Within this work, we develop a phase-field description for simulating
fractures in incompressible materials. Standard formulations are subject to
volume-locking when the solid is (nearly) incompressible. We propose an
approach that builds on a mixed form of the displacement equation with two
unknowns: a displacement field and a hydro-static pressure variable.
Corresponding function spaces have to be chosen properly. On the discrete
level, stable Taylor-Hood elements are employed for the displacement-pressure
system. Two additional variables describe the phase-field solution and the
crack irreversibility constraint. Therefore, the final system contains four
variables: displacements, pressure, phase-field, and a Lagrange multiplier. The
resulting discrete system is nonlinear and solved monolithically with a
Newton-type method. Our proposed model is demonstrated by means of several
numerical studies based on two numerical tests. First, different finite element
choices are compared in order to investigate the influence of higher-order
elements in the proposed settings. Further, numerical results including spatial
mesh refinement studies and variations in Poisson's ratio approaching the
incompressible limit, are presented