in the extensive review of Rubio et al.
(2008), this is a main topic in reverse logistics.

The research in this paper builds upon previous work of Lieckens and Vandaele (2007).
The main contribution is the extension of the CLSC model towards network design
decisions with multiple levels, quality dependent routings and stochastic transportation
delays, while taking into account the interrelated queueing and variability effects. These
extensions are useful because they all lead to a more realistic lead time. We develop
an Advanced Strategic Planning model (ASP) that integrates financial information and
relationships from queueing theory to decide on the appropriate location of multiple
facilities in a CLSC, as well as the appropriate flow allocation of a single product type. A
network design is considered as appropriate if it performs well with respect to revenue,
costs and delays (i.e. delivery time). Being able to determine the optimal degree of
flexibility is key for successful reverse logistics, especially in case of high recoverable value
and a high decay rate. To this end, we transform expected, but variability dependent
delays into expected inventory costs by using Little’s law. This affects the net profit
function, and thus the final network design decision. The price for better decisions is
the introduction of highly nonlinear relationships in a mixed integer objective function,
which complicates the search for optimal solutions. The second purpose of this research
is to demonstrate that the Differential Evolution (DE) algorithm presented in Lieckens
and Vandaele (2007) is still capable of finding good design solutions in case of multiple
network levels, multiple routings and transportation issues. We propose an adapted
algorithm scheme that handles the constraints differently and that decides on fractions
to assign the flows to facilities instead of absolute values for the flows that enter and
exit facilities. Using an examplary case study, we show that this procedure solves larger
problems more efficiently. The structure and the size of the example are based on a case
from practical industry.

The queueing analysis in our ASP Model is valid when the network is in a steady state
condition. It implies that we only get an idea about an expected inventory level, i.e. a level
that naturally arises at each location when the period under consideration is long enough.
This prevents dynamic inventory control decisions like locating appropriate intermediate
inventory buffers under a push versus a pull strategy, or specifying a maximum stock
level with a reorder point, or coordinating returns with other supply sources such as
new products. We refer to Fleischmann et al. (2003) for an inventory model where these
features are integrated. They use a single-item base-stock model with backorders and a
reorder-point order-up-to policy to calculate long-run average costs as a function of the
target base-stock level.
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Figure 1. Structure of the CLSC.

2. Problem Description

In Section 3, we derive a generic ASP model that can be applied to any CLSC-structure.
However, we will explain the network problem below and apply the ASP model in Section
5 using the structure of Guide et al. (2006), who developed a simple queueing network
model that includes the marginal value of time to identify the drivers of reverse supply
chain design. Their analysis of two companies in different industries, Hewlett-Packard
in the inkjet printer industry and Bosch in the power tools industry, shows the impact
of differences in processing and delay costs on the choice between an efficient and a
responsive network. Key drivers of a highly responsive reverse supply chain are high
return rates, high time value decay rates, low as-new return fractions, and substantial
recoverable value.

The CLSC in Figure 1, where bold arrows represent the product flow and dashed arrows
represent the disposal flow, includes forward chain nodes for manufacturing (Mnfct),
distribution (Distr) and retailers in the primary market (PM), and reverse chain nodes
for evaluation (Eval), remanufacturing (Rem) and retailers who collect and/or sell in the
secondary market (SM). The retailer (Retail) is the single starting and ending node of
the system. Disposal (Disp) is an option at each network level. Products are returned to
the retailer where they are stored until a truck that is dedicated to a transportation line
towards one of the evaluation centres can be loaded. All testing, evaluating and sorting
activities are performed at this place. When a product return is labelled as a low grade, it
is shipped to a remanufacturing facility, after which it is sold in the secondary market at
a discount. A product return that is labelled as a high grade, only requires some minor
reprocessing activities like repackaging, and is re-sold as-new in the primary market
by using the forward distribution centre. Since a consumer is not able to distinguish
the difference in quality, its selling price is the same as for the original new products,
which are processed at the manufacturing facility. This distinction between high and low
grades results in different routings that depend on the assessed quality. Examples include
a printer classified as a low grade when the internal counter reveals that the number of
printed pages exceeds some predefined treshhold (Guide et al. 2006), or dismantling
electronic devices into spare parts for the open market and recyclable material fractions
for external recyclers (Fleischmann et al. 2003), or a compressor classified as a high grade
when the deviation between the two rotors is still within a specific target.
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3. Model Formulation

3.1. Product Arrivals

Individual products return from the aggregate primary market, a single node PM(1),
towards a retailer node Retail(j) according to a rate λPM(1)→Retail(j). A squared
coefficient of variation (SCV), represented as [c2

PM(1)→Retail(j)]a, is used to take into
account the highly variable time between returns. Total available volume is bounded by
RPM(1) from which a fraction ςPM(1)→Retail(j) is sent to retailer (j), or in equation form

ςPM(1)→Retail(j)RPM(1) = λPM(1)→Retail(j)

The volume RPM(1) depends on the marginal value of time and the product lifetime. For
a classification of products for end-of-life acquisition based on these criteria, we refer to
Morana and Seuring (2007).

Each facility node has a capacity level (q), which is selected from a set of candidate
levels. A retailer’s total return rate when installed at capacity level (q) then becomes
λRetail(j)(q). So with

∑
j

ςPM(1)→Retail(j) ≤ 1, we have

RPM(1)

∑

j

ςPM(1)→Retail(j) =
∑

j

λPM(1)→Retail(j) =
∑

j

∑
q

λRetail(j)(q)

Transportation towards the next network level, e.g. an evaluation centre, only starts
when B units are collected at the retailer. This is the batch size that is going to be used
at all forward and reverse network levels, so lot splitting and re-grouping of batches is
not allowed. This would introduce additional flow disturbances that is beyond the scope
of this study. The batch size is bounded by the maximum load of the transportation
vehicles. The same reasoning and similar equations apply at the input of the forward
chain where an aggregate source supplies raw materials from a single node RM(1) to a
manufacturing node Mnfct(j).

In general, when all the operations at facility (i) of the current network level l′ are
finished, products are sent to a downstream facility (j) at a network level l for the next
operations according to a rate λl′(i)→l(j). Total volume rate at the inbound of that facility
(i) is λl′(i). Since the product routing depends on the grade classification, a fraction ωl′→l

is used to guide each product to the appropriate subsequent level in the network. Given
the restriction of the model to a single product type, we assume that all facilities at a
particular network level handle only one type of a product’s grade. Processing different
grades at a particular facility requires multiple, complex aggregations of arrival and
process characteristics in the queueing model and would prevent clear insights in Section
5. As a result of that assumption, it does not matter to which specific facility the fraction
ωl′→l is sent and we can omit the indices (i) and (j). This grade distribution is obviously
applied at an evaluation centre where the quality is assessed: as-good-as-new products
are re-distributed in the forward chain while inferior products continue in the reverse
chain towards a single secondary market node SM(1). However, we also use ωl′→l when
the product flow between the two corresponding levels l′ and l is not allowed (value is
zero) or to dispose of units (value is ωl′→Disp). Note that ωl′→l is a fixed, predefined
parameter in the model, while ςl′(i)→l(j) is a fraction to decide on the percentage of the
product flow that is assigned to each of the downstream facilities (j). Apart from binary
decision variables to open or close facilities, these fractions are also to be decided on by
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the model.
The way the disposals are handled in the model requires additional clarification. At

the outbound of a facility (i) at network level l′, a fraction ωl′→Disp is directed towards
an aggregated external sink due to some technical limitations of the process (i.e. srap).
The remaining number of units, which equals (1− ωl′→Disp)λl′(i), is guided towards one
or several transportation lines that link the facility with the appropriate processes (j) at
downstream network levels l based on the product flow decisions ςl′(i)→l(j) and the grade
distribution ωl′→l according to

λl′(i)→l(j) = ςl′(i)→l(j)ωl′→l(1− ωl′→Disp)λl′(i) (1)

When
∑
l

∑
j

ςl′(i)→l(j)ωl′→l ≤ 1, the constraint is satisfied that total output at facility

(i) is less than or equal to its total input, excluding the disposals caused by technical
issues. Since the disposal option can be considered as a single node at a separate layer
l in the network, the model may decide to send there an additional fraction that equals
1−∑

l

∑
j

ςl′(i)→l(j)ωl′→l. This means that the effective number of discarded products can

be higher than what is technically expected from the process, not only to balance return
and demand quantities, but also to use the model as a decision tool for the volume in the
network that is optimal from a lead time perspective. Any excess products will create
excess waiting time and excess work-in-process that both have a negative effect on the
performance. The ASP model decides upon the optimal product flow that continues.
Total disposal quantity equals

(ωl′→Disp + (1−
∑

l

∑

j

ςl′(i)→l(j)ωl′→l))λl′(i) (2)

Based on Equation 1, total arrival rate at facility (j) becomes

λl(j) =
∑

l′

∑

i

λl′(i)→l(j)

Since each facility (j) can be installed at one capacity level (q) chosen from a set of
candidate levels Q, we have

λl(j) =
∑

q

λl(j)(q)

Because of the same batch size B at all network levels, the batch arrival rate at a
transportation line between two facilities (i) and (j) and the batch arrival rate at a
facility (j) respectively become

[λl′(i)→l(j)]ba = λl′(i)→l(j)/B

[λl(j)]ba = λl(j)/B
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3.2. Production Facility

In this section, all the parameters are derived that are required to calculate total expected
lead time of a product at facility (j), i.e. EWl(j). It consists of the following components

• Expected waiting time in the queue of batches EWQl(j)

• Expected process time of a batch, which equals Btl(j)

Binary variables Yl(j)(q) are used to select the appropriate capacity level (q) from a
set of candidate levels Q at which a facility (j) at network level l needs to be installed.
Given a maximum production quantity of Cl(j)(q) units per time period at level (q), the
mean ’effective’ process time tl(j), which is the inverse of the mean ’effective’ process
rate µl(j), equals 1/

∑
q

Yl(j)(q)Cl(j)(q). By ’effective’ we mean that it accounts for issues

like setups, rework, breakdowns, etc. Note that in order to avoid additional aggregation
steps, we assume that process times are independent of the origin of the product flow.
This implies that each facility is able to process just one kind of the multiple grade
classifications, which fits the single product type assumption. As long as the quality is
not determined, which is not the case until after the evaluation centre, the product flow
can also be considered as being of a single grade, i.e. the unclassified type.

We can formulate the facility utilisation as

ρl(j) = λl(j)tl(j) =
λl(j)∑

q
Yl(j)(q)Cl(j)(q)

< 1 (3)

Due to various and usually unknown customer usage patterns, much more variation in
process times for returned products is observed in practice when compared to traditional
forward supply chains. We describe this variability by its ’effective’ SCV [c2

l(j)]p, which
includes all sources of process disturbance. Since independent and identically distributed
process times are a reasonable assumption (remanufacturing units can be modelled as
an uncorrelated process with the same distribution), the SCV of the batch production
time equals

[c2
l(j)]bp = [c2

l(j)]p/B (4)

The variability of the expected batch interdeparture times at the outbound of facility
(j) is found by the following linking equation (Whitt 1983)

[c2
l(j)]bd ≈ (1− ρ2

l(j))[c
2
l(j)]ba + ρ2

l(j)[c
2
l(j)]bp (5)

An expression for the SCV of the batch interarrival time at facility (j), i.e. [c2
l(j)]ba, is

based on the superposition of the products that are supplied by different transportation
lines starting at upstream network levels. To obtain this aggregate SCV, we use the
simplified approximation from Whitt (1983)

[c2
l(j)]ba ≈ wl(j)

∑

l′

∑

i

πl′(i)→l(j)[c
2
l′(i)→l(j)]bd + 1− wl(j) (6)
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where

wl(j) = 1/
(
1 + 4

(
1− ρl(j)

)2 (
vl(j) − 1

))

vl(j) = 1/

(∑

l′

∑

i

π2
l′(i)→l(j)

)

πl′(i)→l(j) = [λl′(i)→l(j)]ba/[λl(j)]ba (7)

and [c2
l′(i)→l(j)]bd is equal to Equation (14) (see Section 3.3). Equation (7) represents the

probability that the inbound flow at facility (j) comes from the transportation line under
consideration.

Now we are able to estimate total expected lead time at the facilities. We opt to
use the approximation from Whitt (1993) because it estimates the mean waiting time
under heavy traffic conditions more accurately due to a correction factor φ. We refer to
Whitt (1993) for more details about this factor. Using Equations (3), (4) and (6), we can
formulate the expected waiting time of batches in the queue at facility (j) as

EWQl(j) ≈ φ(ρl(j), [c
2
l(j)]ba, [c

2
l(j)]bp, 1)

(
[c2

l(j)]ba + [c2
l(j)]bp

2

)(
ρl(j)

1− ρl(j)

)
Btl(j)

Note that each individual unit of the batch experiences this expected waiting time and
that each facility is modelled as a queueing system with a single machine in steady state.
Little’s law can then be used to find the expected number of products at facility (j),
which will be used to calculate inventory costs

WIPl(j) ≈ λl(j)EWl(j) ≈ λl(j)(EWQl(j) + Btl(j)) (8)

3.3. Transportation Line

An expected ‘effective’ transportation time tl′(i)→l(j) with a SCV [c2
l′(i)→l(j)]t are used

to include all disturbing factors like vehicle breakdowns, loading and unloading, traffic
jams, etc. when shipping goods between two locations (i) and (j). We assume one
transportation mode, e.g. trucks, and we ignore the transportation from the aggregate
starting node PM(1), i.e. between customer and retailer in the reverse chain, and from
the other starting node RM(1), i.e. between supplier and manufacturer in the forward
chain. The reason is that the customer and the supplier are not considered to be part of
the queueing system. Furthermore, tl′(i)→l(j) is independent of the quantity being shipped.
This feature indicates that we are dealing with a parallel batching process with batch size
B, expressed in units (Hopp and Spearman 2000). Therefore, the total expected lead time
of a product at the transportation line between locations (i) and (j), i.e. EWl′(i)→l(j), is
the sum of

• WTBTl′(i)→l(j), the expected waiting time to form a batch of size B

• EWQl′(i)→l(j), the expected waiting time of batches in the queue
• tl′(i)→l(j), the expected transportation time of the batch

Since a batch is not split as it proceeds through the network, there is no collection
time required to form a batch of size B, except at the outbound of the initial level in
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each network type, i.e. retailer nodes in the reverse chain and manufacturing nodes in the
forward chain. These wait-to-batch-times (WTBT), which are added to EWRetail(i)→l(j)

and EWMnfct(i)→l(j) respectively, are expected to be equal to

WTBTRetail(i)→l(j) =
B − 1

2λRetail(i)→l(j)

WTBTMnfct(i)→l(j) =
B − 1

2λMnfct(i)→l(j)

This is because the first unit in a batch waits for B−1 other units to arrive and therefore
waits (B − 1)/λ time units whereas the last one does not have to wait at all to join the
batch. A similar approach can be found in Vandaele et al. (2003).

A stable system requires an effective utilisation level ρl′(i)→l(j) for each transportation
line to be smaller than 1, or

ρl′(i)→l(j) =
[λl′(i)→l(j)]batl′(i)→l(j)

ml′(i)→l(j)
< ρMax

l′(i)→l(j) < 1 (9)

By imposing an upper bound ρMax
l′(i)→l(j), we transform the total number of activated

vehicles ml′(i)→l(j) into a parameter with a fixed value, which avoids the introduction of
additional decision variables. This upper bound is an input parameter for the model, and
its value should be chosen in such a way that excess waiting times are avoided. Based
on our experience, we suggest to set it at approximately 90%. Equation 9 implies the
following lower bound on the number of vehicles

ml′(i)→l(j) =
[λl′(i)→l(j)]batl′(i)→l(j)

ρMax
l′(i)→l(j)

which must be rounded up to the nearest integer value according to

ml′(i)→l(j) = INT [ml′(i)→l(j) + 1] (10)

With respect to the SCV of the batch interarrival time at a transportation line
between locations (i) and (j), i.e. [c2

l′(i)→l(j)]ba, we have to distinguish two situations.
At the first level in the network, we add B IID interarrival times with a SCV of
either [c2

PM(1)→Retail(j)]a at the retailer in the reverse chain or [c2
RM(1)→Mnfct(j)]a at

the manufacturer in the forward chain, resulting in

[c2
PM(1)→Retail(j)]ba ≈ [c2

PM(1)→Retail(j)]a/B (11)

[c2
RM(1)→Mnfct(j)]ba ≈ [c2

RM(1)→Mnfct(j)]a/B (12)

On the other hand, for product flows between any two other locations further down
the network, we have to use another equation because the variability is changed by the
starting facility (i) at network level l′, which was an ending node (j) at an upstream
network level l. To this end, we first need the variability in departures from that facility,
which was found in Equation 5. So we have [c2

l(j)]bd = [c2
l′(i)]bd. Next, the product stream

that leaves this facility may be split over various transportation lines because of multiple
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destinations. This complicates the handling of the SCV’s, even though superposition
of product flows must not be performed because only one facility node (i) feeds this
line. The relation between [c2

l′(i)→l(j)]ba and [c2
l′(i)]bd has been proven in the literature

(Shanthikumar and Buzacott 1981, Lambrecht et al. 1998) and is given by

[c2
l′(i)→l(j)]ba ≈ πl′(i)→l(j)[c

2
l′(i)]bd + (1− πl′(i)→l(j)) (13)

with πl′(i)→l(j) the proportion of processed products at the current facility (i) that is
going to destination node (j) and equals = [λl′(i)→l(j)]ba/[λl′(i)]ba.

The final variability measure that needs to be derived, is the variability of the depar-
tures when products exit the transportation line. Although Buzacott and Shanthikumar
(1993) have presented several approximations for systems with multiple servers, for our
purposes it is reasonable to estimate it as (Hopp and Spearman 2000)

[c2
l′(i)→l(j)]bd ≈ 1 + (1− ρ2

l′(i)→l(j))([c
2
l′(i)→l(j)]ba − 1) +

ρ2
l′(i)→l(j)√
ml′(i)→l(j)

([c2
l′(i)→l(j)]t − 1) (14)

Using Equations (9), (10), (11), (12) and (13), we can formulate the mean unit waiting
time in the queue at each transportation line between locations (i) and (j) according to
the approximation from Whitt (1993) as

EWQl′(i)→l(j) ≈ φ(ρl′(i)→l(j), [c
2
l′(i)→l(j)]ba, [c

2
l′(i)→l(j)]t,ml′(i)→l(j)) ∗

(
[c2

l′(i)→l(j)]ba + [c2
l′(i)→l(j)]t

2

)
∗




ρ
(
√

2(ml′(i)→l(j)+1)−1)

l′(i)→l(j)

ml′(i)→l(j)(1− ρl′(i)→l(j))


 tl′(i)→l(j)

Little’s law can then be used to find the expected number of products at each
transportation line between locations (i) and (j), which will be used to calculate inventory
costs

WIPl′(i)→l(j) ≈ λl′(i)→l(j)EWl′(i)→l(j)

≈ λl′(i)→l(j)(WTBTl′(i)→l(j) + EWQl′(i)→l(j) + tl′(i)→l(j)) (15)

3.4. Objective Function and Constraints

Our reverse logistics network design model becomes
Max

prPM(1)

∑

i

λRetail(i)→PM(1) + prSM(1)

∑

i

λRetail(i)→SM(1)− REV

∑

l

∑

j

∑
q

FIXl(j)(q)Yl(j)(q)− FC
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∑

l

∑

j

∑
q

vcl(j)(q)λl(j)(q)− VC

∑

l′

∑

l

∑

i

∑

j

tcl′(i)→l(j)dl′(i)→l(j)[λl′(i)→l(j)]ba− TC

∑

l′

∑

l

∑

i

∑

j

hcl′(i)→l(j)WIPl′(i)→l(j) −
∑

l

∑

j

hcl(j)WIPl(j)− IC

∑

l′

∑

i

dcl′(i)


λl′(i) −

∑

l

∑

j

λl′(i)→l(j)


− DC

pcrPM(1)


1−

∑

j

ςPM(1)→Retail(j)


RPM(1)− PCR

pcdPM(1)

(
DPM(1) −

∑

i

λRetail(i)→PM(1)

)
−

pcdSM(1)

(
DSM(1) −

∑

i

λRetail(i)→SM(1)

)
PCD (16)

subject to
Balance constraints

Input RPM(1)

∑
j

ςPM(1)→Retail(j) =
∑
j

λPM(1)→Retail(j)

RRM(1)

∑
j

ςRM(1)→Mnfct(j) =
∑
j

λRM(1)→Mnfct(j)

Facility ∀l ∀j λl(j) =
∑
q

λl(j)(q)

=
∑
l′

∑
i
λl′(i)→l(j)

=
∑
l′

∑
i
ςl′(i)→l(j)ωl′→l(1− ωl′→Disp)λl′(i)

Demand
∑
i
λRetail(i)→PM(1) ≤ DPM(1)

∑
i
λRetail(i)→SM(1) ≤ DSM(1)

Fractions ∀l′ ∀i ∑
l

∑
j

ςl′(i)→l(j)ωl′→l ≤ 1

Capacity constraints

∀l ∀j ∀q λl(j)(q) ≤ Cl(j)(q)Yl(j)(q)

∀l ∀j ∀q λl(j)(q) ≥ Cl(j)(q−1)Yl(j)(q)

∀l ∀j ∑
q

Yl(j)(q) ≤ 1

Logical constraints
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∀l ∀j Yl(j)(q) = {0, 1}
∀l ∀l′ ∀i ∀j 0 ≤ ςl′(i)→l(j) ≤ 1

Apart from revenue (REV) that is generated when products leaving the retailer are
sold at some unit price prl(1) in either the primary (l = PM) or secondary market
(l = SM), the objective function consists of different types of costs. First of all, a
capacity dependent fixed cost FIXl(j)(q) is charged for each facility that is opened (FC).
It accounts for periodic costs like overhead, depreciation, interest, etc. Another cost
component is the variable processing cost (VC) that is correlated with the magnitude of
the product flow. The unit production cost vcl(j)(q) for e.g. material, labor and energy
costs vary with the size of the plant. Initially, this cost may decline as a function of
capacity because of economies of scale. This is due to lower operating costs and efficiency
gains, possibly reinforced by learning effects. However, at some point, the opposite
behavior occurs because the plant becomes too large to be efficient (diseconomies of
scale). Total transportation cost (TC) is assumed to be a linear function of total distance
travelled during the specific period, where the distance unit cost is denoted by tcl′(i)→l(j).
Furthermore, the batch size determines how often the distance dl′(i)→l(j) between two
nodes is covered. The number of shipments equals total flow rate divided by the truck
load, i.e. [λl′(i)→l(j)]ba. So TC is proportional to the volume too. Next, we have the
inventory costs (IC) associated with the work-in-process levels derived in Equations 8
and 15 for which it costs respectively hcl(j) and hcl′(i)→l(j) to hold one unit in stock
during the period under consideration. Products that leave the system at a facility (i) at
network level l′ are charged a unit disposal cost of dcl′(i) resulting in an overall disposal
cost (DC). Total disposal quantity is similar to Equation 2. Finally, a penalty cost is
incurred for the returned quantity that is not allowed from the primary market into the
network (PCR) and for the demand quantity that is not satisfied in each market type
(PCD).

Several constraints are required to obtain feasible solutions. Main constraints are the
various balance equations to control the product flow assignments. To begin with, both
input constraints ensure that all products, either returned from the primary market
or delivered from the raw material supply, are bounded by their respective maximum
values of RPM(1) and RRM(1). This is guaranteed by the general constraint concerning
the fractions where ωPM→Retail = 1 and ωRM→Retail = 1 at the initial network level
because of a single quality level upon arrival. This constraint regarding the fractions
ensures that a facility’s output will not exceed its input. These fractions are applied
to the net production quantity, i.e. total input reduced by the disposal fraction (see
the facility constraint). This means that when the fractional constraint is less than
100%, more units than the expected scrap leaves the system. This is useful when total
supply exceeds demand or downstream capacities, or when a faster response through less
volume is required. Concerning the facility constraints, we aggregate the production
quantities at all capacity levels (q) in a facility (j) to obtain its overall production
quantity λl(j). This value, which depends on all the feeding transportation lines, includes
the units that are discarded, or in other words, the quantity that leaves the queueing
system is determined after processing. The units that continue to downstream stations
are controlled by the scrap fraction, the predefined grade distribution and the product
flow assignment decision. We complete the discussion of the balance constraints with
the bounds on consumer market demand. Another constraint category is dedicated to
capacity limits. Total production quantity in facility (j) when installed at capacity level
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(q) should not exceed its upper bound, but at the same time should not go below its
lower bound, which equals the upper bound of the previous capacity level (q − 1). Note
that Cl(j)(0) = 0. The last capacity constraint forces the model to open only one capacity
level for each facility. Finally, there are some obvious logical constraints for binary and
fractional decision variables.

This objective function is defined for a steady state period. If the time horizon is
e.g. one year, all parameters must reflect this: the fixed cost being the overhead cost to
keep the operations running for one year, time parameters being expressed in years, rate
parameters being expressed per year, the holding cost being the average cost to hold one
unit in stock for one year, etc.

We can learn from Equation 16 that nonlinear queueing relationships are combined
with continuous and binary decision variables. As a result, the proposed model belongs to
the class of Mixed Integer Non-Linear problems (MINLP). These problems are difficult
to solve because they combine all the difficulties of two sub-problems that are both
NP-complete: the combinatorial nature of mixed integer programs and the difficulty
in solving nonlinear programs. Like for MILP problems, the computational complexity
grows exponentially with the number of discrete variables and the number of decisions
within each discrete variable (open or close), but in addition to this also with the number
of all variables entering nonlinearly into the model. This requires an advanced algorithm,
which is described in the next section.

4. Model Optimization

The continuous values for the fractions that assign the product flow to downstream
facilities (i.e. ςl′(i)→l(j)) and the binary values to open or close a facility (i.e. Yl(j)(q))
are the decision variables in the ASP model. In order to determine their solution value,
we apply the Differential Evolution (DE) heuristic, a member of the broader family of
Genetic Algorithms. Since this approach is similar to Lieckens and Vandaele (2007), only
the major steps of DE are briefly outlined. In comparison with that study, the ASP model
developed here is to be applied to much larger, more realistic situations. To that end,
we optimize fractions assigned to a facility, instead of absolute values for the flow at a
facility’s inbound and outbound. This approach limits the number of constraints because
the additional check that its output does not exceed its input can be removed. Another
improvement is the alternative method to handle all the constraints in the model. In this
section, we prefer to focus on that method.

The DE algorithm is an appropriate solution method for our network design problem
because the following characteristics, which are listed by Storn and Price (1997), apply

• it is simple, fast and robust;
• it has a superior global optimization ability;
• it can easily be implemented in a parallel computing environment, to speed up the

optimization;
• it is effective in nonlinear optimization and can be very easily adapted for mixed

parameter optimization;
• it handles undifferentiable objective functions;
• it operates on flat surfaces;
• it can provide multiple solutions in a single run.

In addition, after studying seven difficult design and control MINLP problems in
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chemical engineering, Babu and Angira (2002) conclude that the technique of DE is
the best evolutionary computation method. According to Lampinen and Zelinka (1999),
DE outperforms any of the competing methods like branch & bound using sequential
quadratic programming, integer-discrete-continuous nonlinear programming, simulated
annealing, genetic algorithm, nonlinear mixed-discrete programming, . . . , also for difficult
nonlinear objective functions with multiple non-trivial constraints.

As an improved version of genetic algorithms, DE belongs to the class of evolutionary
algorithms (EA) that are based on the principle of survival of the fittest. It is basically
a computerised, population based search and optimization algorithm that differs from
EA’s in the way the mutation is driven. Instead of using the output of a predefined
distribution function, DE uses the difference of randomly sampled pairs of object vectors.
Their response to the objective function determines their distribution, which on its
turn determines the distribution of the object vector differences. So the mutation that
improves the object vectors reflects information of the objective function it is optimizing.
Instead of using only local information for each object vector, DE mutates all object
vectors with the same universal distribution. In this way, there is a higher chance to
cover the whole search space and to find a global optimum.

The method is defined as a parallel direct search method which operates on a
population PG of constant size that is associated with each generation G and consists
of NP vectors, or candidate solutions, ~Xp,G with p = 1, 2, . . . , NP . Each vector ~Xp,G

consists of D decision variables Xo,p,G with o = 1, 2, . . . , D. This is briefly summarised
as

PG =
{

~X1,G, ~X2,G, . . . , ~Xp,G, . . . , ~XNP,G

}
,

~Xp,G = {X1,p,G, X2,p,G, . . . , Xo,p,G, . . . , XD,p,G} ,

G = 1, . . . , Gmax,

NP ≥ 4.

Each fractional product flow assignment and each binary value to open or close a facility
are then considered as the decision variables, ςl′(i)→l(j) ≡ Xo,p,G and Yl(j)(q) ≡ Xo,p,G.
Note that we can omit the decision variable ςl′(i)→l(j) when ωl′→l = 0. This is important
from a computational perspective because it limits the value of D for this NP-hard
problem.

The different steps of the DE algorithm as used and described in more detail in Lieckens
and Vandaele (2007) are now listed.

Step 1: Choose a strategy. Although many different schemes exist (Storn and Price 1997),
we only use the DE/rand/1/bin scheme in the application in Section 5. See below
for more details.

Step 2: Initialise the key parameters of control. The user-defined control parameters,
which remain constant during the search process, are the crossover constant
CR, the population size NP , the mutation scaling factor F , the coefficient of
combination K and the maximum number of generations Gmax.

Step 3: Initialise the population. The initial population PG=0 provides us with a starting
solution for optimum seeking and is chosen randomly within the bounds of the
parameters that are set by the constraints. It should cover the entire variable
space. A population for G ≥ 0 is allowed to contain members that have infeasible
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values for the decision variables with respect to the model constraints (see below
in this section), but not with respect to their specific upper and lower bounds
(see Step 6).

Step 4: Evaluate the profit of each vector in the population and find the one with the
highest profit.

Step 5: Perform mutation and recombination. Mutation aims to keep a population robust
and to search a new area. In order to move existing object vectors ~Xp,G in the right
direction by the right amount at the right time, DE adds the weighted difference
of randomly sampled pairs of vectors in the current population PG until a mutated
vector ~Vp,G+1 is obtained. In order to reinforce prior successes, a recombination
or crossover operation is required as a complementary step to mutation. It creates
a trial vector ~Up,G+1 by selecting elements from the current target vector ~Xp,G

and the mutated donor vector ~Vp,G+1. The crossover constant CR controls the
probability that a trial vector element will come from the mutated vector ~Vp,G+1,
instead of from the current vector ~Xp,G, and therefore ranges from 0 to 1.

Step 6: Check lower and upper bounds of the variables. The parameters of the child
vectors must be checked for boundary conditions. In the ASP model, these bounds
correspond to the logical constraints in Section 3.4. If a mutated parameter
exceeds such bound, we set it equal to the middle of its original parent value
and that boundary value.

Step 7: Perform selection. To select the vectors for the next generation, each child has to
be evaluated by the objective function and compared with its parent’s objective
value. If the profit of the child is greater than or equal to the profit of its parent,
it replaces that parent in the population, otherwise the parent will be retained
in the next generation. As a result, all the individuals of the next generation are
as good as or better than their counterparts in the current generation.

Step 8: Repeat the evolutionary cycle until Gmax is reached, or even better, until all
vectors are converged to a single solution with precision ε1. This is true when∣∣Best member - Worst member

Worst member

∣∣ < ε1. The smaller the ε1-value, the longer the algorithm
will search for a solution, but the higher its quality.

In the DE/rand/1/bin scheme, the population of child or trial vectors P
′
G+1 = ~Up,G+1 =

Uo,p,G+1 for each parent or target vector Qo,p,G is created as follows

Uo,p,G+1 =
{

Vo,p,G+1 = Qo,r3,G + F (Qo,r1,G −Qo,r2,G) if R (0) ≤ CR ∨ o = k
Qo,p,G otherwise

where

• p = 1, ..., NP > 3, o = 1, ..., D

• k ∈ {1, ..., D}, random decision variable index
• r1, r2, r3 ∈ {1, 2, ..., NP} randomly selected, but r1 6= r2 6= r3 6= p

• CR ∈ [0, 1] , F ∈ (0, 1+], and R (0) ∈ [0, 1] is a uniformly random number

The /1/ in this scheme means that there is one paired difference of randomly (/rand/)
chosen vectors, weighted with F , that drives the mutation. The randomly chosen indices
r1, r2 and r3 must be mutually different, and different from the current parent object
vector p. Consequently, NP must be greater than 3. Other, random integer values for
r1, r2 and r3 are chosen for each individual candidate solution p. The index k ensures
that each child vector will differ from its parent in the previous generation by at least



September 2, 2010 13:53 International Journal of Production Research IJPR˙CLSC

Multi-Level Reverse Logistics Network Design Under Uncertainty 15

one variable. A new random integer value is assigned to k prior to the construction of
each child vector. The binomial scheme (/bin/) takes parameters from ~Vp,G+1 each time
when R (0) ≤ CR, otherwise the parameters come from ~Qp,G. We refer to Storn and
Price (1997), Lampinen and Zelinka (1999), and Lin et al. (1999) for more details about
the mutation schemes, values for the control parameters, and other stopping criteria.

Constraints limit the feasible solutions to a subset of the total search space. A popular
approach is to implement them as ‘soft’ constraints (Michalewicz and Schoenauer 1996).
This means that penalty functions cause an object vector’s profit to decrease with both
the magnitude and number of its constraint violations. In this way, the problem is
converted into an unconstrained problem by penalising the infeasible solutions. Each
constraint is reformulated in such a way that it is greater than zero when it is violated.

The main problem with the penalty function approach is finding appropriate penalty
values, clearly when there are many constraints (Powell 1978). Large penalties may
result in both infinite objective values, which are difficult to handle by computers, and
high convergence rates, which lead to suboptimal solutions. On the other hand, low
penalties may result in either a slow convergence towards feasible solutions or even
worse infeasible solutions because the constraint violation does not contribute a high
cost to the penalty function. Finding an appropriate setting is time consuming because
it requires multiple runs, each time adjusting the penalty parameters by trial-and-error.
Therefore, we prefer to use the alternative constraint handling method from Lampinen
(2001), which is summarised as

~Xp,G+1 =





~Up,G+1 if









∀m ∈ {1, 2, ..., υ} : gm

(
~Up,G+1

)
≤ 0 ∧ gm

(
~Xp,G

)
≤ 0

∧
f

(
~Up,G+1

)
≥ f

(
~Xp,G

)

∨



∀m ∈ {1, 2, ..., υ} : gm

(
~Up,G+1

)
≤ 0

∧
∃m ∈ {1, 2, ..., υ} : gm

(
~Xp,G

)
> 0

∨



∃m ∈ {1, 2, ..., υ} : gm

(
~Up,G+1

)
> 0

∧
∀m ∈ {1, 2, ..., υ} :
Max

[
gm

(
~Up,G+1

)
, 0

]
≤ Max

[
gm

(
~Xp,G

)
, 0

]

~Xp,G otherwise

where gm

(
~Z
)

represents the constraint for a vector ~Z. The trial vector ~Up,G+1 when

compared with the current population member ~Xp,G will be selected if

• all constraints for ~Up,G+1 and ~Xp,G are satisfied, but ~Up,G+1 has a better profit value
• all constraints for ~Up,G+1 are satisfied but not for ~Xp,G

• not all constraints for ~Up,G+1 are satisfied, but it violates all the constraints equal or
less than ~Xp,G

Note that the objective function is not evaluated until all the constraints are feasible,
which reduces computation time and results in a fast convergence towards the feasible
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regions of the search space. In addition, the algorithm will not always have to go through
all the constraints, which further decrease computation time. This is interesting when
computationally expensive objective and constraint functions are present. Lampinen
reports for highly constrained problems that the first feasible solution is found 95%-99%
faster than random search. Furthermore, 1000 independent optimization runs provided
the same optimum solution that was equal or better than results found in the literature
with other methods.

According to the procedure above, the constraints in our model are handled as follows

∑
i
λRetail(i)→PM(1) −DPM(1) ≤ 0

∑
i
λRetail(i)→SM(1) −DSM(1) ≤ 0

∀l′ ∀i ∑
l

∑
j

ςl′(i)→l(j)ωl′→l − 1 ≤ 0

∀l ∀j ∀q λl(j)(q) − Cl(j)(q)Yl(j)(q) ≤ 0
∀l ∀j ∀q Cl(j)(q−1)Yl(j)(q) − λl(j)(q) ≤ 0
∀l ∀j ∑

q
Yl(j)(q) − 1 ≤ 0

5. Model Application

The ASP model is now applied to an examplary, but realistic case study. The structure
is based on the CLSC of Hewlett-Packard in the US printer industry (Guide et al. 2006),
but the number of nodes is increased and the data is manipulated. The reason is that
we want to verify whether or not the proposed optimization procedure with the adapted
DE constraint handling method in combination with fractional flow assignments still
efficiently performs for large real world problems that are modelled according to the
relationships developed in Section 3. We prefer not to gain managerial insight based on a
sensitivity analysis of various parameters. Instead, we formulate some scenarios for which
good solutions can be proposed in advance. Comparison with the DE result will confirm
the high performance of the algorithm.

5.1. Data

The CLSC structure for the application can be found in Figure 1, except that multiple
potential locations may occur. The data for the scenarios below are based on Tables 1
to 4. Parameter dimensions are as follows: financial parameters are in euro, production
capacities are in units per year, distances are in kilometers and transportation times are
in the number of eight-hour-working days. Fixed costs are initially set to zero, while
disposal, penalty and unit transportation costs are always zero.

In the reverse chain, maximum 3000 units return each year, of which 10% is discarded
after evaluation and 1/3 can be resold as-new. The maximum demand for low grade
products in the secondary market equals the maximum volume with this low quality
level that can leave the system, or (1− 0.1)× 2/3× 3000 = 1, 800 units. In the forward
chain, the maximum amount of raw material supply is set equal to the sum of the yearly
net demand for new products (30000) plus the yearly returned amount (3000). The reason
is that we want the model to decide about the best mix of new and as-new products to
fulfill the total gross demand of 33000 per year.

Two capacity levels are possible when multiple facility nodes exist for a specific process.
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The first capacity level always equals the maximum product flow that can possibly enter
the respective network level, which is based on maximum input quantities, minimum
disposal fractions and routing probabilities. The second capacity level is this maximum
product flow divided by the number of facility nodes at that network level.

Since it is mainly the WTBT and not the process of taking back products that
determines the delays at the retailer, an infinite capacity is assumed here. We assume
a batch size of 50 for all vehicles, exponentially distributed transportation times and
no transportation from and to the input/output market. The use of highly variable
return arrivals (SCV=2) and more stable raw material supplies (SCV=0.5) indicates the
difference in variability between both chains. Also, the variability of the process times
is supposed to be high in the reverse chain (SCV=1.5) and low in the forward chain
(SCV=0.25).

5.2. Scenario Analysis

In this section, four scenarios are solved by DE and compared with an as good as possible
solution that we suggest based on insight in the structure of the case. These solutions
are referred to as ’quick and dirty’ solutions (QDS). Table 6 presents their performance.
We used the DE/rand/1/bin scheme with the following parameters: F = 0.6, CR = 0.99,
ε = 10−7 and NP = 4×D, with D = 122. Table 5 summarises the computation effort on
an Intel Core Duo Processor T2400, 1.83GHz. Note that we initialise the fractions in the
population by using an upper bound of one divided by the number of facility nodes at the
downstream network level. From the second generation on, the upper bound is increased
to one. In this way, the whole search space is covered, initial solutions are feasible and
fast convergence to local optima is avoided.

Scenario 1 is based on Tables 1 to 4 with q = 1 for all facilities, but with tl′(i)→l(j) =
1,∀l′, l, i, j. This means that all facilities are equally preferred, so a good QDS is a network
where the total product flow is evenly distributed over all locations. From the results in
Tables 6 and 7, we can conclude that even though the same revenue is generated, the DE
algorithm is able to find an even better solution by re-assigning the product flows in such
a way that less inventory costs are incurred. Evaluation of the objective function for three
other open locations with the same volumes learns that alternative, but similar network
layouts have the same profit. In Scenario 2, transportation times from Table 4 are used.
This means that faster transportation lines should be preferred, so a good QDS is a
network where the product flow assignments are adapted accordingly. For this solution,
we applied fractions ςl′(i)→l(j) taking into account the relative share of the transportation
times. From the results in Tables 6 and 8, we can conclude that less product flow is
assigned to facility locations with a higher index (i.e. longer transportation time), and
that DE finds a better network, not only by changing the layout, but also by reducing the
input. Scenario 3 is the same as Scenario 1, but with q = 2 in case of multiple facilities.
For QDS, we opt for the same input found by DE for this scenario 2, but with the
product flow distribution alike the QDS in Scenario 1. From the results in Tables 6 and
9, we can conclude that the optimum volume in the network is reduced significantly, and
that the product flow distribution according to DE is better due to less inventory costs.
Scenario 4 is the same as Scenario 1 but with fixed costs as in Table 10. These values
are chosen in such a way that the DE network layout from Scenario 1 yields a profit at
approximately 1/3 of its original profit (see Table 6). That layout is an evident QDS. A
better solution according to DE is to close the reverse chain and to sell less products in
the forward chain (i.e. 31237 units). It is better to send this lower volume through only
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one distribution centre, even though this strategy generates more inventory costs and less
revenue, but it mainly saves on fixed costs. For all these scenarios, various sensitivities
for minor deviations in the product flow and for other open location combinations have
been performed nearby the DE solution, but none of them reveals a better network.

6. Conclusion

An Advanced Strategic Planning model for the design of complex Closed-Loop Supply
Chains with multiple levels and a high degree of uncertainty is developed by integrating
queueing relationships that measure the impact of delays and inventory levels. This
combinatorial and nonlinear problem is difficult to solve. Different scenarios on a realistic,
but structured problem for which good solutions can be defined in advance show that
the Differential Evolution algorithm is a very powerful optimization tool. It outperforms
these solutions by adjusting the location, re-assigning the product flow and reducing the
input quantities, which proofs that the trade-offs in the model are perfectly handled.
Furthermore, its stochastic search procedure may lead to alternative solutions that differ
from those found by deterministic methods.
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Appendix A. Glossary
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Table 1. Facility data.

l j q Cl(j)(q) [c2
l(j)]p vcl(j)(q) ωl→Disp hcl(j)

Retail 1 1 ∞ 1 0 0 0
Eval 1, 2, ..., 9 1 3000 1.5 1.5 10% 0.25

2 333.33 1.5 1.5 10% 2.5
Rem 1, 2, ..., 6 1 1800 1.5 2.5 0 0.25

2 300 1.5 2.5 0 0.25
Mnfct 1 1 33000 0.25 50 0 1.25
Distr 1, 2, 3 1 33000 0.25 20 0 1.25

2 11000 0.25 20 0 1.25
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Table 2. Input/Output data.

Input Output
l′ l Rl′(1) [c2

l′(1)→l(1)]a Dl′(1) prl′(1)

PM Retail 33000 0.5 33000 200
SM Retail 3000 2 1800 150
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Table 3. Transportation data ∀l′, l, i, j.

ρMax
l′(i)→l(j) 90%

[c2
l′(i)→l(j)]t 1

B 50
hcl′(i)→l(j) 0.25 (Reverse) - 1.25 (Forward)
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Table 4. Assignment probability and transportation time data (ωl′→l|tl′(i)→l(j)).

Eval
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Retail(1) 1|1 1|2 1|3 1|4 1|5 1|6 1|7 1|8 1|9
Rem Distr
(1) (2) (3) (4) (5) (6) (1) (2) (3)

Eval(1) 0.67|1 0.67|2 0.67|3 0.67|4 0.67|5 0.67|6 0.33|1 0.33|2 0.33|3
Eval(2) 0.67|1.5 0.67|2.5 0.67|3.5 0.67|4.5 0.67|5.5 0.67|6.5 0.33|1.5 0.33|2.5 0.33|3.5
Eval(3) 0.67|2 0.67|3 0.67|4 0.67|5 0.67|6 0.67|7 0.33|2 0.33|3 0.33|4
Eval(4) 0.67|2.5 0.67|3.5 0.67|4.5 0.67|5.5 0.67|6.5 0.67|7.5 0.33|2.5 0.33|3.5 0.33|4.5
Eval(5) 0.67|3 0.67|4 0.67|5 0.67|6 0.67|7 0.67|8 0.33|3 0.33|4 0.33|5
Eval(6) 0.67|3.5 0.67|4.5 0.67|5.5 0.67|6.5 0.67|7.5 0.67|8.5 0.33|3.5 0.33|4.5 0.33|5.5
Eval(7) 0.67|4 0.67|5 0.67|6 0.67|7 0.67|8 0.67|9 0.33|4 0.33|5 0.33|6
Eval(8) 0.67|4.5 0.67|5.5 0.67|6.5 0.67|7.5 0.67|8.5 0.67|9.5 0.33|4.5 0.33|5.5 0.33|6.5
Eval(9) 0.67|5 0.67|6 0.67|7 0.67|8 0.67|9 0.670|10 0.33|5 0.33|6 0.33|7

Mnfct(1) 0|0 0|0 0|0 0|0 0|0 0|0 1|10 1|20 1|30
Retail(1) 1|1 1|1.5 1|2 1|2.5 1|3 1|3.5 1|10 1|20 1|30
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Table 5. Computational performance.

Generations Mutations Function Evaluations Time (min)

Average 195662 357846 2663298 183
Standard Deviation 193239 311664 2683270 183
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Table 6. Scenario performance.

Input Output
Scenario SM PM SM PM REV FC V C IC Profit ∆

1 DE 3000 32100 1800 33000 6870000 0 2274000 164258 4431742 +1.8%
QDS 3000 32100 1800 33000 6870000 0 2274000 241661 4354339

2 DE 2993 32029 1796 32927 6854800 0 2268970 1130693 3455137 +23%
QDS 3000 32100 1800 33000 6870000 0 2274000 1788072 2807928

3 DE 2133 29669 1280 30309 6253800 0 2096030 511709 3646061 +0.2%
QDS 2133 29669 1280 30309 6253800 0 2096030 517278 3640492

4 DE 0 31237 0 31237 6247400 1852293 2186590 336110 1872407 +26.7%
QDS 3000 32100 1800 33000 6870000 2954491 2274000 164258 1477251
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Table 7. Scenario 1.

Eval
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DE Retail(1) 0 989 0 1013 0 0 998 0 0
QDS Retail(1) 333 333 333 333 333 333 333 333 333

Rem Distr
(1) (2) (3) (4) (5) (6) (1) (2) (3)

DE Eval(2) 1 2 0 298 292 0 1 295 1
Eval(4) 1 291 313 2 1 0 0 303 0
Eval(7) 295 0 1 1 0 302 298 1 0

Mnfct(1) 6398 6185 19517
Retail(1) 297 293 314 301 293 302 6698 6784 19518

QDS Eval(i) ∀i 33 33 33 33 33 33 33 33 33
Mnfct(1) 10700 10700 10700
Retail(1) 300 300 300 300 300 300 11000 11000 11000
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Table 8. Scenario 2.

Eval
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DE Retail(1) 1738 1255 0 0 0 0 0 0 0
QDS Retail(1) 600 533 467 400 333 267 200 133 67

Rem Distr
(1) (2) (3) (4) (5) (6) (1) (2) (3)

DE Eval(1) 795 0 208 40 0 0 0 226 296
Eval(2) 0 599 105 49 0 0 174 203 0

Mnfct(1) 31207 821 0
Retail(1) 795 599 312 89 0 0 31381 1250 296

QDS Eval(1) 103 86 69 51 34 17 90 60 30
Eval(2) 87 73 60 47 33 20 75 53 32
Eval(3) 73 62 52 41 31 21 62 47 31
Eval(4) 60 52 44 36 28 20 51 40 29
Eval(5) 48 42 36 30 24 18 42 33 25
Eval(6) 38 33 29 24 20 16 33 27 21
Eval(7) 28 25 22 18 15 12 24 20 16
Eval(8) 18 16 14 12 10 9 16 13 11
Eval(9) 9 8 7 6 5 4 8 7 6

Mnfct(1) 16050 10700 5350
Retail(1) 463 398 333 267 202 137 16450 11000 5550
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Table 9. Scenario 3.

Eval
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DE Retail(1) 238 239 234 238 239 235 238 238 234
QDS Retail(1) 237 237 237 237 237 237 237 237 237

Rem Distr
(1) (2) (3) (4) (5) (6) (1) (2) (3)

DE Eval(1) 0 0 0 0 142 0 70 1 0
Eval(2) 0 143 0 0 0 0 0 71 0
Eval(3) 0 0 0 0 72 68 0 70 0
Eval(4) 0 0 0 143 0 0 71 0 0
Eval(5) 0 0 0 0 0 143 0 72 0
Eval(6) 71 69 0 1 0 0 0 70 0
Eval(7) 0 0 143 0 0 0 0 0 71
Eval(8) 143 0 0 0 0 0 71 0 0
Eval(9) 0 0 71 70 0 0 0 0 70

Mnfct(1) 9888 9816 9965
Retail(1) 213 212 213 214 215 212 10101 10101 10107

QDS Eval(i) ∀i 24 24 24 24 24 24 24 24 24
Mnfct(1) 9890 9890 9890
Retail(1) 213 213 213 213 213 213 10103 10103 10103
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Table 10. Scenario 4: Fixed costs ∀j.

Eval(j) Rem(j) Mnfct(j) Distr(j)

29342 14671 1389220 463073
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Table A1. Overview of the
notation for the network
nodes.

Mnfct Manufacturer
Rem Remanufacturer
Eval Evaluation centre

Retail Retailer
Distr Distribution
Disp Disposal
PM Primary market
SM Secondary market
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Table A2. Overview of the notation for the production process at network level
l, with l ∈ L = {Mnfct,Rem,Eval,Retail,Distr}.

WIPl(j) average number of units at facility (j)
EWl(j) average lead time at facility (j)

EWQl(j) average waiting time in the queue of batches at facility (j)
Yl(j)(q) binary decision variable to open facility (j) with capacity level q

λl(j) average arrival rate at facility (j)
λl(j)(q) average arrival rate at facility (j) with capacity level q
Cl(j)(q) maximum production quantity of facility (j) with capacity level q

tl(j) average ’effective’ process time in facility (j)
µl(j) average ’effective’ process rate in facility (j)
ρl(j) utilisation of facility (j)

[c2
l(j)]p SCV of the unit production time in facility (j)

[c2
l(j)]bp SCV of the batch production time in facility (j)

[c2
l(j)]bd SCV of the batch interdeparture time from facility (j)

[c2
l(j)]ba SCV of the batch interarrival time at facility (j)

FIXl(j)(q) fixed cost for facility (j) with capacity level q
vcl(j) variable unit cost in facility (j)
dcl(j) unit disposal cost in facility (j)
hcl(j) unit holding cost in facility (j)
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Table A3. Overview of the notation for the transportation process between facility
(i) at network level l′ and facility (j) at network level l, with l, l′ ∈ L =
{Mnfct, Rem, Eval, Retail, Distr} and l′ 6= l.

WIPl′(i)→l(j) average number of units
EWl′(i)→l(j) average lead time

EWQl′(i)→l(j) average batch waiting time in the queue
WTBTl′(i)→l(j) average wait-to-batch-time

λl′(i)→l(j) average arrival rate (l, l′ ∈ L ∪ {PM, SM})
[λl′(i)→l(j)]ba average batch arrival rate
[c2

l′(i)→l(j)]ba SCV of the batch interarrival times

[c2
l′(i)→l(j)]bd SCV of the batch interdeparture times

tl′(i)→l(j) average ‘effective’ transportation time
[c2

l′(i)→l(j)]t SCV of the ‘effective’ transportation time
ρl′(i)→l(j) transportation utilisation

ml′(i)→l(j) number of transportation vehicles
ωl′→l predefined fraction to direct the flow between two network levels,

used for flow feasibility, grade classification and scrap (l ∈ L ∪ {Disp})
ςl′(i)→l(j) undefined fraction to direct the flow between (i) and (j),

a decision variable with l, l′ ∈ L ∪ {PM, SM})
dl′(i)→l(j) distance
tcl′(i)→l(j) distance unit cost
hcl′(i)→l(j) unit holding cost

B uniform batch size
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Table A4. Overview of the notation for the supply/demand process.

RPM(1) supply of returns
RRM(1) supply of raw materials
DPM(1) demand for new products
DSM(1) demand for remanufactured products

[c2
PM(1)→Retail(j)]a SCV of unit interarrival times at retailer (j)

[c2
RM(1)→Mnfct(j)]a SCV of unit interarrival times at manufacturer (j)

pcrPM(1) unit penalty cost for uncollected returns from PM
pcdPM(1) unit penalty cost for unsatisfied demand in PM
pcdSM(1) unit penalty cost for unsatisfied demand in SM
prPM(1) unit selling price in PM
prSM(1) unit selling price in SM
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Figure 1: Structure of the CLSC.


