97,127 research outputs found

    Reflections on the Utility of the Retina as a Biomarker for Alzheimer's Disease: A Literature Review.

    Get PDF
    As a part of the central nervous system, the retina may reflect both physiologic processes and abnormalities related to diseases of the brain. Indeed, a concerted effort has been put forth to understand how Alzheimer's disease (AD) pathology may manifest in the retina as a means to assess the state of the AD brain. The development and refinement of ophthalmologic techniques for studying the retina in vivo have produced evidence of retinal degeneration in AD diagnosed patients. In this review, we will discuss retinal imaging techniques implemented to study the changes in AD retina as well as highlight the recent efforts made to correlate such findings to other clinical hallmarks of AD to assess the viability of the retina as a biomarker for AD

    Automatic optometer operates with infrared test pattern

    Get PDF
    Refractive strength of human eye is monitored by optometer that automatically and continuously images infrared test pattern onto the retina. Condition of focus of the eye at any instant is determined from optometer settings needed to maintain focus of the pattern on the retina

    A bio-inspired image coder with temporal scalability

    Full text link
    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS 2011

    Connecting the Retina to the Brain

    Get PDF
    The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Work in the laboratory of LE is funded by the BBSRC [BB/J00815X/1] and the R.S. Macdonald Charitable Trust. Research in the laboratory of EH is funded by grants from the Regional Government [Prometeo2012-005], the Spanish Ministry of Economy and Competitiveness [BFU2010-16563] and the European Research Council [ERC2011-StG20101109].Peer reviewedPublisher PD

    How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis

    Get PDF
    The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4 cm and works together with membrane potential, correspondingly representing the retinal layers,photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors’ individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex,and the retina work in unison to create an infrastructure of visual space that functionally ‘‘places” the objects within this ‘‘neural” space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina,but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision

    Non-viral delivery and optimized optogenetic stimulation of retinal ganglion cells led to behavioral restoration of vision

    Get PDF
    Stimulation of retinal neurons using optogenetics via use of chanelrhodopsin-2 (ChR2) has opened up a new direction for restoration of vision for treatment of retinitis pigmentosa (RP). Here, we report non-viral in-vivo electroporation of degenerated retina of adult RP-mice with ChR2-plasmids and subsequent in-vivo imaging of retina to confirm expression. Further, we demonstrate that in addition to efficient non-viral delivery of ChR2 to a specific retinal layer, threshold level of stimulation light needs to be delivered onto the retina for achieving successful behavioral outcome. Measurement of intensity of light reaching the retina of RP-mouse models along with geometrical optics simulation of light propagation in the eye is reported in order to determine the stimulating source position for optimal light delivery to the retina. The light-guided navigation of mice with ChR2 expressing retinal ganglion cells was found to be significantly improved over a long distance in correlation with stimulation intensity

    Human visual response to nuclear particle exposures

    Get PDF
    Experiments with accelerated helium ions were performed in an effort to localize the site of initial radiation interactions in the eye that lead to light flash observations by astronauts during spaceflight. The character and efficiency of helium ion induction of visual sensations depended on the state of dark adaptation of the retina; also, the same events were seen with different efficiencies and details when particle flux density changed. It was concluded that fast particles cause interactions in the retina, particularly in the receptor layer, and thus give rise to the sensations of light flashes, streaks, and supernovae
    corecore