168 research outputs found

    SysML modeling of service-oriented system-of-systems

    Get PDF
    The success of the ongoing fourth industrial revolution largely depends on our ways to cope with the novel design challenges arising from a combination of an enormous increase in process and product complexity, as well as the expected autonomy and self-organization of complex and diverse industrial hardware–software installments, often called systems-of-systems. In this paper, we employ the service-oriented architectural paradigm, as materialized in the Eclipse Arrowhead framework, to represent modern systems engineering principles and their open structural principles and, thus, relevance to flexible and adaptive systems. As for adequately capturing the structural aspect, we propose using model-based engineering techniques and, in particular, a SysML-based specialization of systems modeling. The approach is illustrated by a real-life use-case in industrial automation.publishedVersio

    Philips MRI pTX Coil Optimizer

    Get PDF

    An Engineering Process model for managing a digitalised life-cycle of products in the Industry 4.0

    Get PDF
    The Internet of Things (IoT), and more specifically the industrial IoT, is revolutionising industry. This technology has catalyzed the fourth industrial revolution and inspired movements such as Industry 4.0, the Industrial Internet Consortium and Society 5.0. Morphing an industrial process or assembly line to aggregate Internet-connected devices and systems does not complete the picture. The concept penetrates all aspects of the engineering process (EP) which encompasses the full lifecycle of the product/solution. Phases of the EP traditionally tended to be sequential but, with the IoT, can now evolve and influence other phases throughout the product/solution lifecycle. The EU-funded Arrowhead Tools project aims to promote a service-oriented architecture (SOA) to allow tools within each phase of the engineering process to interact with each other. This paper, applies the proposed EP model to a real value chain composed of multiple stakeholders adopting different EPs for the life-cycle management of a Smart Boiler System

    Modeling an Industrial Revolution: How to Manage Large-Scale, Complex IoT Ecosystems?

    Get PDF
    Advancements around the modern digital industry gave birth to a number of closely interrelated concepts: in the age of the Internet of Things (IoT), System of Systems (SoS), Cyber-Physical Systems (CPS), Digital Twins and the fourth industrial revolution, everything revolves around the issue of designing well-understood, sound and secure complex systems while providing maximum flexibility, autonomy and dynamics.The aim of the paper is to present a concise overview of a comprehensive conceptual framework for integrated modeling and management of industrial IoT architectures, supported by actual evidence from the Arrowhead Tools project; in particular, we adopt a three-dimensional projection of our complex engineering space, from modeling the engineering process to SoS design and deployment.In particular, we start from modeling principles of the the engineering process itself. Then, we present a design-time SoS representation along with a toolchain concept aiding SoS design and deployment. This brings us to reasoning about what potential workflows are thinkable for specifying comprehensive toolchains along with their data exchange interfaces. We also discuss the potential of aligning our vision with RAMI4.0, as well as the utilization perspectives for real-life engineering use-cases

    System of Systems Lifecycle Management: A New Concept Based on Process Engineering Methodologies

    Get PDF
    In order to tackle interoperability issues of large-scale automation systems, SOA (Service-Oriented Architecture) principles, where information exchange is manifested by systems providing and consuming services, have already been introduced. However, the deployment, operation, and maintenance of an extensive SoS (System of Systems) mean enormous challenges for system integrators as well as network and service operators. The existing lifecycle management approaches do not cover all aspects of SoS management; therefore, an integrated solution is required. The purpose of this paper is to introduce a new lifecycle approach, namely the SoSLM (System of Systems Lifecycle Management). This paper first provides an in-depth description and comparison of the most relevant process engineering methodologies and ITSM (Information Technology Service Management) frameworks, and how they affect various lifecycle management strategies. The paper’s novelty strives to introduce an Industry 4.0-compatible PLM (Product Lifecycle Management) model and to extend it to cover SoS management-related issues on well-known process engineering methodologies. The presented methodologies are adapted to the PLM model, thus creating the recommended SoSLM model. This is supported by demonstrations of how the IIoT (Industrial Internet of Things) applications and services can be developed and handled. Accordingly, complete implementation and integration are presented based on the proposed SoSLM model, using the Arrowhead framework that is available for IIoT SoS. View Full-Tex

    Annotation rules for XML schemas with grouped semantic annotations

    Get PDF
    45th Annual Conference of the IEEE Industrial Electronics Society: Lisbon, Portugal: oct. 14-17, 2019To enable the Industrial Internet of Things (IIoT), it is required to ensure Machine-to-Machine communications. Systems/devices often use different communication protocols, standards, and data representation languages, which create interoperability challenges. This paper proposes a set of annotation rules for systems meta-data, to support the translation of data exchanged between heterogeneous systems. These rules must be followed to ensure the validity of systems meta-data (XML Schemas annotated with semantic annotations and group identifiers). The meta-data can then be used as input in tools to analyze data and semantic compatibility and generate translators

    Plant descriptions for engineering tool interoperability

    Get PDF
    The emergence and deployment of connected devices in many domains of application (e.g. industrial production, buildings and facilities, urban environment, etc.) have resulted in the need to achieve integration of multiple and more complex systems. This new environment is stressing the intrinsic limits imposed by monolithic standards, data models and integration methods that focus on specific domains of application, types of systems, or specific aspects of a system. This paper describes the Plant Description Service developed as part of the Arrowhead Interoperability framework (EU ECSEL funded project). The manuscript contains a description of the abstract system descriptive model based on which the Plant Description service was implemented, and describes how the service can be used to achieve integration of several industry standards and data models. Case studies are provided that illustrates how the service was practically implemented to support engineering scenarios in the domain of industrial production. The paper concludes with a critical review of the approach and suggestion for future work and developments
    corecore