17,968 research outputs found

    Concurrently coupled solid shell-based adaptive multiscale method for fracture

    Get PDF
    Artículo Open Access en el sitio web del editor. Pago por publicar en abierto.A solid shell-based adaptive atomistic–continuum numerical method is herein proposed to simulate complex crack growth patterns in thin-walled structures. A hybrid solid shell formulation relying on the combined use of the enhanced assumed strain (EAS) and the assumed natural strain (ANS) methods has been considered to efficiently model the material in thin structures at the continuum level. The phantom node method (PNM) is employed to model the discontinuities in the bulk. The discontinuous solid shell element is then concurrently coupled with a molecular statics model placed around the crack tip. The coupling between the coarse scale and the fine scale is realized through the use of ghost atoms, whose positions are interpolated from the coarse scale solution and enforced as boundary conditions to the fine scale model. In the proposed numerical scheme, the fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened in order to reduce the computation costs. An energy criterion is used to detect the crack tip location. All the atomistic simulations are carried out using the LAMMPS software. A computational framework has been developed in MATLAB to trigger LAMMPS through system command. This allows a two way interaction between the coarse and fine scales in MATLAB platform, where the boundary conditions to the fine region are extracted from the coarse scale, and the crack tip location from the atomistic model is transferred back to the continuum scale. The developed framework has been applied to study crack growth in the energy minimization problems. Inspired by the influence of fracture on current–voltage characteristics of thin Silicon photovoltaic cells, the cubic diamond lattice structure of Silicon is used to model the material in the fine scale region, whilst the Tersoff potential function is employed to model the atom–atom interactions. The versatility and robustness of the proposed methodology is demonstrated by means of several fracture applications.Unión Europea ERC 306622Ministerio de Economía y Competitividad DPI2012-37187, MAT2015-71036-P y MAT2015-71309-PJunta de Andalucía P11-TEP-7093 y P12-TEP -105

    Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/ 10.1007/s00466-016-1305-zThis paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields (P1P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr–Coulomb and Drucker–Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.Peer ReviewedPostprint (author's final draft

    Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    Get PDF
    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development

    Anticipating and Coordinating Voltage Control for Interconnected Power Systems

    Get PDF
    This paper deals with the application of an anticipating and coordinating feedback control scheme in order to mitigate the long-term voltage instability of multi-area power systems. Each local area is uniquely controlled by a control agent (CA) selecting control values based on model predictive control (MPC) and is possibly operated by an independent transmission system operator (TSO). Each MPC-based CA only knows a detailed local hybrid system model of its own area, employing reduced-order quasi steady-state (QSS) hybrid models of its neighboring areas and even simpler PV models for remote areas, to anticipate (and then optimize) the future behavior of its own area. Moreover, the neighboring CAs agree on communicating their planned future control input sequence in order to coordinate their own control actions. The feasibility of the proposed method for real-time applications is explained, and some practical implementation issues are also discussed. The performance of the method, using time-domain simulation of the Nordic32 test system, is compared with the uncoordinated decentralized MPC (no information exchange among CAs), demonstrating the improved behavior achieved by combining anticipation and coordination. The robustness of the control scheme against modeling uncertainties is also illustrated

    Development of deployable structures for large space platform systems. Volume 1: Executive summary

    Get PDF
    The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules

    A phase-field model for fractures in incompressible solids

    Full text link
    Within this work, we develop a phase-field description for simulating fractures in incompressible materials. Standard formulations are subject to volume-locking when the solid is (nearly) incompressible. We propose an approach that builds on a mixed form of the displacement equation with two unknowns: a displacement field and a hydro-static pressure variable. Corresponding function spaces have to be chosen properly. On the discrete level, stable Taylor-Hood elements are employed for the displacement-pressure system. Two additional variables describe the phase-field solution and the crack irreversibility constraint. Therefore, the final system contains four variables: displacements, pressure, phase-field, and a Lagrange multiplier. The resulting discrete system is nonlinear and solved monolithically with a Newton-type method. Our proposed model is demonstrated by means of several numerical studies based on two numerical tests. First, different finite element choices are compared in order to investigate the influence of higher-order elements in the proposed settings. Further, numerical results including spatial mesh refinement studies and variations in Poisson's ratio approaching the incompressible limit, are presented

    Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    Full text link
    We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914
    • …
    corecore