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Abstract

This paper develops a framework based on convex optimization and eco-
nomic ideas to formulate and solve approximately a rich class of dynamic
and stochastic resource allocation problems, fitting in a generic discrete-state
multi-project restless bandit problem (RBP). It draws on the single-project
framework in the author’s companion paper “Restless banditmarginal pro-
ductivity indices I: Single-project case and optimal control of a make-to-stock
M/G/1 queue,” based on characterization of a project’smarginal productiv-
ity index (MPI). Our framework significantly expands the scope of Whittle
(1988)’s seminal approach to the RBP. Contributions include: (i) Formulation
of a generic multi-project RBP, and algorithmic solution via single-project
MPIs of a relaxed problem, giving a lower bound on optimal cost perfor-
mance; (ii) a heuristic MPI-basedhedging point and index policy; (iii) appli-
cation of the MPI policy and bound to the problem of dynamic scheduling
for a multiclasscombined MTO/MTSM/G/1 queue with convex backorder
and stock holding cost rates, under the LRA criterion; and (iv) results of a
computational study on the MPI bound and policy, showing thelatter’s near-
optimality across the cases investigated.

1 Introduction

This paper develops a framework based on convex optimization and economic ideas
to formulate and solveapproximatelya rich class of dynamic and stochastic re-
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source allocation problems, fitting in a generic discrete-state multi-projectrestless
bandit problem (RBP). It draws on the single-project framework in the author’s
companion paper Niño-Mora (2004), based on a unifying definition and character-
ization of a project’smarginal productivity index (MPI).

The approach is deployed to address an important problem in manufactur-
ing applications, concerning the dynamic scheduling of a multi-product combined
make-to-order (MTO)/make-to-stock (MTS)production-inventory facility, modeled
by a multiclass MTO/MTSM/G/1 queue with convex backorder/stock holding
cost rates. Results include ahedging point and index scheduling policycoming
close to minimizing thelong-run average (LRA)cost rate per unit time, and alower
boundon optimal LRA cost performance.

Our framework significantly expands the scope of Whittle (1988)’s seminal
approach to the multi-project RBP. Whittle considered a model concerning the op-
timal allocation of effort to a collection of discrete-state Markovianrestless bandit
(RB)projects, i.e. binary-action (work/rest)Markov decision processes (MDPs), a
fixed number of which must be active at each time. The special case whereone
project must be active, and rested projects do not change state, recovers the classic
multi-armed bandit problem (MBP), solved optimally by theGittins indexpolicy.
See Gittins (1979). The increased modeling power of the RBP comes at the expense
of tractability, as it isP-space hard. See Papadimitriou and Tsitsiklis (1999). Whit-
tle (1988) introduced an indexν(i) attached to an RB project, depending only on
its statei, and proposed as a heuristic the resulting index policy: Work at each time
on the required number of projects having larger index values. TheWhittle index
emerges in the solution of arelaxed problem, which further gives aperformance
bound, in terms of theLagrange multiplierassociated to an average-activity con-
straint. Such index policy is optimal in the MBP case, and asymptotically optimal
under certain conditions. See Weber and Weiss (1990).

Yet the Whittle index doesnot exist for all RB projects, only for a restricted
class of so-calledindexableprojects. Whittle (1988) stated:

“... one would very much like to have simple sufficient conditions for
indexability; at the moment, none are known.”

Such scope limitation is particularly severe in the multiclass queueing scheduling
model considered in this paper, which is readily formulatedas a multi-project RBP.
The Whittle index does not exist for the constituent projects under the LRA crite-
rion, as pointed out by Whittle (1996, Ch 14.7) himself, and by Veatch and Wein
(1996). The latter authors state:

“In contrast, the backorder problem is not indexable.ν(x) does not
exist (i.e. equals−∞) for all x. The difficulty is thatν is a La-
grange multiplier for the constraint on the time-average number of ac-
tive arms. For the backorder problem, any stable policy mustserve a
time-average ofρ classes, so relaxing this constraint does not change
the optimal value, and the Lagrange multiplier does not exist. In fact,
no scheduling problem with a fixed utilization will be indexable.”

In the companion paper Niño-Mora (2004) (cf. also Niño-Mora (2003)), we
resolved both issues. Thus, we introduced a unifying definition of MPI for a generic

2



RB project, of which the Whittle index is a special case. We further introduced an
MPI relative to a new,mixed LRA-bias criterion, which applies to the scheduling
model of concern in this paper, where the Whittle index does not exist. We further
furnished acomplete characterizationof indexability (existence of the MPI) for a
generic RB project, showing its equivalence to satisfaction by the project of the
economiclaw of diminishing returns (LDR)to effort. The paper further presented
sufficient conditions for indexability, based on satisfaction by project performance
measures ofpartial conservation laws (PCLs), extending to the countable-state
case the finite-state PCL framework introduced by the authorin Niño-Mora (2001a,
2002); andPCL-indexabilityanalyses of single-class service-controlled MTO and
MTSM/G/1 queues with convex holding cost rates, which are the RB projects in
the multiclass model considered in this paper.

Extensive research efforts have been devoted to the design of scheduling poli-
cies for multiclass queues, focusing either on thepureMTO or MTS cases. In the
MTO case, most work has assumed linear holding cost rates, under whichstatic
index rulessuch as thecµ rule are often optimal. See, e.g. Niño-Mora (2001b) and
the references therein. Haji and Newel (1971) argued the importance of incorporat-
ing insteadconvex increasing costs of delay, and proposed a correspondingdynamic
index rule. Their results were extended by Van Mieghem (1995), who established
a form of heavy-traffic optimality for such policy. Ansell etal. (2003) and Glaze-
brook et al. (2003) have addressed the pure MTO case of the model considered in
this paper. They have sought to overcome the nonexistence ofthe Whittle index
under the LRA criterion by showing its existence under thediscounted criterion.
Then, taking the limit of the discounted Whittle index scaled by the discount factor
as this vanishes gives a convenient LRA index. They establish such results in the
MTO M/M/1 andM/G/1 cases by an ad hoc DP analysis, under the assumption
that holding cost rates areconvex increasingin the queue’s state. Their approach,
however, fails to produce bounds on optimal LRA cost performance; and does not
apply to the MTS case, where holding cost rates are V-shaped in the natural queues’
state ofnet backorder levels. See Section 2.

The problem of scheduling a multiclass MTS queue to minimizediscounted
or LRA linear backorder and stock holding costs has attracted major research ef-
forts since the 1990s. A variety of policies has been proposed, characterized by
a hedging point and index policy. In the standard application to a multi-product
production-inventory facility, the hedging point corresponds to abase-stock level
for each product, and determines work vs. idling decisions:the facility works as
long as there is a product whose stock level is below its base-stock level. The in-
dex policy dynamically determines which product is produced, among those whose
stock is not full. See, e.g. Zheng and Zipkin (1990), Wein (1992), Zipkin (1995),
Veatch and Wein (1996), and Peña-Pérez and Zipkin (1997).Further, Ha (1997),
and de Véricourt et al. (2000) have shed light on the structure of optimal policies,
justifying some of the proposed heuristics. In recent work,Dusonchet and Hongler
(2003) have calculated thediscountedWhittle index for an MTSM/M/1 queue
with linear backorder and stock holding cost rates. However, they discard appli-
cation of such approach under the LRA criterion, due to the nonexistence in such
case of the Whittle index. We remark that, while the prevailing assumption of lin-
ear stock holding costs can be reasonable in practice, it appears more realistic to
consider nonlinear convex increasing backorder cost rates, as we do in this paper.
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Research oncombinedMTO/MTS multiclass queueing systems has received
relative scarce attention, mostly addressing issues of performance analysis and
“MTO vs. MTS” decisions. Such systems model flexible production facilities
where standard products are MTS, while custom products are MTO. Such com-
bined mode of operation is becoming increasingly pervasivein manufacturing,
which underscores the importance of addressing the corresponding scheduling prob-
lem. To the best of our knowledge, this paper is the first to address the latter. We
refer the reader to Soman et al. (2004) for a comprehensive review of work on
combined MTO/MTS systems.

1.1 Contributions

Motivated by the issues discussed above, this paper presents the following contri-
butions: (i) Formulation of a generic multi-project RBP, and algorithmic solution
via single-project MPIs of arelaxed problem, giving a lower bound on optimal cost
performance; (ii) a heuristic MPI-basedhedging point and index policy; (iii) ap-
plication of the MPI policy and bound to the problem of dynamic scheduling for
a multiclasscombined MTO/MTSM/G/1 queue with convex backorder and stock
holding cost rates, under the LRA criterion; and (iv) results of a computational
study on the MPI bound and policy, showing the latter’s near-optimality across the
cases investigated.

1.2 Structure of the paper

The rest of the paper is organized as follows. Section 2 introduces our motivating
problem, concerning the dynamic scheduling of a multiclassMTO/MTS queue.
Section 3 extends the single-project solution framework via MPIs in Niño-Mora
(2004) to develop a heuristic hedging point and index policyfor a generic multi-
project RBP. Section 4 deploys the RBP policy and bound in themodel of concern.
Finally, Section 5 reports the results of a computational study.

In what follows, we refer the reader to the companion paper Niño-Mora (2004)
for required background material on the single-project case.

2 Motivating problem

Consider a model for a multi-product production-inventoryfacility, where a product
range labeled byk ∈ K = {1, . . . ,K} dynamically vies for access to shared
production capacity. Products are partitioned asK = K

MTO ∪ K
MTS. Products

k ∈ K
MTO mustbe MTO, whereas productsk ∈ K

MTS can be MTS, allowing
backorders. Note that such setting includes thepure MTO case(KMTS = ∅) and
thepure MTS case(KMTO = ∅).

Customer orders of unit size for productk ∈ K arrive as a Poisson process with
rateλk. A single flexible machine, which is used to process all orders, makes a unit
of productk in a production timedistributed as a random variable with Laplace-
Stieltjes transform (LST)ψk(·), having finite mean1/µk and varianceσ2

k. Arrival
streams and production times are mutually independent. Denoting byρk = λk/µk
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productk’s traffic intensity, we assume thestability condition

ρ ,
∑

k∈K

ρk < 1.

For a productk ∈ K
MTO, customer orders are placed upon arrival in a corre-

spondingbackorder queue (BQ), whosestateat timet ≥ 0, given by its size, we
denote byXk(t). The correspondingstate spaceisNk = {0, 1, . . .}.

For a productk ∈ K
MTS, items can be made in advance of demand, to be placed

in a correspondingfinished goods stock (FGS), whose size at timet we denote by
X−
k (t). The FGS has afinite storage capacityfor up tosk ≥ 1 units. An arriving

order finding an empty FGS is placed in the corresponding BQ, whose size at time
t we denote byX+

k (t). We consider the product’s state to be itsnet backorder level
Xk(t) = X+

k (t) −X−
k (t), so that its state space isNk = {−sk, . . . , 0, 1, . . .}.

A central controller governs system evolution by choice of ascheduling policy
π, prescribing dynamically whether the machine is to be idle or working and, in
the latter case, on which product. The policy is drawn from the classΠ of admis-
sible policies, which are: (i)nonpreemptive, i.e. production of an item cannot be
interrupted; thus, thedecision epoch sequenceconsists of order arrival epochs to
an empty system, and product completion epochs; (ii)nonanticipative, i.e. deci-
sions depend on the history of the system up to and including the present epoch;
and (iii) stable, i.e. the policy must induce an equilibrium distribution onthe joint
state process, having finite moments of the required order. When service times are
exponential, we can choose to expandΠ to includepreemptivepolicies.

The system incurs backorder and/or stock holding costs, separably across prod-
ucts. Productk accrues costs at ratehk(ik) per unit time while its state isik. We
will refer to the first and second-order differences∆hk(ik) , hk(ik) − hk(ik−1)
and∆2hk(ik) , ∆hk(ik) − ∆hk(ik − 1).

Assumption 2.1 Holding cost rateshk(ik) satisfy the following:

(i) They are bounded below:inf{hk(ik) : ik ∈ Nk} > −∞.

(ii) They are convex:∆2hk(ik) ≥ 0, for ik ∈ Nk such thatik − 2 ∈ Nk.

(iii) If ψk(·) has finite moments of up to ordermk + 1, thenhk(ik) = O(imk

k ) as
ik → +∞.

Notice that we do not require holding cost rateshk(ik) to be monotonic in
ik ∈ Nk, as such assumption is not appropriate in the MTS case with backorders.
Instead, one will typically have that such rates are V-shaped: hk(ik) is nondecreas-
ing for ik ≥ 0 (i.e. backorder cost rates are nondecreasing in the backorder level);
andhk(ik) is nonincreasing forik ≤ 0 (i.e. stock holding cost rates are nonde-
creasing in the stock level−ik).

We will address theLRA scheduling problem, which is to find a policyπ∗ ∈ Π
attaining the minimum LRA valuef∗ of costs incurred.

f∗ = inf
π∈Π

lim
T→+∞

1

T
E
π

[∫ T

0

∑

k∈K

hk (Xk(t)) dt

]
. (1)
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Given the intractability of problem (1) in such generality,our prime goals will
be: (1) to design a well-grounded, tractable heuristic scheduling policy π̃∗, which
comes close to attaining the optimal cost valuef∗; and (2) to construct a tractable
lower boundf̂ ≤ f∗.

3 Multi-project RBP

3.1 Problem description

This section extends the single-project framework and analysis in Section 3 of
Niño-Mora (2004) to address amulti-project RBP, where acentral plannerwishes
to optimally allocate effort to a collection ofK RB projects, labeled byk ∈ K =
{1, . . . ,K}. The joint state process isX(t) = (Xk(t))k∈K

, for t ≥ 0, whereXk(t)
is projectk’s state. Control is exercised by adoption of a policyπ, drawn from a
classΠ of nonanticipative admissible policies. This prescribes how asingle oper-
ator, able to work on at most one project at a time, is to be dynamically allocated.
Our focus on the single-operator case is only due to ease of exposition, as the ap-
proach and results below readily extend to themulti-operatorcase. Each project
has its ownmanager, in charge of policy implementation.

We refer the reader to Section 3 of Niño-Mora (2004) for a description of the
individual RB projects considered here. Below we add their labelk to the notation
introduced there. Thus, projectk has discrete state space

Nk =
{
j ∈ Z : `0k ≤ j ≤ `1k

}
,

where−∞ < `0k < `1k ≤ +∞, with controllable (resp. uncontrollable) state space

N
{0,1}
k (resp.N{0}

k = {`0k}). Its individual class of admissible policies is denoted
by Πk. We will also refer to the project’s threshold, orFk-, policies, having active-
state setsSk(ik), for ik ∈ Nk. Cost and work measuresfπk

k andgπk

k , for πk ∈ Πk,
are extended tofπk andgπk , for π ∈ Π. The following conditions are required to
hold.

Assumption 3.1 For any projectk ∈ K and policyπ ∈ Π:

(i) sup
{
gπk

k : πk ∈ Πk

}
≥ gπk .

(ii) inf
{
fπk

k : πk ∈ Πk

}
≤ fπk .

In words, the work (resp. cost) performance achieved on a project by a system-
wide policy cannot exceed (resp. fall below) the corresponding supremum (resp.
infimum) performance value under its individual policies.

Projects are assumed to beindexablerelative to threshold policies. See Defini-
tion 3.6 in Niño-Mora (2004).

Assumption 3.2 Projectk ∈ K is Fk-indexable, with MPIν∗k(jk).

Managers vie for access to the operator as this becomes available, at a decision
epoch sequencet0 = 0 < t1 < · · · < tn → +∞ asn → +∞, consistent with the
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individual projects’. Denote bya(tn) = (ak(tn))k∈K
the joint actionat epochtn,

whereak(tn) ∈ {0, 1} is projectk’s action. Thesample-path activity constraintis

a(t) ,
∑

k∈K

ak(t) ≤ 1, t ≥ 0. (2)

The cost performance under a policyπ is evaluated byholding cost measure

fπ ,
∑

k∈K

fπk .

The multi-project RBPof concern is to find a policy attaining the system’s
optimal cost performance:

Findπ∗ ∈ Π : fπ
∗

= f∗ , inf {fπ : π ∈ Π} . (3)

Our goals are: (i) design a well-grounded tractable policyπ̃∗ ∈ Π, coming
close to minimizing cost performance; and (ii) produce a tractable lower bound
f̂ ≤ f∗, which can be used to assess the policy’s suboptimality gap.

3.2 Relaxed problem

We will develop an approach based on solution of arelaxed problem. This refers to
work measuregπ, evaluating the effort under a policyπ, given by

gπ ,
∑

k∈K

gπk .

Note that Assumptions 3.1(ii) in Niño-Mora (2004) and and 3.1(i) ensure existence
of an upper bound̂g:

gπ ≤ ĝ, π ∈ Π. (4)

Inequality (4) will furnish the key constraint to define the relaxed problem.
Consider amodified systemwhere each project has its own operator, and hence

the set of active projects ranges from∅ to K. Control is exercised through arelaxed
policy π̂, drawn from a clasŝΠ of admissible relaxed policies. Work and cost
measures are extended to policiesπ̂ ∈ Π̂, giving f π̂k , gπ̂k ,

f π̂ ,
∑

k∈K

f π̂k and gπ̂ ,
∑

k∈K

gπ̂k .

The following conditions are required to hold.

Assumption 3.3

(i) Π̂ ⊃ Π.

(ii) Π̂ ⊃
∏

k∈K

Πk.

(iii)
{

(gπ̂k , f
π̂
k ) : π̂ ∈ Π̂

}
=
{
(gπk

k , fπk

k ) : πk ∈ Πk

}
, k ∈ K.

Remark 3.4 In words, Assumption 3.3 says the following:
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(i) Part (i) justifies the term “relaxed policies.”

(ii) Part (ii) means that̂Π includes the class
∏
k∈K

Πk of admissible decentral-
ized policies. These are of the form̂π = (πk)k∈K

, i.e. each projectk is
autonomously controlled under its own individual policyπk ∈ Πk.

(iii) Part (iii) says that a project’s work-cost performance achieved by relaxed
policiesπ̂ ∈ Π̂ is the same as that achieved by individual policiesπk ∈ Πk.

Therelaxed problemof concern is:

Find π̂∗ ∈ Π̂ : f π̂
∗

= f̂ , inf
{
f π̂ : gπ̂ ≤ ĝ, π̂ ∈ Π̂

}
. (5)

3.3 Reformulation as convex resource allocation problem

We develop below a convex optimization approach to solve problem (5), drawing
on Section 3.3 in Niño-Mora (2004). Define therelaxed achievable work-cost (per-
formance) regionby

Ĥ ,

{
(b, z) ∈ R

2 : (b, z) = (gπ̂, f π̂) for someπ̂ ∈ Π̂
}
, (6)

and denote its projections over the work and cost spaces byB̂ andV̂, respectively.
We next show that such regions can be decomposed asMinkowski sums(de-

noted by operator⊕) of their single-project counterpartsHk, Bk andVk.

Lemma 3.5

(a) Ĥ = ⊕k∈KHk.

(b) B̂ = ⊕k∈KBk.

(c) V̂ = ⊕k∈KVk.

Proof. Part (a) follows from Assumption 3.3(ii, iii), through

Ĥ ,

{
(b, z) ∈ R

2 : (b, z) = (gπ̂, f π̂) for someπ̂ ∈ Π̂
}

=

{
(b, z) ∈ R

2 : (b, z) = (
∑

k∈K

gπk ,
∑

k∈K

fπk) : πk ∈ Πk, k ∈ K

}

=

{
(b, z) ∈ R

2 : (b, z) =
∑

k∈K

(bk, zk), (bk, zk) ∈ Hk, k ∈ K

}
, ⊕k∈KHk.

Parts (b) and (c) follow from part (a). 2

Convexity of such regions follows from their single-project counterparts’, ex-

tending toclosureŝ̄H, ̂̄B and ̂̄V. Consider therelaxed efficient work-cost frontier

∂Ĥ ,

{
(b, z) ∈ ̂̄H : b ∈ B̂ andz ≤ f π̂ for any π̂ ∈ Π̂ with gπ̂ = b

}
.
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This is characterized as the graph ofrelaxed cost function

Ĉ(b) , inf
{
f π̂ : gπ̂ = b, π̂ ∈ Π̂

}
= inf

{
z : (b, z) ∈ Ĥ

}
, b ∈ B̂, (7)

whose convexity follows from that of region̂H, so that

∂Ĥ =
{

(b, Ĉ(b)) : b ∈ B̂

}
. (8)

We can now reformulate (5) as theconvex resource allocation problem

Find b∗ ∈ B̂ : Ĉ(b∗) = f̂ , inf
{
Ĉ(b) : b ≤ ĝ, b ∈ B̂

}
. (9)

To evaluateĈ(b) we will further address therelaxedb-work problem:

Find π̂∗ ∈ Π̂ with gπ̂
∗

= b : f π̂
∗

= Ĉ(b) , inf
{
f π̂ : gπ̂ = b, π̂ ∈ Π̂

}
. (10)

A relaxed policyπ̂ ∈ Π̂ will be said to beb-work feasibleif gπ̂ = b.

3.4 Lagrangian multiplier analysis and decentralization

We address problem (10) via a Lagrangian approach, along thelines of Section 3.4
in Niño-Mora (2004). Dualizing constraintgπ̂ = b by multiplier ν ∈ R gives the
Lagrangian function

L
π̂
b (ν) , f π̂ + ν

[
gπ̂ − b

]
=
∑

k∈K

vπ̂k (ν) − νb,

where
vπ̂k (ν) , f π̂k + νgπ̂k .

Again we interpretν as thewagerate earned by operators. Hence,vπ̂k (ν) gives
projectk’s holding and labor costs, andL π̂

b (ν) is the system-wide cost where work
expended above (resp. below)b units is paid (resp. sold) at wageν.

The unconstrainedLagrangian problemis

Find π̂∗ ∈ Π̂ : L
π̂∗

b (ν) = L
∗
b (ν) , inf

{
L

π̂
b (ν) : π̂ ∈ Π̂

}
. (11)

We next show that use of decentralized policiesπ̂ = (πk)k∈K suffices to solve (11).
Let v∗k(ν) be the optimal value ofprojectk’s ν-wage subproblem:

Findπ∗k ∈ Πk : v
π∗

k

k (ν) = v∗k(ν) , inf
{
vπk

k (ν) : πk ∈ Πk

}
. (12)

Lemma 3.6
L

∗
b (ν) =

∑

k∈K

v∗k(ν) − νb.

Proof. We can write

L
∗
b (ν) , inf

{
L

π̂
b (ν) : π̂ ∈ Π̂

}
= inf

{
∑

k∈K

vπ̂k (ν) : π̂ ∈ Π̂

}
− νb

= inf

{
∑

k∈K

vπk

k (ν) : πk ∈ Πk, k ∈ K

}
− νb =

∑

k∈K

v∗k(ν) − νb,

(13)

where the third identity follows from Lemma 3.5(a). 2
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The central planner can thus solve the Lagrangian problem byquoting to man-
agers wageν, and letting them solve theirν-wage subproblems. This suggests
decentralizing the relaxedb-work problem’s solution through wage choice.

3.5 Duality-based optimality conditions and shadow wages

We next seek to find optimality conditions for a decentralized policy in primal
relaxedb-work problem. To price the value of work we will use itsdual(or pricing)
problem, which is to find a wageν∗ ∈ R maximizing (concave) objectiveL ∗

b (ν):

Findν∗ ∈ R : L
∗
b (ν∗) = Q̂(b) , sup {L ∗

b (ν) : ν ∈ R} . (14)

We will use theduality gapassociated to a relaxed policŷπ and a wageν:

∆π̂
b (ν) , f π̂ − L

∗
b (ν). (15)

Notice that, for a decentralized policŷπ = (πk)k∈K, the duality gap reduces to

∆π̂
b (ν) =

∑

k∈K

[
vπk

k (ν) − v∗k(ν)
]
+ ν

[

b−
∑

k∈K

gπk

k

]

. (16)

The next result follows immediately.

Lemma 3.7 (Weak duality)

(a) Let π̂ ∈ Π̂ beb-work feasible and letν ∈ R. Then,L ∗
b (ν) ≤ f π̂.

(b) Q̂(b) ≤ Ĉ(b).

Lemma 3.7 and identity (16) suggest the following sufficientoptimality condi-
tions for a decentralized policŷπ∗ = (π∗k)k∈K ∈

∏
k∈K

Πk and a wageν∗ ∈ R:

(i) Primal feasibility:
∑

k∈K

g
π∗

k

k = b.

(ii) Project-wise optimality: Policy π∗k is optimal for projectk’s ν∗-wage sub-

problem, i.e.v
π∗

k

k (ν∗) = v∗k(ν
∗) for k ∈ K.

Theorem 3.8 (Sufficient optimality conditions) Under conditions(i)–(ii) above:

(a) Policy π̂∗ is optimal for primal relaxedb-work problem(10).

(b) Wageν∗ is optimal for its dual problem(14).

(c) Strong duality holds:Q̂(b) = Ĉ(b) =
∑

k∈K

f
π∗

k

k .

Proof. The results follow via Lemma 3.7, using the fact that conditions (i)–(ii) and
identity (16) ensure there is a zero duality gap. 2

10



We will refer to a wageν∗ satisfying the conditions in Theorem 3.8 as ashadow
wagefor the relaxedb-work problem. IfĈ(·) is derivable atb, we have

ν∗ = −
d

db
Ĉ(b). (17)

Namely,ν∗ is themarginal productivity of workin the relaxedb-work problem.
As in Lemma 3.4 of Niño-Mora (2004), existence of a shadow wage is neces-

sary for optimality.

Lemma 3.9 Let π̂∗ be an optimal decentralized policy for the relaxedb-work prob-
lem. Then, there exists a corresponding shadow wageν∗.

3.6 Construction of relaxed cost function

We address next theconstructionof function Ĉ(b). We will use the following
notation. Given a joint statej = (jk)k∈K, denote byS(j) = (Sk(jk))k∈K the
decentralized policy using theSk(jk)-active policy on projectk ∈ K. Write further
`
0 = (`0k)k∈K, `

1 = (`1k)k∈K, and letek be thekth unit coordinate vector inRK.
Consider the algorithm in Figure 1, which generates a sequence of joint state,

project label, and wage triples(jn, kn, νn), for n ≥ 0. This is finite if all project
state spaces are finite, and is infinite otherwise. The notation “n ≥ 0” thus refers to
relevant values ofn. The algorithm constructively defines cost functionĈF (b) for
b ∈ B̂, by linear interpolationon generated work-cost pairs(gS(jn), fS(jn)).

The main result of this section, given in Theorem 3.11 below,is thatĈF (b) =
Ĉ(b). We will draw on the following preliminary result.

Lemma 3.10 Sequence(jn, kn, νn) satisfies the following:

(a) νn ≤ νn+1.

(b) max
jn

k
>`0

k
,k∈K

ν∗k(j
n
k ) ≤ νn = ν∗kn

(jn+1
kn

) = min
jn

k
<`1

k
,k∈K

ν∗k(j
n
k + 1).

Proof. (a) It follows by construction, using nondecreasingness of each indexν∗k(·).
(b) The “min” equality follows by choice ofkn in the algorithm.
To show the “max” inequality use induction onn. We interpret the casen = 0

letting the maximum over∅ be−∞. The casen = 1 follows fromν∗k0(j
1
k0

) = ν0 ≤
ν1. Suppose it holds forn − 1. Then, using part (a) and the induction hypothesis
gives that, fork 6= kn−1 with jn−1

k > `0k, we have

jnk = jn−1
k =⇒ ν∗k(j

n
k ) = ν∗k(j

n−1
k ) ≤ ν∗kn−1

(jnkn−1
) = νn−1 ≤ νn = ν∗kn

(jn+1
kn

).

This completes the proof. 2

Theorem 3.11 The relaxedb-work problem’s cost function is given by

Ĉ(b) = ĈF (b) = max
{
fS(jn) + νn

[
gS(jn) − b

]
: n ≥ 0

}
, b ∈ B̂,

and is hence piecewise linear convex.

11



Initialization:
let j0 := `

0; n := 0
Loop:

while jn 6= `
1 do

choosekn ∈ arg min
{
ν∗k(j

n
k + 1) : jnk < `1k, k ∈ K

}

let jn+1 := jn + ekn
; let νn := ν∗kn

(jn+1
kn

)

let ĈF (b) := fS(jn) + νn
[
gS(jn) − b

]
, b ∈ [gS(jn+1), gS(jn)]

let n := n+ 1
end { while}

Figure 1: Algorithmic construction of relaxed cost function.

Proof. Forb ∈ [gS(jn+1), gS(jn)], let

qn ,
b− gS(jn+1)

gS(jn) − gS(jn+1)
=

b− gS(jn+1)

−∆g
Skn

(jn

kn
+1)

kn

.

Define decentralized policŷπn = (πnk )k∈K by

πnk =

{
Sk(j

n
k ) if k 6= kn

Sqnkn
(jn+1
kn

) if k = kn,

whereSqnkn
(jn+1
kn

) is the randomized policy defined as in Section 3.7 of Niño-Mora
(2004). Then, it is easily seen, using Lemma 3.10(b), that policy π̂n and wage
νn satisfy the sufficient optimality conditions for the relaxed b-work problem in
Theorem 3.8. The “max” representation follows from the algorithm’s construction
and Lemma 3.10(a). This completes the proof. 2

3.7 Algorithm and optimal decentralized policy for relaxedproblem

We next draw on the above to solve relaxed problem (5) by a decentralized policy,
thus producing the required lower bound̂f on optimal cost. For such purpose, we
introduce the algorithmRELAXED, described in Figure 3.

The algorithm takes as input an upper boundĝ on work performance satisfying
(4). Upon termination, it produces as output a 6-tuple(f̂ , ν∗, n, jn, kn, qn). From
this we construct decentralized policyπ̂∗ = (π∗k)k∈K by letting

π∗k ,

{
Sk(j

n
k ) if k ∈ K \ {kn}

Sqnk (jn+1
kn

) if k = kn.

The main result of this section, given in Theorem 3.12 below,is that policyπ̂∗ is
optimal for the relaxed problem. This is graphically illustrated in Figure 2.

Theorem 3.12 Decentralized policŷπ∗ solves optimally relaxed problem(5). Its
optimal value is given bŷf , as computed by the algorithm.

12



gS(jn+1)gS(jn+1) gS(jn)gS(jn) ĝĝ

f̂ = Ĉ(ĝ)
f̂ = fS(jn)

bb

zz

Figure 2: Solution of relaxed problem (depending on position of upper bound̂g).

Proof. From the discussion in Section 3.6, we see that algorithm RELAXED
traversesfrom right to left the relaxed efficient work-cost frontier.The algo-
rithm exploits the latter’s piecewise linear structure bypivoting from a corner
(gS(jn), fS(jn)) to the left-adjacent corner(gS(jn+1), fS(jn+1)) along such frontier.
Termination occurs when a corner(gS(jn+1), fS(jn+1)) is first reached having a fea-
sible work performancegS(jn+1) ≤ ĝ, anda nonnegative right slopeνn ≥ 0. 2

3.8 Hedging point and index policy, and auction interpretation

We propose next a heuristic policy for RBP (3), based on the optimal index solution
to the relaxed̂g-work problem. In contrast with the policy proposed by Whittle
(1988) for a special type of RBP, prescribing to engage at each time a project with
larger index, our proposed policy introduces ahedging pointi∗ = (i∗k)k∈K, where
i∗k ∈ Nk for k ∈ K, to determineidling decisions.

Our heuristic policy with hedging pointi∗, which we denote bỹπ(i∗), operates
as follows. At a decision epoch in statej = (jk)k∈K:

1. If j ≤ i∗ (componentwise), let the operator rest (idle the system).

2. Otherwise, assign the operator to a projectk(j) satisfying

k(j) ∈ arg max{ν∗k(jk) : jk > i∗k, k ∈ K} .

Such policy resolves the dynamic resource allocation problem by adecentral-
ized auctionmechanism. When the operator becomes free, managers of available
projects vie for access to it during the next period bybidding an amount equal
to their project’s MPI. The central planner resolves the auction by allocating the
operator to the highest bidder, among projectsk whose state lies above their crit-
ical thresholdi∗k. In the multiple-operator model extension, an auction would be
performed for each free operator.

It remains to determine an appropriate hedging pointi∗. A naive approach
would use the optimal solution of the decentralized problemin the previous Section

13



ALGORITHM RELAXED
Input: ĝ
Output: (f̂ , ν∗, n, jn, kn, qn)
Initialization:
let j0 := `

0; let n := −1
Loop:

repeat
let n := n+ 1
choosekn ∈ arg min

{
ν∗k(j

n
k + 1) : jnk < `1k, k ∈ K

}

let jn+1 := jn + ekn
; let νn := ν∗kn

(jn+1
kn

)

until gS(jn+1) ≤ ĝ and νn ≥ 0

Ending:

if ĝ < gS(jn) then

let qn :=
ĝ − gS(jn+1)

g
Skn

(jn

kn
)

kn
− g

Skn
(jn+1

kn
)

kn

; let ν∗ := νn

let f̂ := fS(jn) + ν∗
[
gS(jn) − ĝ

]

else
let qn := 1; let ν∗ := 0; let f̂ := gS(jn)

end { if }

Figure 3: Algorithm for solving the relaxed problem.

to seti∗ = jn, wherejn is produced by algorithm RELAXED in Figure 3. We have
found through computational experience, however, that such approach produces
inadequate (too large) threshold levelsi∗k, yielding a policy whose performance is
often far from optimal.

Instead, we propose to determine threshold pointi∗ using thedescent algorithm
described in Figure 4. The algorithm’s validity relies on the following conjecture.

Conjecture 3.13 The continuous extension by linear interpolation of discrete cost
functioni 7→ f π̃(i) is convex.

Besides being intuitively appealing, we have experimentally verified Conjec-
ture 3.13 across a wide range of problem instances, corresponding to the schedul-
ing model of concern in this paper. Figure 5 graphically illustrates the conjecture’s
validity in one of the instances we have investigated.

Regarding implementation of algorithm DESCENT, in practice it will typically
not be possible to evaluate functioni 7→ f π̃(i). Instead, one can usesimulationto
obtain an estimatêf π̃(i) of f π̃(i), and perform the comparison step in the algorithm
using corresponding estimates. We remark that in the algorithm’s step for finding an
adjacenthedging point improving upon the current one, it is meant a new hedging
point obtained by a unit displacement (+/- 1) inonecomponent of the current point.
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ALGORITHM DESCENT
Output: i∗

Initialization:
set i0 (arbitrarily); let n := 0
let FOUND := false
Loop:

repeat
try to find in+1 adjacent to in such that f π̃(in+1) < f π̃(in)

if there is no such in+1 then let FOUND := true else let n := n+ 1
until FOUND

Ending:

let i∗ := in

Figure 4: Algorithm DESCENT for hedging-point computation.

4 Application of the MPI policy and bound

In this section we return to our motivating scheduling problem in Section 2, to
construct the policy and bound resulting from the above framework. We first note
that the LRA scheduling problem (1) of concern is immediately formulated as a
special case of multi-project RBP (3). The latter’s individual projects are service-
controlled MTO and MTSM/G/1 queues with convex holding cost rates. In Sec-
tions 6 and 7 of the companion paper Niño-Mora (2004) the reader will find PCL-
indexability analysesof such RB projects, including closed-form expressions for
the corresponding MPIs relative to theLRA-bias criterion, which is the appropriate
one for our purposes. We obtain the following unifying formulation for the MPI
ν∗k(ik) of queuek. LetLk be a random variable having the equilibrium distribution
of a standardM/G/1 queue with arrival rateλk and service-time LSTψk(·). Then,

ν∗k(ik) = µkE [∆hk(Lk + ik)] , ik ∈ N
{0,1}
k = {−sk + 1, . . . , 0, 1, . . .}. (18)

To obtain the lower bound̂f on optimal LRA cost performance, the above
framework requires us to produce an upper boundĝ on overall work measuregπ.
In our case, the latter is thebiasor excess workperformance achieved by policyπ
over the nominal allocationρ, given by

gπi , lim
α↘0

{
E
π
i

[∫ ∞

0
e−αta(t) dt

]
−
ρ

α

}
= E

π
i

[∫ ∞

0
(a(t) − ρ) dt

]
, (19)

wherea(t) ∈ {0, 1} is the facility’s busy/idle indicator, and we have now made
explicit the dependence on initial joint stateX(0) = i. Given the latter, we will
give a corresponding upper boundĝi.

Define

ĝi ,
∑

k

ik − sk
µk

−
∑

k

λk

(
1
µ2

k

+ σ2
k

)

2(1 − ρ)
. (20)

The following result establishes thatĝi provides the required upper bound.
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Figure 5: Convexity off π̃(i) in case 5 of Table 1.

Proposition 4.1
gπi ≤ ĝi, π ∈ Π.

Proof. We first transform the multiclass combined MTO/MTSM/G/1 model into
a multiclasspure MTO model in the standard fashion, i.e. by redefining the state
of queuek to beLk(t) = Xk(t) − sk ≥ 0, for k ∈ K. Now, it is clear that bias, or
excess work, measuregπi in (19) is maximized byanywork-conserving (nonidling)
policy in the transformed system. Hence, we only need calculate the bias work
corresponding to any such policy in the multiclass MTOM/G/1 queue, for which
we draw on and extend standard results in Kleinrock (1976, Ch. 3).

Letφk = φk(α) be the LST of the busy period for the latter system starting with
oneclassk customer, i.e. with initial stateL(0) = ek. Theφk ’s are characterized
as the unique solution of fixed-point equation system

φk = ψk

(
α+

K∑

l=1

λl(1 − φl)

)
= ψk (α+ λ(1 − φ)) , k ∈ K, (21)

where we write

λ =
∑

k

λk and φ =
∑

k

λk
λ
φk.

We can thus bound above the bias workgπi corresponding to a policyπ ∈ Π as
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follows:

gπi ≤ lim
α↘0

E
FCFS
i−s

[∫ ∞

0
e−αt1{L(t) 6= 0} dt

]
−
ρ

α

= lim
α↘0

1

α
−

∏
k φ

ik−sk

k

α+ λ− λφ
−
ρ

α

= lim
α↘0

(1 − ρ)(α + λ− λφ) − α
∏
k φ

ik−sk

k

α(α + λ− λφ)

= lim
α↘0

(1 − ρ)(1 − λφ′(α)) −
∏
k φ

ik−sk

k − α
∑

k(ik − sk)φ
ik−sk−1
k φ′k

∏
l 6=k φ

il−sl

l

α+ λ− λφ+ α(1 − λφ′(α))

= lim
α↘0

−(1 − ρ)λφ′′(α) − 2
∑

k(ik − sk)φ
ik−sk−1
k φ′k

∏
l 6=k φ

il−sl

l +O(α)

2 − 2λφ′(α) +O(α)

= −
1

2

(1 − ρ)λφ′′(0) + 2
∑

k(ik − sk)φ
′
k(0)

1 − λφ′(0)

=
∑

k

ik − sk
µk

−

∑
k λk

{
1
µ2

k

+ σ2
k

}

2(1 − ρ)

= ĝi.

(22)

Notice that, in (22),EFCFS[·] denotes expectation relative to the first-come firsr-
serve (FCFS) policy, though any other nondling admissible policy would give the
same evaluation for the right-hand side. Further, we have applied twice l’Hôpital’s
rule, and have used the identities

−φ′k(0) =
1/µk
1 − ρ

,

−λφ′(0) =
ρ

1 − ρ
,

φ
′′

k(0) =
ψ

′′

k (0)

(1 − ρ)2
+

1
µk

∑
l λl

ψ
′′

l
(0)

(1−ρ)2

1 − ρ
=

{
1
µ2

k

+ σ2
k

}

(1 − ρ)2
+

∑
l λl

{
1
µ2

l

+ σ2
l

}

µk(1 − ρ)3
,

and

λφ
′′

(0) =
∑

k

λkφ
′′

k(0)

=
∑

k

λk

1
µ2

k

+ σ2
k

(1 − ρ)2
+
∑

k

ρk
∑

l

λl

1
µ2

l

+ σ2
l

(1 − ρ)3

=
∑

k

λk

1
µ2

k

+ σ2
k

(1 − ρ)2
+ ρ

∑

l

λl

1
µ2

l

+ σ2
l

(1 − ρ)3

=

{
1

(1 − ρ)2
+

ρ

(1 − ρ)3

}∑

k

λk

{
1

µ2
k

+ σ2
k

}

=

∑
k λk

{
1
µ2

k

+ σ2
k

}

(1 − ρ)3
,
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Case Type λ1 λ2 µ1 µ2 cB
11 cB

12 cB
21 cB

22 cF
1 cF

2

1 MTS-MTS 0.4 0.4 1 1 50 25 0 0 1 1
2 MTS-MTS 0.4 0.4 1 1 50 5 0 0 1 1
3 MTS-MTS 0.6 0.1 1 1 200 5 0 0 10 0.25
4 MTS-MTS 1.2 0.1 2 1 50 20 0 0 1 1
5 MTS-MTS 0.4 0.4 1 1 50 25 3 4 10 0.25
6 MTS-MTS 0.6 0.1 1 1 200 5 3 4 10 0.25
7 MTS-MTS 0.4 0.4 1 1 50 25 1 1 1 1
8 MTS-MTO 0.4 0.4 1 1 50 25 1 1 1 1
9 MTS-MTO 0.4 0.4 1 1 50 5 1 1 1 1
10 MTS-MTO 0.6 0.1 1 1 200 5 1 1 10 0.25
11 MTS-MTO 1.2 0.1 2 1 50 20 1 1 1 1
12 MTO-MTO 1 5 3 12 5 1 2 0.1 0 0
13 MTO-MTO 1 5 3 12 5 1 2 0.2 0 0
14 MTO-MTO 1 5 3 12 5 1 2 0.5 0 0
15 MTO-MTO 1 5 3 12 5 1 2 1 0 0
16 MTO-MTO 1 5 3 12 5 1 2 2 0 0

Table 1: Cases investigated.

which are readily obtained from (21). This completes the proof. 2

5 Computational study

The author has implemented all the algorithms presented in this paper in C++, using
the GNU gcc compiler. In this section we report the results ofa computational
study on the performance of our proposed MPI policy and boundacross the range
of 16 two-class instances shown in Table 1. All service timesare exponential. The
experiments have been run on a Pentium IV computer at 3.06 Ghz.

Note that instances 1–7 correspond to pure MTS problems, 8–11 are combined
MTS-MTO problems, and 12–16 are pure MTO problems. Cost parameters are to
be read as follows. The backorder cost rate for queuek ∈ {1, 2} in statejk ≥ 0 is

hk(jk) = cB
1kjk + cB

2kj
2
k , jk ≥ 1.

The finished goods stock holding cost rate for queuek ∈ {1, 2} (whenk ∈ K
MTS)

in statejk ≤ −1 is
hk(jk) = cF

kjk, jk ≤ −1.

Instances 1–4 are taken from Table 1 in de Véricourt et al. (2000). Instances
5–7 introduce quadratic backorder cost rates into some of the above pure MTS
problems. Instaces 8–11 have queue 1 operated in MTS mode andqueue 2 in MTO
mode. Instances 12–16 are taken from Table 1 in Ansell et al. (2003).

Table 2 reports the result of the computational study. For each instance, we
have computed an approximationf∗ to the optimal LRA cost rate per unit time
using value iteration on a truncated state space of size200 × 200. We have ob-
served that increasing the state space size beyond such limits does not significantly
change the value off∗. The hedging points have been computed by the algorithm
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Case Hedging point f∗ fMPI fmyopic f̂ fSDP

1 (-8, -7) 15.467 15.467 27.832 7.646 (50.6 %)
2 (-6, -4) 10.467 10.467 13.847 6.137 (41.4 %)
3 (-5, -3) 60.703 60.752 60.752 59.775 (1.5 %)
4 (-8, -2) 10.273 10.273 11.322 8.764 (14.7 %)
5 (-2, -21) 25.956 25.957 26.065 21.586 (16.8 %)
6 (-6, -6) 62.222 62.228 62.439 60.556 (2.7 %)
7 (-10, -6) 16.416 16.562 38.860 7.784 (52.6 %)
8 (-15, 0) 34.056 34.056 116.115 22.021 (35.3 %)
9 (-12, 0) 18.001 18.001 55.489 8.688 (51.7 %)
10 (-6, 0) 64.892 64.912 66.991 60.535 (6.7 %)
11 (-10, 0) 13.273 13.273 22.086 10.142 (23.6 %)
12 (0, 0) 15.404 15.427 15.412 11.592 (24.7 %) 15.089 (2 %)
13 (0, 0) 17.985 17.990 17.985 13.474 (25.1 %) 17.778 (1.2 %)
14 (0, 0) 20.992 21.096 21.096 14.934 (28.9 %) 20.660 (1.6 %)
15 (0, 0) 22.917 22.917 22.999 15.867 (30.8 %) 22.418 (2.1 %)
16 (0, 0) 25.146 25.146 25.353 17.092 (32 %) 24.703 (1.8 %)

Table 2: Results of computational experiments.

DESCENT in Figure 4. After computing a hedging point(i∗1, i
∗
2), we have set

(s1, s2) = (i∗1, i
∗
2), and then used the initial state(i1, i2) = (s1, s2) to compute

ĝi by (20), and hence the lower bound̂f on optimal cost. The column forfMPI

shows the LRA cost performance for our proposed MPI-based hedging point and
index policy, calculated by value iteration on the stated truncated state space. The
column forfmyopic shows the corresponding LRA cost performance for the policy
that uses the stated hedging point, along with the myopic index νmyopic

i discussed
in Sections 6 and 7 of Niño-Mora (2004). Further, the columnfor fSDP borrows
results from Ansell et al. (2003) on a lower bound on LRA cost based on asemi-
definite programmingrelaxation.

We see in Table 2 that our proposed MPI policy is nearly optimal across the
16 instances considered, exhibiting a negligible suboptimality gap. The myopic
policy is close to optimal in some instances, but in others its performance is poor.
As we argued in Sections 6 and 7 of Niño-Mora (2004), the myopic index does not
account for long-term effects, which explains its poor results in more congested
systems. Regarding our proposed lower boundf̂ , we see that in most instances it is
not as close to the optimal costf∗ as would be desirable. However, notice that, to
the best of our knowledge, no other lower bound on optimal cost of a comparable
scope to ours has been proposed in the literature. The columnon the semi-definite
programming lower boundfSDPshows that the latter, in the cases where it is avail-
able, is relatively close to optimal.

References

Ansell, P. S., Glazebrook, K. D., Niño-Mora, J., and O’Keeffe, M. (2003). Whittle’s
index policy for a multi-class queueing system with convex holding costs.Math.
Methods Oper. Res., 57(1):21–39.

19



de Véricourt, F., Karaesmen, F., and Dallery, Y. (2000). Dynamic scheduling in a
make-to-stock system: A partial characterization of optimal policies.Oper. Res.,
48:811–819.

Dusonchet, F. and Hongler, M. O. (2003). Continuous-time restless bandit and
dynamic scheduling for make-to-stock production.IEEE Trans. Robotics and
Automat., 19(6):977–990.

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. J. Roy.
Statist. Soc. Ser. B, 41(2):148–177. With discussion.

Glazebrook, K. D., Lumley, R. R., and Ansell, P. S. (2003). Index heuristics
for multiclassM/G/1 systems with nonpreemptive service and convex holding
costs.Queueing Systems Theory Appl., 45:81–111.

Ha, A. Y. (1997). Optimal dynamic scheduling policy for a make-to-stock produc-
tion system.Oper. Res., 45:42–53.

Haji, R. and Newel, G. F. (1971). Optimal strategies for priority queues with non-
linear costs of delay.SIAM J. Appl. Math., 20:224–240.

Kleinrock, L. (1976). Queueing Systems. Vol. II: Computer Applications. Wiley,
New York.

Niño-Mora, J. (2001a). Restless bandits, partial conservation laws and indexability.
Adv. in Appl. Probab., 33(1):76–98.

Niño-Mora, J. (2001b). Stochastic scheduling. In Floudas, C. A. and Pardalos,
P. M., editors,Encyclopedia of Optimization. Vol. 5, pages 367–372. Kluwer,
Dordrecht.

Niño-Mora, J. (2002). Dynamic allocation indices for restless projects and queue-
ing admission control: a polyhedral approach.Math. Program., 93(3, Ser.
A):361–413.

Niño-Mora, J. (2003). Restless bandit marginal productivity indices, diminishing
returns, and scheduling a multiclass make-to-order/-stock queue. InProceed-
ings of the 41st Annual Allerton Conference on Communications, Control and
Computing, pages 100–109.

Niño-Mora, J. (2004). Restless bandit dynamic allocationindices I: Single-project
case and optimal control of a make-to-stockM/G/1 queue. Technical report,
Department of Statistics, Universidad Carlos III de Madrid. Submitted 2001.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1999). The complexity of optimal queu-
ing network control.Math. Oper. Res., 24(2):293–305.
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