194,217 research outputs found

    The impact of low carbon generation on the future price of electricity

    Get PDF
    There are relatively few who would argue that tackling climate change, and therefore reducing carbon emissions, should not be a priority for society and the energy sector. But significant increases in energy prices are a necessary consequence of that policy. Using published sources this paper estimates that by 2020 UK and EU regulatory mechanisms designed to promote lower carbon energy will increase average household electricity prices by between 23% and 42%, and median industrial electricity prices by between 30% and 60%

    Exploring the future low-carbon electricity system: impacts of nuclear power and demand patterns

    Get PDF
    To achieve the climate goals set by the Paris Agreement, the global electricity system is expected to transition towards a low-carbon electricity system. The future low-carbon electricity system is uncertain regarding both generation and demand. First, the cost of variable renewable energy (VRE) technologies, such as wind and solar, has been decreasing over the past decade and the share of\ua0 VRE in the electricity system is increasing. This trend is likely to continue for the foreseeable future. However, there is no consensus as to whether the goal of deep decarbonization of the electricity system can be accomplished without large cost escalation if nuclear power and fossil fuel plus carbon capture and storage (CCS) are excluded. Second, the future electricity demand is highly uncertain due to economic growth, e-mobility, electric heating, electric cooling, etc. These factors affect not only the volume of annual electricity demand, but also the inter-temporal electricity demand pattern. The change in demand pattern may affect a low-carbon electricity system with a high penetration level of wind and solar, as such a system is less capable of load following, as compared with the conventional electricity system based on dispatchable thermal power plants.This thesis investigates the impacts of nuclear power and demand patterns on the future low-carbon electricity system, and addresses the following research questions: What is the cost of a future low-carbon electricity system without nuclear power for Sweden?; and How will the electricity demand pattern affect the electricity system cost and the electricity supply mix? A greenfield techno-economic cost optimization model with a high temporal resolution for the electricity system is developed and used to answer these questions.The results of this work reveal that including nuclear power in the electricity system reduces the nodal net average system cost by 4% for Sweden. This implies that the economic rationale for Sweden as a country to invest in nuclear power is limited if there is a transition towards a low-carbon electricity system in Europe. In addition, we find that varied electricity demand patterns (seasonal and diurnal variations) affect only slightly the electricity system cost, except for the case of summer peak, where the system cost may increase by up to 8%. The demand pattern may have a stronger impact on the electricity supply mix, especially solar and storage capacities, than on the electricity system cost. This thesis contributes to a better understanding of the potential future low-carbon electricity system. The results are beneficial in identifying the implications for the planning of the future electricity system, policy support for low-carbon technologies, and demand profile treatment for modeling studies

    Climate policy costs of spatially unbalanced growth in electricity demand: the case of datacentres. ESRI Working Paper No. 657 March 2020

    Get PDF
    We investigate the power system implications of the anticipated expansion in electricity demand by datacentres. We perform a joint optimisation of Generation and Transmission Expansion Planning considering uncertainty in future datacentre growth under various climate policies. Datacentre expansion imposes significant extra costs on the power system, even under the cheapest policy option. A renewable energy target is more costly than a technology-neutral carbon reduction policy, and the divergence in costs increases non-linearly in electricity demand. Moreover, a carbon reduction policy is more robust to uncertainties in projected demand than a renewable policy. High renewable targets crowd out other low-carbon options such as Carbon Capture and Sequestration. The results suggest that energy policy should be reviewed to focus on technology-neutral carbon reduction policies

    Recent Developments in Renewable Energy in Remote Aboriginal Communities, Yukon, Canada

    Get PDF
    Remote aboriginal communities in Canada’s Yukon Territory are undergoing a transition from carbon-intensive diesel generated electricity to low carbon, renewable sources of electricity. Hydroelectricity is the main source of power in the territorial grid so the extension of the grid and the addition of new hydroelectricity sources offers one path to low carbon electricity future for some communities. In more remote parts of the territory, wind, solar and smaller hydroelectric generation projects are considered to reduce diesel consumption and the associated greenhouse gas emissions. Yukon’s Climate Change Action Plan promotes cutting the carbon intensity of electricity. This paper reviews community electricity systems, past renewable electricity projects, as well as available renewable resources, generation alternatives, and policies, plans and proposed future projects that could help transform the supply of electricity in the remote communities. The transition to cleaner electricity systems also creates an opportunity for new investment models and development options where communities or private parties may replace public utilities as investors in new generation technologies. Government supports for the transition of communities from greenhouse gas intensive diesel generation to low carbon renewable sources of electricity include the microgeneration and Independent Power Producer policies. Initial success with small renewable energy projects in the remote Yukon communities is leading to additional and larger projects being planned.Keywords: Yukon, remote aboriginal communities, indigenous communities, diesel, renewable electricity, energy transition, climate action policie

    The role of biomass in the renewable energy system

    Get PDF
    Europe is striving for zero carbon electricity production by 2050 in order to avoid dangerous climate change. To meet this target a large variety of options is being explored. Biomass is such an option and should be given serious consideration. In this paper the potential role of biomass in a NW-European electricity mix is analyzed. The situation in NW-Europe is unique since it is a region which is a fore runner in renewable technology promotion but also an area with little sun, almost no potential for hydro and a lot of wind. This will result in a substantial need for non-intermittent low-carbon options such as biomass. The benefits and issues related to biomass are discussed in detail from both an environmental and an economic perspective. The former will focus on the life cycle of a biomass pellet supply chain, from the growth of the trees down to the burning of the pellets on site. The latter will provide detailed insights on the levelized cost of electricity for biomass and the role of biomass as a grid stabilizer in high intermittent scenarios. During the discussion, biomass will be compared to other competing electricity technologies to have a full understanding of its advantages and drawbacks. We find that biomass can play a very important role in the future low carbon electricity mix, the main bottleneck being the supply of large amounts of sustainably produced feedstock

    California’s Renewables Portfolio Standard (RPS) requires 33% renewable electricity generation by 2020 - Dream or Reality?

    Get PDF
    Progress on California’s Renewable Portfolio Standard (RPS), which requires 33% of all retail electricity sales to be served by renewable energy sources by 2020, excluding large hydro, is reported in this paper. The emerging renewable electricity mix in California (CA) and surrounding states which form the Western Electricity Coordination Council (WECC) is analysed using the Carbon Emission Pinch Analysis (CEPA) and Energy Return on Energy Invested (EROI) methodologies. The reduction in emissions with increased renewables is illustrated and the challenge of maintaining high EROI levels for renewable generation is examined for low and high electricity demand growth. The role of the California government in facilitating progress towards a more sustainable renewable electricity future is also highlighted. The investigation shows that wind and solar PV collectively form an integral part of California reaching the 33% renewables target (excluding large hydro) by 2020. Government intervention of tax rebates and subsidies, net electricity metering and a four tiered electricity price has accelerated the uptake of renewable wind and solar PV. Residential uptake of solar PV is also reducing overall California electricity grid demand. Emphasis on new renewable generation is stimulating development of affordable wind and solar technology in California which has the added benefit of enhancing social sustainability through improved employment opportunities at a variety of technical levels
    corecore