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ABSTRACT 

This thesis presents a novel System Dynamics (SD) policy and investment analysis framework for 

future low-carbon electricity systems, using an electrically isolated island system as its case study. 

Current electricity systems are undergoing a long-term transition towards reduced fossil fuel use, 

primarily driven by high fuel costs, environmental concerns and the desire for energy security. 

These systems are facing a number of evolving policy drivers: most notably, current attempts to 

pursue higher levels of renewable energy sources, greater energy efficiency and other supporting 

technologies. Emerging challenges are shaping the low-carbon objectives of future electricity 

systems and the ensuing implications for future policy and investment decisions. This thesis 

presents a number of critical policy recommendations allied with longer-term investment 

observations, evolving from the nexus between the environmental and energy security concerns of 

an island-based electricity system.  

Island systems such as São Miguel, are small enough to be understood while being large enough to 

reveal highly complex structures and inherent time and spatial interactions within and between 

social, economic and technical factors. It is argued that a systematic SD-based approach can reveal 

possible system structure trajectories, with such insights assisting the understanding of overall 

sustainability while recognising emergent challenges and behaviours.  

The thesis shows that learning-by-doing renewables cost reductions exists but are not very 

significant in island electricity systems. Additionally, it shows that setting low-carbon policy targets 

is beneficial for emissions reductions, but meeting these targets too early is either inefficient or 

impractical if targets are unrealistic. Critical evaluations of endogenous electricity demand growth 

and the system capacity margin are provided, which highlights consequential policy challenges for 

island-based systems. The most important and influential low-carbon agendas giving endogenous 

impacts on electricity demand are elaborated. The thesis also confirms that more effective policies, 

for sustained renewables uptake and improved investor decision-making for the generation mix, 

can be achieved. Insights distilled from smaller electricity systems can help frame the outlook of 

larger systems. 
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Chapter 1. Introduction  
 

  

Electricity consumption is considered as the key link between economic growth, social equality and 

environmental sustainability (UNF, 2013). This assumption relies heavily on the intuition that 

human development and the quality of life are dependent on the continuous abundance and 

economic supply of energy for electricity production (Gómez Expósito, Conejo and Cañizares, 2009). 

The ensuing debate that surrounds the relationships between the provision of electricity and 

economic growth has intensified. There is a range of tremendous beneficial impacts that electricity 

can have on the livelihoods of humans. According to the former United Nations Secretary-General, 

Ban Ki-moon, the growth that has freed millions of people from poverty is associated with an 

increase in electricity emissions and unwanted environmental effects. However, in the literature, 

Barnes (2007) claims that access to electricity is a necessary, but not sufficient, condition for 

economic development. The need for sustainable development should involve secure and self-

sufficient means to achieve it. The following section distilled these arguments in providing the 

background for this thesis. 

1.1 Background 

Current research suggests that there is a need for electricity to be embedded in today’s modern 

societal structures to promote economic development, however, there is an overreliance on its 

consumption (IRENA, 2015; European Commission, 2016). Concurrently, more than 1.2 billion 

people worldwide have no access to electricity, and a further 1 billion only have intermittent access 

(UNF, 2013). According to UNF (2013), some 3 billion people - almost half of humanity are without 

access to modern energy services, relying on traditional biomass for cooking and heating. This 

problem is evident in poorer and less developed countries and as a means of solving such an issue, 
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there are calls from global bodies for united commitments which can attract global attention to the 

importance of electricity (UNF, 2013; GEEREF, 2016; UNFCCC, 2016). Incentives have been created 

for countries worldwide to improve and expand their electricity systems using environmental 

(climate change) friendly sources, while seeking to achieve reliable energy for all. 

The use of low-carbon energy sources, energy efficiency and other resources (UNF, 2013; Islands 

Energy Program, 2016) are able to provide electricity systems with the tools needed for sustainable 

energy. In line with this shift and according to UNF (2013), key objectives to be met by 2030 include 

doubling the rate of energy efficiency improvement and the share of renewable energy in the global 

energy mix. This solution set will satisfy the desires of an electricity-rich society and provide a 

starting ground for the globally less fortunate. Consequentially, it has been suggested that the 

pursuit of low-carbon renewable sources will tackle the common challenges of high energy prices, 

energy security concerns from the import dependency of fossil fuel generation sources and the 

related excessive carbon emissions (Weisser, 2004b; Foxon, 2013; IRENA, 2013; European 

Commission, 2016; UNFCCC, 2016). This use of renewables will improve access to modern energy 

services, and at the same time enhance the sustainability attributes and resilience of the electricity 

supply (UNF, 2013). 

In this respect, electricity systems are currently undergoing a transition. This transition should 

represent the objective to satisfy increased electricity consumption (3.4% average growth rate of 

worldwide electricity consumption since 1974 as derived by IEA (2016)) whilst ensuring compliance 

with steep decarbonisation targets (UNFCCC, 2016). The future electricity demand dictates an 

increasing need for uninterrupted supply for the global population (IEA, 2016) coupled with 

meeting global climate change objectives (European Commission, 2016) and tackling the 

overreliance on fossil fuels (Islands Energy Program, 2016). Future electricity systems will thus be 

diverse, dynamic and evolving low-carbon integrated systems. According to (MIT, 2011), even 

though the majority of current electricity systems are not broken, emerging challenges from such 

a transition, if not met, could substantially degrade the system’s reliability and efficiency in the 
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future. Interestingly, the energy sector has experienced multiple transitions, namely from wood to 

coal, oil and gas (Naill, 1992; Jacobsson and Johnson, 2000), so a further natural progression to low-

carbon electricity systems is viewed as both tolerable and achievable (MIT, 2011).  

It has also been established that electricity systems are already experiencing a parallel evolution 

from the traditional centralised fossil-based generation set-up to a predominately decentralised 

low-carbon architecture (Vallvé, 2013; Islands Energy Program, 2016). With an evolution timeline 

that is considered to be a gradual increase to using renewable technologies that can be deployed 

within the near future or already being deployed (US DoE, 2004). Alternatively, there can exist a 

substantially accelerated timetable to the fully transitioned low-carbon electricity system - a system 

that is remarkable in its complexity and impressive in its scope (US DoE, 2004). In both cases, new 

types of electricity systems will emerge, such as low-carbon and smarter systems enabled by 

pervasive Information Communication Technology (ICT) with bidirectional communications and 

power exchange between suppliers and consumers (Bompard et al., 2012).  

These systems are not to be limited to a diverse set of dynamic, distributed energy suppliers, they 

should connect smart users (responsive, energy efficient, and variable) to sustainable energy 

sources. Many challenges and opportunities arise with the development of these systems and 

services. Moreover, there is evidence that public policies and a variety of technological and 

economic changes will alter both the demand and supply of electricity from these systems (MIT, 

2011). However, such changes represent a key means for the de-carbonisation and decentralisation 

of the present electricity system (Bompard et al., 2012; Islands Energy Program, 2016). 

Implementation includes operational and architectural factors, with the need for newer policies 

and renewed investment strategies for producing, delivering, storing, and consuming electricity. If 

regulatory policies and the technologies employed in the electricity system do not change, it will be 

difficult to maintain acceptable reliability and sustainability (MIT, 2011).  
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Traditional fossil-based electricity systems are embodied with high amounts of multi-level 

interactions (Geels and Schot, 2007; Chappin, 2011). The accompanying complex dynamics are not 

only from the technical and physical aspects of the system but also from the numerous socio-

economic systems interacting with it (Geels, 2002; Chappin, 2011). According to (Foxon, 2011; 

Bompard et al., 2012), future low-carbon electricity systems will be even more complex than 

traditional fossil-based electricity systems. Specifically, the physical, social and economic entities of 

transitioning low-carbon systems will have an increase in varied and diverse interrelationships and 

interactions (Chappin, 2011; Bompard et al., 2012). Some of these interactions and complexities 

are inherently tied to the environmental and energy security concerns of these low-carbon 

transitioning systems. Therefore, stakeholders, especially governments and energy companies, will 

have to capture the trade-offs between these complexities and the potential long-term benefits 

pursued. Hence, there is a further need to adapt behaviours to ensure that an evolution to the low-

carbon electricity system design and implementation goals can be achieved. These objectives 

should be coupled with the broader political and cultural policy considerations of the system. 

One key approach to determine the behaviours, goals and attitudes within complex systems is to 

acknowledge that the inherent system structure leads to these behaviours and guides the 

interactions found within it. The patterns of behaviours (sequences of events) and not random 

events, signal the existence of the underlying system structure (NWEI, 2016). A focus on the random 

events occurring within the system will be futile for understanding the system and for developing 

proactive solutions for these systems. However, by looking at the patterns of events, feedback 

systems thinking, can lead to the necessary proactive solutions that have a high leverage to 

influence the system (Sterman, 2000).  

Hence, it is useful to understand the structure of the transitioning low-carbon electricity system to 

achieve the required system design and output solutions. This understanding will emerge from the 

social, technical and economic interactions of the key entities and drivers within the system. 

Therefore, the need to address environmental and energy security concerns (of fossil fuel import 
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dependency) of these systems using a feedback systems thinking approach will prove beneficial. 

Implications from the nexus of environmental and energy security concerns for an isolated and 

bounded system can reveal important and useful proactive solutions for transitioning low-carbon 

electricity system. Additionally, insights into future emerging challenges and plausible solutions for 

policy and investments within these systems can be distilled. The next section provides the 

motivation for the approach taken in this thesis. 

1.2 Motivation 

Policy makers worldwide are attempting to reduce the emission of harmful greenhouse gases 

produced during electricity generation, while simultaneously either preserving or enhancing energy 

security. This challenge is compounded by the desire to achieve the required changes without 

greatly increasing economic costs which would risk an erosion of national economic 

competitiveness. Resultantly, future electricity systems are facing emerging policy drivers to pursue 

high levels of renewable energy sources, energy efficiency and other supporting technologies. 

Emerging challenges from these policies will shape the low-carbon outcomes, and impacts, and the 

future of these electricity systems.  

The use of energy policies involved have traditionally relied on the “energy trilemma” of costs 

(energy equity/affordability), environmental concerns and security of supply issues, illustrated in 

Figure 1.1a (Nuttall, 2013; World Energy Council, 2016). These factors remain and are key to the 

policy and investment decisions taken within the evolving systems. However, the focus on specific 

aspects of the energy policy trilemma will be better articulated within the context of the structure 

of the electricity system considered. In addition the overall organisational and management 

structure of the transitioning complexities involved for the system is important, as is the long-term 

consequences of how these structural factors might influence the energy related behaviours and 

challenges of such low-carbon electricity systems. These long-term views are critical for ensuring 
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the viability of the system (Sterman, 2000). A clearer picture can hence be framed of the planning 

and policy-shaping framework of these systems. 

However, most studies into electricity systems have focused only on the electricity system purpose 

and functionality such as grid balancing (Lalor, 2005; Ekanayake et al., 2012; Momoh, 2012; Ilic, Xie 

and Liu, 2013). A variety of large-scale, event-oriented optimisation and econometric simulations 

are employed. There are other studies that argue that the physical grid is merely one system in a 

“system of systems” and more suitable methods need to be adopted (Dyner, 1996; Jordan, 2013). 

According to Bompard et al. (2012), in-depth analysis of the complete socio-techno-economic 

“system of systems” is of much more benefit to stakeholders. A complex system view method is 

advocated to understand the system implications and to propose feasible solutions to include 

suitable policy agendas.  

In general, there are many systems view and complexity science methodologies available including 

complex network theory, agent-based strategies, system dynamics (SD), game theory and multi-

scale modelling (Forrester, 1961; Macal and North, 2006; Bompard et al., 2012; Owlia and 

Dastkhan, 2012).  Of these methods, SD has emerged as a suitable candidate for capturing the key 

salient features of the system (Sterman, 2000; Jordan, 2013). The need for incorporating social and 

economic factors as opposed to just considering the technical and physical details of the electricity 

system are key to the SD modelling approach by allowing the delayed policy effects necessary for 

understanding the policy implications to be captured. In addition, the characteristics of the 

electricity demand endogenously evolving from low-carbon policies can be studied and the relevant 

energy policy trilemma critically evaluated using SD.  

For larger electricity systems such as in a country or continent, the challenge involves even higher 

levels of complexity of the inherent system components interaction (Bompard et al., 2012). The 

larger the system the more interactions that exist and hence the more difficult it is to understand 

and to model. Dyner, (1996) elucidate the idea of simple models, acknowledging that while higher 
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levels of complexity exist in larger systems, a more pragmatic option is to consider a smaller, but 

nevertheless complete, autonomous electricity systems. Interestingly, this approach can be done 

for the electricity systems of islands that are small enough to be understood, but large enough to 

reveal highly complex structures and interactions (in both time and space) between social, 

economic and technical factors.  

Transitioning island electricity systems have less complexity and are simpler because of their 

smaller size and scale. In addition, they might, due to this smaller scale face some low-carbon 

transitioning challenges such as increasing the uptake of higher levels of renewables earlier than 

larger interconnected networks (Eurelectric, 2012). Hence, these island systems can and has been 

used as testbeds for deriving a valuable understanding of the critical issues that might exist 

(Eurelectric, 2012; Islands Energy Program, 2016). Indeed, the modelling and analysis of such 

testbeds can provide useful insights not only for other island networks but also for the larger global 

electricity systems that exist. However, greater reformulations of the models would be required if 

they are to be extended to larger, interconnected electricity systems, such as in the USA, UK and 

Europe. Conversely, isolated island systems can be left behind in the evolving low-carbon electricity 

transitioning process and thus might adopt strategies from bigger interconnected systems 

(Eurelectric, 2012). Although this is true for most isolated island systems, there is a growing interest 

into programs, which use small island systems as testbeds for low-carbon transitions. Realistically, 

the economic and technical viability can be best appreciated for its contextual simplicity due to 

factors such as non-liberalised markets and single electric utilities that have monopolistic power 

purchase agreements, simplifying the policy context of these systems.   

Energy policy, in general, addresses a particularly complex and complicated socio-technical set of 

problems. The importance of the issues involved motivates researchers to attempt to gain insight 

and understanding the system complexity can make modelling approaches difficult and prone to 

error. Those risks should not necessarily deter, but they do require care from the outset in order 
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that they are mitigated. The research presented in this thesis has been developed with an acute 

awareness of these issues and it has led to a series of decisions concerning methods and project 

scope.  

These include:  

• To use an established modelling approach well suited to complex socio-technical systems.  

• To consider a territory sufficiently large to manifest key issues, but sufficiently small to be 

tractable.  

• To have a case study in which some elements of the system complexity are attenuated (e.g. 

no local retail price formation for the electricity tariffs) 

Over the last twenty years there has been a growing recognition around the world that energy 

policy combines three distinct, vital and often competing elements (World Energy Council, 2016). 

These elements can be broadly summarised as energy economics, energy security and 

environmental protection, and illustrated in Figure 1.1. Various formulations of these concerns 

have been explored (Foxon, 2013; ICE, 2015) and the concerns have evolved with time. In the 1990s 

policy attention on energy economics focussed on building liberalised markets so as to improve 

energy affordability, but arguably the focus has shifted in recent years to be more on the end than 

the means – i.e. to emphasise energy affordability more explicitly.  

It is trivial for policy-makers to put in place measures to enhance one or even two of these 

competing considerations. In particular, fossil fuels are favoured when attempting to meet a pair 

of goals such as cost and security of supply. For example, electricity generation from coal has 

tended to be attractive in respect to its cost (affordability) and availability (security) but it suffers 

from very poor environmental characteristics (greenhouse gas emissions). Constructing policies for 

all three dimensions is extremely difficult and generally requires a portfolio of technologies and 

fuels. It is noted that energy policy and policymakers attempts to reconcile these three difficult 

challenges leads to the description of the three competing elements as the “energy trilemma” a 
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deliberate play on the word dilemma – in that case a difficult choice between two alternatives. 

According to ICE (2015), measures cannot be considered in isolation and probably all types of 

energy technology, including energy efficiency has a role to play. This assertion emphasise the fact 

that the “energy policy trilemma” is not an absolute trilemma, as the solution appears not to lie in 

correctly making a single difficult choice, but rather in combining a set of difficult choices into a 

compromise solution taking the form of a portfolio of technologies. 

 

Figure 1.1  Illustration of the Energy 

Trilemma (adapted from World Energy 

Council, 2016) 

 

Figure 1.2  Illustration of the Energy 

Trilemma Simplification used for this Thesis 

Noting the characteristics of transitioning island electricity systems and the need to minimise risks 

associated with excessive system complexity, a territory was selected for this research work 

where local retail price formation for electricity tariffs does not occur (EDA, 2008). This greatly 

simplifies one aspect of the energy trilemma (Economics/Affordability) for the research presented 

here.  The revised emphasis is illustrated schematically in figure 1.2, where the issues of energy 

affordability are diminished as they are essentially reduce to considerations of cost minimisation 

(technologies, fuels and energy waste) as unit revenues are essentially fixed. In addition, the focus 

on the security of supply (availability) from the import of fossil fuels and the environmental 

concerns for climate change are given the emphasised.  
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For the reasons outlined above the research has been focussed on one particular isolated island 

territory, São Miguel in the Açores. The considerations in respect of this territory may be 

summarised as follows:  

• It is part of Portugal, the European Union, and is economically developed. 

• It is of sufficient size and complexity to emulate the attributes of larger systems. 

• It has neither electrical connections to any other island nor to the mainland.  

• While the island has some political autonomy, electricity tariffs are not set locally but are 

determined administratively in Lisbon, so the electricity system on the island is not 

economically isolated (EDA, 2008). 

In addition, the research takes a whole systems approach to understanding the structure of the 

complex evolving low-carbon electricity systems using the SD approach. More details of the case 

study are provided in Section 3.5.  

1.3 Research Questions and Objectives  

From the discussions in the previous sections, the following overarching research question was 

framed: 

What does the convergence of environmental and energy security concerns imply for small 

isolated electricity systems?  

The main hypothesis for this work is that current electricity systems are in a low-carbon transition 

with numerous policy drivers. These drivers are based on the need to lower environmental impacts 

from carbon emissions and to also ensure sustainable electricity supply. Inherently, there are many 

emerging challenges and behaviours that require a systematic approach to understanding. This 

understanding might facilitate beneficial policy and investment decisions appropriate for such 

systems. Interestingly, the challenges for policies and long-term investment decisions are more 

readily revealed within smaller and isolated electricity systems.  
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Considering the energy policy trilemma, for isolated island systems such as São Miguel the concept 

of electricity price formation related to the electricity tariffs and affordability can be largely ignored 

and replaced by long-term overnight investment electricity cost. Hence, the energy policy trilemma 

as shown in Figure 1.1, for the purpose of this work, is revised to reflect the structure shown in 

Figure 1.2. With this assertion and the fact that the energy security aspects of the island system is 

centred on low (fossil fuel) import dependency the research does not focus on the whole energy 

policy trilemma shown in Figure 1.1. In essence, the contextual simplification puts the focus on the 

nexus between the environmental and energy security (fossil fuel dependency) concerns of the 

island system. This thesis has the potential to provide an insightful approach for mitigating the 

emerging policy and investment challenges and behaviour issues of low-carbon-transitioning island 

systems. Issues include sustaining the uptake and increasing the amounts of renewables, ensuring 

energy security (fossil fuel import independence), and understanding useful strategies that can 

improve investment decision-making for the electricity generation capacity mix. Critical policy 

recommendations allied with long-term investment observations, as influence by these 

environmental and energy security concerns, can hence be revealed. 

The following four research sub-questions address particular aspects within the scope of this thesis: 

1. How are fossil-fuel-based island systems influenced by electricity demand and capacity 

margin standards? 

This sub-question provides some context for the in-depth analysis of the requirements of this thesis. 

By asking this question, the aim is to explore in detail the fossil fuel investments and policy structure 

(prior to low-carbon) for isolated electricity systems. As a first step, a simple (assuming) fossil fuel 

only model of the island system is built.  In addressing this sub-question the effects of exogenously 

determined electricity demand and existing capacity margins (RAE, 2013) of the system are 

examined. The capacity margin as defined in the literature is a percentage, which gives the level by 

which available installed electricity generation capacity exceeds the peak electricity demand within 
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the system. This is formulated as  
����� ��������	 
���
����	�� �	����

�	�� �	����  * 100.  According to RAE, 

(2013) the capacity margin is also referred to as the reserve margin, the stipulated excess capacity 

in time of peak demand. It is assumed that the electricity demand and the existing capacity margins 

can guide the long-term direction of the electricity system. Hence, the use of electricity industry 

standards for capacity margins and relevant demand growth is simulated to see impacts, if any, on 

the long-term investments made within a fossil-fuel-based isolated island system. Based on these 

outputs, the existing capacity investments and policy challenges for the system in the absence of 

low-carbon transitioning can be established.  

2. How effective are low-carbon policy targets within a small isolated island electricity system? 

It is argued in the previous sections that current electricity systems are pursuing large amounts of 

renewables driven by concerns for environmental and energy security (ie. to reduce fossil fuel 

import dependency). This sub-question seeks to uncover the low-carbon policy evolution. The main 

aim here is to verify that low-carbon policy goals are useful and can be improved for investment 

decisions for the capacity mix within the nexus of the environmental and energy security concerns 

of the system. Based on the local learning-by-doing 1  affordability of renewable technologies, 

together with environmentally driven goal-seeking policies, the effectiveness for increased 

renewable capacity investments and the carbon emissions impacts within the system are 

articulated.  

3. How is electricity demand endogenously influenced by low-carbon policies, and what are 

the long-term implications on isolated islands?  

To uncover the challenges of an environmental and energy security driven policy agenda, 

consideration of the impact on demand is needed. An endogenous view of the demand gives a 

better understanding of the internally generated challenges and opportunities presented. The 

                                                           
1 Learning-by-doing is considered as the cost reductions achieved from increased experience of the locals 
(eg. engineers) with the new technologies. Explained further in Section 4.2.2. 
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impacts of key policy factors such as low-carbon policies for electric vehicles (EV), energy efficiency 

and other demand influences should affect the electricity demand of the system. The usual 

methods for modelling low-carbon electricity transitions and by extension long-term Integrated 

Resource Planning (IRP) are done with an exogenous demand forecast for electricity demand 

(HOMER; PLEXOS; TIMES MARKAL) and are unable to capture an endogenous effect of the 

electricity demand. Therefore they are unable to elucidate the long-term effects on the demand, 

as influenced by low-carbon policies. Explorations of the impacts of low-carbon policies on the 

endogenous demand of the island system are examined using a range of scenarios. 

4. How can energy policy and investor decision-making be improved by system dynamics 

insights? 

This sub-question integrates the outputs from the previous three sub-questions. It is proposed that 

the endogenous demand, the low-carbon policy targets and the investment structure of the low-

carbon transitioning island system will provide insights into the appropriateness of long-term 

investments. The question provides an understanding of how the long-term affordability (using the 

levelised cost of electricity (LCOE) (NREL, 2016) as an overnight cost basis) and not electricity tariffs 

as an endogenous consequence of capacity investments for islands such as São Miguel. A 

methodological framework based on the four sub-questions is developed to guide energy-policy 

and investor decision making. This allows for the understanding of a stable/improved generation 

mix of renewables and other technology portfolios that are effective for environmental and energy 

security concerns. 

1.4 Contributions 

As described earlier, a key consideration when approaching the research of this SD study is the need 

to manage the complexity and minimise the risk of inaccurate and disproportionate modelling 

focus. The smaller, simpler and more tightly bounded systems are hence more attractive in such 

terms. The step-by-step approach taken for this thesis was to construct a series of distinct and 
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constrained models. The research started with the simplest of these models and progressed to 

consider issues of greater scale and complexity. Once each of these models had been developed 

and tested they assumed the status of system sub-models as they were combined to form a 

‘complete’ synthesis model. That holistic analysis is presented in Chapter 6, but each of the 

intermediate sub-models represents a study in its own right and they are sufficient, as stand-alone 

activities, to reveal powerful and interesting conclusions and contributions to the literature.  

The key contributions of this thesis work are in the SD modelling and in the energy policy related to 

environmental and energy security concerns for low-carbon isolated electricity systems. A novel SD 

paradigm for transitioning low-carbon island electricity systems is developed to support policy 

goals, including notably, long-term capacity investments for increasing the uptake of renewables, 

and further reducing environmental impacts from the system. This is shown as a useful approach 

to uncover the desired endogenous implications of the system, from environmental and energy 

security driven policies. In addition, the approach provides policy guidance for improved decision-

making for the long-term investment and integrated resource planning strategies that includes the 

generation mixes of island electricity systems.  

Firstly, assuming a fossil-fuel only island system and using a simplistic model of such a system the 

key feedback effects related to the novel formulation of endogenous capacity margins are revealed. 

This simple preparatory model highlighted that the exogenously projected demand growth rate 

drives the system investments whilst the evolving capacity margin if adhered to by international 

(large system) standards will retard the long-term capacity investments of the system.     

Secondly, the simple fossil-fuel model is extended to include the integration of renewables within 

the system. Low-carbon policy targets formulations allied with learning curves of renewables in 

island electricity systems are evaluated using this model. The research confirms that setting policy 

targets is indeed beneficial for emissions reductions, although meeting these targets too early can 

be inefficient or impractical if targets are unrealistic. However, in all cases considered the goals can 
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be eventually met. This means that there is great linkage to the policy goals of the system meriting 

critical evaluations. Hence, setting successful renewables targets should be further investigated for 

energy security and environmental concerns. 

Thirdly the thesis presents a novel, detailed and endogenous electricity demand structure for 

transitioning low-carbon island electricity systems and proves that the long-term endogenous 

demand can be greatly influenced by low-carbon policies such as energy efficiency and Electric 

Vehicles (EV) promotion. Critical analysis reveals that energy efficiency is the more important and 

can act as a brute force solution useful for safeguarding the energy security of the system. EV 

electrification is not as influential but exhibits some interesting longer-term demand dynamics 

which can be interesting to policymakers for fulfilling their environmental and energy security 

objectives. Additionally, it was found that, for isolated island systems pursuing low-carbon 

objectives, it is the policy behaviour of the locals rather than externals that will make the key impact 

on future electricity demand. 

Finally, the thesis integrates challenges that are most critical when considering transitioning low-

carbon electricity systems. It confirms that effective policies, for sustained renewables uptake and 

improved investor decision-making for the generation mix, can be achieved. Electrification with EVs 

emerges as the prime candidate to sustain the uptake of renewables along with direct renewables 

policies. However, enhancing EVs increases the long-term electricity demand of the system, but it 

aids in deferring investments within the system in the shorter-term, unlike more direct renewables 

policies. Moreover, it is seen that in the long-term, investments in fossil generation is almost non-

existent.  However, some fossil-fuel based capacity stubbornly remains within the generation mix 

for frequency balancing. It is then interpreted that innovations in low-carbon frequency balancing 

generation can assist to further decrease the environmental effects while further enhancing the 

energy security (fossil fuel import independence) of the system. Additionally, it was observed that 

the right mix of low-carbon policies can mitigate the long-term uncertainty of a system impacted 
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by environmental and energy security concerns. This contribution assesses prospective solutions 

for the long-term investment strategies of emerging low-carbon island electricity systems.  

1.5 Thesis Organisation 

The thesis is organised as follows: 

- Chapter 2 presents a comprehensive literature review of the transitioning to low-carbon 

electricity systems. Specifications of the requirements and possible make-up of future low-

carbon electricity systems is given together with the necessary technologies and 

applications that facilitate them. Chapter 2 also highlights the intrinsic complexity of these 

future systems and a critical review of the different modelling and research methodologies 

used to study them. Finally, the emerging characteristic challenges and behaviours 

embodied within policy and investment decisions of these low-carbon transitioning 

systems are provided.  

- Chapter 3 details the research methodology, and software modelling platform and case 

study system used in this thesis. It gives the rationale for choosing this methodology and 

the best practice for effectively modelling complex systems. Examples as applicable to this 

thesis work, such as the initial dynamic hypothesis are explained. In addition, an overview 

of the step-by-step approach employed for successfully conducting the research is shown.  

- Chapter 4 presents the two simple, separate initial sub-models. These two sub-models 

(fossil-fuel sub-model and renewables integration sub-model) address the first and second 

sub-questions of this thesis. The descriptions, validations and explanation of the use of the 

both sub-models are detailed within this chapter. The chapter provides comprehensive 

island-based scenarios that evaluate the findings. Work in this chapter has been published 

in (Matthew et al., 2014, 2015, 2016).    

- Chapter 5 presents the third contribution. A sub-model used for characterising the 

endogenous demand within evolving low-carbon island electricity system driven by 
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environment and energy security concerns. It also analyses various policy scenarios for 

long-term endogenous electricity demand. Work from this chapter has been published in 

the journal Energy Policy (Matthew et al., 2017). 

- Chapter 6 incorporates the sub-model structures developed in Chapters 4 and 5 to establish 

a more comprehensive model of the system to satisfy the fourth sub-question of this thesis. 

The model fully captures the necessary endogenous characteristics of the evolving low-

carbon electricity system. Prospective long-term investment solutions and policy 

recommendations for improved decision-making within the nexus of environmental and 

energy security concerns are also developed from the scenarios and analysis.  

- Chapter 7 concludes the key findings and original contributions presented in this thesis. It 

provides some energy policy implications for isolated island systems and discusses the 

transferability of key thesis findings for larger interconnected electricity systems. In 

addition, some future research avenues created from this work are provided. 
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Chapter 2. Understanding the Complexity of 

Low-Carbon Electricity Systems  
 

 

In the previous chapter, the advent of newer types of future electricity systems and their 

unavoidable complexity has been described. This dilemma is coupled with the desire to understand 

emerging challenges and behaviours within these systems. This chapter has three aims: 1) to specify 

the requirements for, and possible make-up of, future low-carbon electricity systems, 2) to highlight 

the intrinsic complexity and how this has been understood to date, and 3) to establish emerging 

characteristic challenges and behaviours embodied within policy and investment decisions. These 

are pivotal concepts inherent to electricity systems. They require improved understanding.  

Noting numerous political and economic considerations and a myriad of end users, electricity 

systems are inherently large-scale socio-technical systems. They carry with them many economic 

implications to human society for development and for the overall well-being of individuals. Access, 

affordability, and availability of the production, delivery and consumption of electricity are 

provided by the grid system and entail a delicate balance of electricity supply and demand. 

Generally, electricity supply results from the management decisions made by power system 

operators for capacity investments, and to generate, transmit and distribute electricity throughout 

the grid network (MIT, 2011). On the other hand, demand arises from the complex decisions of 

numerous residents and industries connected to the grid. They consume electricity but in the future 

may be enabled also to produce electricity (MIT, 2011; Jordan, 2013). According to US DoE (2004), 

future low-carbon and smarter grids will apply currently available technologies, tools, and 

techniques to bring knowledge to power - knowledge capable of making the grid work far more 

efficiently and to be sustainable. However, despite such considerations and plans the present 

electricity system is set to move into an undetermined and unchartered territory. Hence, there is a 
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need to further understand the system before making changes to it, a vital approach needed for 

the key stakeholders.  

“When you are confronted by any complex system, such as an urban centre or a hamster, with things 

about it, you are dissatisfied with and anxious to fix, you cannot just step in and set about fixing 

with much hope of helping. This realisation is one of the sore discouragements of this century … You 

cannot meddle with one part of a complex system from the outside without the almost certain risk 

of setting off disastrous events that you hadn’t counted on in other remote parts. If you want to fix 

something you are obliged to first understand … the whole system.”                         

-Lewis Thomas, 1974 

This very useful advice provided some context for this work. Simplifications of the evolving low-

carbon electricity system are warranted to clarify thinking and to improve understanding of the 

whole complex system. In addition, we elucidate useful insights into the socio-techno-economic 

“system of systems” complexity of the evolving low-carbon electricity system and seek to make 

visible inherent emerging challenges that are posed to policy and investment decisions.  

2.1 Future Electricity Systems 

Legacy electricity systems currently suffer from some of the key aspects of modern society such as 

rapid and evolving technological changes and pressures mainly driven by ICT influences. Together 

with ageing electricity network assets, and thermal and operational power network constraints 

such as CO2 emissions, there are growing concerns about the sustainability and reliability of energy 

supply. The sustainability of these systems is heavily reliant on the unaffordability and availability 

of current fossil fuels for electricity production (Eurelectric, 2012; IEA, 2013). Also, in respect of the 

environment, there is a strong social urge to de-carbonise the present electricity system with 

increased shares of low-carbon energy sources (IRENA, 2014a; European Commission, 2016; 

UNFCCC, 2016). Furthermore, recent studies state that these issues motivate the development of 

smarter and/or low-carbon electricity systems (Ekanayake et al., 2012; Momoh, 2012; Sawin, 
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Seyboth and Sverrisson, 2016). According to the authors, this development represents a means for 

de-carbonisation and decentralisation of present electricity systems and services. Therefore, it 

implies that existing and future electricity systems must adapt, and this provides an attractive basis 

for the exploitation of newer and improved electricity systems or smarter low-carbon grids 

(Momoh, 2012).  

Consequently, this shift towards future electricity systems is not only influenced by the factors 

listed above. There is a diversity of emerging market players and end users appearing within such 

a system. They will lead the transformation from a centralised, producer-controlled network to one 

that is less centralised and more consumer-interactive. The resulting system would be a highly 

decentralised low-carbon energy system that can have two-way communication, and other 

enabling technologies and interoperability standards (MIT, 2011). According to US DoE (2004), 

society should prepare for a future electricity system that is cleaner, more efficient, reliable, 

resilient and responsive i.e. a smarter grid and/or smart grid system. Such systems are however not 

restricted to the distant future. Modern systems are already enabling this process of transition. 

Indeed, seeking such a system has influenced the present global trends, for the use of decentralised 

low-carbon energy sources (MIT, 2011; Sawin, Seyboth and Sverrisson, 2016). Renewable energy 

sources, such as wind, wave, and solar power are increasing. For example, over 25% of globally 

installed energy capacity in 2011 came from low-carbon sources i.e. renewables, nuclear (Madrigal 

and Stoft, 2012). In fact, renewable energy provided an estimated 19.2% of global final energy 

consumption [sic] in 2014, and the growth in renewable power capacity continued in 2015 (Sawin, 

Seyboth and Sverrisson, 2016). However, it is been observed that several of these energy sources 

are primarily variable in nature and present unpredictable effects, as they are integrated into a 

decentralised, diverse, dynamic and evolving integrated electricity system (Eurelectric, 2012; Ilic, 

Xie and Liu, 2013; IRENA, 2015). Although less variable low-carbon sources such as geothermal, run-

of-river hydro and nuclear will have smaller effects on the physical system, they are either physically 

unavailable or suffer from social and political questions as in the case of nuclear. These alternatives 
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for low-carbon sources represent one of the key challenges of future electricity systems. (It is 

important to note here that the case study for this work has lots of prospects for, and is already 

endowed with geothermal and run-of-river renewable generation sources.) Furthermore, the 

required choice and integrated usage of various low-carbon sources are coupled with the 

distributed grid management, required data communication and automation sufficient for social 

consumer cooperation characterising the economic aspects of the future system. Momoh (2012), 

Ilic, Xie and Liu (2013), Ekanayake et al. (2012), give details of possible future electricity systems, 

and which are briefly summarised in the following section.  

2.1.1 Outlooks for Future Low-carbon Electricity Systems  

The literature highlights that there is no single agreed definition of future electricity systems, 

however; there are some key characteristics that must be satisfied. Future electricity systems must 

be observable, controllable, automated and fully integrated (Bompard et al., 2012). According to 

Bompard et al. (2012), future electricity systems are smart electricity systems which can in turn, 

intelligently integrate the actions of all users connected to it - generators, consumers and those 

that do both (“prosumers”), in order to efficiently deliver sustainable, economic and secure 

electricity supply. Systems that can facilitate such requirements and behaviours can be low-carbon 

based and such systems are often referred to as smart grid electricity systems (US DoE, 2004; MIT, 

2011; Ekanayake et al., 2012; Momoh, 2012). According to US DoE (2004), two major timelines can 

be applied here. A smarter electricity system which offers valuable enabling technologies that can 

be deployed within the very near future or are already being deployed today, and the longer-term 

smart grid electricity system described above – which represents the future promise of an electricity 

system remarkable in its intelligence and impressive in its scope. Such systems are a decade or more 

from realisation (US DoE, 2004).  The enabling technologies required to host such a system can be 

thought of as being a multi-technology mix of data collection, processing, and operational 

facilitation (MIT, 2011). Figure 2.1 gives a snapshot overview of the outlooks of future smart low-

carbon electricity systems. All aspects of such a system are interconnected in order to provide the 
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necessary smart generation, transmission, distribution, consumption, and storage that entail a 

future smart grid electricity system which can deliver the anticipated positive benefits and general 

improvements to the daily lives of the global population. 

 

Figure 2.1  Outlook for Smart Low-Carbon Based Electricity Systems (adapted from Sauli Jäntti, 

2014) 

In due course, the electricity system may be equipped to meet present and future sustainability, 

reliability, flexibility and affordability needs (Chappin, 2011; IRENA, 2013, 2014a). 

2.1.2 Context of Developing Sustainable Low-Carbon Electricity Systems 

As described in the previous section and shown in Figure 2.1, the smart grid electricity system offers 

many interesting and beneficial outlooks for its stakeholders. This system can, and should, deliver 

enhanced energy security, reduced CO2 emissions, improved grid asset utilisation, increased 

consumer participation, and be a more sustainable energy system for both present and future 

generations (MIT, 2011; Momoh, 2012). There is, however, no predefined roadmap of exactly how 

such a system should and will evolve. This research work focus on the transitioning of present 

systems into low-carbon electricity systems of today and the future, as they become the smarter 
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or smart grid electricity systems of the distant future. For this thesis, the evolution of low-carbon 

electricity systems is studied. These systems are the prelude to the smart grid (US DoE, 2004) and 

are dynamic, evolving and integrated electricity systems that can facilitate the options of 

distributed renewable generation, energy storage, electric vehicles and some form of load 

shifting/demand side management. Such factors represent what enables the development of low-

carbon electricity systems without having the smart electricity system.  

The underlying motivation for the expansion and development and, to an extent, the transitioning 

of legacy electrical power networks hinges on the concept of long-term power planning (Ford, 

1997). Long-term power planning is also known as “capacity expansion planning” attempts to 

define the least-cost needed for capacity expansion that meets growing demand over a long-term 

horizon, of approximately 10 to 30 years (Jordan, 2013). According to details given by Jordan (2013), 

the costs incurred are typically the sum of the capital investments of newly constructed capacity 

and the ongoing system operational costs of meeting demand within the horizon of the system 

outlook. Typical decisions would include the timing of investment, the type of investment (fossil-

fuels, nuclear, hydro, etc.), the size of newly constructed capacity, and the preferred mode of 

operation. These are all bounded within the long-term goals and ambitions for the system.                     

In addition, the development of any sustainable low-carbon electricity systems includes not only 

the technological advances of the technical and physical generation, transmission and distribution 

of the power grid system, but also the economies of the related energy markets, the surrounding 

ecological conditions and social behaviours of the stakeholders (Bompard et al., 2012; Brinkman, 

2015). Resultantly, the emerging electricity generation combines different types of new renewable 

sources together with legacy generation enabling incentives for appropriate investment decisions 

and for providing reasonable development and utilisation policies (MIT, 2011; Bruchon, 2013; 

IRENA, 2015). Furthermore, according to Bompard et al. (2012), there are inherent complexities 
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that will reveal emerging consumer, policy and sustainability challenges and behaviours for the 

transition into future low-carbon electricity systems.  

A more detailed visual look at the complexity of the evolving low-carbon electricity systems is 

shown in Figure 2.2. It illustrates some of the modern enabling technologies such as ongoing power 

system enhancements, computational intelligence, environments and economies, low-cost 

communication and electronics, and interoperability standards that comprise the overarching 

aspects of future low-carbon based electricity systems. 

 

Figure 2.2  Evolving Complex Low-Carbon Electricity System Structure (Brown and Zhou, 2012) 

Legacy electricity systems are indeed already complex, and as they transition into low-carbon 

systems they become even more complex due to increased distributed generation and more 

diverse consumer interactions. This increased complexity poses an even greater challenge to 

system planners and operators as they try to manage these systems (Dyner, 1996; Momoh, 2012).  
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2.2 Complex Systems 

The emergence of complexity within systems can be seen as a daunting phenomenon that hinders 

proper understanding necessary for the management of such systems (Morecroft, 2007). Krohs and 

Kroes, (2009) states that complexity results from features of the system’s parts that are 

qualitatively different to the emergent system properties they exhibit. Some systems are complex 

adaptive systems, which adapt as a whole and are self-organising. According to Bompard et al. 

(2012), the evolving low-carbon electricity system is a large-scale socio-techno-economic system 

characterised by distributed control and interactions of subsystems. Subsystems themselves are 

systems (Simon, 1973), and they interact on different levels. Chappin (2011) argues that complex 

systems can evolve because of the (inter) action of all actors involved, and each actor can only 

partially influence the path of the transitioning system. The need for capturing multi-level 

interactions necessary for insights into future pathways of technological transitioning systems was 

highlighted in Geels (2002). As the transition to future low-carbon electricity systems occurs, the 

added complexity of the changing components or subsystems interactions on different levels 

signals this need for improved understanding of the system. Foxon (2011), in looking at the 

transition to a sustainable low-carbon economy, highlighted that the elucidation of the causal 

influences relating to the evolutionary dynamics in each subsystem is key to achieve the necessary 

insights. These insights are akin to the role of system design and control. Since this evolution of the 

system reveal temporal and spatial complexities which are not intrinsic to the system design and 

control (Sterman, 2000). Furthermore, the overall organisational management structures of all 

those complexities within the system are important and necessitate in-depth studies. 

2.2.1 Systems View vs Event-based Thinking  

Complex system thinking is synonymous with the concept of a systems view approach, with thinking 

in systems originating from the 1950s (Dijkema, 2004; Bekebrede, 2010). Many different 

perspectives on systems thinking have developed over time (Chappin, 2011), however, as 

highlighted by Forrester (1961) the key is to understanding the structure of the system and 
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capturing counter-intuitive behaviours. Behaviours that may be motivated by a desire to solve a 

problem but often make it worse, creating unanticipated side effects and provoking reactions by 

others seeking to restore the balance that is upset (Chyong, 2014).  Furthermore, the structure of 

the system creates behaviour (Goodman, 1997; Sterman, 2000; Morecroft, 2007). System thinking 

can help in redesigning the structure (Sterman, 2000; Chappin, 2011). Goodman (1997) in his 

iceberg framework shown in Figure 2.3 points to the fact that the events (what happened) and 

patterns (what has been happening) are defined by the interactions creating this behaviour, which 

is the underlying system structure. 

 

Figure 2.3  Iceberg Framework for Systems Thinking (Goodman, 1997) 

System view thinking highlights circular causality, that is, the feedbacks between and amongst 

actors and entities within the system. According to Sterman (2000), the problems and their 

solutions are intertwined and problems are a consequence of the cumulative effect of previous 

decisions and actions.  Such circular thinking gives rise to and improved understanding of otherwise 

perplexing phenomena, as the network of cause and effect that lies behind them are revealed 

(Chyong, 2014).                                                                                                                   

Alternatively, the use of an event-oriented thinking is generally not as fruitful as systems thinking. 

This type of thinking focuses on the events, which is at the top of the framework shown in Figure 

2.3.  Event-based thinking provides limited understanding because typically this thinking style is 
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linear: from problem-as-event to solution-as-fix. This leads it to be pragmatic, action oriented and 

often myopic (Chyong, 2014). Since the problems, that it addresses are usually sporadic and stem 

from uncontrollable events external to the origination of the symptoms. This type of thinking can 

assist in having a quick fix towards a temporary solution but generally will not provide a good long-

term solution.                                                                                                                                

Resultantly, a focus on event-based thinking leads to a reactive solution that is not very influential 

in the long-term, whilst feedback systems-thinking provides proactive solutions that have a greater 

impact (Sterman, 2000; Morecroft, 2007; Martinez-moyano and Richardson, 2013; SDS, 2014). By 

mapping the feedback paths and casual relationships within the system using the mental models of 

the system (Forrester, 1961; Goodman, 1997), this allows for an understanding of the structure and 

in turn, the behaviours generated. This understanding assists in redesigning the structure of the 

system to minimise problems and elicit hidden long-term consequences. Our chosen method of a 

systems view approach is important, and not inconsistent with our focus on modelling the key 

underlining feedbacks and relations. The next section highlights the use of modelling in both legacy 

and future complex electricity systems. 

2.2.2 Complex Electricity Systems Modelling  

Large-scale socio-technical systems, such as a transitioning electricity infrastructure, are 

increasingly becoming more complex in nature (Chappin, 2011; MIT, 2011; Bompard et al., 2012). 

It would be beneficial to understand them, and hence to solve problems and in turn to inform 

decision making. According to Chyong (2014), an approach to the use of reactive solutions by 

observing the sporadic event-type problems that arise, prove to be less influential than proactive 

solutions based on understanding the system structure. Also, Dyner (1996) argues that an 

abstraction of reality can be useful, thus models and modelling are of utmost importance to the 

planning process of electricity systems. In fact, the use of models for understanding complex 

electricity systems is widely observed in the literature. 



Understanding the Complexity of Low-Carbon Electricity Systems 

 

44 
 

For example, legacy electricity systems use a method known as “traditional planning” in which a 

centralised coordinator is responsible for operational decisions, real-time control and monitoring 

of the electricity system. However, with future low-carbon electricity systems being distributed and 

decentralised the models for these systems should have more autonomic characteristics. 

Nevertheless, centralised planning models such as Integrated Resource Planning (IRP) can still aid 

in various contexts and situations. However, the use of optimisation approaches for system 

expansion with electricity markets as imperfect, oligopolistic markets using sequential game theory 

are examples of situations where centralised models do not work well (Jordan, 2013). 

Modelling of complex systems (such as an evolving low-carbon electricity system) can prove 

beneficial not just for understanding the system, but also for informing the decision-making within 

the system. Many different types of modelling mechanism have been utilised over the past few 

decades especially in the area of capacity generation expansion (i.e. increasing electrification) as a 

means of development and for enhanced utilisation of these systems. However, with these models, 

the uncertainty increases with the number of possible solution futures, and all the decisions are 

taken sequentially (Centeno, 2009). Jordan (2013), argues that additional features should be 

incorporated into these models, making the decision problem even more complex. Non-linear 

relationships can arise in both the objective function of the amount of capacity needed and the 

financial and time constraints considered. This will influence the set of possible solutions that can 

exist for the model. Concurrently, while it is mathematically attractive to have an optimal long-term 

(20 or more years) plan, it is rarely, if ever, adhered to completely due to unforeseen changes both 

exogenous and endogenous along the way. Additionally, the traditional methods and models are 

solely driven by an event-based view of the electricity system planning (see Section 2.2.1).  The 

most suitable modelling mechanism should be able to capture the uncertainties that exist over a 

long-term planning period, as can be done via systems view thinking. 

Nevertheless, there is widespread use of mathematical methods such as linear programming (LP), 

mixed-integer programming (MIP), dynamic programming (DP) and non-linear programming (NLP) 
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to solve development and utilisation problems of modern and future electricity systems. The need 

for additional optimisation and heuristic solutions employed to tackle the high complexity and 

dimensionality of these problems resonates with these mathematical methods. Some of the 

optimisation and heuristic methodologies are stochastic programming, simulation techniques, 

genetic algorithms, system dynamics (SD), agent-based modelling (ABM), Monte Carlo simulation, 

probabilistic simulation, decision theory, game theory, scenario analysis, multi-criteria techniques 

and real options (Centeno, 2009). All of these above mentioned methodologies prove to be useful 

for modelling different aspects of electricity systems for which they are most effective. These 

different aspects include capacity expansion investments and improving the decision making of the 

system such as grid balancing or energy policy analysis (Dyner, 1996; Lalor, 2005; Dimitrovski, Ford 

and Tomsovic, 2007; Ilic, Xie and Liu, 2013).  

Of the methods mentioned above, stochastic programming, simulation techniques, genetic 

algorithms and Monte Carlo simulation are all focused on optimisation of the system for a specific 

variable/s requirement/s and are event-based approaches. Whilst, probabilistic simulation, 

decision theory, game theory, scenario analysis, multi-criteria techniques and real options are not 

focused on optimisation of the system variable, they nevertheless do not possess a whole systems 

view approach. However, agent-based modelling (Macal and North, 2006) and SD can give a good 

representation of the real world systems using a whole systems view approach and are highly 

capable of incorporating all of the necessary uncertainties that exist within the system. Agent-based 

modelling focuses on individual actions of all entities within the system whilst SD is about the 

understanding of how all entities in a system interact with each other (Harrison, Thiel and Jones, 

2016), giving the system structure desired in Section 2.2.1. The agent-based method makes use of 

a bottom-up approach in which each individual active entity within the system is characterised by 

rules and allowed to interact with other entities. The global behaviour of the system then emerges 

as a result of interactions of the individual behaviours and not the complete system structure. 

According to Rafferty (2010), agent-based modelling is computationally expensive and can ally itself 
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to either the holistic or reductionist viewpoints of the system. SD only allows for the system view 

required and is not a computationally expensive technique (Sterman, 2000). Hence, within this 

thesis, SD has a greater appeal than agent-based modelling, and more support for this is presented 

in Sections 2.2.4 and 3.1.  

In summary, four categories of planning models are observed in this section similar to the 

observations of (Owlia and Dastkhan, 2012). These are econometric models such as LP that have 

low precision generally because of considering low details. Then there are energy equilibrium 

models such as genetic algorithms that also has a low level of details. Thirdly, there are optimisation 

models which utilise mathematical modelling techniques such as MIP. These models have a high 

level of details but suffer from the fact they are event-oriented and cannot investigate the dynamics 

of the system. Finally, there are simulation models such as system dynamics, which can include all-

important features such as high level of details, precision, and flexibility and most importantly are 

able to investigate and analyse the dynamics of the system. The next section provides context to 

the desired shift for better modelling of present and future electricity systems. 

2.2.3 Improving Modelling Methodologies for Future Electricity Systems 

The wide range of methods used for modelling legacy electricity systems, highlighted and 

summarised in Section 2.2.2, will most likely continue to be useful for future low-carbon electricity 

systems. However, according to Jordan (2013) and Steel (2008), a key problem exists, which is that 

the electricity demand and total costs are usually assumed to be exogenous to these planning 

models. They argue that understanding and making the best of the development and utilisation of 

future electricity systems will rely heavily on a more endogenous view of electricity demand load 

(Meier and Chatterjee, 1987; Jordan, 2013), and some other emerging characteristics that are not 

yet apparent or included. Their arguments are in line with the systems view, the approach of 

understanding the structure of the system and has brought to light the needed shift in rationalising 

policy and planning models within the energy sector. According to Jordan (2013), this shift involves 

the creation of integrated tools incorporating the salient features of the various countries of the 
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electricity systems being modelled. These range from conventional methods to those that capture 

physical and economic laws. The following, Table 2.1 lists a variety of salient social, economic and 

technical factors that can be of interest to electricity system modellers. Observations from 

developing countries may offer insights and understanding for the problems facing more developed 

economies, such as São Miguel (our case study).  

 

Table 2.1  Listing of salient features not commonly included within energy models for 

developing countries (adapted from Jordan, 2013) 

In line with this, the literature contains a very rich collection of electricity modelling studies that 

include physical and technical details of the electricity system together with some form of salient 
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characteristics. This literature set includes pioneering energy-modelling programs such as (“WAsP 

– the Wind Atlas Analysis and Application Program”) used for bankable wind resource assessment 

and siting of wind turbines and wind farms. (“LEAP - Long range Energy Alternatives Planning 

System” used widely as a software tool for energy policy analysis and climate change mitigation 

assessments. Whilst (“TIMES MARKAL - the Integrated Markal-Efom System”) does multi-year 

investment optimisations of the system and can also test a series of policy options. These tools have 

long been used to assist with energy and electricity system optimisation and capacity expansion 

planning. Although widely used, they do not fully capture a wide range of salient features of the 

electricity system nor have endogenous demand.  From these many electricity systems modelling 

methodologies, and those highlighted in Section 2.2.2., only a limited number can capture the 

salient features needed to understand fully the evolving complex “system of systems”. 

Furthermore, to understand complex socio-techno-economic systems, such as an evolving low-

carbon electricity system, it is best to use a mechanism that can utilise a whole-systems view in 

order to capture endogenous interactions and also to account for the most salient features of the 

system. The above-mentioned techniques LEAP, TIMES MARKAL and WAsP, and others such as 

Hybrid Optimization of Multiple Energy Resources (HOMER), Distributed Energy Resources Customer 

Adoption Model (DER-CAM) and Energy Exemplar (PLEXOS) are also generally based on single or 

multi-objective optimisation mainly seeking to optimise the system using the event-based 

approach. However, these newer methods such as HOMER and PLEXOS are commonly used for 

assisting the energy transition IRP process (HOMER, 2017; PLEXOS, 2017). The action oriented 

guide, Islands Playbook energy transition initiative (ETI) is also used for assisting the energy 

transition IRP process (ETI, 2017). These advances for comprehensive modelling are good but they 

are unable to capture the key causal relationships within the system. Also, they lack the feedback 

structures, inertia, and delays that can be accounted for in the real system and captured using a 

systems view approach. Furthermore, as shown in the previous section, SD is highlighted to be more 

suitable than agent-based modelling as the desired whole systems approach for this thesis. We are 
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aware that ABM is a widely used method which leaves an opportunity for the use of SD for this 

thesis work. Additional reasons not listed before includes the expertise needed for this research 

project and the high level of confidence given by prior use of the SD method for electricity systems 

modelling. This thesis gives interesting insights into the structure of the evolving complex low-

carbon electricity system for providing more influential long-term solutions to emerging policy and 

investment behaviours within the system. The current use of SD for electricity systems modelling 

and further discussions concerning the reasons for the choice of this methodology may be seen in 

the following section and Section 3.1, respectively. 

2.2.4 System Dynamics and Electricity Systems  

At the same time, SD modelling has been used for strategic energy planning and related policy 

analysis for more than thirty-five years and can efficiently provide a basis for a well-documented, 

understandable, and concise representation of complex electricity systems (Dyner, 1996; Ford, 

2008; Steel, 2008). By definition, SD is a whole-systems approach, based on theories of non-linear 

dynamics and feedback control, which are used to represent, and understand, the structure and 

dynamics of complex systems (Sterman, 2000). It was developed in the 1950s by Jay Forrester 

(Forrester, 1961) and has been used extensively from the early 1970s up until today. Many 

pioneering models such as Roger Naill’s FOSSIL2 were used to simulate and inform oil and natural 

gas policies in the United States during the 1970s and 1980s (Naill, 1992). In a parallel fashion, 

Andrew Ford developed the ELECTRIC1 model which was used to analyse the future of the US 

electric power industry (Ford, 1975). This work was the first in a series of SD electric utility models 

known as the EPPAM models, adaptations of which were useful in formulating the COAL2 and 

FOSSIL2 models, along with IDEAS and its evolved Energy2020 (Systematic Solutions Inc, 2014) 

counterpart. Similar to these models are two currently available open web-based SD based models, 

C-ROADS used for global climate policy analysis (Climate Interactive, 2014a). And its extension En-

ROADS is useful for linking global energy, to economic and public policy, and climate policy analysis 

(Climate Interactive, 2014b). These models are important in managing energy and environmental 
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resources and continue to be influential in shaping the decisions of many policy makers worldwide 

(Dyner, 1996; Ford, 2010; Jordan, 2013; POLES, 2016). 

It terms of other aspects, it is seen in the literature that SD studies have addressed many problems 

in the electricity industry. Numerous such models can be found in the literature each highlighting 

different aspects of energy policy or electric power grid systems (Arango et al., 2002; Ford, 2010; 

Caravajal, Arango and Arango, 2011). The effects of external agents on utility performance, the 

financial performance of utilities, the effects of energy conservation practices on utility 

performance and deregulation in both the UK and US electric power industries are also highlighted 

(Radzicki and Taylor, 1997). It is claimed that these insights can be attributed to the ability of SD for 

representing rapidly changing, deregulated utility markets with high uncertainty and risk (Dyner 

and Larsen, 2001). Additionally, the elicitation of the impact of market structures, power, and 

competition, uncertainties on capacity investments, technology mix and cost to consumers are all 

efficiently captured (Sanchez et al., 2007; Jordan, 2013). These models are all targeted to assess 

macro-level policy analysis by capturing multiple feedbacks, delays, and the behaviours of 

stakeholders such as utilities/power companies, consumers, and governments (Jordan, 2013).  

In the area of markets and transportation, two concise detailed review of SD modelling over the 

past few decades is provided in Teufel, Miller and Genoese (2013) and Shepherd (2014). These 

articles show the appropriateness of using SD for these types of electricity system models based on 

the fact that qualitative aspects and salient features can be easily incorporated to reflect more 

realistic behaviours and system structures. Shepherd (2014) gave a comprehensive review of SD 

models applied in the field of transportation. According to Teufel, Miller and Genoese (2013), three 

trends for the use of SD were highlighted. Ranging from SD being used on its own to being 

complemented in conjunction with other methodologies such as decision trees, game theoretic 

approaches, and real options theory. Examples of these combinations include the use of embedded 

game theory to simulate generation expansion in the context of security of supply mechanisms 

based on long-term auctions (Rodilla et al., 2011). There is also the successful combination of SD 
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with optimisation methods for simulating power plant construction in the Western Electricity 

Coordinating Council while capturing detailed power grid transmission operation (Dimitrovski, Ford 

and Tomsovic, 2007). 

In a paper by Arango et al. (2002), a model was developed for the estimation of cash flows and 

other financial indicators of capacity expansion within the Colombian energy market. The authors 

modelled the costing of endogenous electricity market prices without considering the relative 

installed capacity investments existing within the system. Deregulated electricity markets as a 

catalyst for capacity expansion were also explored by others (Vogstad, 2004; Jaeger, Schmidt and 

Karl, 2009). In addition, more highly detailed and new market design models are emerging based 

on green electricity certificate markets, distributed integration of renewable energy sources, 

carbon policy incentives and taxation, and the use of newer types of energy storage mechanisms 

(Ford, Vogstad and Flynn, 2007; Ford, 2008, 2010; Rooney, Kazantzis and Nuttall, 2013; Robalino-

Lopez, Mena-Nieto and Garcia-Ramos, 2014). In Bildik et al. (2015), the SD approach was applied to 

understand the diffusion of a new technology, namely wind power. The authors showed the extent 

to which SD captures the underlying mechanisms of the diffusion process and applied this as a 

comparative study for the large interconnected energy systems of California and the Netherlands. 

Furthermore, stochastic variable distributions and related methods such as applying Markov Chain 

Monte Carlo (MCMC) simulations within SD modelling for calibration and sensitivity testing were 

observed in some studies (Sterman, 2000; Chyong Chi, Nuttall and Reiner, 2009; Pierson and 

Sterman, 2013). In addition, SD combination with scenario planning Lindgren and Bandhold (2009) 

can be seen in Connors et al. (2002) and other similar works. These works have helped reinforced 

the concept that there is significant relevance for the use of SD as a methodology for the evolving 

low-carbon electricity system analysis. 

With a focus on transitioning low-carbon electricity systems, the work of Black (2005) was 

highlighted as an initial detailed and insightful SD model of these evolving systems. The author 
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studied the US power grid deregulated market focusing on demand response technology adoption. 

Black (2005) formulated his model with endogenous demand load and accounted for its impact on 

the demand side management of the electricity system, a useful formulation that is applied in this 

thesis. Collins et al. (2013) produced an SD-aided study using an approach of disaggregated demand 

and supply for their analysis of electricity system planning. The authors incorporated load 

seasonality and technology operations into the generation capacity expansion problem using 

exogenous energy demand and supply. Other studies including Steel (2008), Jordan (2013) and like 

with Black (2005) suggest that endogenous demand dynamics cannot be ignored, being intrinsically 

tied to the structure of the system. Jordan (2013) focused on the aggregated endogenous demand 

dynamics to study electricity capacity expansion. Previously, Steel (2008) looked at aggregated 

endogenous demand dynamics and the effect of consumer decisions on electricity grid reliability, 

energy resources depletion and electricity tariffs. Both the modelling efforts of Jordan (2013) and 

Steel (2008) were targeted to large-scale electricity grid networks in developing countries. Our 

focus is on a small-scale grid within a developed, isolated territory. 

This collection of literature points to the benefits provided by SD as a basis for understanding the 

emerging challenges and opportunities of an evolving low-carbon electricity system. The literature 

reveals the mature and rich history of SD for modelling electricity systems. The combinational use 

of SD with other methodologies was also highlighted. In addition, the importance of endogenous 

electricity demand in electricity systems became apparent in this section. The following section 

provides an overview of the major strides worldwide towards testing and studying evolving low-

carbon electricity systems. Additionally, the particular role that SD can play is highlighted. 

2.3 Studies of Evolving Low-Carbon Electricity Systems  

As noted in Section 2.1.2 we focus on the transitioning of modern electricity systems into low-

carbon futures. A future of low-carbon systems sits within the scope of smart/er grid systems with 

low-carbon objectives, noting enabling technologies and applications as shown in Figure 2.1. The 

evolving low-carbon electricity system is a step in the pursuit of the smart grid. There is a great 
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amount of literature devoted to low-carbon projects for electricity systems worldwide (Botelho, 

2013; Ilic, Xie and Liu, 2013; Vallvé, 2013; IRENA, 2014a; Sawin, Seyboth and Sverrisson, 2016). 

Additionally, numerous projects of evolving low-carbon systems are continually appearing around 

the world. IRENA (2014) gives detail of over twenty-five low-carbon projects from islands and 

countries in the African and Indian Ocean, Mediterranean Sea, Caribbean and Pacific. These 

projects are mainly wind farms, solar farms and the use of energy efficiency and EVs for enhancing 

the energy security of the system and reducing their dependence on fossil fuels. According to the 

Islands Energy Program (2016), projects of this kind will create a blueprint that can be replicated in 

other isolated economies and possibly on other larger systems. In continental countries, low-carbon 

projects are also on the rise (IEA, 2013; Sawin, Seyboth and Sverrisson, 2016). For example, projects 

such as Low Carbon London and Flexible Approaches for Low Carbon Optimised Networks (FALCON) 

are pursuing the trialling of a series of low-carbon techniques such demand side management, in 

addition to developing new tools for modelling evolving low-carbon electricity systems.  Sawin, 

Seyboth and Sverrisson (2016) highlights “the year 2015 was an extraordinary one for renewable 

energy, with the largest global capacity additions seen to date, although challenges remain…..” The 

authors also noted that the vast majority of countries worldwide have low-carbon, renewable 

energy supporting policies in place at the end of 2015. It was also observed by Vallvé (2013) that 

isolated island or remote areas can be an ideal testing grounds for mature low-carbon technologies. 

Since these low-carbon generation technologies can complement each other and can be matched 

in different ways to the electricity demand. This also implies that these systems are at the forefront 

of the innovative use of storage and load management techniques (Vallvé, 2013). Additionally, the 

development of micro-grid studies such as on Jeju Island, South Korea and in Hachinohe, Japan is 

noted. Micro-grid demonstration projects are examples of the recent trialling of autonomous low-

carbon electricity systems. This current trend of projects and trials on smaller or less complex power 

grid systems (such as these previously mentioned micro-grids), parts of cities and/or on islands 
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resonates as a major theme for the development of low-carbon electricity systems and have also 

motivated this thesis work. 

2.3.1 Isolated and Interconnected Electricity Systems 

As seen in the previous section, it leads to say that stakeholders worldwide are attempting to 

pursue low-carbon electricity systems and to preserve or enhance energy security. This affords the 

opportunity to study such evolving systems. For large electricity systems, such as for a major 

country or continent, the inherent system complexities present an intractable challenge (MIT, 2011; 

Bompard et al., 2012), so a more pragmatic option is to consider a smaller, but nevertheless 

complete, autonomous electricity system as a case study. Furthermore, there is growing evidence 

that it is important to understand how smaller semi-autonomous systems become sustainable and 

hence to extend considerations to larger interconnected networks (Ilic, Xie and Liu, 2013; Vallvé, 

2013). As a result, smaller systems offer an ideal test bed to investigate the transitioning of the low-

carbon electricity system (Eurelectric, 2012; Ilic, Xie and Liu, 2013; Vallvé, 2013; Islands Energy 

Program, 2016). We do this in the hope of testing easily managed and useful solutions.  

In addition, isolated island systems differ from larger scale interconnected systems in that they 

generally do not endogenously develop new technologies. This is true even in the case of equivalent 

high levels of prosperity. Isolated island system lack size complexity and are too small for effective 

internal economic competition when considering more sustainable future pathways (Eurelectric, 

2012). Market isolation is often physical in origin. Islands also do not usually have the local price 

formation of electricity tariffs, hence these tariffs can be modelled as an exogenous variable, 

(largely) independent of local economic conditions. In addition, energy provision for island systems 

has historically been dominated by a dependency on imported heavy fuel oil and diesel, which 

means that such an energy system (and indeed the island’s economic growth) have been strongly 

linked to fossil fuel prices (Eurelectric, 2012; IRENA, 2014a; Islands Energy Program, 2016). This 

system also has limited scale for cheaper fossil fuel generation options such as coal and natural gas 

(IRENA, 2014a). The literature suggests that typical small island consumers and stakeholders have 
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no power to influence fuel prices as they are exogenous to the island. This is true even when the 

island is linked politically to a larger developed country (EDA, 2008; ERSE, 2012, 2014). The impetus 

for low-carbon objectives, while remaining flexible and reducing the dependency on expensive oil 

imports has created a strong economic incentive to change the system’s status quo (Eurelectric, 

2012). Resultantly, island systems have represented an attractive focus for research of this type, 

not merely because of the tractable system size, but also because of the inherent economic and 

policy simplicity arising from their constitutional framework. 

The previous section highlights the fact that small island systems have been studied extensively in 

the past decade as “living laboratories” for sustainable energy solutions, eg. Açores, Caribbean and 

Pacific islands (MIT-Portugal, 2013; IRENA, 2014b; Islands Energy Program, 2016). This has led to a 

rich repository of available data useful for electricity system modelling. Prior studies provide an 

interesting context to the type and quality of data available. For example, Weisser (2004) examined 

the main economic and technological obstacles for incorporating renewables within small island 

systems, while Parness (2007), Pina, Silva and Ferrão (2012) and Ilic, Xie and Liu (2013) studied 

testbed systems for electricity grid balancing and unit commitment optimisation. By acknowledging 

the differentiated dynamics and the lower levels of complexity in such systems, the results of these 

studies can be transferred to other island electricity systems and also extended to larger 

interconnected systems. Albeit, the additional inherent issues of fossil fuel on island systems 

(Vallvé, 2013; Islands Energy Program, 2016) is native only to island systems and this fact will have 

to be accounted for when transferring lessons learned to larger systems. The next section highlights 

some relevant modelling of low-carbon electricity systems on islands, along with some prospectives 

for the use of SD. 

2.3.2 Modelling Low-Carbon Electricity Systems on Islands 

The core focus of this section is to provide greater detail into studies of low-carbon island electricity 

systems. (Eurelectric, 2012; MIT-Portugal, 2013; Vallvé, 2013; IRENA, 2014a; Chmiel and 
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Bhattacharyya, 2015) give tremendous insights into a host of projects explored for future electricity 

systems using islands as “living laboratories” for the testing of future electricity system solutions. 

These major projects have driven and supported the growing interest of researchers keen to use 

island systems as case studies for improved understanding. Of these studies, highlighted above, are 

some that are of key relevance to this thesis. One such example is the work of Pina, Silva and Ferrão 

(2012), where the authors made use of the island of Flores in the Açores, characterised by high 

renewable energy penetration. They developed a TIMES MARKAL model with exogenous electricity 

demand growth. These authors sought optimal solutions for the energy system design and 

management, in the face of different possible exogenous evolutions of electricity demand. They 

also analysed the impact of demand-side management options, such as energy efficiency measures 

and dynamic demand response, to show that load shifting strategies can delay new investments 

while rendering the current investments on renewable resources more economically viable.  

A different model of similar emphasis is an energy storage study on small isolated islands, also in 

the Açores, by Cross-Call (2013). A least-cost unit commitment model analysis was applied in order 

to determine the expected cost savings from introducing energy storage into existing electricity grid 

networks. The study highlighted some challenges and identified potential cost savings arising from 

energy storage within an evolving low-carbon electricity system. Similar to this is the work of Silva 

(2013) who employed multi-criteria decision methods to compare energy storage and other 

planning options for sustainable development within an island.  Additionally, Parness (2007), made 

use of an economic dispatch and unit commitment model to explore environmental sustainability 

options on São Miguel in the Açores, giving attention to the optimal charging strategies for EVs, as 

needed to reduce electricity and transportation costs and to minimise CO2 emissions. Of similar 

scope, Baptista et al. (2009) made use of the island of São Miguel to assess the impact of introducing 

EVs, applying a short-term discrete scenario-based life-cycle approach, quantifying the impact of 

EVs on the electricity demand and the CO2 emissions.                                                                  
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Other works such as Critz, Busche and Connors (2013) used the Wind Integration in Liberalized 

Markets (WILMAR) model, balancing supply and demand on an hourly basis to model the Hawaii 

Island’s electricity unit commitment scheme, with and without, demand response. That study used 

exogenous demand and treated demand response as a fully shift-able resource constrained by 

capacity and operational costs. Bruchon (2013) adopted the same model to study the island of 

Cyprus, in order to explore the potential of demand response programmes for integrating 

renewables into the electricity system from an hourly unit commitment perspective using 

stochastic optimisation. Perez and Real (2008) explored the creation of a European-type integrated 

electricity market within a small and isolated island group, the Canary Islands. These authors sought 

to understand better the challenges in creating such a market. Their results show that the designs 

of both the vertical industrial structure and the electricity grid operator (and its attributes) are key 

determinants of the successful operation of such an electrical system. In addition, the use of 

HOMER and PLEXOS to support IRP within the context of isolated island systems is used for such 

transitioning systems.       

Collectively, the majority of these studies do not account for endogenous demand dynamics of the 

system but rather include the use of exogenous demand growth. They are also mainly stochastic 

optimisation models operated with the purpose of balancing short-term grid mismatch and/or 

investments. As shown in Section 2.2.3, modelling the salient features, such as the endogenous 

demand dynamics and longer-term system factors, can give useful insights into the long-term 

evolution of the electricity system. The use of SD is anticipated to help with capturing these details. 

However, for such small island contexts, the use of SD is very limited. In addition and in particular, 

the number of long-term investment and resource planning models is very limited. We posit this is 

because of a tendency of previous research work to focus on short-term policy and design 

requirements for small island systems, hence lacking exposure to the already used systems thinking 

best practice occurring in larger systems.                                                                           
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As mentioned above, the availability of SD studies in regard to small island electricity systems is 

limited. One study (Balnac, Bokhoree and Bassi, 2009) made use of a tool called Threshold-21 (T21) 

which applies SD to policy making in an integrated manner. The study provided a T21 electrical 

power sector model of the isolated islands of Mauritius. Although supply and demand load were 

endogenous to the model it assumed a least-cost-first rule when allocating demand to 

predominately fossil-fuel generating sets. According to the authors, the study allowed for a better 

understanding of Mauritius’ power sector and provided an initial structure for an electrical power 

grid model with scope for improvements. This adds merit to the use of SD for understanding low-

carbon island electricity systems. To the best of this author’s knowledge, there does not exist any 

other literature targeted to SD modelling of isolated low-carbon electricity systems on islands, apart 

from our own works (Matthew et al., 2014, 2015, 2016, 2017).                                                                                                                   

The research work that is undertaken in this thesis differentiates from Balnac, Bokhoree and Bassi 

(2009) in that the focus is not only modelling the dynamics of the physical and technical electricity 

system interactions, but also endogenous demand load, renewable resources, and key socio-

economic aspects. Our intention is to give stakeholders insights into the emerging long-term 

characteristics of the system, leading to more informed policy decisions for satisfying the evolving 

demand and the required low-carbon objectives in general. The next section highlights a brief 

background to emerging policy and investment challenges for transitioning low-carbon electricity 

systems.  

2.4 Emerging Policy and Investment Challenges  

In general, complex infrastructure systems are evolutionary, and they exhibit path dependence and 

lock-in (Chappin, 2011). Chappin, (2011) argues that options for these systems in the future are 

shaped by current choices, just as the current options are shaped by past influences. According to 

Herder et al. (2008) and Nikolic (2009), the systems that are observed today were not designed as 

such, but they evolved to their present state. Often, infrastructures become outdated and hence 

might not be able to perform the tasks they were intended to do. Moreover, the system may not 
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be able meet future needs such as sustainability and affordability. In the case of the low-carbon 

electricity system transition, this drives the push for new public policy which in turn increases the 

complexity of the system due to changes in the physical aspects of the system (Chappin, 2011). 

These changes may be realised after some delay in time for policy implementation. However, the 

perceptions of the key stakeholder's may change during this time and the system may now be tied 

into an unwanted direction. Actor dynamics (Chappin, 2011), multi-level interactions (Geels and 

Schot, 2007) and co-evolutionary process (Foxon, 2011) all play an important role in the desired 

transitioning of the system. In short, the transition of the low-carbon electricity system is a property 

of the transition time, combining the influences and interactions (feedbacks) of the actors and 

policies with the required technical system. Inherent to this is the policy uncertainty and the drive 

for improved/different infrastructures. 

2.4.1 Role of Policy for Low-Carbon Electricity Systems  

Low-carbon electricity system transition is a paradigm shift from one state to another, guided by 

the roles of the actors within the system. The emergence of various new types of public policies can 

be seen as a guide to achieve the desired system. However, as these policies are being acted upon 

there might emerge newer and different types of interactions and system feedbacks. Furthermore, 

policies can possibly drive further complexities within the system which can in-turn, and over time, 

evolve into uncontrollable challenges for the sustainability and usefulness of the system. According 

to Chappin (2011), electricity policy can influence emerging challenges and behaviours within this 

system since it forces changes to the technical components. These changes can then influence the 

perceptions and preferences of the other social and economic actors in the system. The electricity 

policies have inherent challenges which will appear over the long-term evolution of the system. 

This is compounded by the stakeholder's desire to achieve the required changes without greatly 

increasing economic costs that would risk an erosion of the sustainability and/or energy security of 

future low-carbon electricity system.  
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2.4.2 System Investment Implications 

As noted in the previous sub-section, the policy aspects of the emerging low-carbon electricity 

system have influences on the complexities that arise in the system. There will also be inherent 

changes needed in the technical components of the emerging electricity system. In general, the 

investments needed within these transitioning systems are determined by the improvements or 

changes needed in the physical infrastructures. The need for increasing amounts of low-carbon 

electricity generation militates against new fossil fuel generation and possibly even nullifies 

previous investments. These changes also require an understanding of the most suitable 

investments needed to achieve a sustainable system. The synergy between the policies enforced 

by the evolving system and the investment decisions taken inexorably ties one to the other, 

however, they can both equally leverage influences on each other.    

For example, apart from direct costs implications (IRENA, 2013; Vallvé, 2013), there are other 

emerging issues such as possibly poor reliability and availability of the renewables versus the 

benefits of sustainability and economic stability (MIT, 2011; IRENA, 2014a). Most renewables, apart 

from geothermal, are variable depending on the time of day and weather which gives rise to 

concerns over the supply security of such systems (Hirth et al., 2012; IRENA, 2014a). Barrett (2006) 

and Warren (2014) have highlighted some possible general solutions for low-carbon transition 

which include the building of new capacity (a costly venture due to the infrequent peak time usage 

they can command and small project sizes); increasing interconnections with other countries (an 

option which is restricted or unavailable for geographically isolated islands); developing and using 

large-scale energy storage technologies (an immature solution which is very expensive); location-

dependent pumped hydro systems (not always feasible to build); and demand-side management 

(currently a theoretically rich, but so far practically limited solution).  

Additionally, the demand within the transitioning system will evolve due to these low-carbon 

objectives and policies. EV adoptions can increase the demand within the system necessitating 

increased capacity investments, preferably, in renewables. Whilst, a focus on energy efficiency can 
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lower the long-term demand (IEA, 2013). The interactions between the causal influences from these 

and newer policies can shape the future investments within these systems. Low-carbon objectives 

and considerations give rise to the (added) investments that might be needed within such evolving 

system. 

2.5 Summary 

In this chapter, the context for transitioning low-carbon electricity systems has been explored 

together with some necessary tools for understanding these systems. In addition, many studies and 

research works have been presented that describe major strides made in modelling electricity 

systems. However, many of the key social, economic and technical drivers in the energy sector 

remain exogenous to most simulation models. The need to have endogenous demand and 

endogenous salient features were keenly pointed out by Jordan (2013), Steel (2008) and Black 

(2005). Steel (2008) formulated demand endogenously, but for a model that does not consider 

technical grid issues. Jordan (2013) followed suit with an endogenous demand model that has 

electrical power system physical and technical details but the model is focussed on only the capacity 

expansion of conventional fossil fuel electricity systems.  

Furthermore, most studies are limited by their modelling tools and hence cannot provide for such 

endogenous features if the tool does not make it available. Recent modelling tools such as HOMER 

and DER-CAM are geared to specific low-carbon electricity system aspects and optimisation 

problems similar to the conventional TIMES MARKAL, WaSP and LEAP modelling tools. HOMER 

allows users to evaluate the economic and technical feasibility of a large number of technology 

options and to account for variations in technology costs and energy resource availability of hybrid 

renewable micro grids. It, however, lacks the social features of the system. DER-CAM, on the other 

hand, is an economic and environmental model of customer distributed energy resources adoption. 

But it lacks the social and technical features of the system.  
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In addition, the use of HOMER, PLEXOS and Islands Playbook energy transition initiative (ETI) for 

assisting a comprehensive energy transition IRP process have shown the need for a whole systems 

approach. These advances are good and can benefit from SD since they are unable to capture the 

necessary salient features and key endogenous features and causal relationships within the system.   

SD brings the type of richness needed of a modelling methodology in order to capture the social, 

economic and technical features of an evolving low-carbon electricity system, the analysis needed 

to understand and learn from the system. Many useful SD works that undertake long-term policy 

analysis for both energy and environment systems has been seen in the literature. These works 

have helped shape the decisions made and consequently, the outlook of present-day energy and 

environment systems. With such a powerful tool, useful and beneficial insights into the future of 

low-carbon electricity systems can be achieved. In addition, the many pilot projects and trials seen 

in the literature present the opportunity for studying these systems and for testing solutions.  

System view requirements for understanding and making better decisions in complex systems exist 

separate from event-based approaches also seen in the literature. In this context, SD can readily 

capture the structure and dynamics of complex systems, considering key feedbacks, delays, and 

inertia within the system. Also appearing in the literature as a contrastingly useful systems view 

approach is agent-based modelling which provides a different mechanism to modelling complex 

systems comprised of interacting autonomous agents. ABM is extremely well suited to problems 

with a highly spatial basis. However, the task considered in this work is essentially a long-term 

temporal challenge and, as such, is better suited to an SD approach. This work could later be linked 

to ABM models of the low-carbon transitions such as EV spatial charging models and even to IRP 

processes for isolated island systems.  

Resultantly, after reviewing existing literature concerning state-of-the-art low-carbon electricity 

systems and models it is clear that there is no existing model that captures the evolving low-carbon 

electricity system in a holistic manner. This thesis, through the works presented in Chapters 3, 4, 5, 
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and 6 will detail the approach taken to model such a system and provide insights into emerging 

policy and investment challenges for the capacity resource planning of the low-carbon system 

transition. Detailed are the implications for smaller (a contextually simple island case study) 

electricity systems experiencing the convergence of environmental and energy security (import 

dependency) concerns for the low-carbon electricity transition effort. Chapter 3 will give the details 

of the SD method of study together with the modelling approach used in this study. Chapters 4, 5, 

6, and 7 will then detail applications of the method, accounting for key endogenous behaviours and 

socio-techno-economic drivers. This study amounts to eliciting the key emerging challenges and 

behaviours of the evolving system. More details of the model development and approach for this 

thesis is given in the next chapter. 
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Chapter 3. Model Development and Research 

Methodology 
 

 

This chapter gives an overview of the approach employed in the thesis, and the model development 

and formulation steps required for this research work. In addition key details of the case study 

system, São Miguel are given. The SD methodology was introduced in Sections 2.2 and 2.3 and 

revealed as a good candidate for the policy and investment analysis of a complex socio-techno-

economic low-carbon electricity system. Sub-section 2.2.4 highlighted some of the pioneering SD 

studies together with their useful applications to energy, the environment and electricity systems. 

Additionally, some recent applications of SD in the context of evolving low-carbon electricity 

systems were shown in Section 2.3.2.  

This chapter justifies the use of SD to provide complex system insights, together with policy analysis 

and investment implications, such as for those alluded to in Section 2.4. In addition, it addresses 

the relevant research gaps in the literature using SD as opposed to other competing event-based 

thinking methods and whole systems view methods for complex system modelling such as agent-

based modelling. The relative weaknesses of agent-based modelling for a research work of this type 

were discussed in Sections 2.2.3 and 2.5. Mainly based on the fact that this method is much 

decentralised, considers patial issues more than temporal issues and is more complex for the type 

of long-term analysis needed. Arguably, both methods can give similar insights but the SD method 

is inherently less complex. In fact, SD can account for key and interesting feedbacks within the 

system unlike agent-based modelling, discrete event modelling mechanisms, and other single and 

multi-objective optimisation methods utilised today. Description, details, validation and analysis 

steps of the SD methodology and model building approach used follow in the subsections of this 

chapter. 
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3.1 SD as a Viable Modelling Approach 

SD is a computer-aided modelling approach to policy analysis and the understanding of complex 

systems. It is applicable to dynamic problems arising in complex social, managerial, economic, and 

ecological systems; interdependence, mutual interaction, information feedback, and circular 

causality can be analysed. SD provides the research community with a language to understand 

complex systems, and a method that encapsulates time lags to enhance learning in such systems. 

Sterman (2000) however cautions that while simulation models are necessary for effective learning 

in complex systems, they are not a one-stop cure for all problems that exist. Furthermore, the 

models developed must be able to mimic the real world well enough with the assumptions made 

and must be open to inspection, criticism and change. SD stands out as a pioneering modelling 

mechanism that gives a good representation of the real world electricity systems and is capable of 

incorporating the necessary uncertainties that exist within these systems (Dyner, 1996; Ford, 1997; 

Jordan, 2011). 

The origins of this field, as stated in Section 2.2.4 was developed initially from the work of Jay W. 

Forrester (1918 - 2016).  In his seminal book Industrial Dynamics (Forrester, 1961), he lays out the 

basis of the philosophy and methodology to be used within this field. SD has been extensively used 

not only for corporate and industrial problems but also to study the management of research and 

development, urban stagnation and decay, commodity cycles, economics, public policy, 

environmental studies, theory-building in social science, and other areas, including management 

(Sterman, 2000). SD emerged out of servomechanisms engineering, rather than general systems 

theory or cybernetics (SDS, 2014). SD is not an optimisation technique, but, by capturing a complex 

system’s key feedback structures and important sources of inertia and delays, key endogeneities 

are often revealed which gives useful insights into the system structure and behaviours. This affords 

SD the capabilities to elucidate scenarios and reveal hitherto unexpected impacts and phenomena 

in response to policies (Morecroft, 2007). 
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Complex systems can be tightly coupled, non-linear, adaptive and history dependent (Chappin, 

2011; Foxon, 2011). By using SD, it is possible to discover and represent the dynamics of the whole 

system in terms of the feedback processes, stock and flow structures, time delays, nonlinearities 

and accumulations (Sterman, 2000). It is believed that these system dynamics arise from the 

interactions of the complex and intertwined network feedbacks (loops) of the system 

entities/variables. Actually, all systems consist of causal relationships between system variables 

which can be either positive (+ve)/self-reinforcing or negative (–ve)/self-correcting/balancing 

feedbacks. The feedbacks between two variables of the system is a consequence of the effect and 

cause. In complex systems, cause and effect are distant in both time and space (the effect of a cause 

within the system can be delayed). SD is shown to be useful in efficiently capturing these delayed 

feedbacks, even those that typically have multiple loops with numerous time-delays, non-linearity 

and accumulations.  

SD is useful because of its success in understanding the dynamics of complex systems (Forrester, 

1987; Morecroft, 2007). According to SDS (2014), the most important conceptual tools and 

concepts of the SD methodology include feedback thinking, stocks and flow structures, feedback 

loop dominance, and endogeneity within the system. With a strong emphasis on these aspects, SD 

is able to helps its users gain useful insights that are fruitful for policy analysis (Morecroft, 1988; 

Gary et al., 2008; Bildik et al., 2015). Feedback in a complex system is a key factor and the feedback 

concept is at the heart of the SD approach (Forrester, 1987; Sterman, 2000). Additionally, the 

concept of endogenous (internal to the system) change is also fundamental to the SD methodology. 

This helps dictate aspects of the model formulation - the complex system changes endogenously 

over time with exogenous (external to the system) triggers, but time itself is not seen as a cause of 

system responses (the system evolves over time, not because of time).  

SDS (2014) highlights that by taking an endogenous view an SD model can expose the natural 

compensating tendencies in complex systems that conspire to defeat many policy initiatives. 

Hence, SD models should strive for endogeneity with an effort to uncover the sources of system 
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behaviours that exist within the structure of the system itself (SDS, 2014). In addition, SD can give 

the temporal resolution needed to facilitate discrete decisions and myriad operational details, but 

not miss the critical elements of policy structure and system behaviour (Chyong, 2014). 

Furthermore, with all of these representations, the complex transitioning low-carbon electricity 

system can be modelled using SD, to reveal the structure and behaviour of the system variables, 

and in turn the system. Thereby stakeholders are allowed the opportunity to understand these 

systems and to discover emerging challenges and behaviours. Furthermore, they can explore policy 

options and investment barriers and incentives, as the system evolves.  

The concepts presented in this Section were applied to this research and there was an emphasis on 

the most accurate representations of key feedbacks of the evolving low-carbon electricity system. 

In addition, endogeneity of key variables was properly accounted for during development of the 

thesis models. This can be seen more clearly in Chapters 4, 5 and 6 as the SD models developed are 

made more comprehensive to capture the necessary key feedbacks and endogenous factors of the 

case study island system. The next section gives an overview of the development of an SD model 

with the important definitions and concepts necessary for producing SD models. 

3.2 Development of an SD Model 

To develop a model that is beneficial to stakeholders, an iterative process must be used with 

continual questioning, testing and refinement. In his comprehensive textbook, Sterman (2000) has 

outlined standard mechanisms for performing SD modelling. Broadly put, these steps are problem 

articulation, followed by the formulation of a dynamic hypothesis which utilises causal loop 

diagramming and stock and flow maps. Next is the formulation of the simulation model for 

behavioural relationships and decision rules followed by the testing phase with calibration and 

sensitivity analysis. The final step involves the policy design and evaluations.  

Martinez-moyano and Richardson, (2013) recently elaborated on the conventions of Sterman 

(2000) pointing to approaches that can help improve the SD modelling techniques based on using 
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the opinions of a distinguished group of SD experts. In their proposal, shown in Figure 3.1, the 

authors recommended the addition of two later steps - model use implementation and 

dissemination, and the design of a learning strategy. These latter two steps are, however, better 

suited for a strictly client-based type modelling and not so appropriate for more academic studies. 

This research work made use of the best available SD techniques as recommended by Sterman 

(2000), Martinez-moyano and Richardson, (2013) and as highlighted in SDS (2014) together with 

the most beneficial policy analysis testing options as seen in the literature. 

 

Figure 3.1  Overview of the SD modelling approach (adapted from Martinez-moyano and 

Richardson, (2013) 

As seen in Figure 3.1, the process of modelling has many interconnected linkages which suggest 

that the modelling process can be considered alongside the dynamics of the system (Sterman, 

2000). Hence, iterations comparing experiments in the virtual world of the model and experiments 

and learning in the real world of the problem is considered best practice for model development. 

This thesis captured all of the essentials of developing and using a good SD model. The following 
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subsections give details of the key aspects of the modelling process including terminologies and 

concepts native to SD, starting from an initial dynamic hypothesis. 

3.2.1  Formulation of Dynamic Hypothesis and Model Boundary Selection 

The necessary tools for the SD modelling process are the casual or feedback loops and the stock 

and flow diagrams, discussed in detail in Sections 3.2.2 and 3.2.3 respectively. Preceding this is the 

problem articulation/boundary selection and the dynamic hypothesis generation. According to 

Sterman (2000), the formulation of the dynamic hypothesis is a comprehensive process for the 

inclusion of an initial hypothesis of the problem and mapping of the feedback structures together 

with their endogenous focus. Hence, the conceptual and simulation model building process 

requires the problem to be defined dynamically, in terms of graphs over time. The developed model 

must account for an endogenous, behavioural view of the significant dynamics of the system, 

focusing on the characteristics of the system that generate or exacerbate the perceived problem/s. 

Figure 3.2 shows an example of a typical problem illustrating a variable graphed over time useful 

for the case study of this thesis. The figure shows the nominal dollar prices of fossil fuel for each of 

the years considered (it is noted here that the rate of inflation in São Miguel varied between -2% 

and 2% over the time period shown (SREA, 2016)). 

 

Figure 3.2  Graph of historical fossil fuel prices for São Miguel (Source: EDA (2016)) 
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Confirmed from the figure is the issue of increasing fossil fuel prices over the last 15 years. It shows 

a trend in which the price of fossil fuel used for electricity production has tripled over the last 15 

years. This trend is likely to continue into the future and lead to an energy affordability and security 

problem (Isle-pact, 2012). This problem is combined with the global desires of using less fossil fuel 

to aid in the mitigation of global warming and re-enforces the usage of more renewables for 

electricity production. A trend that is evident in the case study electricity system and depicted in 

the following figure. 

 

Figure 3.3  Graph of historical relative fossil fuel and renewables production (kWh) for São 

Miguel (Source: EDA (2016)) 

Figure 3.3 shows the historical trend of fossil fuel and low-carbon renewables usage in São Miguel. 

The figure shows that there was a significant drop in fossil fuel usage over the years 2005 to 2008, 

followed by a more gradual proportionate decline from the 2008 values until 2016. This indicates 

that the usage trend of fossil fuels and renewables experienced a drastic change but is now 

appearing to settle. These key variables of fossil fuel prices and the type of electricity generation 

sources used are good indicators of the general problem for low-carbon electricity systems. In this 

case study, and in most isolated island systems the price of fossil fuel is external to these systems 

and a small island without fossil fuel production sources cannot influence these prices. As a 

consequence high fossil fuel prices are a major problem for such systems and island governments 
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have long sought to free themselves of such problems (Weisser, 2004b; Vallvé, 2013). Hence, a 

choice of low-carbon renewables will help with the global warming issues and ensure the long-term 

electricity production security of the system (having import independence from fossil fuels), whilst 

the continued use of fossil fuels will have opposite effects. 

Taking this into account, and considering the suggestions of Sterman (2000), the problem 

articulation of this thesis is centred on the fact that fossil fuels are becoming increasingly 

unaffordable for island systems that rely on these energy sources. Renewables can provide a 

solution, but it seems that the advent of high levels of renewables for electricity production is 

somewhat hindered, as evident in Figure 3.3. This represents a fact that there is a possible problem 

with the uptake of increasing amounts of renewables within low-carbon electricity systems. Hence 

this thesis explores policies for sustaining the uptake of renewables needed to ensure energy 

security (eliminate the dependence on imported fossil fuel for electricity generation) and to 

understand how this generation capacity mix may be stabilised. 

To ensure an accurate representation of this problem, and of the boundaries, the model must be 

adequately defined. If the model boundary (Sterman, 2000 pg. 97) is too large then the model can 

be overly complicated. However, if the model boundary is too small then the model can miss 

important feedbacks and dynamics. Hence, an appropriate and suitable model boundary must be 

chosen. This is best done as an iterative process whilst examining the problem articulation. In 

addition, the time horizon required to understand the problem can guide how far into the future 

the model is extended. It should be able to capture delayed and indirect effects as the system 

unfolds over time. A suitably long enough time horizon is key for the understanding of the problem 

and for deciding the model boundary. 

In the present case study, the time horizon was determined based on the longest delay of key 

variables and for capturing long-term trends within the system. The longest time delay for one such 

key variable are the low-carbon policies (investment goal completion timeline) which are usually 
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20 - 30 years in duration. In addition, 2050 is a key year for the timeline of low-carbon transitions 

based on important worldwide environmental and energy protocols and agreements. 

Consequentially, the chosen time horizon is 35 years (2015 - 2050) into the future with 10 years of 

history (2005 - 2015). Sterman (2000) used a model boundary chart in which he classified model 

variables as being endogenous (arising from within), exogenous (from outside) and excluded. In this 

thesis, short-term dynamics (hourly/daily) are widely ignored so variables such as grid frequency 

balancing and cash flows have been excluded from the model. Some key endogenous variables that 

have been used are the electricity demand, installed generation capacity for fossil fuel, renewables 

and energy storage, and adoption of electric vehicles. Key exogenous variables includes GDP and 

electricity tariffs. More details about the model boundary is shown for the specific sub-models of 

Chapters 4, 5 and 6. 

The general dynamic hypothesis which emerges should be a working theory of how the 

characterised problem occurs (Sterman, 2000), as intuitively explained by the causal relationships 

that produce the observed system behaviour. Sterman (2000) also states that this hypothesis 

should be challenged throughout the modelling process. For this thesis, the initial working theory 

is that the system is driven by the need to lower CO2 emissions and ensure sustainable electricity 

supply. Chapters 4, 5 and 6 will challenge this dynamic hypothesis as more causal relationships are 

discovered and explored. Subsections 3.2.2 and 3.2.3 introduce the necessary SD concepts for 

diagramming the feedback loops and physical (stock and flow) structures of the system being 

modelled. The initial working theory as a mental model diagram will be illustrated in the next 

subsection. 

3.2.2 Causal Loop Diagrams (CLD) 

It has been shown in Section 3.1 that causal or feedback loops exist in all complex systems and gives 

the cause and effect that determine the structure and behaviour of the system. Causal loop 

diagrams (CLDs) are flexible and useful tools for diagramming the system feedbacks and the mental 

models of the system structure. According to Sterman (2000), CLDs are simple maps for illustrating 
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the causal relationships among variables, visually represented by arrows from a cause to an effect. 

The arrows indicate either a positive (self-reinforcing) or negative (self-correcting or balancing) 

feedback between system variables. Reinforcing feedback loops are generated when there is an 

even number (possibly zero) of negative cause to effect relationships, whilst balancing feedback 

loops are generated when there are an odd number of these relationships. These loops are 

important to understand the feedback interactions within the system. Reinforcing loops produce 

growth and amplify these interactions, whilst balancing loops are counteracting and oppose the 

effects of the interacting variables.  

A simple example of a reinforcing loop and a balancing loop, relevant to this thesis and illustrating 

the mental model of the initial dynamic hypothesis, is shown in Figure 3.4. There are three main 

interacting variables, namely, low-carbon based capacity mix (electricity generation mainly 

composed of renewable sources), long-term effective supply (a self-sufficient/sustainable electricity 

supply that is not dependent on fossil fuel imports) and CO2 emissions (carbon-dioxide emissions 

from burning fossil fuels for electricity generation). The energy security loop (based on the concept 

of fossil fuel import independence) is reinforcing (denoted R) since low-carbon based capacity mix 

has a positive effect on the long-term effective supply which in turn has a positive effect back onto 

the low-carbon based capacity mix. This loop shows that if there is more low-carbon based capacity 

this will lead to more long-term effective supply, which will, in turn, lead to even more low-carbon 

based capacity. Given the structure of SD archetypes, if this loop operated independently, both the 

low-carbon based capacity mix and the long-term effective supply would typically change 

exponentially. This is mainly due to the fact that it is a positive reinforcing loop which will have an 

exponential archetype (Sterman, 2000).   

On the other hand, the low CO2 emissions target loop is balancing (denoted B), since low-carbon 

based capacity mix has a negative effect on the CO2 emissions which then has a positive effect onto 

the low-carbon based capacity mix. This loop shows that increasing the low-carbon based capacity 
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mix this will lead to fewer CO2 emissions, which will, in turn, lead to less low-carbon based capacity 

mix since it is reinforced by that later relationship. If this loop was operated independently, 

increases in the low-carbon based capacity mix will be counteracted and this variable would 

stabilise at some goal value. An SD archetype for this loop will be a goal-seeking archetype 

(Sterman, 2000). However, as these loops are interacting the low-carbon based capacity mix will be 

reinforced by the energy security loop and balanced by the low CO2 emissions target loop leading 

to an eventual dynamic equilibrium. The SD archetype that will exist for this two loops interacting 

will be an S-shaped archetype (Sterman, 2000). This observation underpins the initial hypothesis of 

this case study of a low-carbon electricity system.   

 

Figure 3.4  Example simple CLD diagram of the mental model of the low-carbon electricity 

system 

 

3.2.3 Stock and Flow Diagrams (SFD) 

As shown in the previous subsection, CLDs are useful to elucidate the feedback structure of a 

complex system. However, stock and flow diagrams focus on the physical structures within the 

system. Stock and flow diagrams (SFDs) track these physical structures such as the accumulations 

or measurable quantities of the system. In so doing, they characterise the state of the system, the 

sources of inertia and memory, and generate the quantifiable information upon which decisions 
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within the system are based. Stocks usually represents a noun and do not disappear if a time snap 

shot of the system is taken. Stocks usually decouples flows, create delays and hence can be said to 

have memory. Flows usually represents verbs and disappears if a time snap shot of the system is 

taken. Flows usually defines the change in the state of the stocks. Stocks and flows coexists and are 

mathematically defined for the system. The mathematical formulation requires detailed 

relationships between the different elements, for shaping a consistent basis, which often challenges 

and evolves the assumed mental model of how the system is thought to work. SFD diagramming 

gives the complete mathematical formulation of all aspects of the mental model.                                                     

 

Figure 3.5  Example of a simple SFD diagram representing the low-carbon capacity mix 

For example, as shown in Figure 3.5, the stock will be the measurable quantity of the installed low-

carbon capacity and is illustrated as a box with arrows going into and out of it. The arrows represent 

the flows that influence the stock and reflects the rates at which this stock increase or decrease. 

The inflow is the low-carbon investment rate which is the rate at which the stock increases, whilst 

the outflow is the low-carbon decommissioning rate which is the rate at which the installed low-

carbon capacity decreases. These flows can be nonlinear and operate at different rates that are 

dependent on other variables and/or link into the rest of the model. For example, the CO2 emissions 

together with other variables can affect the inflow and/or outflow. Hence the casual relationships 

can be adequately expanded and be incorporated into the stocks and flows of the system. The 

clouds at the outer ends of the diagram represents the sources and sinks for the flows. Sources and 

sinks are assumed to have infinite capacity and do not restrict the flows to which they support. The 

source represent the stocks from which a flow originating from outside the boundary of the model 
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arises whilst a sink represent the stocks into which flows leaving the model boundary drains. Hence, 

in this example, low-carbon investment rate has infinity capacity and low-carbon decommissioning 

rate is not restricted from outside the model boundary.                                                                                                                       

Although the relationships between model variables are normally determined by simple 

mathematical equations, there is some interaction that might require a different approach such as 

the use of non-linear approximations or look-up tables. Key lookup tables and equations for this 

research are detailed in Appendix A. In addition, more details of this and other CLD and SFD 

diagramming conventions such as the resulting modes of dynamic behaviours can be found in 

Sterman (2000). The following section highlights the model testing approaches that are important 

for developing useful SD models. 

3.3 Model Testing and Validation 

It was seen in Section 2.2.4 that much work has been undertaken by SD pioneers to lay the 

foundation to validate any SD model. Moreover, a number of structural validity procedures are 

shown (Barlas, 1989; Qudrat-Ullah and Seong, 2010). This involves integration error testing to check 

that different integration methods do not give divergent results. Additionally, further validation 

includes defining the boundary adequacy of the model as discussed in Section 3.2.1, by defining 

what is exogenous to the model (and what is endogenous and separating these from what has been 

excluded from the model. Forrester (1968) made some statements which provide a solid basis for 

modelling versus other real system/experimental methods. Forrester (1968) stated that a model 

should be valid for its purpose but it may be irrelevant or wrong for some other purposes and that 

there is no universal standard to compare the validity of models constructed for different purposes. 

Generally, this gives the context and basis for the correct usage of an SD model. Additionally, it is 

asserted that validation is a process of establishing confidence in the soundness and usefulness of 

a model (Forrester and Senge, 1980; Forrester, 1987).  
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The models developed for this thesis were implemented using computer simulation software, in 

this case, Vensim (Ventana Systems, 2016). Vensim is a mature and a widely used SD modelling 

software environment. The software incorporates a mix of discrete difference equations and 

continuous differential or integral equations through a diagram capturing the SD stock and flow 

and causal feedback structures of the system. It has many built-in validation and sensitivity testing 

mechanisms for the model structure and parameters. Dimensional consistency and structural 

verification of the model are built into the modelling software (Sterman, 2000; Ventana Systems, 

2016). Vensim package gives an error/warning and does not run accurately if the equations do not 

satisfy this level of consistency. Furthermore, coding errors and standardised model evaluation 

mechanisms such as sensitivity testing and reality checks come as standard with the software.  

The coupled, nonlinear, first-order differential (or integral) equations for which simulation is easily 

accomplished within the simulation software is done by the partitioning of simulated time into 

discrete intervals and stepping through one time period at a time (Ventana Systems, 2016). The 

time period, a time-step of one month in the models for this thesis, are small enough to have no 

discernible effects on the pattern of dynamic behaviour exhibited by the model shown in Chapters 

4, 5 and 6. The visualisation of the model behaviour served as a first step for the model validation, 

together with units’ consistency testing of all the included formulae, and sensitivity and extreme 

condition testing of the mathematical formulations and assumptions within the model. The 

validation process for this work, and as seen in the literature (Sterman, 2000), was thought of as an 

integrated iterative process of the model building using the appropriate model validation data 

(entirely separate to the data used to run the model). This iterative process involves finding the 

most accurate conceptualization, mapping and formulation together with simulation and 

implementation of the modelling process. The developed SD models for this thesis underwent 

rigorous testing and model validation as required for all good SD models. Additionally, key variables 

used like electricity tariffs and consumption data were verified with EDA and with relevant global 
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data sources (Isle-pact, 2012; Ilic, Xie and Liu, 2013; Botelho, 2015; Nunes, 2015; EDA, 2016; 

European Commission, 2016). 

Structure validity tests are also performed, with the use of direct comparisons of the model 

conformance to basic physical realities such as conservation laws and the realism of decision rules 

of the real system which increases the confidence in the model output. These tests usually with the 

inspection of the equations and model generated archetypes (structure-oriented behaviour curves) 

are important for the calibration of the model. Within this thesis, the behaviour of key variables 

such as the installed renewables capacity and fossil fuel capacity were assessed by measuring how 

accurately the model reproduces the behavioural patterns in the real system. This was achieved by 

comparing the outputs of the model with the historical output data of the real system.  The base 

case of model simulation run was plotted and compared to the real historical data over the 

calibration timeline for the calibrated variables. This type of model calibration was achieved using 

the analytical and software methods such as the eyeball time paths (visualisation of the data) and 

other traditional statistical tests such as Theil statistics which breaks down the mean square error 

(MSE) source of errors in terms of the bias, unequal variation and covariation as in Sterman (2000) 

and Pierson and Sterman (2013).  The historical model calibration time period used was 10 years 

(2005 – 2015) with the subsequent 35 years providing the future simulation period. All calibration 

tests were done using Vensim software based mechanisms and the respective detailed aspects are 

shown in Chapters 4, 5, 6. 

Other model validations for the iterative model building include further extreme case testing, 

reality checks and sensitivity analysis. Sensitivity analysis required the varying of key model 

parameters such as the capacity factor of the renewables and monitoring the change in key model 

outputs such as the installed capacity mix. Extreme case testing involved the use of extreme values 

of assumptions such as no population to evaluate the model response for a reasonable behaviour 

such as no electricity demand. Sensitivity to the inclusion/exclusion of different policies and to 

high/low values of the initial GDP within the island system was also evaluated. Reality checks were 
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used for determining the usefulness of the model by using constraints such as a no fossil generation 

capacity to observe the model response is a reasonable one of no monthly CO2 emissions. Relevant 

details of these tests are shown in the Appendix B1. All of these tests contribute to the model 

validation process and can confirm the usefulness of this model for understanding the evolving low-

carbon electricity system and for providing policy implications for the systems. According to 

Radzicki and Taylor (1997), once a model is validated and equipped to understand system structure, 

it can then be used as a laboratory for testing policies aimed at altering system behaviour in desired 

ways. Approaches for the policy analysis and evaluation of the developed models are shown in the 

next sub-section. 

3.4 Policy Analysis and Evaluation 

To guarantee useful understanding and applicable policy insights many key variables and aspects 

of the developed models were first validated. Then, using the model, policy interventions and/or 

scenarios were examined that lead to various long-term system behaviours. Key decision variables 

such as the low-carbon policy targets and CO2 emissions targets were carefully examined, along 

with indicators and uncertainties associated with the low-carbon electricity system renewables 

uptake problem, and given from the literature (Isle-pact, 2012; Botelho, 2015; Nunes, 2015; EDA, 

2016). Different possible sets of decisions under different assumptions about the uncertainties 

were used to look for sensitivity (trade-offs/gaps) between the short-term and long-term 

behaviours, with the main goal being to understand the policy and investment implication within 

the system and to provide useful insights into the future of this evolving low-carbon electricity 

system.  

According to Sterman (2000), the policy design process within a model is much more than tweaking 

the values of parameters, rather it is one of creating entirely new strategies and decision rules and 

making high-impact observations. Early sub-models explore the importance of existing policies and 

their impacts, whilst the later part of this thesis (Chapter 6) sheds light on investment decision 
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strategies useful for the long-term evolution of the low-carbon electricity system.  Shown in the 

next section are key characteristics of the case study: an isolated island system. 

3.5 Case Study - São Miguel 

A desire for contextual simplicity motivates the choice of small island low-carbon electricity system 

for this work. The system used for this study was chosen since it is currently used as a testbed for 

sustainable energy solutions that emulates evolving low-carbon electricity systems, and it has no 

grid or market connectivity to other mainland systems, providing the simple context desired for 

conducting such a scope of study. It has been extensively studied for the last 8-9 years (Baptista et 

al., 2009; Parness, 2011; Pina, Silva and Ferrão, 2012; Ilic, Xie and Liu, 2013; Silva, 2013) but not 

using the SD method. These prior studies have produced a large amount of data useful for the SD 

analysis. Prior studies have focused on São Miguel as a green island with a target of 50% renewables 

generation by 2020 with scope for other typical low-carbon aspects such as electric vehicle 

adoption and energy storage options (MIT-Portugal, 2013). These conditions definitely set the stage 

for the kind of challenges and opportunities an isolated low-carbon transitioning electricity system 

will likely face in the future. 

 São Miguel fits as a suitable case study for this work. It is part of the Açores archipelago of nine 

Portuguese islands about 1,500 km west of mainland Portugal in the Atlantic Ocean. It has a growing 

tourist economy and traditional sectors of fishing and farming, giving it the most diverse economy 

and energy needs of the nine Açores islands. The main electricity utility in São Miguel, Electricidade 

dos Açores (EDA), is a fully regulated utility alongside a few independent power producers which 

sell their electricity (less than 2% of total production) to the EDA utility (EDA, 2016). São Miguel’s 

electricity system is stand-alone without any grid interconnections to other Azorean islands or to 

mainland Portugal. It is isolated in a technical, but not in a political and economic sense. The tariffs 

of electricity are determined from the mainland Portugal (EDA, 2008). Also embedded in the 

framework of this system is the political oversight from Portugal, since the Açores is an autonomous 

region integrated within the Portuguese Republic. The autonomous legislature dictates that the 
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Açores has its own governments and hence all decisions for the energy sector is done through the 

Regional Directorate for Energy which is tasked with the job of overseeing the promotion and 

execution of sustainable and environment-friendly low-carbon electricity systems in São Miguel. 

The Regional Directorate for Energy has all of the political control for enacting the necessary 

legislation within their power, such as clean energy goals. Retail tariffs however remain controlled 

at a national level (EDA, 2016).  

According to EDA (2008), the existing on-island technical grid system structures are at a high 

standard similar to other developed systems. This system has capacity reserve margins above 30%, 

meaning that a significant amount of generation capacity is latent for much of the year. This is 

however required to maintain appropriate reliability and supply security (for reducing the risk of 

blackouts) in which adequate levels of redundancy of producing unit are installed (preference for 

several smaller units instead of one large generator). The annual electricity consumption grew by 

more than 3% a year for the 5 years prior to 2014 (ERSE, 2012, 2014) and future demand is expected 

to rise similarly. Furthermore, the Gross Domestic Product (GDP) on the island has grown by an 

average of 2% per year since 2005 (European Commission, 2016), signalling optimism for the 

electricity consumption growth forecast. Noting also that demand growth and tariffs for electricity 

are also expected to rise over the next few years (ERSE, 2012, 2014). 

In this system, electricity consumption is allocated according to four different consumer types: 

residential, commercial services, industrial and public services (EDA, 2008, 2016). This is a typical 

characterisation similar to other well-developed systems. Statistics between 2005 and 2015 show 

that residential and commercial services make up ≈ 30-35% of the total electricity consumption. 

Public services have a share of ≈ 15% while for industry it is ≈ 20%. Additionally, the total daily load 

duration curves have loads between 70 and 30 MW for the vast majority of hours in 2015 (EDA, 

2016). This electricity system exemplifies a small developed isolated system that is at the cusp of 

low-carbon transition with inherent technical, social and economic complexities that are readily 



Model Development and Research Methodology 

 

82 
 

identifiable and simpler than larger interconnected systems. The following section details the steps 

used for the modelling of the case study used in this thesis. It shows the approach taken to minimise 

the complexity and to obtain an efficient modelling of the system. 

3.6 Modelling Approach and Summary 

This chapter contain details of the efficient development of SD models and the modelling process. 

Also highlighted, are the key examples applicable and details of the case study for this thesis.  

Sterman (2000) cautioned that while there are certain key steps for modelling, it is not a cookbook 

procedure, but rather it is fundamentally a creative, disciplined, iterative and rigorous process.  The 

approach used in this thesis is to develop multiple sub-models to emulate different aspects of the 

system and then to synthesise these sub-models into a single comprehensive model. A well-

established approach was followed where greater in-depth learning can be achieved using an 

approach of smaller models to better demonstrate ab initio the dynamic behaviour of the system 

structure (Dyner, 1996; Shepherd, 2014).  

The case study of this thesis work was initially analysed to assess whether it encompasses key 

drivers to the evolution of low-carbon electricity systems. Additionally, the process of scenario 

planning, as detailed in (Lindgren and Bandhold, 2009) was initially used to formulate different 

possible and probable paths of evolution of the case study island system. Subsequently, a mental 

model (as shown in Figure 3.4) was proposed to develop a theory of the behaviour of the system 

over time. This mental model was a direct consequence and driven by the fact that; CO2 emissions 

and energy security (fossil fuel import independence) in the future will be a problem so more 

renewable and less fossil fuel generation is needed within the electricity system. Then, the system 

variables that are directly relevant to this problem statement were listed within the description of 

the different sub-models and these variables were determined to be endogenous, exogenous or 

excluded from the modelling process. Over the course of this process, and for the different sub-

models some variables were added or dropped as needed in the mental model descriptions of 

Chapters 4, 5 and 6. 
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Three independent sub-models were developed over the course of this research work and then 

they were integrated into a single comprehensive model. The first sub-model developed was a fossil 

sub-model, which assumed an island system that has no renewables policy and accounts for 

endogenous fossil fuel capacity based on exogenous fossil fuel prices, electricity demand and 

renewables capacity. A mental model and the model formulation details were developed for this 

aspect of the system and are shown in Chapter 4. The second sub-model explored other aspects of 

the system for renewables integration into the system via (cost) learning curves. This sub-model 

accounted for endogenous renewables capacity, with exogenous electricity demand, renewables 

policy and fossil fuel capacity. The developed mental model and model formulation details of this 

sub-model are also shown in Chapter 4. Thirdly, the electricity demand sub-model was developed 

to capture the endogenous electricity demand within the system. Building on consumption factors 

such as economic growth, this sub-model emphasises aspects of low-carbon electricity policy 

factors such as electric vehicles and energy efficiency on the long-term demand. GDP and tourism 

growth were exogenous to this sub-model, whilst residential population and electric vehicles were 

endogenous. Details of the developed mental model and the model formulation details are shown 

in Chapter 5.    

Finally, the three sub-models were synthesised into a comprehensive model which accounts for 

endogenous fossil fuel, renewables and energy storage capacities and electricity demand. The 

synthesised mental model, which captures the essence of Figure 3.4, but in much more detail along 

with the synthesised model formulations are explained in Chapter 6. It is important to note that the 

process of developing the sub-models and the final synthesised model was an iterative and lengthy 

process with numerous trial mental models in which many of those mental models were discarded. 

The feedback "loop" structures representative of the system were then studied and the resulting 

feedback loops were identified as reinforcing or balancing loops. The guiding concept is that the 

sub-models and the comprehensive model were built for their specified problem and purpose and 

they should provide an understanding of the system for this problem.  
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Figure 3.6 shows the subsystem architecture (Sterman, 2000 pg. 101) of the synthesised model. 

This figure illustrates the key aspects of the different sub-models of the synthesis model. As seen 

in the figure, the electricity tariff, GDP, tourist visits and technical specifications of electricity 

generation plants are not endogenous to the system in any of the sub-models and are external to 

the modelled system. Four key assumptions are made:  

(i) We assume that energy choices do not endogenously affect the GDP of São Miguel. 

(ii) We do not include the possibility of local technological innovation. 

(iii) We exclude the possibility that energy choices drive tourism growth. 

(iv) We assume that electricity tariffs charged in the island tends to be unaffected by 

system investment choices. 

All four assumptions of these exogenous factors are contestable. However, others might seek 

to build upon this work by making some of these exogenous variables endogenous. 

 

Figure 3.6  Overall subsystem architecture diagram for the low-carbon electricity system model 

The parts labelled within the diagram will be detailed in the relevant chapters that address the sub-

models individually. The next chapter will give the system structure for the fossil and renewables 

sub-models and the insights gained will be highlighted.  
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Chapter 4. Fossil Fuel Generation Futures and 

Renewables Integration in Island Electricity 

Systems  
 

 

The contents of this chapter can be found in part or whole in the following peer-reviewed 

publications: 

1. Matthew, G. J., Nuttall, W. J., Mestel, B. and Dooley, L. (2014) ‘Simulating the development 

and utilization of autonomous smart grid systems using system dynamics’, in PhD 

Colloquium at the 31st International Conference of the System Dynamics Society. Delft, 

Netherlands. 

 

2. Matthew, G. J., Nuttall, W. J., Mestel, B. and Dooley, L. (2015) ‘Insights into the Thermal 

Generation Futures of Isolated Island Electricity Systems Using System Dynamics’, in 32nd 

International Conference of the System Dynamics Society. Cambridge, MA. Available at: 

http://www.systemdynamics.org/conferences/2015/proceed/index.html 

 

3. Matthew, G. J., Nuttall, W. J., Mestel, B., Dooley, L. and Ferrão, P. M. (2016) ‘Renewable 

integration in island electricity systems - a system dynamics assessment’, Advances in 

Intelligent Systems and Computing, 426, pp. 107–119. doi: 10.1007/978-3-319-29643-2_8. 

 

 

Following the modelling philosophy and research approach identified in Chapter 3, the initial sub-

models for understanding fossil generation futures and the integration of renewables for the case 

study island system are explored in this chapter. As has been discussed in previous chapters, legacy 

electricity systems are transitioning into low-carbon renewables based systems which are more 

complex with greater multi-level interactions. To enhance the understanding of the policy and 

investment impacts on the future of these systems, the use of a whole systems view has been 
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advocated, specifically the holistic SD method. The initial dynamic hypothesis presented in section 

3.2.1 was used as a guide for initially defining mental models of operation for a fossil fuel only based 

system and a fossil fuel based system that is integrating renewables for electricity production. 

Details of these two sub-models are presented in this chapter. 

4.1 Overview 

Today global production of electricity, particularly on island systems, is dominated by the 

combustion of fossil fuels. We must understand where we start from and it is suggested that a 

detailed analysis of the dynamics which surrounds just fossil fuel investments stands out as a 

necessary first step in understanding the whole system. The research firstly considers how the fossil 

fuel capacity additions in line with electricity demand growth and existing capacity margins affect 

the system’s long-term stability. Long-term capacity planning based on only fossil fuel is not popular 

in the academic literature since progressive electricity systems are transitioning to low-carbon 

based sources whilst pursuing ambitious goals for renewable energy sources integration but it is 

vital one understands holistic paradigms first.  

The fossil fuel sub-model presented in Section 4.2 of this chapter was developed for capturing 

endogenous causal relationships for the capacity margins and fossil fuel capacity long-term costing 

of a fossil fuel only generation based island electricity system. A separate sub-model, the 

renewables integration sub-model of Section 4.3 was developed to capture the endogenous causal 

relationships of the local learning curve cost experience of renewable technologies and the 

adoption of renewables from stipulated policy targets. The two sub-models are independent 

studies focused on different aspects of the system, however, key structures from both sub-models 

are used within the comprehensive synthesis model of chapter 6. This comprehensive synthesis 

model is achieved consistent with the initial dynamic hypothesis discussed in Chapter 3. This 

dynamics hypothesis is further challenged and considerations are given to a complete portfolio of 

endogeneity in order to answer the overarching research question. 
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The sub-models presented in this chapter were rigorously analysed in the context of research sub-

question 1 (Section 1.2.2) concerning the significance of low-carbon policy targets within island 

electricity systems. It has been established that the effects of policy targets on the long-term 

investment decisions require better understanding (Weisser, 2004b). According to Weisser (2004), 

this policy target effects should assist policy makers to better shape generation mixes. Dyner 

(1996), argued that IRP, the most widely used long-term capacity planning platform for small and 

developing countries, is myopic and not as insightful for addressing transitional policy issues as SD 

models can be. Moreover, relevant to this chapter and thesis, and as highlighted in Ford (1997), SD 

sub-models are especially useful for capacity expansion planning since they have the advantage of 

capturing the effects of time delays and endogenous feedbacks within the system. For example, 

Ford (1997) has provided valuable insights into the legacy electricity industry using the system 

characterisation of stocks of capacity under construction, and time delays for construction and 

planning within such systems. These all serve as key factors and inputs for capacity expansion in 

the fossil fuel and renewables sub-models of this thesis. 

Reflecting a reality typical of island systems, these sub-models account endogenously for the key 

causal relationships of the system. They give some initial insights into the low-carbon policy 

effectiveness and capacity investment anatomy of the system. Firstly, assuming a fossil fuel only 

electricity system, the long-term capacity expansion outlooks of this system were studied. 

Subsequently, the significance of renewable targets for adoption and diffusion of renewable 

generation sources within the electricity system was evaluated. Thus, the initial supply side 

dynamics of the case study for capturing unintuitive and surprising opportunities with low-carbon 

policy and generation capacity investments was achieved. The next section presents the first of 

these two initial sub-models.  
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4.2 Fossil Fuel Generation Capacity Model 

This section details the fossil fuel based system SD sub-model, which includes endogenous costing 

of capacity and capacity margins. The sub-model uses exogenous electricity demand and tariffs, 

and fossil fuel prices. The emphasis here is on endogeneity regarding the capacity investments of 

the system similar to previous studies seen in the literature (Ford, 1997; Collins et al., 2013). 

However, it additionally includes an endogenous treatment of the capacity margin, unlike the other 

studies. This allows for the capture of detailed outlooks of the dynamics and investment decisions 

surrounding the fossil fuel capacity expansion of a system that is endogenously influenced by its 

capacity margin. Thus an in-depth understanding of the system structure and strategies that 

normally exist, and can exist, in the absence of renewables and other low-carbon enabling 

technologies is revealed.  

4.2.1 Mental Model 

The fossil fuel sub-model is based on the mental model feedback loop diagram detailed in Figure 

4.1, which is adapted from Ford (1997), and accounts for, and explains, the delays (represented by 

double dashes on the arrows) and dynamics of fossil fuel capacity expansions in the absence of new 

low-carbon sources. The existing causal relationships are shown in the diagram as three balancing 

loops, each indicated by a letter B, and reflecting the key feedback structures of this system. Unlike 

Ford (1997) which has a “death spiral” for electricity tariffs and demand feedbacks, there is an 

endogenous capacity margin loop reinforcing the system. Additionally, the mental model diagram 

highlights a system that does not have any endogenous electricity tariffs, demand or fossil fuel 

prices. These variables are, however, derived from historical data and forecasts given for the system 

(ERSE, 2014; EDA, 2016).  

The following table, Table 4.1, referred to as a model boundary chart (Sterman, 2000) summarises 

the scope of the model by listing the important endogenous and exogenous variables used for this 

sub-model, and the ones which have been deliberately excluded. 
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Table 4.1  Model boundary chart for the fossil fuel sub-model 

Shown in Figure 4.1, the three balancing loops all interact at the fossil capacity investments and 

fossil capacity installed. The capacity costing loop (red loop) is being driven by the electricity tariffs 

and fossil fuel prices and has a balancing effect on the rate of fossil capacity investments, which 

after a time delay reinforces this effect on the fossil capacity installed. The key to this loop is the 

combined effects of the exogenous influences of the electricity tariffs and fossil fuel prices and the 

fossil capacity costing for balancing the amount of capacity that is installed. The more capacity that 

is installed, the more expensive it will be to produce electricity and simultaneously make capacity 

investments noting high fossil fuel prices (fossil fuel prices are always high for small island systems 

given the significant concerns for supply chain and transportation costs). Hence the installed 

capacity will be balanced. One other option that can occur in response is for the electricity tariffs 

(local price for electricity generation) to increase if it were endogenous to the system (a market 

structure can best dictate this). As noted before, isolated island electricity systems such as this case 

study typically do not have local price formation and rather use exogenously generated electricity 

tariffs, therefore the resulting installed capacity will be less responsive than might be expected in a 

market-based system with local price formation. Hence, in our case the capacity margin can fall 

despite economic indicators of a need for new capacity investments. 
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The capacity construction loop (red and brown mixed loop), at the centre of the figure, has a 

balancing effect on the fossil capacity investments, with this effect again being reinforced for the 

fossil capacity installed. This is an internal working loop which, as in Ford (1997), accounts for the 

delays necessary for new fossil fuel capacity to come online. Fossil fuel capacity will come online 

after a delay for project planning and construction and will only become a part of the installed 

capacity once commissioned.  

Also shown is the capacity margin loop (green and red mixed loop) which again has a balancing 

effect on the fossil capacity investments and fossil capacity installed. If this loop operated on its 

own, as capacity is added to the system, the capacity margin would be higher and the capacity 

forecast needs would immediately decrease implying a less urgent need for more capacity. 

However, this loop is also influenced by the electricity demand, where higher exogenous electricity 

demand implies a higher capacity forecast needs and a lower than otherwise would be capacity 

margin. This lower endogenous capacity margin would then have a negative feedback influence on 

the capacity forecast needs which also reinforces the need for more capacity due to the electricity 

demand. And this, in turn, reinforces the fossil fuel investments and installations. In addition, it is 

important to note that the electricity demand would in a real world example be affected by other 

variables that are not accounted for within the boundary of this sub-model such as changes to 

population and GDP of the island. This is addressed in Chapter 5 where the electricity demand is 

made endogenous to the system. 

This mental model hypothesis captures the whole system view of the effects of varying rates of 

exogenous electricity tariffs, demand and fossil fuel prices interactions for determining the 

endogenous fossil fuel capacity installations and capacity margin. In the long-term, for a system 

that consists of only fossil fuel capacity, this system is considered to be influenced mainly by the 

fossil fuel prices and the electricity tariffs. These key factors identified, will determine the extent to 

which investments in fossil fuel capacity are made.    
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Figure 4.1  Mental model feedback diagram of the fossil fuel based island electricity system 

Considering the case study of São Miguel, it is important to note that at model initiation, in 2005, 

the capacity margin was 30% (EDA, 2008), unlike larger systems which generally have capacity 

margins between 5 to 15% (IEA, 2010a). Additionally, the forecasted electricity demand is healthy 

(EDA, 2008; ERSE, 2014) for this system and it was seen that the operator within this system paid 

40 - 65% more for fossil fuel used to generate electricity than the mainland Europe average (EDA, 

2016). It is also expected that the electricity tariffs should increase in future, but this depends 

heavily on the mainland economy and resulting legislation (ERSE, 2014). This gave a case study 

system with high capacity margins, growing electricity demand and relatively high costs for 

generated electricity. By using these contextual characteristics and by challenging the mental model 

for the formulation of every important variable from Figure 4.1 a formal SD sub-model was 

developed for this case study. The key sub-model formulation is shown in the following section.  
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4.2.2 Model Formulation 

The fossil fuel sub-model was derived and formulated from the mental model feedback loop 

diagram of Figure 4.1 and implemented using the Vensim software package. General stock 

management structures as applied for capacity expansion illustrated by Ford (1997) and Sterman 

(2000) were both used as a guide to the fossil fuel capacity expansion formulations of this system. 

The main mappings of the key stocks and flows within the system feedback structures are shown 

in Figure 4.2. The capacity costing loop is at the top of the simplified diagram and captures the 

financial influences of cost per installed fossil fuel capacity, decommissioning cost and the allowed 

revenues of the system. Also shown is the capacity construction loop which captures the normal 

fossil capacity investment cycle for putting this capacity online. At the lower half of the diagram is 

the capacity margin loop, which captures the influences of the installed fossil fuel capacity and the 

endogenous capacity margin. 

Key stocks within this model are the potential fossil fuel capacity and the installed fossil fuel 

capacity2. The growth of potential fossil fuel capacity depends on the fossil fuel investment rate, for 

the monthly time step Δ�, which, in turn, is determined by the allowed revenues for investments, 

the forecasted total capacity needed and the capacity margin. The allowed revenues variable is 

defined as the difference in the expected revenues from electricity sales and the total costing 

incurred from electricity generation and decommissioning. Decommissioning of fossil fuel 

generation also incurs a cost (IEA, 2010a) and these aggregate costs were endogenously accounted 

for within the model. Hence, from the top half of the diagram, the total costing necessary to 

facilitate fossil fuel capacity expansion, and the requisite revenues that can upkeep this amount of 

installed capacity, were used to determine the financially stipulated investment rate of fossil fuel 

capacity. Within the lower half of the diagram is reflected the capacity margin and demand 

forecasted stipulated investment rates of fossil fuel capacity. Within the formulations, the demand 

                                                           
2 The potential fossil fuel capacity is the capacity that are planned and not yet constructed whilst the 
installed fossil fuel capacity are the capacity that are built and online. 
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forecasted was determined from the exogenous values and forecasts, whilst the capacity margin 

was first determined as an initial value from the historical data of the exogenous demand and 

installed capacity of the system in January 2005, as given from EDA (2016). This was adopted, 

consistent with the literature, and based on the “derated” capacity margins as given in RAE (2013):                                                                 

  ������� = 
���
��� �������	��	�� �	����
�	�� �	���� ∗ 100, where capacity installed is the installed fossil fuel 

capacity in MW, and peak demand is the highest demand in MW from January 2005 (EDA, 2016). 

To model the capacity margin endogenously, the approach given in Sterman (2000) for goal 

adjustment was used, whereby ������� �		�	� , the rate of adjustment of the capacity margin 

������� to a goal �	��	
�	�, is given by ������� �		�	� = �� !�"#�$�%&'()*
+"&!&")#,

 , where -
���
��� is the 

capacity margin adjustment period, and �	��	
�	� was defined for the standard range of values as 

given in IEA (2010).  

Some important dynamics from the stocks and flows of the model are the rate of change of installed 

fossil fuel capacity, Δ�.����� ./	�/Δt = 23 − 25, where 23 is the fossil fuel generation online rate 

and 26 is the decommissioning rate. Additionally, the rate of change of potential fossil fuel capacity, 

Δ����	����� .�����/Δ� = 27 − 28, where 27 is the fossil fuel investment rate and 28 is the fossil fuel 

generation capacity online rate after construction. The investment rate 27 is a compound of several 

model variables:    27 = max < �==
+>?@@)A >B�A

, �=C
+>?@@)A >B�A

, �=D
+>?@@)A >B�A

, 26E 

where �66 is the demand forecasted stipulated fossil fuel capacity needed; �6F is capacity margin 

stipulated fossil fuel capacity needed; �6G is the financially stipulated fossil fuel capacity needed; 

-.����� ./	� is the fossil fuel capacity investment decision timeline. Investments within the system 

are made based on the capacity as defined from the maximum stipulated capacity needed of �66 , 

�6F  and �6G ,  in addition to replacing decommissioned capacity. The long-term dynamics 

surrounding the need for capacity given the capacity margin, demand forecasted capacity and 

financially driven capacity is examined for a range of electricity demand and capacity margin 
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scenarios. The electricity tariffs and fossil fuel prices were also adjusted within these scenarios as 

shown in the next section. 

 

Figure 4.2  Simplified stock and flow diagram for the fossil fuel capacity model formulation 

This developed sub-model captures the endogenous fossil fuel capacity expansion of the system 

whilst accounting for endogenous capacity margins and capacity costing. One of the key 

assumptions used in this sub-model is that the fossil fuel capacity accounts for all electricity 

generation within the system. This assumption seemed reasonable for an initial sub-model since 

the historical data of the fossil fuel capacity prominence (a ratio of the fossil fuel capacity to total 

generation capacity within the island) stood at over 75% in January 2005, shown in Figure 3.3 of 

Section 3.2.1.   

As highlighted in Section 3.3, this sub-model underwent testing and validation checks common to 

SD model building. Reality checks on the installed fossil fuel capacity for total costing are done and 

structure validity testing of all formulations is performed. The model was simulated on a monthly 
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time step for 45 years as detailed in Section 3.3. Historical data from 2005 to 2015 of the exogenous 

variables listed in table 4.1 except the capacity investment timeline, which was fixed, were used for 

determining appropriate data extrapolations using the Vensim SMOOTH and FORECAST functions. 

These extrapolations were then compared and used as the respective exogenous inputs into the 

model. There were no direct comparisons of the installed fossil fuel capacity of this sub-model to 

the historical data of installed fossil fuel within this system since the real system has a fair share of 

renewables after 2007. However, the identified patterns of the long-term behaviour being 

exhibited by the simulated fossil fuel capacity give the useful elicitation required for this research 

work and for expanding the sub-model. 

4.2.3 Evaluation and Analysis 

Within the scope of this initial sub-model, the effects of the financial costing and capacity margin 

aspects in São Miguel are evaluated. Three main scenarios were used for the evaluations. In all 

scenarios, the initially installed fossil fuel capacity and initial potential fossil fuel capacity were 

obtained from the historical data of São Miguel, for the initial time of January 2005. The average 

present age of existing fossil fuel generators at this initial time was also used (EDA, 2016). The 

scenarios differ with regards to the exogenous electricity demand forecasted for the island system. 

The capacity margin is assumed to be 30% as is existent in this system (EDA, 2016). 

Scenario descriptions 

Reference scenario: This scenario considers the “business as usual” case and represents what is 

most strongly expected to occur under the current system. The electricity demand rate forecasts of 

3% per annum increases, and the exogenous electricity tariffs and fossil fuel prices given from the 

extrapolated historical data were used for this scenario.  

Below average demand scenario: This scenario reflects a lower than the forecasted electricity 

demand within the system of less than 3% per annum. This value is fixed at 1.5 % per annum. 

Electricity tariffs and the fossil fuel prices were set to be at a lower extrapolated trajectory over the 
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simulation time of the sub-model. A lower peak demand forecast of 1.5% per annum is also 

accounted for in this scenario. 

Above average demand scenario: This scenario reflects a higher than the forecasted electricity 

demand within the system of more than 3% forecasted per annum. This value is fixed at 4.5% per 

annum. Electricity tariffs and the exogenous fossil fuel prices were set to be at a higher extrapolated 

trajectory over the simulation time of the sub-model. A growth in peak demand of 4.5% per annum 

is also accounted for within this scenario. 

Scenario analysis 

Figure 4.3 shows the monthly installed fossil fuel capacity of all three scenarios. This installed fossil 

fuel capacity appears to be stable until about 2017 in all three scenarios and then gradually rises 

for the rest of the simulation time up to about 200MW by 2050. The fossil fuel generation 

investments are reflected in the amount of new fossil fuel generation that is required to meet the 

needs of the island system. As expected the above average demand scenario has the highest growth 

whilst the below average scenario has the lowest. It is also observed here that the difference in the 

growth rates is reflective of the differing long-term positive impacts of the demand forecast on the 

installed fossil fuel in the island system.  

 

Figure 4.3  Installed fossil fuel capacity for below average demand, above average demand and 

the reference scenarios 
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Shown in Figure 4.4 are the results for scenario runs of the capacity margin together with the 

“business as usual” scenario. Using the “business as usual” reference scenario and changing the 

capacity margin expected given in Section 4.1 to reflect international industry standards of between 

10% and 20% as given in IEA (2010), Figure 4.4 was generated. As one would expect there are 

smaller increases in the amount of installed fossil fuel capacity for meeting a 10% capacity margin 

(RAE, 2013), than for the reference scenario of the existing 30% capacity margin.  

 

Figure 4.4  Installed fossil fuel capacity for 10 percent capacity margin, 20 percent capacity 

margin and the reference scenarios 

The scenario runs give symmetrical results in the long-term implying that adhering to the capacity 

margin change (by removing or decommissioning fossil fuel generation) will lead to a proportional 

change in the installed fossil fuel capacity. It follows that adhering to a 10% international standard 

of capacity margin will have less increases in the long-term for the installed fossil fuel capacity from 

the reference scenario of approximately 30%. This would be a realistic option since there is a 

notable amount of installed generation capacity not presently in use (EDA, 2016), hence investment 

decisions that are not important for demand growth can be curtailed for this level of capacity 

margin. However, the issue of installed capacity redundancy needed for island systems should be 
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considered. Island systems generally require higher capacity margins (greater than 10%) to ensure 

their electricity supply redundancy and to avoid blackouts) (Weisser, 2004b; Botelho, 2015). 

In addition, if the delay associated in perceiving the capacity margin or the capacity adjustment 

period, are longer, then the installed fossil fuel capacity and fossil fuel generations are also delayed 

in the long-term. A smaller delay, however, implies a lower amount of fossil fuel capacity installed 

and reduced unnecessary fossil fuel generation investments for the island during the simulation 

period. This is similar to Ford‘s (1997) conclusions on the lead time for capacity expansion projects 

to be shorter to ensure having enough financial basis for project completion and not over-investing 

in capacity in the long-term. We note here that large capacity margins in São Miguel are critical to 

the electricity system security (avoiding blackouts) but are not the desired driver for the fossil fuel 

generation capacity of the island system. However, the magnitude of the electricity demand 

forecast is a necessary driver for capacity expansion within the electricity system. Also, the allowed 

revenues and financial drivers within this system are not observed to have great impacts. This is to 

be expected because electricity tariffs are externally determined for the island system. The lack of 

financial impacts provides an opportunity for more economical generation mixes (to include 

different types of renewables) and for exploring the best options for integrating such low-carbon 

sources within such electricity systems. 

Whilst undertaking an extensive review of renewable integration into island systems Weisser (2004) 

recommended that future models of such systems should incorporate both regulatory 

considerations and the dynamics of cost reduction learning from the experience of installed 

renewable sources, in order to evaluate comprehensively investment implications in the short, 

medium and long term. According to Weisser (2004), this is important to identifying the drivers and 

necessary investment and policy insights into a low-carbon optimised system. A sub-model for 

highlighting the integration of renewable energy sources within island electricity systems is 

presented in the next section.   
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4.3 Renewables Integration Capacity Model 

An SD sub-model is here developed for investigating the effects of (local) emission reduction targets 

and learning curves on the integration of renewable generation sources3 within island electricity 

systems. Specifically, the sub-model highlights the low-carbon policy effectiveness for renewable 

capacity investment decisions. This is achieved by representing the endogenous interactions 

between the local renewable goal, the global influence of CO2 emissions targets, and profitability 

constraining capacity investments (incorporating learning curve experience for cost reductions).  

The sub-model adapts the learning curve implementation of Pruyt and Kwakkel (2011). These 

authors have studied the impact of learning curves on the cost of competing technologies in energy 

transitions. Their analysis is focused on solely the cost of the technologies and not the impact of 

emissions and low-carbon policy interactions with cost reduction learning. The more holistic 

approach presented here provides an opportunity for understanding the role of renewable targets 

whilst also considering the learning curve experience for installed renewables based on their 

decreasing cost from familiarity with the technologies driving enhanced profitability in the long-

term. It also gauges the opportunities and challenges facing those making investment decisions 

regarding the integration of renewable sources in isolated island electricity systems.  

4.3.1 Mental Model 

The mental model feedback diagram shown in Figure 4.5 is used as the basis for this renewables 

integration study. The existing causal relationships are shown in the diagram as two balancing 

loops, indicated by letter B and one reinforcing loop indicated by the letter R. Together, they reflect 

the key feedback structures of the system. Similar to the fossil fuel sub-model of Section 4.2, this 

second sub-model does not endogenously account for the electricity demand and electricity tariffs. 

Moreover, fossil fuel prices are excluded from this sub-model. The key endogenous variables for 

                                                           
3 For this sub-model all renewables sources are considered as an aggregated representation of geothermal 
generation. Geothermal has a 80% share of renewables sources within the case study in 2015 (Botelho, 
2016; EDA, 2016) 
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this sub-model are the installed renewables capacity, net CO2 emissions and the renewables 

profitability based on cost reductions via learning. Additionally, there is no consideration for any 

long-term or short-term seasonal energy storage. A completed listing of the key variables of the 

model boundary chart, which summarizes the scope of this sub-model, is given in Table 4.2. 

 

Table 4.2  Model boundary chart for the renewables integration sub-model 

As shown in Figure 4.5, the renewables target locally influenced loop (green and red mixed loop) is 

being influenced exogenously by the local renewables target and has a balancing effect on the 

amount of planned renewables investment. This is based on the shortfall of the amount needed to 

reach the local renewables target4. After a delay of construction and planning, this balancing effect 

is reinforced on the quantity of renewables capacity installed in the system. 

The globally-influenced CO2 emissions target loop (purple and red mixed loop) shows the balancing 

effects of the renewables capacity installed and planned renewables investment on the global 

emissions targets of the island system. Similar to the renewables target locally influenced loop this 

                                                           
4 The local renewables target is the amount of renewables agreed by the Açores for their island territories 
to pursue (EDA, 2008). São Miguel has the same renewables target as the rest of the Açores. Global CO2 
emissions targets are the emissions targets agreed to by the EU from the United Nations Framework 
Convention on Climate Change. These targets are given to the specific EU territories, such as Portugal which 
then gives it to the Açores and in turn São Miguel.     
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loop is also exogenously influenced by a target, but in this case, the target is stipulated from the 

European Union (EU) as the CO2 emissions targets agreed for this territory. The shortfall of the 

amount needed to achieve this target balances the amount of renewables capacity installed in the 

system also after a delay for construction and planning. 

 

Figure 4.5  Overview of the key feedback structures related to renewable integration within the 

island electricity system 

Also shown is the local renewable learning curve experience loop (red loop) which has a reinforcing 

effect on the planned renewables investments and, in turn, the renewables capacity installed. This 

loop captures the extent of cost reductions that accrue from the experience of installing 

renewables. These cost reductions are determined from the local stakeholder experiences with the 

installed renewables capacity (it is assumed that for every doubling of the already existing installed 

renewables there is a 10% cost reduction from the familiarity with these technologies in the island 
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system). This loop also captures the breakeven cost of renewable production capacity that is 

required for the system to be self-sufficient/sustainable.  

These three loops are the key components underpinning the model’s (and by extension the 

system’s) structure, with their interactions being important for understanding the emerging 

characteristics of the long-term renewable integration within this island electricity system. The two 

balancing loops will restrict the installed renewables capacity within the system as their targets are 

met whilst, the reinforcing loop will encourage more renewables capacity as more installations lead 

to lower cost of renewables.   

This sub-model, as with the previous sub-model of Section 4.2, is a long-timescale investment 

model using a monthly time-step. It is not a short-term grid balancing model. As such, this work is 

largely insulated from short-term issues of weather and renewables intermittency. In addition, the 

model crucially highlights a generic structure aggregating all renewable sources into a single entity. 

Later disaggregation will permit more accurate modelling, as the technological advancement with 

learning-curve cost reductions and long-term project lifetime profitability of the individual 

renewable sources can differ significantly. This mental model is then challenged for the formulation 

of the important variables for developing the formal SD sub-model of this section. This formal sub-

model formulation is highlighted in the following section.   

4.3.2 Model Formulation 

As with the earlier fossil fuel model, this simulation model is implemented using the Vensim 

software package. The model has been derived from the mental model feedback causal loop 

diagram of Figure 4.5 and includes the stock and flow variables that capture the key system 

structure. The main mappings of these stocks and flows are detailed in Figure 4.6. The 

corresponding feedback structure loops of Figure 4.5 are also labelled within this diagram, including 

an additional loop useful for the model formulations, the renewables capacity equilibrium loop, 

which is synonymous to the capacity construction loop of Figure 4.1. The two loops at the top of 
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the diagram are responsible for capturing the influences of low-carbon targets and goals. The 

globally influenced CO2 emissions target loop is driven by the installation of renewables which, in 

turn, reduces the amount of fossil fuel capacity used for electricity production. This reduction in 

fossil fuel electricity production reduces the amount needed to achieve the global target for CO2 

emissions leading to the need for fewer renewables capacity as the loop is iterated. Similarly, the 

local renewables target loop is driven by the installed renewables capacity, which, once increasing, 

reduces the amount of renewables needed to meet the renewables targets. Hence a lower 

renewables investment rate would result for this loop. The opposite would occur for the both loops 

if the renewables capacity installed were to decrease. 

At the lower half of the diagram, are the renewables capacity equilibrium loop and the local 

renewables experience loop which are responsible for capturing the learning curve cost reduction 

effects of renewables capacity installations. The local renewables experience loop is driven by the 

current and all previous installations of renewables capacity over the long-term of the model. This 

brings to light an important set of considerations in renewable energy investments, which is, the 

relationship between unit cost and the scale of deployment. Such issues bring in the economic idea 

of “learning”, noted in Section 1.3 as the learning-by-doing (Weisser, 2004a, 2004b; Pruyt and 

Kwakkel, 2011) concept. In essence, the higher the accumulated renewables capacity installed, the 

lower will be the cost of new renewables capacity due to the local learning-by-doing. Learning-by-

doing refers to the reduction of the cost of new renewables that comes solely from the 

experience/familiarity with the technologies. It is usually defined as the reduction in unit cost 

(typically total capital cost) that is achieved for each doubling of installed capacity (Sterman, 2000; 

Pruyt and Kwakkel, 2011). This cost reductions will increase the renewables profitability and 

reinforce the need for installing more renewables capacity. However, noting the unit size of today’s 

technologies and the relatively small scale of the island case study the opportunity for a significant 

number of doublings is small and hence learning-by-doing does not feature prominently in the 

results presented here, in Section 4.3.3.  
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At the same time, research and development should have the potential to reduce technology costs, 

but the likelihood and potential for this on such small isolated island are also generally non-

significant. This can hence lead to the status of the Açores as an island system that risks a divergence 

from what might generally be expected by energy researchers globally. But it can reflect the further 

renewables cost reduction issues related to isolated island systems. The electricity generation 

technology mix deployed on São Miguel has been more conventional and in this research the 

assumption is made that the impact of the above described learning-by-research will be sufficiently 

small that it may be neglected.  

The other loop in the lower half of the diagram, the renewables capacity equilibrium loop balances 

the renewables profitability, since the higher the renewables capacity installed, the expected 

revenues generated for each MW installed will be less. The unit maintenance costs thus rises with 

increased capacity due to the added usage and/maintenance of the installed capacity, hence a 

lower profitability for the renewables will occur. This loop is weaker and independent to the local 

learning-by-doing cost reductions and can be ignored if the renewable technology does not require 

maintenance (which is not the situation in the case study that has geothermal installations). Such 

smaller effects that might be of greater relative importance in larger territories can possibly be 

neglected in a small island system.  

Also shown in Figure 4.6 are the key stocks of the planned renewable investments, the installed 

renewable capacity and the cost per MW of new renewable capacity. The growth of planned 

investments in renewable capacity depends on the flow of the renewables investment rate, which, 

in turn, is determined by the total capacity required to meet (i) forecasted demand load; (ii) the 

financial expectations of investors; and (iii) the CO2 emissions and local renewable targets. 

Mathematical details of the key formulations used in this sub-model are presented next, in addition, 

more details can be found in Appendix A1. 
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The cost reduction learning curve is modelled using the formulation given by Pruyt and Kwakkel 

(2011) for ��HI� = ��  JK#LM#
K#

N	
, where Ct is the investment cost per MW at time t, O�  is the 

cumulative constructed capacity (including decommissions), and e is the learning curve parameter. 

The parameter e = −log2 (P), where P is the progress ratio with 0 ≤ P ≤ 1. A progress ratio of 90% 

means that for each doubling of O�  there is a cost reduction of 10%. Similarly, a progress ratio of 

80% means that for each doubling of O�  there is a cost reduction of 20%. Following (Sterman, 2000) 

pg. 338, this sub-model was tested with several realistic progress ratios. For the relationship of the 

progress ratio to the economic concept of learning-by-doing please see Pruyt and Kwakkel (2011) 

and Sterman (2000) pg. 338. 

To model the influence of targets, the approach given in Sterman (2000) pg. 338 is used, whereby 

R, the rate of adjustment of a variable S  to a target S∗ , is given by R = T∗T
+U

 , where -V  is the 

adjustment period. This is used to define the CO2 emissions and local renewables targets of the 

system. In the case of the CO2 emissions, the reference target used is the base year value of 30% 

reduction (to 1990 values) and the initial CO2 emissions value is used from January 2005. The 

adjustment time was determined by the scenarios implemented. For the local renewables target, 

the targets and adjustment times were determined by the implemented scenarios whilst the goal 

for installed renewables is used as a fraction of total installed fossil and renewables capacity in 

January 2005. Additional important dynamic components of the stock and flow structure of the 

model are the rate of change of installed renewable capacity, Δ��	�	W���	�/Δt = RY − R5, where 

RY  is the renewables online rate, R6  is the decommissioning rate of renewables and Δt is the 

monthly time step. Also, formulated is the rate of change of planned renewable investments, 

Δ������	� �	�	W���	�/Δ� = R7 − R�, where R7 is the renewables investment rate and R�  is the rate 

of commencement of construction of new renewable capacity. 
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Figure 4.6  Simplified stock and flow diagram for the renewables integration model formulation 

TIn addition the investment rate Z is a compound of several model variables:   

R7 = max<�G 4 ��	�	W���	�-�	�	W���	� , �6G 4 ��	�	W���	�-�	�	W���	� , R[+ , R\+E ]	R6	

where �G  is the forecasted demand load; �7  is the installed renewable capacity; �6G  is the 

financially desired renewable capacity; -�	�	W���	� is the renewables capacity investment decision 

“time”; R6 is the rate of renewable capacity decommissioning; and R[+ and R\+ are, respectively, 

the rates of adjustment to the local renewables and CO2 emissions targets, as described above. The 

financially desired renewable capacity �6G � ^_	��	�	W���	� , where ^_  is the investment 

attractiveness, which, following Black (2005), is modelled as a piecewise linear function of 

profitability.  
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Investments are made based on the low-carbon targets and local learning curve cost reduction 

capacity in addition to replacing decommissioned capacity. The long-term dynamics surrounding 

the policy push for renewables whilst considering the learning curves of the renewables is studied 

using a range of three scenarios. This study aims to include capturing the existing trends within the 

system for the diminishing usage of fossil fuel and increased installation of renewables. A 

phenomenon that is illustrated in Figure 3.3 and has been attributed to the national push within 

the island system for 75% renewable generation capacity by 2018 (Cross-Call, 2013). 

One of the key assumptions of this model is that the installed renewables capacity will be used to 

replace the equivalent amount of fossil fuel electricity generation and not more aggressively to 

force their abandonment. This concept is captured in the globally influenced emission target loop 

of Figure 4.6. Consequently, and seen in Section 4.2, the island system has a very high amount of 

spare fossil fuel capacity, hence it will be unreasonable to assume that they will decommission huge 

amounts of these generation capacities immediately. Additionally, as highlighted above, the sub-

model has a generic structure aggregating all renewable sources into a single entity, which reduces 

the accuracy of the delays from planning up to the commissioning of the installed renewables 

capacity due to differences with the lead time for geothermal compared to the time needed for the 

wind. For the wind, there can be a delay of 1-2 years whilst geothermal can take 3-4 years (IEA, 

2010a). The values used within this sub-model implementation of 2-3 years is determined as an 

average of these times. This issue is however developed further in Chapter 6, where all the 

renewable sources are disaggregated.  

To gain some insights into the long-term behaviour of the system structure and variables, the model 

has been simulated for the period 2005 - 2050. Both the calibration and simulation periods for this 

sub-model is used as defined in Section 3.2.1. The investment decisions for the renewable 

integration within the system have been observed and insights are given based on different 

renewable targets and CO2 emissions policies. Additionally, as highlighted in Section 3.3 and also 
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done for Section 4.2, this sub-model underwent rigorous testing and validation checks. Structural 

validation of the model is achieved by comparing model outputs with historical output data of the 

real system for the endogenous installed renewable capacity. Results of the comparisons are 

highlighted in Figure 4.8. In addition, the historical data for 2005-2014 of the key exogenous 

variables listed in Table 4.2 such as the demand load and electricity tariffs, have been used to 

determine appropriate data extrapolations using the Vensim SMOOTH and FORECAST functions 

(Ventana Systems, 2016). The model is then used as detailed in the next section to analyze scenarios 

in which the rate of low-carbon policy influences on the rate of renewable integration is likely/not 

likely to be delayed, diluted, or defeated by unanticipated reactions and side effects. 

4.3.3 Evaluation and Analysis 

For this sub-model, the effects of the renewables targets and CO2 emissions policy on the planned 

and installed renewable capacity within the system are evaluated. The embedded effects on the 

cost of renewable investments due to the cost-reduction from installation experience are also 

incorporated in the sub-model. In all scenarios, the initial planned renewable investments; installed 

renewable capacity and cost of renewable investments are obtained from the historical data of São 

Miguel, for the initial date of January 2005. Three different scenarios are used for evaluation, which 

varies according to the desired policies. The extrapolated input data for the exogenous electricity 

peak demand and tariffs of the system and the initial cost of renewable investments all remain the 

same in every scenario. The CO2 emissions and renewable target policies are implemented as stated 

in Section 4.3.1, and by fitting the adjustment time and required goal to the desired policy.  

 

Three Scenarios 

Reference scenario: This scenario considers the “business as usual” case and represents the most 

likely outcome under a midterm goal of 30% reduced CO2 emissions and 50% installed renewable 

capacity targets within the system by 2030.  
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Less-aggressive renewable scenario: This scenario features renewable policies that have a goal of 

30% reduced CO2 emissions and 50% installed renewable capacity targets within the system, by 

2050.  

Aggressive renewable scenario: This scenario represents the goal of 30% reduction in CO2 emissions 

and 75% installed renewable capacity within the system by 2018.  

Analysis 

Figure 4.7 shows the observed trend for the planned renewable investments within the system. In 

all three scenarios, the initial state of the sub-model used the value of planned renewable 

investment to be zero MW, reflecting the reality of São Miguel in 2005. The monthly planned 

renewable investments peak just after the year 2011 for all scenarios and as expected the policy of 

75% renewables by 2018 has a higher peak. After this peak, the trend appears to be a steep decline 

into a levelling off to around zero about the year 2035 for all three scenarios. The similarity of the 

three scenarios is partly a consequence of assuming the same demand growth in each case. 

However, results illustrate some similarities with the actually planned renewables in São Miguel in 

2011 for 9MW wind capacity and 13MW geothermal capacity (Silva, 2013). Furthermore, it is 

expected that the renewables capacity will converge to meet the policy target as such, which is 

equivalent to archetypical s-shaped system dynamics behaviour where such convergences might 

be dependent on the system carrying capacity.  
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Figure 4.7  Planned renewable capacity investments for the three scenarios 

Figure 4.8 shows the amount of installed renewable capacity for all three scenarios, which are also 

compared to the historical data of installed renewable capacity from 2005 to 2015 and the results 

of Ilic, Xie and Liu (2013) Chp. 20. All three of the scenarios reflect a similar amount of installed 

renewable capacity of about 39MW for 2015 in line with the real data. The calibration time of the 

model to account for the delays such as the capacity investment decision timelines are reasons why 

there was an initial deviation from the real data. However, the long-term trajectory of both the 

simulated model and the historical data tends to be correlated. Note, Ilić achieved similar results 

to the 100MW approximate value of installed capacity in 2028 using a stochastic dynamic 

programming method for long-term capacity planning in São Miguel. The visual confirmation of the 

simulation run to the historical data and the results of Ilic, Xie and Liu (2013) Chp. 20 adds value 

and some confidence in the validity of this modelling work. The aggressive 2018 renewable policy 

has an installation peak that occurs faster and is higher than the 2030 50% policy and the 2050 50% 

policy curves. However, the final capacity in 2050 does not differ by much and it is considered that 

this can be attributed to the electricity demand on the island (the carrying capacity for installations 

of the system).  
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Figure 4.8  Installed renewables capacity. This thesis modelling (three Scenarios), real world 

data and independent modelling Ilic, Xie and Liu (2013) Chp. 20 

Figure 4.9 highlights results for the cost reduction learning curve. This study uses a 90% progress 

ratio resulting in a 10% cost reduction on the initial cost price in 2005 for every doubling of the 

renewable capacity within the system. The new renewables overnight cost price for 2005 as given 

by IEA (2010) was used. By 2050, the cost of new renewable capacity is shown to decrease by 

approximately 25% in all three scenarios indicating that the learning experience of the renewable 

element within the island is not very high. The negligible difference between the aggressive policy 

and the other policies, even in the earlier years can be due to some constraints such as the demand 

forecast influences that are not endogenously accounted for within this sub-model. This will be 

developed later in the thesis. The corollary is that the learning-by-doing opportunity on such small 

islands is not very significant. Since such learning effects are typically measured in terms of the cost 

reductions that can be expected from a doubling of installed capacity. The small size of the island 

system evidently restricts the potential for large capacity growth and hence learning-by-doing.  
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Figure 4.9  Costs per MW of capacity in three scenarios illustrating the effect of learning-by-

doing 

Figures 4.10 and 4.11 show how the deviation from the local renewable target and the renewable 

capacity needed for CO2 emissions replacement influences the three scenarios respectively. In all 

cases, values are initially high then decrease in proportion to the aggressiveness of the associated 

policy. If stakeholders only considered these factors then there could be overly costly investments 

in the early years of the system. In Figure 4.10, both the reference “business as usual” and the less 

aggressive policies achieved their respective local renewable targets by about 2023. However, there 

are indications that the aggressive 75% 2018 policy appears to struggle. In that case, the simulated 

model achieved its target by about 2027. Hence, it can be asserted that the need to meet local 

installation targets are very influential and meeting the targets early is inefficient or a 75% target is 

simply too high. This can additionally be attributed to the carrying capacity of the system and the 

financial limitations attached to higher investments over a shorter time.  
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Figure 4.10  Deviation from the local renewable targets with policy in three scenarios 

Shown in Figure 4.11 is the implication that a higher amount of renewables are needed on a 

monthly basis for the aggressive renewable scenario in order to achieve the EU influenced CO2 

emissions goals. However, with less aggressive goals this target is achieved about 1 year later than 

the more aggressive policy goals. This supports the idea that setting very high local installation 

targets for renewables capacity within an island electricity system is not productive. Conversely, it 

can be argued here though that failure to hit a high target can be more effective, in terms of driving 

renewables into the system, than setting very low targets. 

 

Figure 4.11  Convergence of renewable capacity replacement needed for CO2 emissions targets 

with policy in three scenarios  
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Figure 4.12 illustrates the CO2 emissions that are accumulated for the three scenarios. It is observed 

that the aggressive local renewables target was able to reduce the accumulated long-term CO2 

emissions by a larger margin than the other scenarios. This difference is only visible from around 

the year 2023 and is clearly of small importance. Both the less aggressive scenario and the reference 

scenarios have similar long-term impacts on the accumulated CO2 emissions. This result gives some 

hope to the desire for having aggressive local renewables targets, however, the long-term 

implications for the whole system with this very small gain in reductions leave questions for 

concerns. A more comprehensive evaluation of the long-term CO2 emissions of the different 

scenarios is done in Chapter 6 as these low-carbon policies are further analysed with long-term 

economic investment implications for the system.  

 

Figure 4.12  Accumulated CO2 emissions in three scenarios 

Observations emerging from this initial study is restricted in scope and may evolve further as other 

factors are made endogenous to the sub-model. One consideration that could greatly affect 

renewable generation is the effectiveness of energy storage. The special role of small reservoir 

hydropower installed capacity is noted in this regard. This is accounted for when the different 

renewable technologies are disaggregated in Chapter 6. 
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4.4 Conclusions 

This chapter presents the initial contributions of this thesis for satisfying research sub-questions 1 

and 2. Firstly, an initial sub-model of the isolated island electricity system of São Miguel assumed 

to have only fossil fuel generation is developed and analysed for research sub-question 1. 

Subsequently, research sub-question 2 is satisfied by an evaluation of renewables integration 

within the isolated electricity system under varying low-carbon policies to assess the effectiveness 

of these policies for long-term capacity investments. 

The fossil fuel sub-model is used to analyse the dynamics surrounding the addition of new fossil 

fuel generation capacity to the system. Preliminary results and evaluations show that a focus on 

the capacity margin to international standards in this island does not significantly increase, but 

rather decreases the long-term fossil fuel investments and installed fossil fuel capacity. 

Additionally, the forecast for the demand growth is a key factor for driving the investments within 

this system, however financial incentives do not seem to impact the installed fossil fuel capacity 

and long-term profitability of the system. This can be attributed to the fact that the island system 

and the sub-model use variables, such as electricity tariffs and fuel prices, as exogenous inputs. 

Moreover, the exogenous tariffs and fossil fuel prices are an exogenous consequence of the 

capacity investments and operating cost of the system and are decided outside of the island system, 

therefore market incentives are non-existent. Hence, capacity investments in such a system are 

driven by the need for capacity and not by financial incentives. And the security of electricity supply 

for such a system is enhanced by careful inspection of the capacity margin and demand growth rate 

of the system.  

The renewable integration sub-model is used to analyse the significance of low-carbon policies 

within isolated electricity systems. Key components of the model highlight the cost reduction due 

to local learning from renewables and the type of renewable policies employed. Results and 

evaluations suggest that setting renewables targets may not be very productive since meeting 

targets too early are inefficient or the targets are just too high. As shown in the results, in the long 
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run, the required renewable targets will be achieved eventually, even with less aggressive 

renewable policies. This implies that the financial health of the system can possibly be jeopardised 

due to higher investment costs needed over a short period of time trying to achieve aggressive 

targets. However, there can be acceptable increases in the installed renewables capacity for missed 

aggressive renewables targets. And there are some emissions reductions benefits by having more 

aggressive local renewables targets.  

Concurrently, island systems typically suffer from a weaker innovation landscape and have limited 

opportunities for learning-by-doing (Jamasb, Nuttall and Pollitt, 2008). These realities combined 

with the preliminary results reported here suggest that island systems policy-makers should 

consider adopting a carefully-paced approach and should probably avoid establishing a world-

leading position in innovation for renewables integration. That said, the small scale of island 

systems can lend themselves to experimentation and world-class opportunities from learning-by-

research (Jamasb, Nuttall and Pollitt, 2008). In such situations, the island systems will be able to 

trial evolving renewable technologies via the research into these technologies within their systems. 

These initial ideas will be re-evaluated in the light of more holistic work within Chapters 5 and 6 of 

the thesis.  

Concurrently, the insights distilled from these two sub-models show that there are benefits to be 

obtained from considering key feedbacks for various aspects of low-carbon electricity systems. It 

was assumed that in the fossil fuel sub-model that the capacity margin would play a major role for 

capacity investments but this was not seen within this island system. Additionally, it is noted that 

the cost reduction experience of renewables and the urgency for renewable integrations capacity 

targets are important, however, aggressive renewables policies do not appear to be very effective 

for these systems. These initial findings are a good starting point for understanding and steering 

the long-term generation mix and for providing the gaps needed for optimal investments in 

generation mixes of low-carbon electricity systems. The relevant follow on sub-model for achieving 

a higher level of endogeneity with electricity demand and energy efficiency is shown in the next 



 

 

117 
 

chapter. In that chapter, the objective is to focus on low-carbon enabling technologies such as 

electric vehicles and related factors and to model the electricity demand forecast as an endogenous 

component of the system.  
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Chapter 5. Low-carbon Policy Influences on 

Endogenous Electricity Demand 
 

 

The contents of this chapter can be found in part or whole in the following peer-reviewed 

publication: 

1. Matthew, G. J., Nuttall, W. J., Mestel, B. and Dooley, L. S. (2017) ‘A dynamic simulation of 

low-carbon policy influences on endogenous electricity demand in an isolated island 

system’, Energy Policy, 109, pp. 121–131. doi: 10.1016/j.enpol.2017.06.060. 

 

 

Section 2.3.2 highlighted that the majority of previous island systems energy models have not 

considered endogenous demand dynamics and complexity. These models, however, have focused 

on the economic and/or technical provisions of electricity demand. In this chapter, electricity 

demand is made endogenous, since further endogeneity, as highlighted in Section 3.2 provides a 

better understanding of the system. The possible futures for electricity demand of the São Miguel 

case study are elucidated, thereby providing insights into the most important and influential energy 

policies that may impact upon long-term demand. These insights are obtained as consideration is 

given to the requisite low-carbon based policies in line with the initial hypothesis presented in 

Section 3.2.1.  Furthermore, this chapter gives insights into the effects of these policies on the long-

term behaviour of the modelled endogenous electricity demand within an evolving low-carbon 

island electricity system.  

5.1 Overview 

Emerging issues inherent to electricity systems pursuing low-carbon options are the nexus between 

reliability and availability of renewable energy, and the sustainability and economic affordability 

for meeting the evolving electricity demand. As highlighted in Sections 2.3.1 and 2.4.2, this is even 
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more challenging for island electricity systems because island systems are increasingly pursuing 

low-carbon policies as shown in Chapter 4 yet may be unable to make use of the mainland solutions 

suggested by Barrett (2006) and Warren (2014), as discussed in Section 2.4.2. These low-carbon 

pursuit issues are also highlighted in Eurelectric (2012) where the authors detailed an overview of 

a sustainable island energy future. 

Small island electricity systems face great uncertainty in their demand with proportionally large 

daily and seasonal variations. A large difference in the night time demand versus the day time peak 

hours usually exists within such systems. For example, in São Miguel, consumption has a demand 

curve trough during the night, of approximately 40 - 50% of the peak daytime consumption (Isle-

pact, 2012; EDA, 2016). These variations can be further enlarged by small changes in efficiency 

measures, economic activity and consumption patterns, in the absence of large system-balancing 

areas and smoothing effects. Concurrently, the large discrepancy between daytime and night time 

demand hinders the advent of more renewables, as otherwise favoured by the low-carbon agenda 

of these island systems. This is due to the fossil fuel generation needed for the peaking demand in 

the day and to stabilise the electricity system frequency throughout the night.  

Recent studies have promoted the electrification of the global transportation sector as a means of 

adding further renewables capacity and enhancing the long-term security of the electricity supply 

(Kintner-Meyer, Schneider and Pratt, 2007; Aghaei et al., 2016; Paterakis and Gibescu, 2016; 

Shokrzadeh and Bibeau, 2016). Current island electricity system research suggests that 

electrification of the transportation sector is important within these systems (Baptista et al., 2009; 

Parness, 2011; Camus and Farias, 2012; Botelho, 2015). These authors highlight that the 

accelerated adoption of (electric vehicles) EV can facilitate the quick removal of fossil fuel 

generation in smaller isolated systems by matching the renewable-based supply with the EV 

demand. A policy favouring EV thus provides the opportunity to operate the vehicles principally on 

renewables that would have otherwise been curtailed when the demand load is low i.e., at night 
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time. While a minimal technical amount of fossil generation will be necessary to balance the 

frequency of the electricity system, the electricity produced by the renewables can be used to 

charge the EVs. The potential environmental benefits are significant including a diminished need 

for fossil fuel to run cars and power generators, thereby satisfying the low-carbon agenda whilst 

increasing the prospects of the security of the electricity supply to meet the long-term demand with 

more renewables.  

In addition, energy efficiency mechanisms would typically reduce the electricity demand and ensure 

energy security in the future. Haney et al. (2010) postulate that low-carbon energy policies support 

a means of reduced electricity consumption through energy efficiency policies and demand-

response/demand-side management mechanisms. Similarly, the International Energy Agency IEA 

(2008) identified a trend towards increasing energy efficiency measures as an essential element in 

overcoming the challenges facing the energy sector. While true for large interconnected systems, 

this has not been proven for small-island systems, where the focus is to maximise electrification, 

via the use of EVs, while minimising the curtailment of renewables capacity and increasing their 

economy-driven products (European Commission, 2013). On the other hand, economy-driven 

products such as tourism are asserted to be important for island systems and the new economic 

activities derived from these should increase the long-term demand load (IRENA, 2014b). Hence, 

there is a need for evolving low-carbon island electricity systems to explore the impacts on demand 

of changing economy-driven products such as tourism, EVs and also energy efficiency mechanisms. 

Implications for electricity demand are far reaching, and clarity is required to prioritise important 

policy decisions. The SD sub-model in this chapter defines the long-term endogenous demand of 

the island system. Assorted scenarios are critically analysed which emphasise, in turn, each of these 

policy drivers, and gauges which are the most important and interesting to policymakers for 

meeting the long-term electricity supply security and environmental concerns. Details of this sub-

model are presented in the next section. 
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5.2 Endogenous Electricity Demand Model 

The endogenous demand dynamics of the system have been captured using this SD sub-model. It 

has then been used for various scenarios, including energy efficiency, electrification and tourism, 

to identify the most important and influential of these policies as the island pursues environmental 

objectives and ameliorates electricity supply security concerns. The long-term trends of the 

simulated electricity demand under these current low-carbon objectives are assessed. This work is 

distinct from the contributions of Chapter 4, in that it details the system structure for the 

endogenous demand within the island system. This endogenous demand reflects causal 

relationships existing within the interactions of the existing system based on low-carbon policies 

unlike an exogenously defined extrapolation of demand as implemented in the sub-models of 

Chapter 4. 

The electricity demand endogeneity is achieved by capturing the individual consumptions of the 

distinct consumer-types. Each sector of electricity consumption is modelled independently in its 

entirety and then all the sectors are aggregated to obtain the total system demand. For each of the 

consumer-type sectors, the local economic activity influences are modelled together with the 

dynamics of energy efficiency mechanisms and EV adoption. This sub-model adapts the log-linear 

model implementation Sterman (2000) pg. 526 to define the effect of local economic activity (GDP) 

on the electricity demand. And as noted in Chapter 3, the long-term monthly average of the 

endogenous demand is what is defined for this sub-model. In addition, the sub-model utilises the 

Bass diffusion model (Bass, 1969) for EV adoption policy implementations. Other key formulations 

are highlighted in Section 5.2.2. The next section provides an overview of the key demand-

influenced feedback structures within the island system. 

5.2.1 Mental Model  

This sub-model is focused on the endogenous demand dynamics in the context of an isolated island 

with a degree of low-carbon policy autonomy. It is based on the mental model feedback loop 
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diagram shown in Figure 5.1. The existing causal relationships of the whole system are shown in 

the diagram as three main balancing loops. The main components highlighted by the causal loops 

are the detailed consumer-type sectors for electricity consumption and the electricity supply and 

energy storage aspects. The effects of GDP, tourism and population growth on the different 

consumer types are captured together with the energy efficiency and EV adoption policies. The key 

endogenous variable for this sub-model is the monthly average net electricity demand. Other 

endogenous variables are the number of EV adopters and the supply capacity vs net demand 

mismatch. Key exogenous variables are the GDP and the capacity investment portfolios5. The 

capacity investment portfolios are the aggregated renewables (aggregated similar to Section 4.3) 

and electricity storage portfolios and the fossil capacity portfolio which reflect the percentage of 

capacity required by these specific supply technology to satisfy the demand. Variables excluded 

from the model include the short-term grid balancing uncertainties, the capacity investment costs 

and electricity prices. The exogenous variables used were verified with EDA and with global data 

sources (Isle-pact, 2012; European Commission, 2013; Ilic, Xie and Liu, 2013; EDA, 2016). 

The following model boundary chart, Table 5.1, summarises the scope of this sub-model by listing 

the key variables. 

                                                           
5 Capacity investment portfolios are based on the renewables, energy storage and fossil fuel generation. For 
example: the renewable policy portfolio is the desired amount of installed renewable generation sources as 
a percentage of the total installed supply capacity of the electricity system. This value has a direct impact on 
the installed renewables capacity and the electricity system is expected to converge to this fraction of total 
installed capacity during the model simulation. In this study the renewable policy portfolio is set at 45% of 
total supply capacity and is constant throughout the simulation. For this chapter the value of 45% is in line 
with the expected “business as usual” state of the system as given in the literature (EDA 2008). 
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Table 5.1 Model boundary chart for the endogenous demand sub-model 

Shown in Figure 5.1, the balancing effect, electric vehicles electrification loop (green loop) is central 

to the system. This loop is influenced exogenously by the electricity supply capacity (for this 

demand model supply is an external input). The electricity supply capacity variable is driven by the 

electricity storage, renewables and fossil generation capacities which are in turn driven by their 

respective portfolios. The portfolio values have a direct impact on the generation capacity since the 

electricity system is expected to converge on this fraction of total installed capacity throughout the 

model simulation. For the purpose of this study, the storage and renewables capacity portfolios are 

initially fixed as a fraction of total capacity as evidenced from the specifics of the case study system. 

Hence they follow a fixed path across the years of the simulation. The electricity storage is linked 

to the renewables capacity portfolio which in turn influences the fossil fuel generation capacity 

portfolio.  

The point of interaction of the electricity supply capacity with electric vehicles electrification loop is 

the supply capacity vs. net demand mismatch. This mismatch is desirable in the model as a value 

between 0 and 1. This variable is vital for checking that the system has the long-term supply to meet 

demand. For example, if the demand/supply capacity ratio (supply capacity vs. net demand 
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mismatch) is greater than 1 the supply is not sufficient to meet the demand, which is a worst case 

scenario for the system. The mismatch is reinforced by the electricity supply capacity, and, in turn, 

it reinforces the electric vehicles adoption and the net electricity demand within the system. The 

net electricity demand, however, has a balancing effect back onto the supply capacity vs. net 

demand mismatch variable. 

Also interacting with the electric vehicles electrification loop is the day-night imbalance loop (black 

loop) which balances the electric vehicles adoption variable. If the day/night hourly demand 

imbalance is high then the incentive to adopt EVs is much higher than otherwise. This increase in 

EVs, however, balances the day/night hourly demand imbalance, closing this balancing loop.  

  

Figure 5.1  Mental model hypothesis of the key demand-driven components in the electricity 

system 
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Also shown is the energy efficiency reduction loop (purple loop) which captures the balancing effect 

of the energy efficiency measures on the endogenous electricity demand. The net electricity 

demand is influenced by the exogenous energy efficiency policy for the different consumption 

sectors of the system. This exogenous energy efficiency policy is implemented independently within 

the different sectors of the system. The net electricity demand within the system is a result of the 

endogenous electric vehicles adoption together with the energy efficiency influences for the 

residential, commercial, industrial, and public services consumer-types/sectors. These consumer-

types are also tied to the exogenous (GDP influenced) local economic activity. In the case of the 

residential and commercial consumer types, there are additional exogenous influences from the 

population and overnight tourist stays, respectively.  

The three loops highlighted, entail the key components for the endogenous demand of the evolving 

low-carbon system. The effect of GDP on the consumption is important since there are no market 

price formations associated with supply and demand dynamics within this system. Furthermore, 

this mental model is now used as a basis for the formulation of the important variables to develop 

the formal SD sub-model of this chapter. The formal sub-model general mathematical formulations 

are discussed in the next section, in addition, more details can be found in Appendix A2.  

5.2.2 Model Formulation 

The model is derived and formulated from the mental model feedback loop diagram of Figure 5.1 

and implemented using the Vensim software package. The main mappings of the key stocks and 

flows of the endogenous demand are shown in the simplified model diagram, Figure 5.2. At the 

centre of the simplified model is the avg total monthly consumer consumption, which is the demand 

in MWh obtained by summing the demands from the different consumption sectors and the EV 

adoption. Each sector of electricity consumption is modelled independently in its entirety (which 

includes the energy efficiency policy implementations).  
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The influence of GDP on the consumption is modelled using the log-linear model implementation 

from Sterman (2000) (See Pg.527 for its derivation). This is done by considering a variable `, which 

is the consumer-type sector consumption with its normal or reference value to be  `∗ . When 

multiplied by the product of a nonlinear function of the variable O� , for local economic effects, the 

relationship is formulated using the form: 

 Effect of  O�  on ` = <K)
K)∗

E
�)

, where <K)K)∗E is the nonlinear function of the normalised effect on Y and  

c�  is the elasticity of Y with respect to the normalized inputs (If c� � 0.5 , a 1% increase in O�  boosts 

Y by approximately 0.5%).  

Using the simpler additive formulation for this expression, we get   ` � c3 ]  cf
Kg
Kg∗

, where c3 is the 

base value for initial consumption of the various sectors (shown in Table 5.2) in the initial year, 

2005, and cf  is the elasticity (eg. Public Service Factor) used for the effect on Y and  
Kg
Kg∗  is  

h6i
�	.	�	�
	 h6i (effect of local economic activity on consumption).  

This formulation is implemented as an SD auxiliary variable for the respective consumer-type 

sectors shown in Figure 5.2. The values of cf  for the respective consumer-type sectors were 

determined from Vensim payoff optimization for the simulated and historical data over the 

calibration time period of 2005 - 2016.  

To model the influence of energy efficiency measures (the energy efficiency reduction loop), the 

approach given in Sterman (2000) is used, as previously defined in Section 4.3.1. This goal-seeking 

formulation is implemented individually for each consumer-type sector and is used to define the 

targeted energy usage reduction for the different sectors. The reference target for energy usage is 

a 6% consumption reduction from 2010 demand values by 2020 (Isle-pact, 2012; Nunes, 2015). 

Different desired target timelines such as by 2025 were implemented for the scenario analysis. 

The size of the residential consumer-type, sector is derived from the population size resulting from 

the births, deaths, and migration within the system. This population size is formulated, as 
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 PjPklc�mjn � o ����p�H�	� ������������	��p�
q� + rjPklc�mjn3, where Δt is the monthly time step 

and rjPklc�mjn3 is the initial population in 2005. The resulting avg no. of households from this 

population is multiplied by the avg consumption per household to determine the avg residential 

monthly consumption. Avg consumption per household is defined from the standard-of-living index 

(World Bank, 2016) as a proxy for the electricity demand-growth per household, together with the 

given GDP implementation and the energy usage reduction target.  

The public services consumer-type sector, avg public services monthly consumption is determined 

by the implementation of the GDP influences and the energy efficiency reduction as given above.  

The commercial services consumer-type sector also captures the growth rate in monthly overnight 

tourist stays and the consumption per room per overnight stay. The growth rates observed from 

the historical data, SREA (2016), are used to determine the growth of hotel based tourism electricity 

use. For this flow, we have: 

 ∆ℎj�ul vcwux �jkymwz {jnwkzP�mjn/|� =  ����� ∗ S��	����p�, where the variable �����is the 

consumption per room per overnight stay, S��	����p� is the overnight room stays as given from the 

room stays fractional growth rate and |� is considered as the monthly time step. In addition, as 

done previously, the GDP influences and the energy usage reduction for new commercial services 

consumption are implemented. Resultantly, the avg commercial services monthly consumption is 

determined as the summation of the inflows shown in Figure 5.2, which are the hotel based tourism 

consumption, the GDP influences and the energy usage reduction.  

The industrial consumer-type sector captures the number of new industries as influenced by the 

exogenous GDP together with the GDP influences on the consumption of the existing industries. 

This relationship for the number of new industries, nu� mnxkw�ymcl vkwmnuwwuw is defined similarly 

to the GDP influences formulation given in paragraph two above. This GDP influences and the 

energy usage reduction for industrial business consumption is formulated to give the avg 

consumption per industrial business. Therefore, we have the variable for the avg industrial business 
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monthly consumption defined as follows:  c�� mnxkw�ymcl vkwmnuww zjn�ℎl� {jnwkzP�mjn =
 nkzvuy j� nu� mnxkw�ymcl vkwmnuwwuw ∗  c�� {jnwkzP�mjn Puy mnxkw�ymcl vkwmnuww   

As seen in Figure 5.1 the electric vehicle electrification loop captures the contribution to total 

demand from EVs in collaboration with the day-night imbalance loop. The contribution to total 

demand from EVs is implemented with inputs from the EV policy, its enactment year and duration, 

and the travel consumption (assumed to be directly related to the EV grid charging needs) shown 

in Figure 5.2, and explained subsequently. Additionally, it is continuously verified that this desired 

number satisfies the long-term supply versus demand mismatch, and the short term day/night 

hourly demand imbalance. 

The demand imbalance is determined from the pre-processing of the daily minimum and 

maximum demand (referred to as the black box MIN MAX demand profiles within the sub-model, 

Figure 5.2) of the hourly time-step data from the years 2012 - 2015 (Botelho, 2015). Using this 

hourly data from each month, the minimum and maximum hourly demand values are determined 

and the differences are calculated. The respective differences of the minimum and maximum 

demand for each month are then normalised using the maximum hourly demand occurring within 

that month. This is implemented as a pre-processing step prior to the model simulation and a 

normalised minimum/maximum profile is built from the 1095 data pairs (i.e. daily pairs spanning 

the three-year period, assuming 365 days per year). The data points are randomly chosen during 

simulations for determining the threshold amount of EVs necessary to handle the day/night 

hourly demand imbalance. Implementation details of the “black box” is given in Appendix C. The 

Bass (1969) diffusion model was used for the market-based EV adoption for the scenario analysis. 

The policy based EV adoption is implemented using the goal-seeking target approach given in 

Sterman (2000) pg. 276. 
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Figure 5.2  Simplified stock and flow diagram for the endogenous demand model formulation
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The c�� �� zjn�ℎl� �yc�ul {jnwkzP�mjn =  -6 ∗ ��cxjP�uyw ∗ �\� where -6 is the average 

daily distance travelled on the island (in Km), �\� is the average consumption per distance travelled 

(Km) by EVs and ��cxjP�uyw is the number of EV adopters. For simplicity the EVs are assumed to 

be light-duty and charge once per day, during the off-peak night time periods for approximately 8-

10 hours (which, given the geographical constraints of the island, is a reasonable assumption). 

Hence, the total demand in MW can be determined for the EVs from grid charging and added to 

the consumption in MW from the other consumer types within the system. We then have: 

nu� xuzcnx �w wkPPl� {cPc{m�� zmwzc�{ℎ =  �6/�T, where �6 is the demand capacity in MW 

from all consumer types and EVs and �T is the installed supply capacity from renewables, fossil fuel 

and energy storage. If  
�=
�� ≤ 1 there is no blackout and the supply can satisfy the demand, however 

if �6 > �T  then the supply constraint is not met and this system will have blackouts.  

The focus of this sub-model is to capture the electricity demand dynamics of the real system, 

therefore no emphasis is placed on the supply capacities, and supply capacity portfolios are chosen 

in line with the status quo for the different technologies. The portfolio values have a direct impact 

on the generation capacity since, in the absence of other drivers; the electricity system converges 

on this fraction of total installed capacity during the model simulation. For this study, the storage 

(0%) and renewables (45%) capacity portfolios are fixed as a fraction of total capacity, as 

determined by the specific case study (EDA, 2008). Hence they are held constant throughout the 

simulation. The capacity investments are however made endogenous to the system in Chapter 6. It 

is also observed that the model does not use the projected demand growth rate for the island but 

the GDP forecast is used as a proxy for determining the yearly increases in the absolute 

consumption of each consumer type.  Finally, it is assumed that there are no cost considerations 

for new capacity builds or CO2 emissions in this model, and that tourism growth is a totally 

exogenous entity and any influence by it on the GDP of the island system is neglected.  
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One constraint on the SD model is that it gives the average consumption and not the true peak 

demands and troughs for the various consumer types within the system. Consequently, the model 

does not account for the short-term hourly balancing of the grid system, although it does capture 

the demand-supply gaps for filling the night time low electricity demand periods. Full mathematical 

details of the key formulations used in this sub-model can be found in Appendix A2, on pg.224. 

Sub-Model Validation 

This sub-model was simulated, similarly to the sub-models of Chapter 4, on a monthly time-step 

over a 45-year time horizon from 2005 until 2050, with the goal of studying the average long-term 

endogenous electricity demand. Validation is a key part of building confidence in the sub-model. 

The methods given from Section 3.3 are used for testing and validation of this sub-model and some 

parts are highlighted here. One of the most intuitive tests of the model formulations is the use of 

the built-in Vensim error checking mechanisms. The Vensim package gives an error or flags up 

warnings (does not run accurately) if the equations do not satisfy a level of units consistency. Some 

extreme condition testing has also been completed. This includes sensitivity to the 

inclusion/exclusion of different policies and using low/high values of the reference GDP and cf, 

some of the parameters given in Section 5.2.2.  

Finally, it has been checked that the new SD model emulates the real system accurately during the 

calibration period (2005 - 2016), by taking into consideration historical data, expert views from EDA 

and theoretical formulations. Within the calibration period (historical data), the patterns of 

behaviours being exhibited by important system variables should be mimicked by the model. For 

example, shown in Figure 5.3 is the plotted historical data of the monthly consumer demand from 

2005 to mid-2016 (red curve), compared to the simulated average monthly demand (blue curve) 

over the same period.  
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Figure 5.3  Fitness of base model output data to the real data 

Visually, the simulated model output reflects the trend of historical data considering that the 

historical data are discrete monthly values whilst the model output is the average monthly value. 

In addition, a statistical measure of fit R2 (which measures the covariance) was used together with 

the Theil inequality statistics to characterise the source of error for analytical comparisons 

(Sterman, 2000; Pierson and Sterman, 2013). For the data series shown in Figure 5.3, R2 = 25% which 

indicates that the average monthly demand does not point-wise replicate the historical data as can 

be seen from Figure 5.3. However, this sub-model is designed to analyse the long-term behaviour 

that results from short-term monthly consumption movements, so point-by-point historical data 

scatter can be considered as noise. By using the Theil inequality statistics (Sterman, 2000), a method 

which decomposes the mean square error (MSE) into UM (bias-unequal means of model and actual 

data), US (unequal variations) and UC (unequal covariations), the sources of error between the 

simulated and historical data series can be determined. For Figure 5.3 data series, it is found that 

UM is 0.12, US is 0 and UC is 0.88 which suggests the error is concentrated in the unequal covariations. 

This implies that the model has the same mean and trends as the data, but differs from the data 
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point-wise. The model is then used as detailed in the next section to critically analyse the long-term 

demand trends of the simulated endogenous demand of the island system. 

5.3 Policy Scenarios for Demand Dynamics 

Three key system factors that influence energy-related policies are considered to generate plausible 

scenarios to critically evaluate the evolution of the endogenous electricity demand, namely: (i) 

energy efficiency (viewed as essential to ensure energy security in terms of fossil fuel import 

independence); (ii) tourism growth (since island systems are concerned about the impact on their 

electricity systems of an unforeseen influx of visitors); and (iii) electrification of the transport sector 

(light-duty EV) (since this is a focus of island systems for increasing the low-demand night time 

periods). These were chosen based on the literature, (Isle-pact, 2012; European Commission, 2013; 

Botelho, 2015; Nunes, 2015) because they are deemed to be potentially important drivers for the 

future of the evolving electricity system. In addition to these three scenarios, a baseline (business 

as usual) case has been included. This scenario considers the system in 2005 to mid-2016, together 

with the past and present policies and the current economic and social aspects. However, the 

existing renewables policy, which was enacted in mid-2008 to achieve approximately 75% 

renewable capacity by 2020, has been revised to 45%, based on the current rate of its installation 

(EDA, 2016). This value has been used for all scenarios in this chapter.  

Scenario 1: Business as usual  

The island population is determined by the current birth and death rates along with the GDP growth 

rate, both being extrapolated from the 2005 - 2016 data. The current policy for an island-wide, 

energy efficiency target of a 6% decrease in consumption over the next 10-15 years starting from 

2012 is implemented. No EV policy or market influences are assumed aside from a normal increase 

in EV (based on the purchasing rate of new EVs in 2015) which now leads to approximately 50 

vehicles in 2015. The growth rate in the number of overnight tourists stays is determined from the 

2005-2016 data to be 0.14% (SREA, 2016), and extrapolated into the future.  
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Scenario 2: Tourism impact 

This scenario examines the possible impact of the hotel based tourism growth on electricity 

demand. It uses the Scenario 1 characteristics apart from varying overnight tourist stays growth 

rates. For tourism growth rates, obtained from the historical data (SREA, 2016), two different cases 

are studied, namely, a reduction in the growth rate from 0.14% per month to 0.07% per month 

from 2016 until 2050 and an increase in the growth rate (of 0.14% per month) to 0.28% per month 

from 2016 until 2050. Furthermore, these two cases are of interest to EDA and the Regional 

Directorate for Energy of the Açores (Botelho, 2015; Nunes, 2015). The scenario seeks to establish 

upper and lower bounds of the tourism influence upon the system. Importantly for São Miguel, it 

is assumed that no new hotel construction is warranted due to the low existing occupancy rate on 

the island of 32% (Isle-pact, 2012; SREA, 2016), with the growth rate being doubled as a maximum 

for this scenario otherwise keeping the modelling broadly within the assumptions.  

Scenario 3: Energy efficiency measures 

This scenario encapsulates Scenario 1, apart from variations in the energy efficiency policy. Two 

case studies are considered: namely, the doubling (to 12%) and tripling (to 18%) of the original 

policy targets across the policy timeline of 10-15 years. This is a long-term energy efficiency target, 

which is discontinued after 15 years. It is also assumed that the energy efficiency measures are fully 

adopted by the consumers (it is assumed that there are no adoption dynamics).   

Scenario 4: EV expansion 

This scenario examines the possible influence of EV expansion. The baseline case is used as the 

purchasing rate of EV on the island in late 2015. It is also assumed that light-duty vehicles are the 

target for EV expansion. The baseline case is compared to three other policy cases: a market-based 

adoption policy for diffusion of technologies (Bass, 1969), a target of approximately 2000 EVs by 

2020 (as suggested by EDA) (Botelho, 2015), and a combination of the 2020 EV and the market-

based adoption policies.  
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Table 5.2 presents the key SD demand model variables allied with the four scenarios described 

above and their respective data sources. 

 

Table 5.2  Key initial values and parameter values of the SD demand model 

 

Variable Name/ 

Unit 

Exogenous/ 

Endogenous 

Base value Sensitivity 

ranges 

Reference data 

GDP per Capita/ 

Thousands of 

Euros/Month 

Exogenous Extrapolated 

from data  

None http://ec.europa.eu/regional_policy/archive/act

ivity/outermost/doc/plan_action_strategique_e

u2020_acores_en.pdf/ 

Avg consumption per 

tourist-night stays/ 

MW*h/night stays 

Exogenous 0.0027 0.0027-

0.0039 

http://www.onecaribbean.org/content/files/CH

ENACT%20-CREF.pdf  

tourist stays growth 

rate/%/Month 

Exogenous 0.14 0.07 –  

0.28 

SREA,2016 

Registered Population/ 

People 

Exogenous 131609 (in the 

year 2005) 

None http://ec.europa.eu/regional_policy/archive/act

ivity/outermost/doc/plan_action_strategique_e

u2020_acores_en.pdf/ 

Energy Efficiency 

enactment year/Months 

Exogenous 84 (in the year 

2011) 

None http://ec.europa.eu/regional_policy/archive/act

ivity/outermost/doc/plan_action_strategique_e

u2020_acores_en.pdf/ 

Energy efficiency policy 

timeline/Months 

Exogenous 180 None http://ec.europa.eu/regional_policy/archive/act

ivity/outermost/doc/plan_action_strategique_e

u2020_acores_en.pdf/ 

Energy efficiency 

reduction/% 

Exogenous 6 6-18 http://ec.europa.eu/regional_policy/archive/act

ivity/outermost/doc/plan_action_strategique_e

u2020_acores_en.pdf/ 

Renewables policy 

portfolio/% 

Exogenous 0.45 0.45-0.55 Author’s own elaboration  

Electric vehicles policy 

timeline/Months 

Exogenous 52 (from 2016-

2020) 

None (Bothelo, 2015 and Nunes, 2015) 

Total Population of 

Vehicles/Vehicles 

Exogenous 45,000 (in year 

2005) 

None Parness, 2007 

initial commercial 

services consumption/ 

MW*h/Month 

Exogenous 9853 None http://www.eda.pt/Mediateca/Publicacoes/Pro

ducao/Paginas/Produ%C3%A7%C3%A3o-de-

Energia-El%C3%A9trica.aspx  

initial industrial 

consumption/ 

MW*h/industries 

Exogenous 156 None http://www.eda.pt/Mediateca/Publicacoes/Pro

ducao/Paginas/Produ%C3%A7%C3%A3o-de-

Energia-El%C3%A9trica.aspx  

initial public services 

consumption 

/MW*h/Month 

Exogenous 3950 None http://www.eda.pt/Mediateca/Publicacoes/Pro

ducao/Paginas/Produ%C3%A7%C3%A3o-de-

Energia-El%C3%A9trica.aspx  
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5.4 Results discussions 

Endogenous demand dynamics of the sub-model based on the scenarios described in Section 5.3 

are detailed within this section. Priority policy areas are considered along with whether long-term 

system responses may be counter-intuitive as the island pursues exogenous and politically driven 

low-carbon policies.  

5.4.1 Scenario-Specific Demand Dynamics 

 

Tourism Impact 

Figure 5.4 displays the influence of changing the growth rate of the number of overnight stays and 

the corresponding average monthly demand. The bottom half of Figure 5.4 displays the effects on 

long-term hotel demand, while the upper half shows the resultant effects on the long-term system-

wide demand. In both cases, the “business as usual” scenario (black curve in the bottom half of the 

figure and the red curve in the top half of the figure) lies between the curves corresponding to 

reduced and the increased overnight stay growth rates. However, the impact is higher within the 

hotel consumption portion from 2016 and is only evident by a very small change from 2040 onwards 

within the total system demand. This phenomenon occurs because the hotel sector commands a 

very small share of the consumption within the island system. Hence with a doubling (or even 

tripling) of the hotel consumption, there will not be visible effects in the shorter term. 
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Figure 5.4  Impact of varying tourism on the total monthly demand of the electricity system 

A pragmatic conclusion from these results is that tourism on São Miguel has a low long-term 

impact on electricity demand, and policies that either increase or decrease tourism do not 

significantly affect system-wide demand. However, it is evident that consumer demand within the 

hotel sector will be increased by a significant amount in the case of increasing the overnight stays 

rate and decreased in the case of decreasing the overnight stays rate, compared to the “business 

as usual” scenario. It is important to stress that the tourism share of the total system 

consumption is initially very low, which is one reason for the observations. An island system that 

has a relatively large share of demand based on tourism will show a greater influence of tourism 

on the long-term demand. This can be attributed to the larger amount of occupancies and the 

need to have increases in hotel builds in the long-term. In this work, centring on São Miguel, the 

occupancy threshold for new hotel build is not reached and hence new builds is not handled in 

any of the scenarios considered. 
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Energy Efficiency Measures 

Figure 5.5 shows the varying impacts of energy efficiency measures on the long-term demand for 

the whole system. The energy efficiency measures are applied to the aggregated system as a whole 

and not restricted to specific consumer types. The current energy efficiency policy of 6% demand-

reduction from 2012 for 15 years (proposed by EDA and the Regional Directorate of Energy) is 

reflected by a slight dip in the trend of the load curve (red curve) for the “business as usual” scenario 

shown in Figure 5.5.  

 

Figure 5.5 Impact of energy efficiency measures on the total monthly demand 

The effects on the long-term demand load of doubling and tripling (blue and green curves 

respectively) the required demand reductions over the same timelines show greater deviations 

from the initial trend of the load curve, with tripling the reductions having the largest effect. 

The results reveal that energy efficiency measures can be applied as a blunt policy tool with high 

impact. Reductions in consumption in the long-term are guaranteed if efficiency measures are 



 

 

139 
 

applied. With greater reductions achieved for the more aggressive shorter term (10 - 15 years) 

targets. This means energy efficiency policies have a significant impact on the demand dynamics of 

the electricity system and can be applied as an additional safeguard for long-term energy security. 

 

EV Expansion 

The introduction of EVs within island systems such as the Açores has been very slow and without 

any policy support (Nunes, 2015). This is contrary to mainland Portugal where there are various 

incentives initiated to encourage their adoption. In late 2015, São Miguel has a fleet of 

approximately 50 EVs. Given the current low uptake on the island and in the absence of other major 

changes, the “business as usual” scenario has been modelled revealing that there would be 

approximately 110 EVs on São Miguel by 2050, based on the 2015 purchasing rate in this scenario.  

EV expansion for the electrification of the transportation sector has been posited to be integral to 

increasing the renewables capacity of the island system (Botelho, 2015). Since the base case has a 

small number of EVs there is considerable potential for policies to drive their expansion. These 

include setting explicit target numbers or incentivising the market adoption of EV. The comparisons 

shown in Figures 5.6 and 5.7 provides insight into the number of EVs resulting from policies other 

than the “business as usual” case (red curve). Figure 5.6 also shows (right-hand scale) the equivalent 

amounts of long-term monthly demand that will be added to the electricity network from these 

different cases of EV expansion. The number of EVs and the associated demand to 2050 shows 

greatly differing dynamics depending on the chosen policy. The blue line indicates the number of 

EVs to 2050, following market-based expansion based on adoption diffusion. The hybrid policy (grey 

curve) of planning for a fixed amount of vehicles by 2020 and then supporting market adoption, 

yields the greatest impact on EV penetration. It is important to note here that the overall growth 

of all vehicles in the island leads to approximately 92,000 by 2050. Hence, in the hybrid policy 

scenario, EVs achieve between 45 to 55% of the total vehicle share within this island system. 
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Figure 5.6  Model output for the number of EV adopters and monthly EV consumption under 

varying cases EV expansion policies 

 

Figure 5.7  Magnified output for the number of EV adopters under varying cases of EV expansion 

policies (from Fig. 5.6) 

Interestingly, the results reveal that a 2020 policy which has no on-going support to encourage the 

sustained use of EV (green curve) will lead to a gradual decline in EV numbers and EV-based 
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electricity demand in the longer term. This is confirmed by the hybrid case in which the 2020 policy 

target is used along with market adoption and which leads to an exponential increase in the number 

of EVs (not more than 55% of the overall amont of vehicles in the island) and corresponding 

electricity demand. We suggest here that to achieve this and even higher levels of electrification, 

the chosen policy can be guided by the key stakeholders, by, for example, replacing company and 

government vehicles with EV and actively promoting their benefits and encouraging the rest of the 

island to adopt, a concept embraced by the Regional Directorate of Energy (Nunes, 2015).  

 

Figure 5.8  Impact of different EV expansion policies on the total monthly demand of the 

electricity system 

Figure 5.8 shows the impact of EV on the whole-system, long-term demand. It reveals that the 

hybrid policy has the highest impact on long-term demand dynamics and that EV expansion can 

have either a marginally small or a high impact on the long-term demand dynamics and presents 

uncertainty challenges for policymakers. As shown in (Bakker and Jacob Trip, 2013; Green, Skerlos 

and Winebrake, 2014) and discussed above, government intervention can be useful to 

facilitate/lead EV adoption; however, policies must be carefully applied to avoid compromising 
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security in meeting this demand. Conversely, the environmental benefits and advent of more 

renewables capacity, facilitated by high amounts of electrification of the transportation sector 

encourages EV expansions in the absence of policy targets or incentives (IEA, 2013). 

This analysis reveals that EV expansion is potentially more interesting in terms of the long-term 

impact compared to both tourism growth and energy efficiency measures, though energy efficiency 

remains the most powerful for guiding the long-term demand dynamics. In addition, supply-side 

influenced demand such as energy efficiency will have a stricker (narrower) range of impacts on the 

long-term demand compared to demand-side influenced factors such as EVs or even tourism. The 

range of possible outlooks for the EVs on the long-term demand can vary from being negligible to 

being very large. 

5.4.2 Long-Term Demand and Supply Confidence Bounds 

Figure 5.9 shows the confidence bounds for the long-term demand for the system obtained from a 

series of 200 MCMC simulations randomly sampling the four scenarios detailed in Section 5.3. Key 

variables, their sensitivity ranges, and related information sources are used as given in Table 5.2. 

The results show that the demand can be tightly bounded with a 75% probability given the 

combinations of different policies for electrification, energy efficiency and tourism, implying that 

long-term demand dynamics driven by policy can provide a relatively stable outlook for the system. 

However, careful considerations must be given to the policy choices since the 95% confidence 

bounds (blue regions ) are upwardly skewed over a larger uncertainty range when compared to the 

mean (red line).  
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Figure 5.9  Total monthly demand sensitivity of the electricity system for the different policies 

from 2005 to 2050 

 Figure 5.10 displays the MCMC simulation confidence bounds for the installed renewable capacity 

in MW. The greater disparity that is evident in the 75% - 100% confidence bounds is mainly driven 

by the renewable energy policies.  The results reveal that the installed renewables pathway based 

on a 45% portfolio share to 2020 is accurate, as observed with the narrow confidence bounds. 

However as the time-period extends, the scenario combinations driving the renewables policy 

introduces uncertainty. The lower confidence bound is guided by the energy efficiency measures 

whilst the upper part is bounded by the policies relating to the electrification of the transport 

sector. This suggests that greater electrification will, in the long-term, lead to more renewable 

capacity within isolated island systems. This inference will be studied in more detail in Chapter 6. 
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Figure 5.10  Sensitivity of the total installed renewable capacity of the electricity system for the 

different policies from 2005 to 2050 

5.5 Conclusions 

This chapter has presented an SD sub-model that satisfies research sub-question 3 of this thesis. 

The isolated electricity system of São Miguel is used as a case study for modelling the long-term 

demand dynamics as an endogenous consequence of existing and future low-carbon policies. In 

addition, this sub-model has analysed a series of policy scenarios which emphasise differing critical 

factors for the long-term endogenous demand dynamics and identify the most important and 

interesting to policymakers which fulfil their environmental and energy security objectives. 

By applying a series of pragmatic assumptions, the low-carbon policies for electrification of the 

transportation sector, energy efficiency measures and increased tourism provide an insightful 

understanding of the endogenous demand dynamics of the island electricity system. Based on the 

model behaviour for these scenarios, it can be concluded that the long-term demand is significantly 

influenced by implementing successful energy efficiency measures. This is, however, a brute force 



 

 

145 
 

solution for reducing the long-term monthly demand and can be a useful policy for safeguarding 

the energy security of the system. EV expansion is not as influential, although it can still provide 

medium-to-large stimuli on the long-term demand dynamics. This is demonstrated by the different 

demand projections for EV expansion by 2050. Longer-term demand is uncertain with both small 

and large changes feasible depending upon the way EV are adopted and related policies pursued. 

If specific policy targets are withdrawn once they have been achieved, long-term demand will 

converge closer to the “business as usual” path. This shift is small compared to a hybrid policy 

involving the market effects, which is very large for such adoption of EVs. In such cases, the long-

term demand dynamics can diverge from the “business as usual” scenario.  

Finally, for islands such as São Miguel policies relating to conventional tourism have a very low 

impact on the long-term monthly consumption trends, indicating that systems with a very small 

initial tourism economy need a substantial increase in tourism if this is to impact the long-term 

electricity demand. The implemented tourism policies in this case study made little impression on 

the long-term demand, implying that isolated island systems with a low economic share of tourist 

activities are largely unaffected by energy-related policies which focus solely on tourism. 

Furthermore, for isolated island systems pursuing low-carbon objectives, it is the policy behaviour 

of the locals rather than externals (tourists) that will make the key impact on the future electricity 

system. This can, however, be different in smaller and less developed island systems (IRENA, 2014) 

than the one studied in this paper, but fundamentally what matters to any island system is knowing 

that its mechanisms are able to reduce the demand as a safeguard and eliminate the need for 

additional generating capacity. EV electrification policies are useful in reducing the environmental 

impacts of high CO2 emissions; however, they have a lower impact on the long-term demand than 

successful energy efficiency measures. The model provides new clear insights into the most 

important and influential policies for the endogenous demand dynamics from the key socio-techno-

economic aspects typical to the structure of isolated island electricity systems. 
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This chapter has provided a novel approach to identifying the most influential and efficient policies 

by understanding the structure of the system useful for the long-term electricity consumption of 

isolated island systems. The approach has given guidelines and policy directions for prospective 

energy solutions as these systems transition to low-carbon electricity production. The demand 

policy implications are highlighted as important in making informed decisions and being aware of 

which policies are the priorities where the focus for energy security and environmental issues must 

be directed. This provides a platform for understanding how low-carbon policies impact the long-

term endogenous demand. In addition, the use of this endogenous demand formulation will give a 

better understanding, as required in Chapter 2, of the low-carbon system than with the use of 

demand forecasts which are unable to capture causal feedback effects within the system. The next 

chapter will extend the formulation of the endogenous demand presented above to understand 

the impact of low-carbon policies on the endogenous capacity mix for renewables integration and 

their environmental consequences. In that chapter, renewables are disaggregated and the long-

term capacity mix is derived from an endogenous consequence of the endogenous demand, low-

carbon policies and long-term investment decisions.  
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Chapter 6. Emerging Low-Carbon System 

Capacity Mix 
 

 

In the previous two chapters, 4 and 5, the SD method is used to support the analysis of specific 

aspects of a transitioning low-carbon island system. From the insights gained in these previous 

chapters, it is clear that a richer understanding of the overarching research question of this thesis 

can be achieved once these sub-models are synthesised together. Chapter 6 integrates the sub-

model structures developed in chapters 4 and 5 to establish a more comprehensive model of the 

system. This new model fully captures the necessary endogenous characteristics of the evolving 

low-carbon isolated island electricity system. The chapter provides a detailed analysis for the 

integration of the fossil fuel, renewables, and endogenous demand sub-models. Furthermore, 

prospective long-term investment solutions and policy recommendations are also developed from 

the scenarios and the analysis contained within this chapter. 

6.1 Overview 

Satisfying an evolving electricity demand is an imperative of electricity providers, policy makers and 

governments alike. As shown in Barrett (2006) and Warren (2014) there are numerous strategies 

proposed to tackle this problem. One of the key proposals from these authors involves increased 

investment into new generation capacities. However, without care, this might lead to an excess of 

generation capacity within an island electricity system. Many island systems are already endowed 

with high levels of reserve legacy fossil-based capacity (Weisser, 2004a), further large-scale 

investments in either fossil fuel or renewables capacity may not be justified given the amount of 

latent capacity available (EDA, 2016). Concurrently, some of this excess capacity is required to 

maintain reliability and to provide a reserve of supply, the capacity margin concept is explored in 

Section 4.2.3, which need to be increased when electricity demand is increasing (Erdinc, Paterakis 
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and Catalaõ, 2015). Small isolated island systems typically operate with higher levels of electricity 

capacity and system redundancy as is seen in more interconnected systems. Hence it is not unusual 

to see within these systems a wider variety of types of electricity generation sources and the 

preference for several smaller generation units instead of larger generation assets. As seen before 

in earlier chapters the electricity provider in São Miguel estimates that spare capacity margins are 

above 30% so the impetus for new generation capacity is more focused on reducing CO2 emissions 

and on achieving fossil fuel import independence (EDA, 2016). This is consistent with an 

environmentally friendly focus by replacing decommissioned fossil generation and increasing new 

capacity with renewable sources.  

Other possible ways to meet increasing electricity demand include inter-island grid 

interconnectivity (Eurelectric, 2012), which if available, can provide a means of increased flexibility 

within an island grid system (Marrero and Ramos-Real, 2010). However, this is infeasible in most 

cases, such as in the Açores as these islands are geographically too distant for economic 

interconnections. Other considerations include the prospects of demand-side management and 

large-scale pumped hydro energy storage (Barrett, 2006; Eurelectric, 2012; Warren, 2014). 

Demand-side management for island systems in this thesis is considered in the context of the 

charging of Electric Vehicles (EVs) during periods of low electricity demand (i.e. at night time). The 

prospect for pumped-hydro storage is also limited due to the geographical constraints of most small 

island systems such as the case study of this thesis, São Miguel. The energy company in São Miguel 

has undertaken evaluation studies into the siting of a pumped-hydro project and concluded that no 

suitable conditions exist for the required dams but that smaller reservoir storage is possible 

(Botelho, 2015). Energy storage, although on a lesser scale, remains a viable option within this 

island system. All of these factors influence investments into electricity generation capacity and 

requires that small island systems are planned and treated somewhat differently from larger 

continental grids. Issues relating to the generalisation of our findings and methods are discussed in 

Chapter 7. 
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In addition to these factors, and as seen in chapter 5, energy efficiency mechanisms, adoption of 

EVs and tourism increases have impacts on the long-term endogenous electricity demand and 

hence can drive the capacity investments within the system. In chapter 5, an understanding is given, 

of the endogenous demand which stems from low-carbon policy targets together with the 

investment structure of an island system transitioning to low-carbon based generation mix. This 

understanding provides insights into the future capacity investments needed for the system. It also 

represents the challenges and opportunities such as how to sustain renewables uptake for the 

electricity grid and the technologies necessary to increase that uptake level. Hence, the synthesis 

model examined within this chapter, and derived from the previous sub-models of the thesis, 

defines the holistic view of the environmental and security (fossil fuel import independence) 

concerns, and the policies for the electrically isolated system. Furthermore, the synthesis model 

explores how the long-term affordability (using the overnight basis of the base year (2005) levelised 

cost of electricity (LCOE) (NREL, 2016) values and not the usual discounted cash flow formulation) 

rather than externally originated electricity tariffs are an endogenous consequence of capacity 

investments. The respective LCOE values are used within the learning curve implementation as 

done in Section 4.3. This formulation is then incorporated to understand a stable/improved 

generation mix of renewables and other technology portfolios that are effective to meet the 

environmental and the necessary energy security concerns of fossil fuel import independence of 

the island system. Details of the comprehensive model are presented in the next section. 

6.2 Synthesis  

The comprehensive model of this chapter is achieved by integrating the sub-model structures of 

the fossil, renewables and demand sub-models for the system. The key structures from these sub-

models are merged into one model together with the economic attractiveness for capacity 

investments within the system. This integration reflects the subsystem architecture diagram of 

Figure 3.6. In addition, the renewable capacity (considered within the renewables/demand sub-

models) is disaggregated to reflect the different types of renewable sources, as may be possible 
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within the isolated island system. This renewable sources disaggregation permits more accurate 

modelling, as the technological advancement and profitability of the individual renewable sources, 

can differ significantly. Furthermore, the synthesis model captures the necessary endogenous 

characteristics of a low-carbon evolving island electricity system. Details of the quantities that are 

endogenous in this model are provided in Table 6.1. Prospective long-term investment solutions 

and policy recommendations are also developed from the defined scenarios and analysis examined 

in the model. Specifically, the challenges facing those making investment decisions are tackled 

within this work. The model seeks a better understanding concerning a future portfolio of 

generation mixes and the possible benefit to stakeholders in pursuit of environmental and energy 

security concerns.  

6.2.1 Synthesis – The Mental Model 

The synthesis model is centred on the expanded dynamic hypothesis of Figure 3.4 and the resulting 

mental model feedback loop diagram is shown in Figure 6.1. The diagram accounts for the key policy 

and investment feedback relationships that exist when the environmental and energy security 

concerns of isolated small-island electricity systems are taken into account. Also included are 

population social factors of the island system and relevant technical aspects of the electricity grid. 

The key existing relationships are shown in the diagram as four loops, two balancing, and two 

reinforcing, all interacting at the long-term low-carbon based capacity mix and the 

demand/capacity ratio variables. The main aspects captured by the model are the pursuit of low-

carbon technologies aided by environmentally driven policies, and the interplay arising from the 

long-term electricity demand and the affordability of electricity generation technologies.  

With these interactions, some key endogenous variables emerge from the model. The low-carbon 

based capacity mix (consisting of the different disaggregated renewable sources), net CO2 

emissions, net electricity demand and expected revenues per MW of installed capacity are some of 

the most important endogenous effects captured by the model. Key exogenous variables are the 

capacity utilisation, GDP changes, low-carbon policy targets and population changes. Some key 
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variables excluded from the model include off-grid electricity capacity, investment business models, 

and cash flow constraints. As done in previous chapters, the exogenous variables used were verified 

with EDA and with global data sources (Isle-pact, 2012; European Commission, 2013; Ilic, Xie and 

Liu, 2013; IRENA, 2014a; EDA, 2016). The following table, Table 6.1, model boundary chart, 

summarises the scope of the model by listing the key important endogenous and exogenous 

variables used for the synthesis model, and the ones which were excluded. 

 

Table 6.1 Model boundary chart for synthesis model 

Shown in Figure 6.1, three of the four loops interact at the long-term low-carbon based capacity 

mix variable and the remaining loop interacts with the demand/capacity ratio variable. This loop, 

the demand-based energy security loop (red and black loop) captures the demand-side dynamics of 

the model, including the endogenous effects of a low-carbon policy agenda. This includes the 

adoption of electric vehicles and energy efficiency mechanisms. In addition, impacts are captured 

of niche-type activity such as tourism (islands are widely seen as tourist destinations) together with 

other social and economic influences on the electricity demand of the island system. This loop is 
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reproduced from the core aspects shown in Figure 5.1 of the endogenous demand sub model of 

Chapter 5. It details a loop which has a balancing effect on the demand/capacity ratio variable. This 

variable is useful for ensuring that there is sufficient electricity supply to meet the demand. If the 

demand/capacity ratio is high then the innovative new demand (electric vehicles adoption) with a 

delayed effect, is lower than it otherwise would be. This lowering of innovative new demand 

(electric vehicles adoption) is then reinforced on the ‘consumer-type’ sector consumption which, in 

turn, reinforces this effect onto the net electricity demand. The lower than normal effect is then 

reinforced from the net electricity demand variable onto the demand/capacity ratio variable, 

thereby completing the demand-based energy security balancing loop. 

 

Figure 6.1  Mental model feedback diagram of the island electricity system 

The other three loops interacting at the long-term low-carbon based capacity mix variable reflect 

the key supply side dynamics of the system. The outer low CO2 emissions target loop (green loop) 
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is a reinforcing loop centred on the environmental drive for lower CO2 emissions. If the 

demand/capacity ratio is high then the desirable low-carbon integration variable is higher than 

what it would otherwise be. Also interacting here are the exogenous effects of the renewable 

resource dynamics and the environmental friendly technology policies influences. The desirable low-

carbon integration variable then reinforces this higher than normal effect on the CO2 emissions 

friendly supply capacity which then balances the supply capacity factor experience (most low-

carbon sources reveal low capacity factors6) to be lower than it otherwise would be. This decrease 

in supply capacity factor experience is then reinforced onto the low-carbon attractiveness for new 

capacity variable which, in turn, reinforces the decrease onto the long-term low-carbon based 

capacity mix variable.  For the completion of the loop, the long-term low-carbon based capacity mix 

variable has a balancing effect on the demand/capacity ratio. This variable is now higher than it 

normally would be and closes the reinforcing low CO2 emissions target loop. 

The inner supply-based energy security loop (brown and green loop) is also consistent with the 

environmental drive for lower CO2 emissions. This loop, however, captures the fossil fuel aspects 

of this part of the system. As shown above, if the demand/capacity ratio is high then the desirable 

low-carbon integration variable is also higher than what it would otherwise be. This increase, 

however, has a balancing effect on the available fossil fuel capacity variable. The resulting lowering 

effect on this variable has a balancing effect on the prospective low-carbon electricity supply 

variable causing it to increase. This increase, with a delay over time, has a reinforcing effect on the 

long-term low-carbon based capacity mix variable causing it to be higher than it would normally be. 

As shown above, the completion of this loop involves the long-term low-carbon based capacity mix 

variable having a balancing effect on the demand/capacity ratio variable. If the supply-based energy 

security loop were acting on its own, then the demand/capacity ratio variable due to the balancing 

                                                           
6 Capacity factor experience is defined within this work as the technical availability of the given technology 
given the reliability and availability factors. These factors are determined from the literature and an average 
value is utilised for the different types of electricity generating technologies. 
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effect of the loop would now be lower than it otherwise would be. Both the low CO2 emissions 

target loop and the supply-based energy security loop are clarified by the core policy target aspects 

shown in Figure 4.5 of chapter 4. Additionally, factors relating to the intermittency of the different 

disaggregated renewable sources are included within these two loops (unlike the mental model 

loops of chapter 4). 

Also shown in Figure 6.1 is the economic and sustainable electrification loop (red and green loop) 

which captures the key long-term economic aspects of the system on the long-term low-carbon 

based capacity mix variable and, in turn, on the demand/capacity ratio. This is a reinforcing loop 

and assuming a similar starting point as the demand-based energy security loop. If the 

demand/capacity ratio is low then the Innovative new demand (electric vehicles adoption) with a 

delay, is higher than it would otherwise be. This higher than normal effect on the EV electricity 

demand is then reinforced onto the ‘consumer-type’ sector consumption which, in turn, reinforces 

this effect onto the net electricity demand. The net electricity demand is now higher than it would 

otherwise be. This increase has a reinforcing effect on the ‘capacity-type’ attractiveness causing it 

to be higher than it otherwise would be. Other exogenous variables key to the long-term economic 

aspects of the system also interacts with the ‘capacity-type’ attractiveness. The capacity utilisation, 

electricity prices, and government subsidies have reinforcing effects on the ‘capacity-type’ 

attractiveness variable. The ‘capacity-type’ attractiveness variable then, with a delay, has a 

reinforcing effect on the long-term low-carbon based capacity mix causing it to be higher than it 

normally would be. The completion of this loop, similar to the low CO2 emissions target loop and 

the supply-based energy security loop involves the long-term low-carbon based capacity mix 

variable having a balancing effect on the demand/capacity ratio variable.  Hence, if this loop were 

acting on its own, the demand/capacity ratio variable would be higher than it would otherwise be. 

The four loops highlighted, comprise the key components for the synthesis model of this thesis. 

This model captures the key mental model structure of the environmental and electricity security 

concerns of an isolated island system as detailed in this work. The mental model is then used to 
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formulate the important variables needed to develop the formal SD model of this chapter. These 

formal model formulations are described in the next section.  

6.2.2 Synthesis Model Formulation 

The model is derived from the mental model feedback loop diagram of Figure 6.1 and implemented 

as in previous chapters using the Vensim software package. The main mappings of the key stocks 

and flows and exogenous factors for the synthesis model are shown in Figure 6.3. The most 

important formulations of these stocks and flows are highlighted within this section. For ease of 

understanding, the key mental model loops of Figure 6.1 have the same colour coding of the 

corresponding loop arrows shown in Figure 6.3. 

At the top, left-hand side of this diagram is found the demand-based energy security loop, which 

entails the adoption of EVs together with energy efficiency mechanisms to give the ‘consumer-type’ 

electricity demand.  The ‘consumer-type’ electricity demand is summed to give a total demand, 

which is the net avg electricity demand. The ‘consumer-type’ electricity demand is the individual 

demand from the different electricity consumption sectors. The sectors of consumers are the 

residential, commercial, industrial, and public services consumers together with the consumption 

from electric vehicles, as described in chapter 5.  

Using the current tri-tariff pricing scheme of São Miguel, the total of all ‘consumer-type’ electricity 

sold revenues variable values are deduced (Ilic, Xie and Liu, 2013; EDA Estimates, 2015). The tariffs 

used for the various time periods are given from Ilic, Xie and Liu, (2013) and EDA Estimates (2015) 

and shown in Table 6.3. It is observed within this island system that, on average, over 75% of 

consumers use the tri-tariff option, whilst fewer than 25% use the fixed tariff option (Bermonte, 

2015). Hence, the fixed tariffs (which are normally the median value between the highest and 

lowest tariffs) are ignored here for the synthesis model implementation. The three main categories 

of time periods used in the pricing schemes are the peak, shoulder peak and off-peak. In addition, 

there exists a super-off peak time (Ilic, Xie and Liu, 2013), which is ignored for the implementation 
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within this model, since the tariffs and hence incentives during this period are similar to the normal 

off-peak prices. The time periods considered on São Miguel during a daily cycle from both winter 

and summer seasons are shown in Table 6.2.  

 

Table 6.2 Daily cycle for seasonal tri-tariff time periods  

However, since there is weather steadiness for both winter and summer days, the choice of either 

standard time period should give equally good quality results. The summertime scheduling from 

Table 6.2 is chosen to be used for the average consumption calculations for the various ‘consumer-

type’ sectors. The revised table, Table 6.3, shows the standard time period in summer and the 

corresponding tariffs for the different consumption sectors. The tariffs are used to calculate the 

revenues collected from each consumption sector. 

   

Table 6.3 Daily cycle for summer time periods with corresponding tri-tariffs 
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Based on the time periods shown in Table 6.3, and using details from Bermonte (2015), the 

corresponding average monthly consumption within each time period for each consumption sector 

is deduced and expressed as a percentage of total consumption. The main assumptions used are 

detailed as follows:  

A standard operating industrial consumption facility is considered initially for a daily working time 

of approximately 10 hours starting at 8 am and ending at 6 pm. Hence, it can be assumed that 20% 

of industrial consumption occurs during peak hours and the remaining 75% occurs during shoulder 

peak periods. There is also a consideration for having a possible 5% of consumption related to the 

off-peak hours by load shifting (starting factory operations between 6 am and 7 am on some 

working days) (Bermonte, 2015). 

For commercial services consumption, it is assumed that there exists a working week of 

approximately 12 hours of operations from 8 am to 8 pm. Hence, it can be assumed that on average 

there are 3 peak hours per day or 25% of consumption occurs during peak hours, 65% consumption 

during shoulder peak with a possible 10% from load shifting into the off-peak hours. Public services 

consumption is similar to commercial services consumption, noting that, in addition, street lighting 

is accounted for within this consumption sector. It is assumed that for the working week times of 

10 hours there are on average 3 peak hours per day or 25% of consumption occurs during peak 

hours, 60% consumption during shoulder peak with approximately 15% of consumption occurring 

within the off-peak hours.  

The remaining consumption sectors are linked to increased consumption within the home. 

Residential consumption is considered to have a 16 hours consumption cycle. Assuming a standard 

household for which persons go to work and/or school for 7-8 hours a day from 8/9 am to 4/5 pm 

there can be on average 2.5 peak hours per day that individuals are at home. This accounts for 15% 

of consumption time whilst shoulder peak hours accounts for approximately 35% of consumption 

with the remaining 50% assumed to occur during off-peak hours due to load shifting.  
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Electric vehicle consumption is assumed to be tied to the charging of electric vehicles at residential 

locations. It is also assumed that most of the charging will occur during the off-peak periods at night. 

Hence, 85% electric vehicles consumption occurs within the off-peak time period and between 10% 

consumption occurs during the shoulder peak periods and approximately 5% during peak time 

periods.  

The percentage of monthly ‘consumer-type’ consumption occurring within the peak, shoulder peak 

and off-peak time periods are thus determined for each of the consumer consumption sectors using 

the following equation:  ����	 �	�����	
��� =  O���	 �	���� ∗ ��	
���  , where ����	 �	�����	
���  represents the 

specific ‘consumer-type’ sector consumption for the given time period, in units of MWh/month. 

O���	 �	����  is the percentage of consumption occurring within this time period and ��	
��� is the 

average monthly consumption for that specific ‘consumer-type’ sector. 

It then follows that the ‘consumer-type’ consumption revenues generated from the various sectors 

are calculated using the appropriate tariffs within the different time periods. This is defined using 

the following equation: R�	
��� �  ∑(r���	 �	�����	
��� ∗ ����	 �	���� �	
��� )  , where R�	
���  represents the 

revenues generated from consumption within the ‘consumer-type’ and r���	 �	�����	
���  is the 

corresponding tri-tariff pricing for the time period. The total amount of revenues generated, R����� , 
from electricity sales to all consumers is given as the sum of the individual  R�	
��� values. This total 

is averaged over a two year period (rolling average) to avoid single year anomalies due to one-time 

events such as generator outages, demand surges or external economic factors. The total amount 

of revenues generated is used to determine the financial attractiveness of the different installed 

capacities - referred to in Figure 6.3 as the ‘capacity-type’. 

The ‘capacity-type’ used in this thesis are fossil fuel (assumed to be entirely heavy fuel oil and 

diesel), renewable (geothermal, run-of-river, biomass, wind and solar) and energy storage 

(reservoir-type pumped hydro).The average usage of each of these technologies to meet the 

electricity demand is key to determine the profitability and hence the financial attractiveness of the 
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respective generation technology. This average usage/dispatch factor7 for the specified generation 

technology during the peak, shoulder peak and off-peak time periods are defined in general by the 

merit order8 rules of the electricity system.  

The following figure, Figure 6.2 shows the typical generation profile (MW) for the São Miguel island 

system. Since there is fairly steady weather throughout the year as mentioned previously, the load 

and generation profiles are very similar for both winter and summer days. It can be observed that 

geothermal and run-of-river hydro are used to their maximum potential both day and night.  There 

is curtailment to the wind at low load times, as can be seen between the hours of 3 am and 10 am. 

In addition, the necessary frequency balancing fossil generation is seen throughout the entire daily 

profile with increases in this ‘capacity-type’ seen during the peak load periods between 6 pm and 

10 pm. Biomass and solar are also used but due to their very small quantities, and not being 

dispatched within the times shown they are not visible in Figure 6.2. The average usage of the 

different ‘capacity-type’ to meet the load within the system is assumed to be similar to Figure 6.2 

for the purposes of the synthesis model.  

Furthermore, for the model and from Figure 6.2, the average usage/dispatch factor for the specific 

generation technology asset considered is obtained based on its place in the São Miguel “local” 

merit order. With small isolated island systems, the “local” merit order is more than just a matter 

of using the lowest marginal generation cost assets first. It is normally based on the appropriate 

order of dispatch as determined by the utility company to make use of the electricity generation 

sources available. For example, for system stability reasons there is always some diesel or heavy 

fuel oil generated power online in such island systems. Specifically for São Miguel, the available 

                                                           
7 Dispatch factor is based on the number of hours that this generation technology is employed to meet the 
total load. It should not be confused with the load factor which is the average load divided by the maximum 
load in a given time period.  
8 Merit order is an administrative system management concept applicable to monopolistic electricity 
systems or those in which a single player is dominant. In such systems the system administrator decides the 
priority for dispatch of each form of generation. Usually this is based on running technologies with the 
lowest marginal costs of generation (i.e. fuel costs) first. 
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base load type renewables of geothermal and run-of-river are fully dispatched firstly along with 

some of the frequency balancing fossil generation of at least 18-20% (approximately 12MW in 2015) 

of total demand capacity. Next to be dispatched is usually biomass, then wind, solar and extra fossil 

as needed. If there is too much supply capacity wind is usually curtailed as a first step (Botelho, 

2015; EDA, 2016).  

 

Figure 6.2 Typical São Miguel generation profile for the demand load, in 2015 (EDA) 

Indeed, the generation portfolio on the island is also assumed to be influenced by considerations 

of cost. Due to existing policy pressures, renewable technologies form a major part of current 

investment plans and the specific renewables technology choices are shaped by not only the usage 

of these technologies but also the cost considerations of the given technologies (lowest capital cost 

technologies are preferred). The research work presented here simplifies reality in two key 

respects: first, the cost calculations do not make use of discounted cash flow. Investors and policy-

makers normally place great emphasis on the LCOE (a discounted cash flow concept). In this thesis, 

adoption of the LCOE of technology specific generation projects within the years 2005-2015 (Silva, 

2013) is used (without discounting cash flows over the model simulation) as the overnight 
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generation technology costs. The second simplification is that in the modelling no installation 

constraint is imposed on renewables technology choice as a consequence of geography or other 

physical realities such as spatial planning constraints. The reality is that São Miguel has a set of 

discrete and island specific opportunities for major renewables expansion, but these specific 

constraining realities and enabling opportunities are omitted from this SD modelling work which 

rather focuses on the evolutionary growth of existing technologies as driven by the generation 

technology (‘capacity-type’) investment viability and dispatch factor/average usage.   

For this model, based on the dispatch of the specified ‘capacity-type’, the average ‘capacity-type’ 

usage hours per month is determined as: 

  ����	 �	����

���
��� ���	 =  �2���	 �	���� ∗ ����	 �	���� ∗ �����p  , where ����	 �	����


���
��� ���	
 is the ‘capacity-type’ 

technology usage for the given time period, in units of hours. �2���	 �	����  9 , the dispatch factor 

is the dispatch of the generation technology expressed as a percentage of time on a daily basis that 

this technology is used during the specified time period. ����	 �	����   is the daily time period in 

hours as given in Table 6.3 for the tri-tariff time periods and �����p  is the number of days per 

month, defined within this model implementation as 30 days. The average number of hours that 

the ‘capacity-type’ can be dispatched per month to meet the demand load is given as follows: 

 ������p��
���
��� ���	 =  �2
���
��� ���	 ∗ ∑ ����	 �	����

���
��� ���	, where ������p��
���
��� ���	

 is the average number of 

hours per month that the specified technology can be dispatched.  �2
���
��� ���	  is the 

referenced capacity factor10 per installed MW of the specific technology as given in the literature 

(IEA, 2005; Ilic, 2011; EDA, 2016) and is shown in Appendix A2.  

For clarity, it is important to note the terminology of some closely related terms when considering 

the time periods of technology specific generation capacity and their usage. Firstly, it is key to note 

                                                           
9 This is expressed as a percentage of total generation dispatched.  
10 The ratio of the net electricity generated, for the time considered, to the energy that could have been 
generated at continuous full-power operation during the same period (NRC, 2017) 
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that the capacity factor is not the same as the availability factor of the generation capacity. The 

availability factor is the total amount of time that the generation asset is able to produce electricity 

divided by the amount of time in that period (Huron, 2015). This ratio gives a fractional measure of 

the amount of time that the generation capacity can be used, however, not necessarily at full 

output power. Realistically, the capacity factor of a specific generation capacity cannot be higher 

than the availability factor of the same generation capacity. Capacity factor considers the downtime 

and maintenance of the generation capacity similar to the availability factor but this is now 

measured against the full potential output of the generation capacity asset. It can also be used for 

capturing the seasonality effects of intermittent renewables availability in a single metric of usage. 

Hence, the capacity factor is calculated as follows: 

 �2
���
��� ���	 =  �	� 	�	
���
��� �	�	���	�
���	����� ����� 	�	
���
��� �� ./�� ��W	� �/���� ���	 ���	 �	����    (USNRC, 2017).  

With a capacity factor of 0.9 this means that the electricity output from the total generation 

capacity is, on average, dispatched for 90% of the time period considered.  

Dispatching capacity also leads to the terminology of load factor. The load factor is however 

dependent on the peak load within the system. It is given as a ratio of the average load to the peak 

load in the electricity system during a specified time period (EIA, 2017). The load factor is more 

closely aligned with the capacity margins detailed in Section 1.3. It can also be highlighted that the 

load factors and capacity margins are more relevant as a measure of the reliable availability of an 

entire electricity system or generation plant to meet the total system load.  However, the capacity 

factor would be more relevant to the specific generation technology as it relates to the theoretical 

or ‘nameplate’ maximum electricity generation capacity of the specific generation technology. 

For the purpose of the model implementation, the capacity factor measure for the capacity usage 

was chosen due to its suitability for giving a good representation of the possible usage of the 

different generation technologies from the given standard literature values and the usage hours 

derived from the model for the installed ‘capacity-type’. The time step considered for electricity 
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generation within the model is monthly and a 100% capacity factor is represented by 1.0. Base load 

type renewables such as geothermal, which is widely used in the case study island system, can have 

capacity factors of up to 85% (EDA, 2016).  

The profitability of the different ‘capacity-type’ technologies,  �r
���
��� ���	, is calculated as a 

ratio of expected ‘capacity-type’ revenues per MW of installed capacity over the needed breakeven 

monthly revenues per MW of installed ‘capacity-type’ variables. A ‘capacity type’ technology is 

considered to have no profitability unless it secures a proportion of the revenues. The portion of 

revenues gained from each technology is determined from its usage factor. The ‘capacity-type’ 

usage factor, �2
���
��� ���	  is calculated as the fractional percentage of time per month that the 

specific ‘capacity-type’ is dispatched to meet the load. As mentioned above, the evolving dispatch 

is based on the administered local merit order for São Miguel and is custom built to this model. This 

is formulated as  ∑ 6"&!&")#, #,!�
∑ T"&!&")#, #,!� = 1 , where �
���
��� ���	 is the demand load in MW that is met by 

the specific ‘capacity type’ technologies. S
���
��� ���	  is the electricity supply in MW that is 

generated to satisfy the required �
���
��� ���	  from these technologies. This use of 

S
���
��� ���	 allows for the generation and/transmission losses and the curtailment of supply 

within the model.  

The expected ‘capacity-type’ revenues per MW of installed capacity is modelled as 

_#?#&A∗ �G"&!&")#, #,!� 
7�"&!&")#, #,!� , where Z�
���
��� ���	 is the total installed capacity of the given technology 

within the electricity system. It can be seen that R����� ∗  �2
���
��� ���	 gives the portion of 

revenues that is acquired from the usage of the given technology.  

The needed breakeven monthly revenues per MW of installed ‘capacity-type’ is modelled using the 

‘capacity type’ LCOE (as an overnight basis value without discounting cash flows) cost, and 

represented here as ����
���
��� ���	.  
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This is given as follows:  �R
���
��� ���	 =  ����
���
��� ���	 ∗ ������p��

���
��� ���	, �R
���
��� ���	 is the 

cost per month per MW of installed capacity required to facilitate breakeven operations for the 

specific technology. Instead of using the investment cost per capacity installed, the initial 

����
���
��� ���	 (as the overnight basis cost) from 2005 is used, represented by the ratio of net 

present value (NPV) of total cost and electricity generation found in the literature (IEA, 2010b; Ilic, 

Xie and Liu, 2013; Silva, 2013; NREL, 2016) and shown in Appendix A2. For this implementation it is 

assumed that the initial LCOE of the given ‘capacity-type’ technologies changes, in the long-term, 

based on new installed capacity only and not on other factors. A suitable learning-by-doing cost 

reduction progress ratio P is chosen as in Section 4.3.1 and the long-term ����
���
��� ���	  is 

determined by the use of the cost reduction curve implementation similar to that done in Section 

4.3.1. The cost reduction learning curves for all renewables and energy storage are implemented. 

However, the cost reduction learning curves for the LCOE of fossil fuel generation is not 

implemented for the study described in this chapter. Since, it is not expected that the cost of fossil 

fuel generation will have significant learning to affect the system. 

Subsequently, using the ‘capacity-type’ profitability and the piecewise linear function of 

profitability as implemented in Black (2005) and shown in Section 4.3.1, the investment 

attractiveness, and, in turn, the financially desired generation capacity of the various technologies, 

is determined. For each specific ‘capacity-type’ the variable ‘capacity-type’ profitability is given by 

the ratio of expected ‘capacity-type’ revenues per MW of installed capacity to the needed 

breakeven monthly revenues per MW of installed ‘capacity-type’. Each specific ‘capacity-type’ 

profitability variable is used as an input to the investment attractiveness function. The financially 

desired capacity is formulated as follows:  2��
���
��� ���	 = ^_  Z�
���
��� ���	 , where ^_  is the 

investment attractiveness piecewise linear function (implemented as a lookup table within the 

model)11.  

                                                           
11 Shown in detail within Appendix A2 
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Figure 6.3 Simplified stock and flow diagram for the synthesis model
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Within the synthesis model, one aspect of the low CO2 emissions target loop entails the grid quality, 

which is determined by the input from our coined term called the capacity factor experience within 

this thesis. The capacity factor experience is derived from the capacity factor, �2
���
��� ���	 of the 

various technologies explained previously and given in the literature of all installed generation 

capacity within the system. This variable is considered as the fractional percentage for the average 

availability per installed MW of the various generation technologies. A capacity factor experience 

of 100% implies that the installed capacity is available for the total 720 hours in any given month. 

To model the capacity factor experience variable, the approach in Sterman (2000) pg. 502 for the 

co-flow structure tracking the attribute of a stock is used. In this case, the attribute of the stock is 

the capacity factor experience and the main stock is the installed electricity generation capacity of 

the various ‘capacity-type’ technologies within the system.  

Therefore, in general: 

tj�cl {cPc{m�� �c{�jy u�Puymun{u =

o ����� ��
�	��	 �� 
���
��� .�
��� 	��	��	�
	  ����� �	
�	��	 �� 
���
��� .�
��� 	��	��	�
	
∆�  +

 �j�cl {cPc{m�� �c{�jy u�Puymun{u��, where �j�cl {cPc{m�� �c{�jy u�Puymun{u�� is the initial value 

for the total capacity factor experience. 

The increase in capacity factor experience is: 

�j�cl mn{yucwu mn {cPc{m�� �c{�jy u�Puymun{u =
 ∑ c�� {cPc{m�� �c{�jy u�Puymun{u Puy mnw�cllux {cPc{m�� (m) ∗ {cPc{m�� mn�uw�zun� yc�u (m)� . 

The decrease in capacity factor experience is: 

�j�cl xu{yucwu mn {cPc{m�� �c{�jy u�Puymun{u =
 ∑ c�� {cPc{m�� �c{�jy u�Puymun{u Puy mnw�cllux {cPc{m�� (m) ∗ {cPc{m�� xu{jzzmwwmjnmn� yc�u (m)� ,  

where  c�� {cPc{m�� �c{�jy u�Puymun{u Puy mnw�cllux {cPc{m�� = ����� 
���
��� .�
��� 	��	��	�
	
�������	� �	�	������ 
���
���  



 

 

167 
 

This formulation allows for the capture of the long-term grid quality of supply as determined by the 

referenced capacity factors and seasonality effects of renewables determined from the capacity 

installations.  

The resulting value of the capacity factor experience as calculated from the inputs of the capacity 

factor,  �2
���
��� ���	,  attributes to the existing installed ‘capacity-type’ and is then used as an 

input for the investment decisions to install the specific ‘capacity-type’. This capacity factor 

experience is then used as an investment proxy based on the grid quality of the system12. The 

‘capacity-type’ attractiveness to install the specific capacity from grid quality is formulated as 

follows: 
�
�� ���
���
��� ���	 =  2h�


���
��� ���	({cPc{m�� �c{�jy u�Puymun{u), where 2h�

���
��� ���	

 is the 

grid quality attractiveness logistic function (implemented as a lookup table within the model)13. 

Another important component of the structure of the synthesis model is the inclusion of the 

expected capacity portfolio accompanying the various capacity types (fossil fuel, renewables etc.), 

as in Chapter 5. Within the synthesis model described in this chapter, a formulation is used for 

ensuring that the investments within the system are able to meet the peak demand requirements 

of the system. 

Other components of importance are the renewable policy targets and renewable replacements 

for CO2 intensive fossil fuel generation, as described in Chapter 4. The inclusion of the endogenous 

usage factor of the fossil generation capacity within these formulations allows for a more accurate 

endogenous modelling of the long-term CO2 emissions of the electricity system, unlike what was 

achieved in Chapter 4. 

Additional important dynamic components of the stock and flow structure of the model are the 

rate of change of installed ‘capacity-type’:  Δ�
���
��� ���	/Δt = IC8

���
��� ���	 − Z�6


���
��� ���	
, 

                                                           
12 This is not the short-term grid quality but instead the longer-term monthly availability of the grid to 
supply electricity based on the various types of generation capacity installed. Lots of intermittent 
renewables will lead to a lower grid quality for the system.  
13 This is shown in detail in Appendix A2. 
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where IC8

���
��� ���	

 is the ‘capacity-type’ online rate, Z�6
���
��� ���	
 is the decommissioning rate 

of the ‘capacity-type’ and Δt is the monthly time step.  

The investment rate Z of the various ‘capacity-type’ technologies is a compound of several model 

variables. This investment rate underpins the investment drivers within the model. Given that the 

system is pursuing low carbon renewables, the investment decisions for new capacity is centered 

on increasing and/or replacing the capacity within the system, preferably with renewables.   

The following equation captures the general formulation of this variable:   

I
���
��� ���	 = max JG6�"&!&")#, #,!��"&!&")#, #,!�
+"&!&")#, #,!� , +�$�%&*$�"&!&")#, #,!�

+"&!&")#, #,!� , h��"&!&")#, #,!�
+"&!&")#, #,!� ,  R[+�	�	W���	� ,

 R\+�	�	W���	�N +  Z�6  

where 2��
���
��� ���	  is the financially desired ‘capacity-type’ capacity; -��	���� is the 

forecasted demand load; �
���
��� ���	  is the installed ‘capacity-type’ capacity; -
���
��� ���	  is 

the ‘capacity-type’ investment decision timeline; Z�6  is the rate of ‘capacity-type’ 

decommissioning; and R[+  and R\+   are, respectively, the rates of adjustment to the local 

renewables and CO2 emissions targets, as described above and in Section 4.3.1. In addition, 

I
���
��� ���	  depends upon the   xuzcnx/{cPc{m�� mismatch within the system. A minimum 

threshold value of 0.25 is used for allowing investments into the system. IF   
�	����

���
��� > 0.25, then 

there are capacity investments within the system ELSE there are no investments. Further details of 

the formulations used for the implementations within this model can be found in Appendix A2.  

Model Validation 

As in the previous sub-models, the synthesis model is simulated on a monthly time-step over a 45 

years’ time horizon from 2005 until 2050. Rigorous validation steps are taken to ensure the 

robustness of the model for studying low-carbon energy transitioning within isolated island 

systems. Section 3.3 gives an overview of the model validation steps necessary to build confidence 
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in the model. Within this section, the details of the model calibrations and the sensitivity analysis 

of model validations are given. Full details of the remaining steps are shown in Appendix B1.                  

The calibration period used for the validation of the synthesis model covers the time period from 

2005 to 2015. As a first step, the patterns of behaviour of important system variables are compared 

with the real system data for these variables. It is expected that the important simulated variables 

follow the same trends as the real system data. The important variables highlighted for visual 

inspection here are the “installed fossil generation capacity”, “installed renewables aggregated 

capacity” and “installed energy storage capacity”. Figure 6.4 shows the simulated base model 

output data compared with the historical data of the corresponding real system variables.  There 

are no installed energy storage capacity within the system over the calibration period and this is 

reflected in Figure 6.4. 

 

  Figure 6.4 Comparison of base model output data and real data for the synthesis model 
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More comprehensive statistical methods are also used to aid model calibration. As in Section 5.2.2 

for the validation of the endogenous demand sub-model, a statistical measure of fit R2 and Theil 

inequality statistics Sterman (2000) Chp 21 are used to characterize the sources of error within the 

analytical comparisons of both data sets. After refinements to the model formulations, and with 

further simulations of the base case model output, the resulting statistical values of some of the 

important variables are reported in Table 6.4. These important variables are the installed 

generation capacity technologies and the average monthly electricity demand, in total, and for the 

various consumer sectors. Some results from the average monthly total demand variable have been 

highlighted in Section 5.2.2. This table, however, gives a comparative view to the sectors that make 

up the total consumer consumption.  

 

Table 6.4 Model fits of historical data to some important variables 

For the statistical values shown in Table 6.4, MAE/M variable is the mean absolute error (MAE) 

divided by the mean (M) of the data. R2 is given as one minus the ratio of the sum of the squared 

error to the total sum of error squares. This measures the point-by-point correspondence of the 

model output with historical data. Only the installed renewables capacity variable has a very high 

R2 value since it is the only variable that showed excellent point-by-point correspondence of the 

model output with historical data. The statistical measure is used to further confirm the model fit 

of the historical data and model output. This measure, the Theil inequality statistics also seen in 

Section 5.2.2 decomposes the total mean square error (MSE) between the model run and real data 
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into three components, Um, Us and Uc. These three components arise from the bias (unequal means 

of simulated and actual data), unequal variances (difference in variance), and unequal covariation 

(due to point-to-point covariance), and satisfy   �F  +  �T  +  ��  =  1. Statistical values are not given 

for installed energy storage because average historical energy storage capacity is zero. The monthly 

consumption for the total and most of the various consumption sector variables reproduces the 

real data behaviour very well with the MSE concentrated in the unequal covariations. This implies 

that the model variables have the same mean and trends as the historical data, but differ from the 

historical data point-by-point as in Section 5.2.2 for the avg total monthly consumer consumption 

variable. The installed renewables capacity has excellent point-by-point correspondence of model 

and historical data which is statistically confirmed further by its MSE concentrated in the “bias” and 

the “unequal covariation”. The installed fossil capacity reveals a good point-by-point 

correspondence of the model and historical data and has a level of MSE concentrated in the bias. 

This implies that the trends are well-represented but there is a slight shifting of the model 

simulation run from the data. However, this shifting can be ignored since the (MAE/M) mean 

absolute error is only 2% of the average of the historical fossil generation data. Using the Theil 

statistics measure of these key variables non-systematic errors are elaborated for the model. In this 

work, the model emulates the historical data very well within the calibration period. The next 

section details the scenarios used to evaluate the model. The sensitivity analysis of the key model 

variables together with the details of the reality checks and the extreme case testing, can be found 

in Appendix B1.  

6.3 Policy Scenarios 

The scenarios used to evaluate critically the evolution of the generation mix and the effect on 

environmental CO2 emissions are based on the policy scenarios of Section 4.3.2 and Section 5.3. 

The chosen scenarios, together with the baseline (business as usual) scenario, are derived from the 

literature (Isle-pact, 2012; European Commission, 2013; Botelho, 2015; Nunes, 2015). A total of 

four energy-related policy scenarios are considered together with a business-as-usual case. These 
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four other scenarios are energy efficiency measures, tourism impacts, EV expansion (as detailed in 

Section 5.3) and renewables policies (from Section 4.3.2). These scenarios are posited to be 

potentially interesting drivers for the future of the evolving electricity system and can give insights 

into the environmental and energy security concerns of the isolated island system.  

At this point it is appropriate to comment on an aspect of terminology used within the thesis. As 

noted in Section 3.6, the research programme started with a set of scenario planning assessments 

concerning electricity futures in the Açores. The scenario planning was qualitative and followed the 

well-established, two-axis four quadrant approach as described in Lindgren and Bandhold (2009). 

In this chapter however, as with Sections 4.2.3, 4.3.3 and 5.3, the term scenario is used in a rather 

different sense. Scenario is considered within these sections as an SD long-term analysis (policy or 

influence based) into the future in which one aspect is given dominance or particularly emphasised 

in some way. This allows for the scenarios presented in this chapter. 

In addition, the synthesis model presented within this chapter brings together a range of 

considerations previously located in the smaller and more closely bounded models focussed on, for 

example, the renewable integration futures or endogenous electricity demand futures. The 

synthesis model therefore has the capability to be constrained or given emphasis in various ways. 

At the risk of somewhat oversimplifying, for giving dominance to one policy or influence, which can 

be focussed on or not within the model. By exploring the synthesis model through such scenarios 

it becomes possible to reveal key aspects of the potential for electricity futures on the island of São 

Miguel. Such insights can then be held in mind when considering the behaviour of the synthesis 

model with the combined scenarios, found in Section 6.4.2, of all policies and influences. The 

different individual scenarios used within this chapter and for the model are now described. 

Scenario 1: Business as usual  

This scenario extrapolates the current trend of key factors and policies within the island system as 

detailed here. The scenario uses system data from 2005 to 2015, together with the past and present 
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policies and the prevailing economic and social conditions. Two important factors are the island 

population, which is determined by the current birth and death rates, and the GDP per capita; both 

being extrapolated up to 2050 from the 2005-2015 historical data. The existing policy for energy 

efficiency target of 6% decrease in consumption across all consumer-type sectors over the following 

15 years starting from 2012 is implemented. The renewable policy, which was enacted in mid-2008 

to achieve approximately 75% renewable generation by 2020, was adjusted to 45% renewable 

installation. This adjustment of the policy is made to reflect a business-as-usual with realistic rates 

of actual installations in 2015 (EDA, 2016). Also, a medium term goal of 30% reduced CO2 emissions 

by 2020 is implemented within this scenario. There is also a 12 MW goal for a small reservoir energy 

storage project to begin in 2018, considered as a policy objective for the system (Botelho, 2015). In 

addition, and as in Section 5.3, there are no EV policies or pronounced market influences apart from 

a normal increase in EVs (based on the purchasing rate of about 4 new EVs per year in 2015) which 

currently results in a total of approximately 50 vehicles in 2015. Further to this, the growth rate in 

the number of overnight tourist stays is determined from the 2005-2016 historical data to be 0.14% 

(SREA, 2016), starting with an initial value of 96000 in January 2005 and extrapolated into the 

future. Using these system aspects as key inputs, the long-term trends and impacts within the 

system are simulated. 

Scenario 2: Tourism impact 

This scenario, which is similar to the one examined in Section 5.3, explores the effects of changing 

tourism on the generation mix and environmental impacts of the electricity system. It uses the 

Scenario 1 characteristics apart from the growth in the number of overnight tourist stays. For 

tourism growth rates, given from the historical data (SREA, 2016), two different cases are studied, 

namely, a one and a half times increase of the growth rate from 0.14% per month to 0.21% per 

month from 2016 until 2050 and a doubling of the growth rate from 0.14% per month to 0.28% per 

month from 2016 until 2050. These cases are of interest to EDA and the Regional Directorate for 
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Energy of the Açores (Botelho, 2015; Nunes, 2015). It is assumed here that no new hotel 

construction is warranted because of the low average occupancy rate on the island of 32% (Isle-

pact, 2012; SREA, 2016), and the growth rate has only been doubled for this scenario (leading to a 

tripling of the average occupancy rate to 96%  which does not warrant new hotel builds).  

Scenario 3: Energy efficiency measures 

This scenario corresponds to Scenario 1, apart from variations in the energy efficiency policy as 

described in Section 5.3. Two case studies are considered: namely, the doubling (to 12%) and 

tripling (to 18%) of the original policy targets across the policy timeline of 15 years. The energy 

efficiency policy measures are proposed to be discontinued after 15 years (Botelho, 2015; Nunes, 

2015). Longer timelines are considered for the sensitivity analysis shown in Appendix B2. It is also 

assumed that the energy efficiency measures are fully adopted by the consumers (no adoption 

dynamics is considered for this model). However, the extreme case for non-adoption of the 

doubling and tripling measures will be reflected in the “business as usual” (Scenario 1) case.  

Scenario 4: EV expansion 

This scenario examines the possible influence of EV expansion. As with the previous scenarios, it 

corresponds to Scenario 1 apart from the EV expansion. It is assumed that light-duty vehicles are 

the target for EV expansion. The baseline case is compared to three other policy cases as in Section 

5.3: a market-based adoption policy for diffusion of technologies (Bass, 1969), a target of 

approximately 2500 EVs by 2020 (Botelho, 2015), and a combination of the 2020 EV and the market-

based adoption policies.  

Scenario 5: Renewables policies 

This scenario features two case studies of renewable policies based on aspects of Scenario 1. The 

CO2 emissions policy emphasis and installed renewable capacity targets within the system as 

described in Section 4.3.2 are the basis for the scenarios. For this scenario, a target of 30% reduction 

in CO2 emissions and 45% installed renewable capacity within the system by 2050 is examined. In 
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addition, a more aggressive 50% reduction in CO2 emissions with 75% installed renewable capacity 

within the system by 2030 is also considered.  

6.4 Results 

The long-term installed capacities of the various generation technologies based on the scenarios 

detailed in section 6.3 are shown within this section. The environmental impacts as represented by 

the CO2 emissions within the system are also presented. The result from the “business as usual” 

scenario is used for comparisons and shown with the various simulation runs. In addition, a 

discussion of high and aggressive policies versus low and relaxed policies from all of the scenarios 

given in Section 6.3 is detailed together with their impacts on capacity investments.     

6.4.1 Modelling Analysis 

 
Tourism impact 

Figure 6.5 displays the influence of changing the growth rate of the number of overnight stays on 

the installed fossil generation capacity. For one and a half times and doubling the overnight growth 

rate, the trajectory of the installed fossil generation is unchanged. There are also negligible 

differences between these simulation runs. The same observation holds for Figure 6.6, which shows 

the installed energy storage capacity under the various model runs for overnight tourist stays. It 

can be safe to say that the “business as usual” scenario installations are the same as the other two 

simulation runs in terms of fossil generation and energy storage capacity installations. In both 

Figures 6.5 and 6.6 it seems that the range of tourism futures (within the assumptions given) has 

very little impact on the provision of fossil fuel generation capacity or energy storage installations. 

Furthermore, in Figure 6.6 there is a very clear feature of energy storage growth from 2018 followed 

by a later decline most likely linked to the policy objectives for storage within the system. The 

reader is urged to keep this in mind as other scenarios are later explored.  
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Figure 6.5 Impact of tourism changes on 

installed fossil generation capacity 

 

Figure 6.6 Impact of tourism changes on 

installed energy storage capacity 

 

However, for installed renewables capacity the variations from the “business as usual” scenario of 

the various cases of overnight tourist stays are a bit more visible, as shown in Figure 6.7. This is 

evident, with a thickening of the simulation lines from around the year 2030, in which the higher 

demand simulation runs (one and a half times and doubling of overnight tourist stays) warrants the 

installation of more renewables capacity to meet this demand. This can be attributed to the local 

merit order of generation dispatch in São Miguel, where renewables capacity is the preferred 

choice compared to fossil generation and energy storage, and hence there is a slight matching 

deviation for installed renewables capacity to meet demand changes.  

These results show that tourism will have a low impact on the long-term installed capacities and 

any impacts, if present, will be concentrated with the generation technology that is favoured for 

new capacity expansion. 
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Figure 6.7 Impact of tourism changes on installed aggregated renewable capacity 

The corresponding impacts on the accumulated CO2 emissions and the rate of monthly CO2 

emissions are shown in Figures 6.8 and 6.9 respectively. As expected, the differences in the 

trajectories of the various scenarios are also negligible. This is due to the fact that the CO2 emissions 

are dependent on fossil generation which has shown negligible differences for the various overnight 

tourist stays simulation runs.  

 

Figure 6.8 Impact of tourism changes on 

accumulated CO2 emissions 

 

Figure 6.9 Impact of tourism changes on 

monthly CO2 emissions 
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It is observed, as with the “business as usual” scenario, however, that the accumulated CO2 

emissions from the island system are increasing (the accumulated CO2 emissions stock cannot 

decrease unless you remove CO2 from the atmosphere), at a slowing rate, since the amount of fossil 

generation capacity and monthly CO2 emissions decreases in general, over time for all three 

simulation runs. 

 

 

Energy efficiency measures 

Figures 6.10, 6.11, and 6.12 show the impacts of energy efficiency measures on the long-term 

installed generation capacitates of fossil, energy storage, and renewables respectively.  The effect 

of the various simulation runs of doubling and tripling the energy efficiency target (over the 15 

years’ timeline) on the installed fossil generation and energy storage is negligible. As in the earlier 

case of tourism, energy efficiency futures appear to have very little impact on either energy storage 

or the role played by fossil fuel generation within this island system. The simulation runs in both 

the fossil generation and energy storage cases appear to be in line with “business as usual” scenario. 

Additionally, in Figure 6.11 the distinctive energy storage trajectory related to the policy objectives 

for energy storage and seen earlier in Figure 6.6 is once again replicated within the scenario runs 

of this section. This phenomena is likely to be expected and the issues related to it will be 

commented on further later in this chapter in the context of the combined scenarios analysis (i.e. 

“all policies on”). 
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Figure 6.10 Impact of energy efficiency 

scenarios on installed fossil generation 

capacity 

Figure 6.11 Impact of energy efficiency 

scenarios on installed energy storage 

capacity 

The energy efficiency futures on the installed renewables capacity is much more pronounced as 

shown in Figure 6.12 than with the energy storage and fossil generation futures discussed above. 

The installed renewables capacity for the tripling of energy efficiency measure is lower than that of 

the doubling measure which is lower than the “business as usual” scenario after the 15 years’ 

timeline for energy efficiency policy. This observation is valid under the assumption that, in the 

long-term, renewables are the preferred ‘capacity-type’ to be installed within the system. Hence, 

to satisfy the change in the long-term demand from the varying energy efficiency measures there 

will be a proportionated change in the installed renewables capacity. The installation changes are 

not very visible for the earlier part of the simulation until around the year 2023, since the installed 

capacities during those initial years were sufficient to meet the variations in the demand given from 

energy efficiency measures. These results reveal that energy efficiency measures will have an 

impact on the long-term investments and this will be directly applicable to the generation 

technology that is preferred for capacity installations. In other words, energy efficiency measures 
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impacts on generation capacity investments are driven by the pre-existing direction of capacity 

installation policies such as renewables integration. 

 

Figure 6.12 Impact of energy efficiency scenarios on installed aggregated renewable capacity 

Figures 6.13 and 6.14 shows the corresponding impacts on the long-term accumulated CO2 

emissions and the monthly rate of CO2 emissions respectively. In both cases, there is a slight dip in 

the trajectories of the doubling and tripling energy efficiency measures compared to “business as 

usual”. This dip is most visible during the energy efficiency policy time period 2012 to 2027. The 

distinctions between the various simulation runs for the monthly CO2 emissions are more 

pronounced than with the accumulated CO2 emissions. 
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Figure 6.13 Impact of energy efficiency 

scenarios on accumulated CO2 emissions 

Figure 6.14 Impact of energy efficiency 

scenarios on monthly CO2 emissions 

The results reveal that with less demand as influenced by higher energy efficiency measures, there 

will be slightly less monthly CO2 emissions and accumulated CO2 emissions within the system. 

However, after the energy efficiency measures are removed, the system will tend to have increased 

CO2 emissions since more fossil generation would now be utilised up to the level of the “business 

as usual” scenario. This can be attributed to the fact that the demand will again increase after the 

energy efficiency measures are removed. Hence the fossil generation utilisation levels needed for 

the frequency balancing of the electricity system is again similar to the levels of the “business as 

usual” scenario. Note here that the monthly CO2 emissions are directly related to the actual usage 

of fossil fuel and not strickly on the installed capacity. Also important here is that the higher demand 

after the energy efficiency policy measures are removed is satisfied in part by increasing the 

renewables capacity.  
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EV expansion 

The influences on the installed fossil generation and energy storage capacities of the various EV 

expansion policies together with “business as usual” are shown in Figures 6.15 and 6.16 

respectively. In both cases, and in all scenarios, there are no discernible differences from the 

“business as usual” scenario in the installed capacities given.  

Figure 6.15 Impact of EV expansion policies 

on installed fossil generation capacity 
Figure 6.16 Impact of EV expansion policies 

on installed energy storage capacity 

However, as shown in Figure 6.17, there are various visible long-term impacts on the trajectories 

of the installed renewables capacity for the different EV expansion policies. It can be seen that the 

combined EV expansion market and 2020 policy (grey line) results in a higher renewables capacity 

by 2050 than all other scenarios. In addition, for the other scenarios of market-based and only a 

2020 EV policy the penetration of renewables has very similar trajectories and hovers around the 

“business as usual” scenario in the long-term. This result substantiates the assertion of Section 

5.4.1, that EV expansion is a key aspect to increasing the renewables capacity of the island system. 

There is also a slight dip around 2027 - 2032 (highly visible with the combined EV expansion and 

2020 policy scenarios) in the amount of installed renewable capacity for the simulation runs with 
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more EVs (red, green and grey lines). This implies that fewer capacity investments were facilitated 

up to a point with higher EV penetration (assuming that the EVs have a mainly off-peak charging 

routine at low load periods as explained in Section 6.2.2 and Chapter 5). This result remains valid 

where renewables capacity is the preferred generation source for new capacity investments. 

 

Figure 6.17 Impact of EV expansion policies on installed aggregated renewable capacity 

Figures 6.18 and 6.19 show the corresponding impacts of the various EV expansion policies on the 

long-term accumulated CO2 emissions and the monthly CO2 emissions rate respectively. The 

impacts of the EV expansion policies in both figures are very similar. The combined EV expansion 

market and 2020 policy proved to have less monthly and accumulated CO2 emissions by 2050. The 

other scenarios for the EV expansion policies achieved almost negligible differences in their 

monthly and accumulated CO2 emissions by 2050.  Also observed is a slightly higher monthly CO2 

emission for the combined EV expansion market and 2020 policy over the period 2020 - 2030. This 

can imply that slightly more fossil generation was utilised to meet the increase in demand from EVs 

as the system operators deferred from investment in new low-carbon (renewables) capacity. This 
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is a short-lived phenomenon over a few years arising from the need to meet higher demand and 

from delays in new capacity investments.   

Figure 6.18 Impact of EV expansion policies 

on accumulated CO2 emissions 

 

Figure 6.19 Impact of EV expansion policies 

on monthly CO2 emissions 

Renewables policy 

Figure 6.20 shows the effects on the installed fossil generation of changing the renewables policy. 

For the “business as usual” scenario, the renewables policy seeks to have 45% of the total electricity 

generation capacity installed in 2005 as renewables by 2020. In addition, this policy implements a 

30% reduction of the 2005 CO2 emissions level. The long-term effect of this policy on the installed 

fossil generation policy shows a steady decline in installations of this generation source from about 

103MW in 2005 to about 35MW in 2050. From these results, it is also seen that the 2030 high 

renewables policy follows a similar downwards trend but at a higher rate of decline till 2030, at 

which time it tapers off then settles above the “business as usual”  scenario. The 2050 renewables 

policy implements the renewables capacity and emissions goals of the “business as usual” scenario 

over the entire timeline (until 2050) of the simulation. The trend shown here is a slight drop in 

installed capacity, which then gradually increases, and settles at a slightly lower capacity than the 
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2005 installation value. With such a less aggressive renewables policy implementation the higher 

amounts of installed fossil generation capacity will stubbornly remain within the system due to the 

longer timeline of this goal unlike the “business as usual ” and 2030 high renewable policy scenarios.  

Figure 6.20 Impact of renewable policy on 

installed fossil generation capacity 

 

Figure 6.21 Impact of renewable policy on 

installed energy storage capacity 

The impact of the various renewables policies on the installed energy storage capacity is less 

pronounced as shown in Figure 6.21. Here it is observed that there are small to minimal impacts on 

the installation of energy storage under these various simulation runs. This can be attributed to the 

fact that there are separate non-related energy storage policies that guides these installations 

within the system. However, the minimal impacts revealed from the various scenarios shows that 

renewables policies have the potential (in the absence of energy storage policies) to impact energy 

storage capacity in the long term. 

Figure 6.22 shows the effects of the various renewables policies on the installed renewables 

capacity. The “business as usual” and 2030 high renewables policy scenarios shows similar 

trajectory trends in the quantities of installed renewables within the system by 2050. Within both 

simulation runs, they are initially s-shaped curves as the desired installations are achieved followed 
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by further installations to meet the long-term increasing electricity demand. In addition, these s-

shaped curves are oscillating after an overshoot SD archetype (Sterman 2000) pg. 121), along the 

upward trajectory of the installed renewables carrying capacity. Conversely, the 2050 renewables 

policy simulation gradually increases installed renewables capacity over the timeline of the 

simulation to about 90MW in 2050. This scenario run had the lowest rate of installations and 

resulted in the least amount of installed renewables capacity by 2050. This implies that relaxing the 

renewables policy will have less influence on substantially increasing the quantities of installed 

renewables capacity. 

 

Figure 6.22 Impact of renewables policy scenarios on aggregated installed renewable capacity 

Figures 6.23 and 6.24 shows the corresponding impacts of the various renewables policies on the 

long-term accumulated, and the monthly rate of CO2 emissions respectively. The “business as 

usual” and 2030 high renewables policy simulation runs achieved a comparable amount of monthly 

and accumulated CO2 emissions by 2050. Although, the 2030 high renewables policy proved to 

achieve less CO2 emissions in the shorter term before settling back to the “business as usual” levels 

of CO2 emissions. The 2050 renewable policy proved to be a significant source of CO2 emissions, 

accumulating about 9 million tonnes by 2050. Also seen is that a high rate of monthly emissions 
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remains throughout the simulation run. These results reveal that a balance should be found for the 

appropriate renewables policies. A long-term non-aggressive policy is not to be considered to 

reduce the environmental concerns of CO2 emissions. Additionally, slightly aggressive policies such 

as the “business as usual” can give similar emissions as highly aggressive policies such as the 2030 

high renewable policy.                                                       

Figure 6.23 Impact of renewable policy 

scenarios on accumulated CO2 emissions 
Figure 6.24 Impact of renewable policy 

scenarios on monthly CO2 emissions 

6.4.2 Combined Scenarios Analysis 

The previous section detailed results of individual policies and drivers acting on their own. This 

section gives a more comprehensive consideration of policies and drivers. A simple approach was 

taken in which all of the aggressive policies and drivers “all policies high” were simulated at once 

and compared to all of the less aggressive policies and drivers “relax all policies” being simulated at 

once. For example, with the aggressive policies and high driver influences the 2030 high renewables 

policy was combined with the high EV expansion, high energy efficiency measures (18% reduction) 

and a high tourism growth rate.  

Naïvely it would be expected that a combined scenario analysis might reveal profound systemic 

observations that had previously been missed. In reality, however, what it does is reinforce 



Emerging Low-Carbon System Capacity Mix 

 

188 
 

observations and conclusions that were already visible within the preceding individual scenario-by-

scenario analysis. This reinforcement of the prior observations gives insights into what are the key 

issues for the future of the system in reality when all real world influences and policies are in place. 

In addition, this combined scenarios approach can be tested more robustly in a MCMC sensitivity 

analysis to give model confidence bounds as done in Section 6.5 and within Appendix B2 (to include 

GDP growth rates sensitivity). Results for the combined scenario analysis were obtained and 

compared to “business as usual” for the key variables being used for the scenarios of Section 6.4.1. 

Figure 6.25 shows the effects on the installed fossil generation of the different combined scenario 

simulation runs. The “relax all policies” simulation run had the most fossil generation capacity in 

the long-term compared to “business as usual” and to the “all policies high” simulation run which 

had the least. These results also reflect the results of the high and low renewable policy scenarios 

from Figure 6.22 implying that fossil generation is highly influenced by the type of renewable policy 

that stems from the environmental and energy security concerns of the system.  

 

Figure 6.25 Impact of combined scenarios on 

installed fossil generation capacity 

 

Figure 6.26 Impact of combined scenarios on 

installed energy storage capacity 

Figure 6.25 reveals a range of possible futures for fossil fuel generation but in Figure 6.26 once again 

it can be seen that a very rigid and distinctive evolution of energy storage occurs. In fact, this 

reproduces the behaviour seen in all the preceding scenario analyses for the energy storage 
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variable and hence should be unsurprising. At this point it becomes appropriate to comment fully 

on the origins of this observed behaviour related to the policy objectives for energy storage within 

the system. In SD analysis, observations of this type are consistent with the influence of a strong 

external driver and in this case it is the policy goal for a small reservoir energy storage project on 

the island to commence in 2018. Hence, energy storage within this model is found not to be 

endogenously driven by model behaviours. The fact that in all scenarios installed energy storage 

capacity actually decreases at the end of the policy implies that the policy must be upheld in the 

long-term in order to sustain energy storage within the system. The result also gives insights that 

distinct and limited (strict) energy storage policy goals are not affected (if ever, it is minimal) by the 

other policies existing in the system. 

That said, it is important to recognize that this SD analysis does not include the possibility of vehicle 

to grid electricity storage. It is understood that vehicle to grid could become a major part of 

electricity storage in the years to come and hence build upon earlier and more traditional policy-

led energy storage approaches. But springboard from them, and hence avoid the decline in storage 

seen in the years after 2025 in Figure 6.26 and elsewhere. Energy storage policies should be more 

aggressive and possibly aligned with other energy policies such as renewables integration within 

the system. 

Figure 6.27 shows the effects of the combined policies simulation runs on the installed renewables 

capacity. For these results, “relax all policies” simulation runs achieved the least amount of installed 

renewables whilst the “all policies high” simulation achieved the highest amount of installed 

renewables in the long-term. The “all policies high” simulation also achieved a deeper penetration 

of renewables most likely driven by the renewables policy and aided by the high influx of EVs 

(almost 25% more than “business as usual” by 2020) within the earlier years of the simulation. 

These results also reflect the high and low renewable policy scenario results of Figure 6.22. This 

implies, as with the installed fossil generation capacity, that the installed renewables capacity is 
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strongly influenced by the existing renewables policy. The oscillations within this simulation run as 

seen for the renewables policy scenario in the previous section provides some evidence of the 

influence of renewables policy on the renewables capacity installed. This is evidenced from the s-

shaped archetypes (of the balancing effects) of the various (2030 and 2050) goal-seeking targets of 

the renewables policy. In addition, it can be seen that a high penetration of renewables can still 

exist even under high energy efficiency measures and EV expansion within the system. Conversely, 

it can be seen that a lower penetration of renewables capacity can exist with weak energy efficiency 

measures. 

 

Figure 6.27 Impact of combined scenarios on aggregated installed renewable capacity 

Figures 6.28 and 6.29 shows the corresponding impacts of the combined scenarios simulation runs 

on the long-term accumulated, and the monthly rate of CO2 emissions respectively. The “business 

as usual” and “all policies high” simulations achieved a comparable amount of monthly and 

accumulated CO2 emissions by 2050. However, the “relax all policies” simulation run was very weak 

in reducing the monthly amount of CO2 emissions, which actually began to increase by 2040. In 

addition, the accumulated levels of CO2 emissions was the highest (80% to 90% more than the other 

simulation runs) for the “relax all policies” simulation in 2050. The “all policies high” simulation was 

able to hinder the continuous long-term increases in CO2 emissions and have the least amount by 
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2050. These results indicate that an approach of not being aggressive with energy policies in the 

island system will hinder the environmental and energy security objectives of the system. However, 

policies do not have to be overly aggressive since similar environmental objectives can still be 

achieved with slightly less aggressive policies similar to “business as usual”.  

 

Figure 6.28 Impact of combined scenarios on 

accumulated CO2 emissions 

 

Figure 6.29 Impact of combined scenarios on 

installed energy storage capacity 

The choice and balance of the policies for the environmental and energy security concerns is an 

imperative for the system and strongly influences pathway and investments for reducing these 

concerns. The next section gives a simplified view of the influences of the financial driving force 

that can exist within the island system for capacity investments.   

6.4.3 Profitability Impact on Capacity Investments  

In the previous sections of the model analysis, the focus is directed to the policies that exist/can 

exist for meeting environmental and energy security concerns. It was observed that the installed 

renewables policies are very influential within the system and that the installed capacity can exhibit 

S-shaped growth with overshoot and oscillations. In this section, the financial attractiveness linked 

to the profitability of the installed capacities is used to gauge the impacts within the installed 

capacities of the system. The only difference from the previous analysis scenarios is the use of high 
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electricity tariffs for the “business as usual” scenario (fixed at double the 2005 tariffs shown in Table 

6.3). 

 

Figure 6.30 Impact of increased profitability on installed capacity 

Figure 6.30 displays the sensitivity of the increased profitability on the investments in the different 

installed capacities. The investments in energy storage showed no changes in capacity investments 

with the high electricity tariffs. This is again due to the fixed energy storage policy for capacity, as 

noted in Section 6.2.1 hence no investments are made with excess revenues available. Also shown 

is the fossil generation investments downwards trajectory which is not changed but there is a 

greater delay in the removal of installed fossil generation from the system. This can be due to 

installed fossil generation remaining slightly more financially attractive than in “business as usual” 

due to the higher financial prosperity of the electricity company from the excess revenues collected 

with the higher electricity tariffs.   

For the installed renewables capacity, the investments within this capacity were increased under 

high electricity tariffs. A lot more renewables capacity was installed in the long-term, by 2050. A 

more prominent S-shaped growth with overshoot SD archetype (Sterman, 2000) is also visible. This 
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red curve have pronounced periods of high renewables growth then a slowdown and this 

phenomena is repeated for the timeline of the simulation. These occurring oscillations, however, 

appear to be damped which indicates that there might be some local stability for the trajectory of 

the installed renewables capacity. A strong indicator that the cycles necessary for the renewables 

investments is constrained by a negative feedback probably link to the financial upkeep of the new 

installations. Additionally, this phenomena might be also linked to the environmental and energy 

security driven renewables policy goals of the system. Taking this into account, it can be said that 

the financial viability of the electricity company can provide for a greater penetration of low-carbon, 

however, the low-carbon policies should be focused upon for quicker damping (as shown by the 

“business as usual” simulation run) of the probable oscillations this might result in impact the 

system.  

The detailed sensitivity analysis of the model to include expected revenues are shown in Appendix 

B2. However, the next section gives the long-term confidence bounds and sensitivity of the model 

to the various policy scenarios simulated in both Sections 6.4.1 and 6.4.2. 

6.5 Confidence Bounds of Synthesis Modelling Policy Analysis 

This section details the results on the confidence bounds of the installed capacities for the 

disaggregated renewable sources together with the fossil generation and energy storage. In 

addition, the confidence bounds for the accumulated CO2 emissions are shown. These results are 

obtained by applying the standard Vensim multivariate MCMC sensitivity analysis as applied to the 

policy scenarios discussed in Section 6.3 and for varying, the average consumption for nightly 

tourist stays. A total of 200 simulations were conducted, with the program randomly selecting 

values from the sensitivity ranges of the parameters shown in Table 6.5. The switches14 used for 

model implementation in the Vensim software for the EV expansion were also activated. 

                                                           
14 Switches are implementation within the Vensim software for turning on and off policy/specific 
implementations within the model using a binary (1) on and (0) off concept.  
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Table 6.5 Important variables for the policy sensitivity analysis 

The results displayed in the following graphs shows the confidence bounds as coloured bands using 

the percentiles of 50%, 75%, 95% and 100%. For example, a 75% confidence bound (green) indicates 

that 75% of all sensitivity runs fall within the top and bottom green bands (to include the 50% yellow 

band), 90% within the blue bands and 100% within the grey bands. The resulting range of possible 

outcomes for the capacity installations of the different technologies and the accumulated CO2 

emissions of the system under the given ranges of these policies are shown in the following graph, 

Figure 6.31.  

Figure 6.31 displays the range of outcomes in MW for the installed capacities of the disaggregated 

renewables capacity of the system. The base-load renewables such as geothermal and run-of-river 

hydro have the largest (possible) installed capacities outcomes. Geothermal is bounded within a 

higher range than the run-of-river hydro. The other renewables such as biomass, wind and 

micro/mini generation (solar) are bounded within lower ranges of installed capacities. 
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Figure 6.31 Sensitivity of the installed disaggregated renewables capacity 

This implies that the base-load renewables will be more prominent in the long-term than the more 

intermittent renewables (the limits to their installations can be restricted by the availability of the 
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respective heat and water resources within the island). Although biomass is not an intermittent 

renewable source it is observed that it struggles to compete with the more familiar (learning-by-

doing) and cost-effective base-load renewables in the long term.   

Figure 6.32 shows the range of possible outcomes of the aggregated renewables capacity by 2050. 

This graph is the accumulated reflection (summation) of Figure 6.31 as all of the individual 

renewable sources are combined to show the confidence bounds of the total amount of possible 

renewables to 2050 under these scenarios. The figure shows that the confidence bounds are 

aligned with an increasing trajectory. This observation implies that in the long run under any 

combinations of the various policies of Section 6.3 there will be increased renewables capacity. 

 

Figure 6.32 Sensitivity of the installed aggregated renewables capacity with various policies 

Figure 6.33 displays the range of possible outcomes of the installed energy storage capacity by 

2050. From this figure, we can conclude that energy storage will be tightly bounded by 2050 under 

these various policies. The observations stem from the fact that energy storage within this system 

is driven by a singular policy, as detailed in Sections 6.3 and 6.4.2. However, variations to this policy 

to embrace the effects of renewables will lead to larger ranges of outcomes as shown in Appendix 

B2 for the detailed sensitivity analysis of the model.  
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Figure 6.33 Sensitivity of the installed energy storage capacity with various policies 

The following figure, Figure 6.34, captures the range of possible outcomes for the installed fossil 

generation and shows that, in the long term, there will be a decreased amount of capacity installed 

from fossil generation. This observation implies that in the long-run, any combinations of the  

 

Figure 6.34 Sensitivity of the installed fossil generation capacity with various policies 
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various policies of Section 6.3 (considering the results from the “relax all policies” and “all policies 

high” simulation runs of Section 6.4.2) will lead to a decreased amount of fossil generation capacity 

by 2050. Also observed is the wide range of installed fossil generation by 2050 which implies that 

the policies applied to the system for larger removal of fossil generation should be closely aligned 

to the lower part of the range of possible outcomes (driven by the renewables policy) shown in 

Figure 6.34. 

Figure 6.35 gives the range of possible outcomes for the accumulated CO2 emissions until 2050. 

This range of possible outcomes is bounded over a very large range and is guided by the large range 

of possible outcomes of the installed fossil generation within the system. 

 

Figure 6.35 Sensitivity of the accumulated CO2 emissions with various policies 

This observation reinforces the fact that the correct policies must be adhered to in order to 

minimise the environmental effects of CO2 emissions from the system. Policies that keep the 

installed fossil generation lower, in the long run, will thereby keep the accumulated CO2 emissions 

lower and prove to be the best choices for a low-carbon evolving isolated electricity system.  
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These confidence bounds for the policy scenarios gives a view of the wide ranging possible 

outcomes that each of the key variables examined can experience in the long term. The next section 

details the key investment and environmental implications for the island system as observed from 

the analysis and results of this and the previous sections. 

6.6 Long-term Investments and Environmental Implications 

The key stakeholders responsible for the investments and policy of the electricity system are 

expected to ensure a sustainable electricity supply. In so doing, they are faced with a requirement 

to lower the CO2 emissions while providing secure electricity supply. Hence, there is an incentive 

by policy makers and key stakeholders to explore policies to sustain the renewables uptake and, at 

the same time, a sustainable capacity mix (insulated from fossil fuel dependency). This pursuit of 

low-carbon policies within island electricity systems has many benefits but also provides challenges. 

Further inspection of the modelling and policy analysis used in Sections 6.4 and 6.5 provide a basis 

to understand the implications of environmental factors and energy security concerns on the long-

term capacity investments within these isolated island systems. 

It is observed that, in the long term, the capacity mix will be endowed with an increasing amount 

of renewables capacity and a decreasing amount of fossil generation capacity within the various 

individual scenarios. Even under the scenarios such as tourism which are not focused on CO2 

emissions, there is still an inherent loss of fossil generation. This is due to the current focus on 

renewables integration and reinforces the fact that the capacity mix will move from a fossil fuel 

base to a low-carbon base. It also follows that in the long term; the monthly and total accumulation 

rate of CO2 emissions is expected to decrease. Hence, the environmental challenges of tackling 

global warming and climate change will be less. However, the effects of this reduction on the global 

scale will be very small compared to a proportional reduction by larger developed nations. Hence, 

the desire to be a part of the common agenda to reducing the effects of climate change can be the 

incentive that is sought after by smaller isolated island systems. In addition, removing the energy 
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security import dependency on fossil fuel will drive a renewables agenda. The long-term outlooks 

for the isolated island electricity system low-carbon capacity mix and resulting environmental 

concerns will be driven by policies to reduce CO2 emissions and fossil fuel import dependency, 

particularly the existing renewables policies.  

Following account, it is important to note that this low-carbon base of installed capacity is 

preferred. The difficulty lies in sustaining the quantities of renewables within the capacity mix. For 

all the policy scenarios, it is observed that a high penetration of EVs gives the highest installed 

renewables capacity by 2050. In addition, EV expansion in its correct quantities can delay capacity 

investments in the shorter term and then encourages this higher penetration of renewables in the 

long term. Energy efficiency measures also reduce the need for capacity investments and the 

quantity of installed renewables capacity by 2050 is lowest in the electricity system with highest 

energy efficiency measures. It is also observed that with aggressive renewables policy there is a 

pronounced decrease in the rate of fossil generation. The resulting accumulated CO2 emissions also 

show the largest deviations from current trends and hence even less environmental consequences, 

unlike the least aggressive renewables policies. According to Figure 6.31, it is also observed that, in 

the long term, base-load type renewables such as geothermal and run of river prove to be more 

valuable to island systems than non-base load renewables such as wind and solar. In addition, with 

restrictive energy storage policies, it can be seen that installed energy storage capacity will play less 

of a role in the long-term capacity mix, with negligible changes from other factors apart from the 

renewables and EV expansion policy influences.  

These observations reveal that policymakers and investors should be aware of the long-term 

consequences of their actions and ensure that the possibility of the outcomes will be those desired 

for the island system. It is seen that the capacity investments within the system and the 

environmental implications are intertwined and depend heavily on the focus of the policies within 

the system. In addition, the financial viability of the system can lead to higher oscillations within 

the system capacity (low-carbon) which can lead to unwanted oscillations on its own but is damped 
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by the policies. Hence, with the right mix of policies, the investor decision making can be improved 

and the desired low-carbon based capacity mix can be achieved.      

6.7 Conclusions 

This chapter presents the synthesis model, which is a combination of the previous three sub-

models, and thereby research sub-question 4 of this thesis has been achieved. The work integrates 

the most critical challenges as environmental and energy security concerns converge for the 

isolated island electricity system. It has been seen that the low-carbon policies of EV electrification 

and renewables integration are important for sustaining the uptake of renewables within the 

generation capacity mix. In addition, the fossil generation capacity will be substantially removed 

from the generation mix in the long-term whilst base-load type renewables (such as geothermal 

and run of river) will play a bigger role in the future of these systems, unlike more intermittent and 

variable sources such as wind generation. As a consequence CO2 emissions and their environmental 

impact will also be much reduced in the long-term. In general, by giving the new details from this 

chapter for the policy and endogenous technology-specific (disaggregated renewables, fossil fuel, 

and energy storage) long-term economic attractiveness these insights were obtained. Also seen is 

that a focus on financial viability will oscillate (with high uncertainty) the installed capacitates of 

the generation technology that is favoured within the system, hence a mix of policies is useful for 

these electrically isolated island systems.  

Following account, the key dynamics surrounding the uptake of renewables within the isolated 

island system is presented within this chapter giving prospective solutions for the long-term 

investment strategies of emerging low-carbon island electricity systems. Demand-based policies 

such as tourism and energy efficiency will have low impacts or decreased effects on the long-term 

installed capacities of the system.  Any impacts, if present will be concentrated on the generation 

technology that is favoured for capacity expansion within the system (low-carbon renewables). This 
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enhances the energy security of the system and contributes to a more environmentally friendly 

outlook for the system in the long-term.  

Electrification with EVs is seen to sustain the uptake of renewables, particularly base load type 

renewables in the long-term, but it also increases the long-term demand although it can aid in 

deferring capacity investments in the shorter-term. The increase in renewables is due to the 

increase in electricity demand created by a larger number of EVs and this demand is met by capacity 

from renewable sources. The environmental benefits are also great. Also seen is that energy storage 

will need more aggressive long-term policies in order to be sustained within the generation mix and 

the concept of vehicle to grid is probably needed for future storage increases.  

Additionally, it is seen that, in the long-term, investment in fossil generation is non-existent 

however it stubbornly remains within the generation mix. This persistence of fossil fuel generation 

is attributed to the fact that it is needed for the frequency balancing of the electricity system so 

cannot be completely removed from the system. Innovations in low-carbon frequency-balancing 

generation sources such as done by Martínez-Lucas et al. (2016) and Inoue, Genchi and Kudoh 

(2017) can play a large role in further decreasing the environmental impacts and in enhancing the 

energy security of the system. The next chapter will provide the necessary insights gained from this 

modelling work, give directions for future work, and summarise the main conclusions of this thesis.  
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Chapter 7. Summary and Conclusions 
 

 

This final Chapter brings the conclusions from the previous chapters of the thesis together. The 

fulfilment of the research work set out for the thesis is firstly established and the associated key 

findings are detailed. The main research contributions are then presented together with the policy 

and investment implications which highlight the high-level conclusions, novel contribution and the 

generalisation of the research work. Suggestions to future work are subsequently given followed 

by a reflective final summary. 

7.1 Summary of Key Findings 

The vast majority of countries around the world have embraced a path of addressing the future 

security of their electricity supply in light of the environmental concerns of the existing legacy 

systems. Extensive efforts are aimed at understanding the expected transition into low-carbon 

electricity systems of today and the future. It is anticipated that these systems will eventually evolve 

from smarter low-carbon systems to become the smart grid electricity systems of the distant future. 

A holistic view of the socio-techno-economic aspects of the existing complex system in light of the 

low-carbon policies and investments of the system will enrich stakeholders with the necessary 

insights and provide them with benefits of an evolving electricity system.  

The research presented in the previous chapters contributes to the existing literature on 

transitioning low-carbon electricity systems in the context of energy security and environmental 

concerns for isolated island systems. It seeked undersanding to the question: 

What does the convergence of environmental and energy security concerns imply for small 

isolated electricity systems? 

To answer this overaching research question, the following was done:  
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• The research objectives were explored within the context of four research sub-questions.  

• A pragmatic range of low-carbon policies, influences and key aspects such as electric 

vehicles were emulated to give light into the long-term trends and behaviours of important 

aspects (such as generation capacity investments) of the system.  

• A novel policy and investment analysis framework, akin to an IRP process was developed 

for the complex causal system dynamics that exists within such systems.  

Firstly, in Chapter 4 the thesis explored the capacity investment structure of existing electricity 

systems, in which a simplified fossil generation only system is assumed.  This was done within the 

context of the sub-question: 

1. How are fossil-fuel-based island systems influenced by electricity demand and capacity 

margin standards? 

Key findings are summarised: 

• Large capacity margins in the island system are a critical, but not a desired, driver for the 

fossil fuel generation capacity investments. 

• The electricity demand forecast is a necessary driver for capacity expansion within the 

electricity system  

• Fossil generation capacity investments are driven by the need for new capacity (electricity 

demand) and not by financial incentives.  

• The security of electricity supply (fossil fuel import independence) for such systems is 

enhanced by careful inspection of the capacity margin and demand growth rate of the 

system.   

Also found in Chapter 4, is the analysis of the process and influences of renewables integration via 

low-carbon policies on the existing fossil generation capacity. The effectiveness of these policies for 

long-term renewables capacity investments was examined. This was achieved by answering sub-

question two. 
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2. How effective are low-carbon policy targets within a small isolated island electricity system? 

The key findings and answers to this question follows: 

• It was observed that local renewables installation targets are very influential for the 

renewables capacity investments in the system.  

• Setting short-term very high targets within an island electricity system is not very 

productive since meeting these targets early is inefficient or impractical if the targets are 

just too high.  

• There are increased emissions reductions benefits by having more aggressive targets.  

• The financial health of the system can possibly be jeopardised due to higher investment 

costs needed over a short period of time trying to achieve aggressive targets (seen as 

oscillations in Chapter 6 representative of boom bust cycles).  

Chapter 4, in answering the two subquestions above, also supports the idea of Jamasb, Nuttall and 

Pollitt (2008) that island systems typically suffer from a weaker innovation landscape and have 

limited opportunities for learning-by-doing cost reductions. In addition, it lends to the idea that 

setting successful renewables targets should be further investigated for such systems. 

Chapter 5 provided the long-term trends of pragmatic influences and low-carbon policies on the 

endogenous electricity demand of the system. The most influential and efficient low-carbon policies 

for the long-term endogenous demand were identified within the context of the following sub-

question.  

3. How is electricity demand endogenously influenced by low-carbon policies, and what are 

the long-term implications on isolated islands?  

Key findings are summarised: 

• Energy efficiency remains the most powerful for guiding the long-term demand dynamics 

and for safeguarding the energy security of the system.  
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• EV expansion is found to be potentially more interesting in terms of the long-term demand 

impacts compared to both tourism growth and energy efficiency measures. 

• EV expansion presents electricity demand uncertainty challenges for policymakers.  

• It is shown that isolated island systems with a low economic share of tourist activities are 

largely unaffected by energy-related policies which focus solely on tourism (within the hotel 

builds assumptions used in the model).  

• Island systems that has a relatively large share of demand based on tourism might show 

greater influence of tourism changes on the long-term electricity demand.   

To answer the final sub-question, the sub-models from Chapters 4 and 5 are brought together and 

analysed in Chapter 6 for answering the question. 

4. How can energy policy and investor decision-making be improved by system dynamics 

insights? 

In answering this question this chapter integrated the key endogenous socio-techno-economic 

transitional factors typical to the structure of low-carbon island electricity systems. The holistic, 

system dynamics view for the long-term capacity investments and policies within these evolving 

low-carbon based systems driven by the environmental and energy security concerns are 

subsequently captured.  

The following key findings and answers to the question are highlighted: 

• Low-carbon policies of EV electrification and renewables integration policies are important 

for sustaining the uptake of renewables within the generation capacity mix. 

• EV expansion in appropriate quantities can defer capacity investments by 5-10% in the 

shorter term whilst however increasing the amount of renewables capacity in the longer-

term.  
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• High penetration of EVs gives the highest installed renewables capacity by 2050, up to 30% 

more than the installed capacities of the highest energy efficiency measures (reduces the 

need for renewables capacity investments) which gives the lowest by 2050. 

• Fossil generation capacity will be substantially removed from the generation mix in the 

long-term whilst base-load type renewables (such as geothermal and run of river) will take 

on a bigger role unlike more intermittent and variable sources such as wind generation. 

• It was observed that CO2 emissions can be much more reduced, by up to 50%, along with 

its environmental impacts in the long-term for the system. 

• Energy storage policies should be more aggressive and possibly aligned with other energy 

policies in order to sustain energy storage within the system in the long-term. For the use 

of restrictive energy storage policies, the installed energy storage capacity will play less of 

a role in the long-term capacity mix. 

• The financial viability of the electricity system can oscillate (more uncertainty) the installed 

capacitates of the low-carbon generation (generation technology that is favoured within 

the system) in the long term in the absence of low-carbon policies.  

• A mix of low-carbon policies is useful for isolated island systems since the renewables 

policies act as a damping mechanism for the renewables capacity investments.  

• It is also inferred that for a deeper penetration of low-carbon renewable sources within the 

island system, energy storage has a bigger role to play and the frequency balancing of the 

electricity system needs to be provided by low-carbon sources such as fly-wheels (although 

not correctly applicable for this island size). Innovations in low-carbon frequency-balancing 

generation sources (examples as done by Martínez-Lucas et al. (2016), Inoue, Genchi and 

Kudoh (2017) and Muñoz-Benavente et al. (2017)) can play a large role in further decreasing 

the environmental impacts and in enhancing the energy security of the system. 

• SD insights shows that a non-comprehensive approach of policies in the electrically-isolated 

island system will hinder the environmental and energy security objectives of the system.  
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In essence, this research presents a proof of concept and each case study system should be 

examined thoroughly to understand the contextual factors but can be assured that the general 

approach highlighted in this thesis gives significant insights into the implications of environmental 

and energy security concerns on isolated island electricity systems.  

7.2 Key Contributions 

The research work of this thesis has both academic and applied contributions to the field of energy 

and electricity policy. The high level summary contributions are subsequently given. A detailed 

comprehensive modelling platform was built that simulates the electricity capacity investments and 

policy influences within transitioning low-carbon electricity grids. This platform captures the key 

causal relationships from the implications of the environmental and energy security concerns 

commonly found in isolated island electricity systems. This includes the endogenous demand 

dynamics (resulting from the low-carbon policies and key influences) to identify policy barriers and 

incentives needed for sustainable futures of (smart/er) electricity systems. The simulation model is 

used to inform electricity policy planning and demonstrates a novel approach to generation 

capacity investments/expansion.  

The work also extends the existing energy and electricity policy literature by employing a systematic 

SD-based approach for implicit understanding of the convergence of environmental and energy 

security concerns in isolated island systems. It incorporates the impact of transitioning factors 

inherent to future low-carbon electricity systems such as EV expansion, energy efficiency measures, 

energy storage, renewables integration and the inherent LCOE (overnight cost basis and not the 

usual discounted cash flow) of the different electricity generation technologies. Using these factors 

to contribute to the policy guidance for improved decision-making with the long-term investment 

(integrated resource planning) strategies and generation mixes of island electricity systems and for 

increasing the uptake of renewables - further reducing environmental impacts from the system. 
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Additionally, this research developed a modular integrated resource planning (IRP)-type electricity 

capacity investment and policy modelling framework that integrates social, technical and economic 

aspects of the system and can be used to represent electricity systems in islands around the world. 

While the approach developed in this thesis was demonstrated on a system inspired by the case of 

São Miguel, it can be applied to other island systems. An island system that has a low-carbon agenda 

and is electrically isolated can be represented using the modelling platform developed for this 

thesis. For extension, to larger and interconnected systems the exogenous electricity tariffs and 

LCOE representations used within this thesis will have to be reformulated to represent the 

appropriate electricity markets that exist within these systems as appropriate. This can include the 

cross-border trading of electricity and provisions for capacity markets. 

7.2.1  Policy Implications 

The policy implications of this research lie in the areas of informing the policy focus areas and also 

showing the opportunities that policy makers have to shape the development and future of low-

carbon isolated electricity systems. For the policy focus area aspects, this research shares some 

main insights as follows: 

• Policy decisions surrounding capacity margins within isolated island systems are not critical, 

as is a focus on tourism for the development of the low-carbon system.  

• Electricity demand growth is seen to be important for the general system development.  

• Low-carbon policies such as EV expansion and energy efficiency measures greatly 

influences the long-term endogenous demand and generation capacity mix.  

• Energy efficiency is highly important and can act as a brute force solution useful for 

safeguarding the energy security of the electricity system.  

• It can be suggested that the policy behaviour of the locals rather than the externals that 

will have the key impacts on the long-term electricity demand - also of importance to the 

energy security of the system. 
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For shaping the development of future low-carbon isolated island electricity systems we see that: 

• The issue of renewables targets is of tremendous value for ensuring emissions reductions 

and to attain feasible levels of low-carbon capacity within the electricity system.  

• Policy makers should be aware and guided by the lack of outright benefits associated with 

an urgency to meet low-carbon targets together with the financial implications of these 

policy choices. The policy efforts should be to capture the right mix of low-carbon policies, 

especially the renewables integration policy which can militate against the long-term 

uncertainty of financially driven capacity investments.  

• EV expansion policy in its appropriate levels probably aided by Governmental intervention 

pays huge dividends for sustaining the uptake of low-carbon generation in the long-term 

and can defer capacity investments in the shorter-term by approximately 5-10%.  

• To facilitate a deeper penetration of renewables in the long-term key stakeholders and 

policy makers will need to have confidence in the prospects of low-carbon frequency 

balancing innovations.  

• Energy storage policies should be more aggressive and possibly aligned with other energy 

policies and must be upheld in the long-term in order to sustain energy storage within the 

system.  Policy makers must build upon earlier and more traditional policy-led energy 

storage approaches and springboard from them.  

The implications from this work suggest that island system policy-makers should consider adopting 

a carefully-paced approach to low-carbon transitioning systems. With the convergence of 

environmental and energy security concerns the appropriate policies for high EV expansion, 

gradually paced renewables integration, energy storage and energy efficiency measures together 

with a desire for low-carbon frequency balancing (innovation) will enhance and improve the 

investor decision making and the desired sustainable low-carbon based capacity mix can be 

achieved.  



 

 

211 
 

7.3 Directions for Future Research 

The policy and investment approach developed for this research work is comprehensive but not 

without need for improvement. Three areas of further research have been identified. The first 

extends the analyses presented in Chapter 6 to include areas for innovation such as EV to grid 

storage and low-carbon frequency balancing. Hypothetical scenarios of EV to grid storage can 

further improve the long-term investment outlook and see the influence of such policies on the 

system. Concurrently, an innovation landscape for low-carbon frequency balancing is necessary and 

should be pursued globally. 

A second area for future research involves improvements in the model to include a wider range of 

social and economic aspects such as low-carbon jobs, endogenous economic (GDP) outlooks, CO2 

emissions taxation, demand side management services and off-grid generation. Additional details 

for improvements can be found in Section 3.6. In addition, the further refinement and exploration 

of causes of capacity investment oscillations with a financial origin for boom and bust cycles can be 

pursued. This can be achieved by improving the LCOE aspect of the model to include better cost 

analysis such as a pure NPV for operational and other cost representations. 

A final area for future work involves consideration for the inputs of other qualitative or social 

science research that enhances the simulation model generalisation. Considerations to the 

ethnographic analyses of consumer and generator choices for low-carbon assets in isolated islands 

and other countries will aid to make the model more generalisable. In addition, the market effects 

to include market imperfections of interconnected grid systems will need implementation.  To 

provide a transferrable methodology that gives a means to understand fully the low-carbon island 

electricity system’s overall sustainability guidelines for future development and utilisation.  

7.4 Reflections and Final Summary 

This research work would help stakeholders to better understand the emerging policy and 

investment strategies, and interactions of the low-carbon deployment and system growth of the 
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integrated resources, to enable them to make more effective strategies and decisions. The model 

developed for the case study isolated island system is transferrable to other systems with the same 

political oversight and contextual settings. However, modification would be needed for islands 

systems that are fully stand alone to account for inherent issues such as power purchase 

agreements. Some even larger adjustments would be needed for larger systems that may have 

market dynamics and/or interconnected grids. 

The use of SD to complete this research work was chosen based on its applicability to enhance 

learning in complex systems. SD is an excellent tool for capturing the long-term temporal 

understanding of a complex system from the key causal relationships which makes up the structure 

of these systems. Once key causal relationships are identified, the models are calibrated and then 

simulated to give a range of possible outcomes of the key trends in the system and not with the 

intention of predicition nor optimisation of the system. Additionally, SD models can tend to become 

very complex with many variables. As seen within this work, only the number of variables in the 

synthesis model were very high, but it was built up from smaller less complex models which were 

already thoroughly analysed during the research study. In thorough reflection, the benefits of this 

method far outweighed its weaknesses for the understanding sought within this research work.  

The underlying work that consolidates all four research sub-questions was developed in an 

incremental step-by-step manner. An initial sub-model of a purely legacy (fossil-based) electricity 

system was developed for understanding the key concepts for capacity investments within the 

system.  A separate sub-model was then developed to analyse the renewable integration within 

the existing system, then a second sub-model was developed to understand the long-term low-

carbon policy influenced endogenous demand. Finally, the two sub-models were brought together 

as a synthesis model to capture all of the key aspects that influence the long-term investment and 

sustainability guidelines. This included capturing unintuitive (tourism is not very influential whilst 

policies not financial stability should drive the system) and surprising opportunities (low-carbon 

frequency balancing) within these systems. Additionally, it is seen that the capacity investments 
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within the system and the environmental implications are intertwined and depend heavily on the 

focus of the policies within the system. These observations reveal that policymakers and investors 

should be aware of the long-term consequences of their actions and ensure that the possibility of 

the outcomes will be those desired for the island system. Thereby empowering consumers, 

distributors and governments, the key stakeholders, with stabilised cost of electricity for 

households and businesses. In addition, there will be reduced dependence on imported fossil fuels 

and reduced greenhouse gas emissions.  
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Appendix A Model Documentation 

This appendix gives the documentation of all variables, data inputs and other assumptions for the 

system dynamics models produced for this thesis in the style recommended by Martinez-Moyano 

(2012). This documentation contains the description of the different variables and the structure of 

the model. The interactive hyperlinked (HTML) details of the content of the model documentation 

contained within Appendix A will be archived on a publicly available website.  

General Notes 

The models shown are the renewables integration sub-model and the synthesis model. The 

synthesis model contains the full structure of the demand sub-model together with parts of the 

renewables integration and fossil fuel sub-models. All models begin simulations in 2005 and run for 

45 years up to 2050. There are 10 years of model calibrations from 2005 to 2015 and 35 years of 

model simulations. The time unit of 1 month is used and the time step is set to 0.0833 in the 

renewables sub-model and 0.015625 in the synthesis model. There is one view in the renewables 

integration model and there are six views in the synthesis model, of which two are derived from 

the demand sub-model. In the models, red fonts indicate variables that are passed from the current 

view to another, green fonts are constants (also in capitals), blue fonts are policy leverage variables 

and brown fonts represents other important variables. Other aspects shown within the appendix 

are the lookup tables of the investment and grid quality attractiveness functions. In addition, the 

capacity factors of the various generating technologies, electricity tariffs and LCOE values used for 

the models are clearly displayed within the model documentation. The main sources of data used 

for the models are (IEA, 2010a; ERSE, 2012, 2014; Isle-pact, 2012; Ilic, Xie and Liu, 2013; Botelho, 

2015; Nunes, 2015; EDA, 2016; European Commission, 2016), where additional sources have been 

used this has been clearly stated in the model description. 
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A.1 Renewables Integration Model Documentation 

Model Description: 

 

 

 
 
 
 

Listing of the various variable types as documented from the model: 

 
 

 * (state variables / total stocks) 

† Total stocks do not include fixed delay variables. 

†† (lookup variables / lookup tables). 
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Renewables Integration Sub-Model 
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Listing of ALL variables contained within the model in Alphabetic order: 
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A.2 Synthesis Model Documentation 

Model Description: 

 
 

Listing of the various variable types as documented from the model:Listing of the various variable types as documented from the model:Listing of the various variable types as documented from the model:Listing of the various variable types as documented from the model:    

 
 * (state variables / total stocks) 

† Total stocks do not include fixed delay variables. 

†† (lookup variables / lookup tables). 

 

    Different views present in the model:Different views present in the model:Different views present in the model:Different views present in the model: 

Net Electricity Net Electricity Net Electricity Net Electricity 
DemandDemandDemandDemand (92 
variables) 

Mismatch and Mismatch and Mismatch and Mismatch and 
Demand Imbalance Demand Imbalance Demand Imbalance Demand Imbalance 
Black BoxBlack BoxBlack BoxBlack Box (74 
variables) 

Policy, CO2 Policy, CO2 Policy, CO2 Policy, CO2 
Emissions, Capacity Emissions, Capacity Emissions, Capacity Emissions, Capacity 
Factor and Grid Factor and Grid Factor and Grid Factor and Grid 
QualityQualityQualityQuality (83 
variables) 

Financial and Financial and Financial and Financial and 
Economic Economic Economic Economic 
AspectsAspectsAspectsAspects (192 
variables) 

Installed Supply Installed Supply Installed Supply Installed Supply 
Capacity and Capacity and Capacity and Capacity and 
Learning Learning Learning Learning 
CurveCurveCurveCurve (117 
variables) 

Seasonality Effects Seasonality Effects Seasonality Effects Seasonality Effects 
Expected Capacity Expected Capacity Expected Capacity Expected Capacity 
and Real Dataand Real Dataand Real Dataand Real Data (46 
variables) 
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Net Electricity Demand View 
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Mismatch and Demand Imbalance Black Box View  
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Policy, CO2 Emissions, Capacity Factor and Grid Quality View  
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Financial and Economic Aspects View  
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Installed Supply Capacity and Learning Curve View 
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Seasonality Effects Expected Capacity and Real Data View
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Listing of ALL variables contained within the model in Alphabetic order: 

 
Variable 

Type Variable NameVariable NameVariable NameVariable Name, Units and Description 

#1 
L  

 

Accumulated CO2 Emissions (tonnes)  
= ∫net monthly CO2 emissions dt + [195732] 
Description: The stock of accumulated CO2 emissions level. The initial value is based on the amount of CO2 

emissions assumed in 2004 of 195732. The initial value can also be used as zero. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 

#2 
LI,A  

 

actual average capacity factor experience per installed MW renewables (fraction)  
actual average capacity factor experience per installed MW renewables [type] = average capacity factor 
experience per installed MW renewables[type]*seasonality effects on renewables availability[type] 
Description: Gives the capacity factor experience based on the monthly seasonality influences. The yearly effects 

of the renewables on the amount of capacity factor experience......Accounts for the maintenance and downtime 

of the technology100% capacity factor is 1.0. A monthly measure of 0.9 means 90% of the month of capacity 

factor experience is achieved. 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
average dispatchable hours for renewables - The amount of hours within a month that the specific renewable 
technology is dispatched base on capacity factor and merit order usage 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#3 
F,A  

  

 

additional capacity factor experience from new capacity (MW/Month)  
= (average capacity factor experience per installed MW fossil generation*fossil generation investment 
rate+(average capacity factor experience per installed MW energy storage*energy storage investment 
rate)+(∑(actual average capacity factor experience per installed MW renewables[type!]*renewables investment 
rate[type!]))) 
Description: Increase in the capacity factor experience attribute 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#4 
C  

 

ADOPTION FRACTION (Dmnl [0,0.05,5e-005])  
= 0.002 
Description: The fraction of times a contact between an active adopter and a potential adopter results in 

adoption. Based on the data of the present EV adoption we can safely assume 2 in every 1000 persons will 

adopt. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 

#5 
A  

 

aggregated renewables dispatchable MW capacity hours (MW*h/Month)  
= ∑(installed renewables MW capacity hours to utilise[type!]) 
Description: used to normalise the usage of the renewables technologies 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 

#6 
C  

 

Alternate BAU Storage policy (MW [15, 30, 0.1])  
= 12 
Description: The amount of energy storage capacity investments planned to start project in 2018 and used as 
an alternate storage policy. 
Present in 1 view: 
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Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 

#7 
A  

 

amount of expected total capacity as fossil (MW)  
= expected total capacity needed*FOSSIL CAPACITY PORTFOLIO 
Description: Given the investment portfolio we should have this amount of fossil in the generation mix to meet 
forecasted demand levels.. 
Present in 2 views: 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 

#8 
A  

 

amount of expected total capacity as renewables (MW)  
amount of expected total capacity as renewables [type] = expected total capacity needed*RENEWABLE 
CAPACITY PORTFOLIO[type] 
Description: Given the investment portfolio we should invest in this amount of the specific renewable 
technology in the generation mix to meet forecasted demand levels. 
Present in 2 views: 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#9 
A  

 

amount of expected total capacity as storage (MW)  
= expected total capacity needed*STORAGE CAPACITY PORTFOLIO 
Description: Given the investment portfolio we should have this amount of storage in the generation mix to 
meet forecasted demand levels. 
Present in 2 views: 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 

#10 
A  

 

amount of renewables considered for RENEWABLES POLICY (MW)  
= IF THEN ELSE( total capacity supply SWITCH = 1,∑(RENEWABLE CAPACITY PORTFOLIO[type!])*expected total 
capacity needed, desired renewables generation) 
Description: This is the amount of renewables desired by policy makers at the specified time. The specified time 
is the time when the policy is enacted. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
difference needed from renewables policy - Monthly amount of capacity needed to achieve policy goals by the 
policy timeline. 

#11 
A  

 

average capacity factor experience (Dmnl)  
= Total System Capacity Factor Experience/(Installed Energy Storage Capacity+Installed Fossil Generation 
Capacity+(∑(Installed Renewables Capacity[type!]))) 
Description: Capacity factor attribute as determined from the different installed capacity stocks. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
energy storage grid attractiveness - Attractiveness of the renewables technology based on the average grid 
capacity factor experiences. This represents the unit MW of energy storage that should be considered. 
fossil grid attractiveness - Attractiveness of the fossil generation technology based on the average grid capacity 
factor experiences. This represents the unit MW of renewables that should be considered. 
loss of capacity factor experience - Decrease in the capacity factor attribute 
renewable grid attractiveness - Attractiveness of the renewables technology based on the average grid capacity 
factor experiences. This represents the unit MW of renewables that should be considered. 
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#12 
LI,C  

 

average capacity factor experience per installed MW energy storage (fraction [0,1,0.05])  
= 0.9 
Description: This is the referenced capacity factor: Accounts for the maintenance and downtime of the 

technology100% capacity factor which is 1.0 A monthly measure 0.9 means 90% of the month of capacity factor 

experience. IEA 2005 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
average dispatchable hours for energy storage - The amount of hours within a month that energy storage is 
dispatched base on capacity factor and merit order usage 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#13 
LI,C  

 

average capacity factor experience per installed MW fossil generation (fraction [0,1,0.05])  
= 0.85 
Description: This is the referenced capacity factor:100% capacity factor which is 1.0 A monthly measure 0.9 

means 90% of the month of capacity factor experience....Accounts for the maintenance and downtime of the 

technology. IEA 2005 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
average dispatchable hours for fossil generation - The amount of hours within a month that fossil generation is 
dispatched base on capacity factor and merit order usage 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#14 
C  

 

average capacity factor experience per installed MW renewables (fraction)  
average capacity factor experience per installed MW renewables [type] = 0.8,0.9,0.6,0.2,0.18 
Description: 720h is equivalent to 100% capacity factor which is 1.0 This is a monthly measure. Geothermal has 

between 0.6 and 0.95 capacity factor: openei.org data: wind is between 15-40%, biomass 75-90%, solar 15-35%, 

Run of river Hydro biomass 75-90%, solar 15-40%, Run of river Hydro 80-95% This accounts for the maintenance 

and downtime of the technology 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
actual average capacity factor experience per installed MW renewables - Gives the capacity factor experience 
based on the monthly seasonality influences. The yearly effects of the renewables on the amount of capacity 
factor experience......Accounts for the maintenance and downtime of the technology100% capacity factor is 1.0. 
A monthly measure of 0.9 means 90% of the month of capacity factor experience is achieved. 

#15 
A  

 

average dispatchable hours for energy storage (h/Month)  
= average capacity factor experience per installed MW energy storage*average energy storage usage hours 
Description: The amount of hours within a month that energy storage is dispatched base on capacity factor and 

merit order usage 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
installed energy storage MW capacity hours to utilise - For the monthly demand......active energy used hours 
from energy storage 
needed breakeven monthly revenue per MW installed energy storage - Revenues needed due to installed 
energy storage capacitates and usage of the capacity 

#16 
A  

 

average dispatchable hours for fossil generation (h/Month)  
= average capacity factor experience per installed MW fossil generation*average fossil generation usage hours 
Description: The amount of hours within a month that fossil generation is dispatched base on capacity factor 

and merit order usage 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
installed fossil generation MW capacity hours to utilise - For the monthly demand......active energy used hours 
from fossil generation 
needed breakeven monthly revenue per MW installed fossil generation - Revenues needed due to installed 
fossil generation capacitates and usage of the capacity 



 

236 
 

#17 
A  

 

average dispatchable hours for renewables (h/Month)  
average dispatchable hours for renewables [type] = actual average capacity factor experience per installed MW 
renewables[type]*average renewables usage hours[type] 
Description: The amount of hours within a month that the specific renewable technology is dispatched base on 

capacity factor and merit order usage 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
installed renewables MW capacity hours to utilise - For the monthly demand......active energy used hours from 
the different renewables technologies 
needed breakeven monthly revenue per MW installed renewables - Revenues needed due to the installed 
renewable technologies capacity and usage of this capacity 

#18 
C  

 

AVERAGE DISTANCE TRAVELLED PER DAY (KM/day [26, 36,2])  
= 26 
Description: The average distanced travelled by an electric vehicle every month. Mean travel distance of 26Km 

per day = 780Km per month...............36Km per day = 1040Km per Month. Parness (2011) 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
avg electric vehicles monthly travel consumption - The monthly MWh that is demanded by an average EV under 
normal operation 0.00494MWh/vehicle considering average consumption per Km and the average distance 
travelled per month 

#19 
A  

 

AVERAGE ELECTRIC VEHICLE LIFETIME (Months [120,180])  
= =156 
Description: Considering the average lifetime of an electric vehicle, it is assumed to be 10-15 years 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles disadoption rate - The discard rate is assumed to be first-order, with an average lifetime as 
given. 

#20 
A  

 

AVERAGE ELECTRICITY CONSUMPTION PER TRAVEL DISTANCE PER ELECTRIC VEHICLE (MW*h/KM/vehicles 
[0.000172,0.000202,5e-005])  
= =0.00019 
Description: Ranges between (27 kW·h/100 mi or 17.2 kW·h/100 km) to (31 kW·h/100 mi or 20.2 kW·h/100 km) 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
avg electric vehicles monthly travel consumption - The monthly MWh that is demanded by an average EV under 
normal operation 0.00494MWh/vehicle considering average consumption per Km and the average distance 
travelled per month 

#21 
C  

 

AVERAGE ENERGY STORAGE LIFETIME (Months [360,600,120])  
= 480 
Description: Assumed from global data that hydro lifetime is almost infinite...............Hence we use the value 

larger than the total simulation period of 30 to 50 year (600) 

http://www.eia.gov/forecasts/aeo/assumptions/pdf/0554(2014).pdfEDA views small reservoir as a 40 years 

(480 months) investment project 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage decommissioning rate - Accounting for the depreciation of energy storage 

#22 
A  

 

average energy storage usage hours (h/Month)  
= average off peak hours per month from energy storage+average peak hours per month from energy 
storage+average shoulder peak hours per month from energy storage 
Description: Sum of hours per month that energy storage is dispatched to meet the demand load 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average dispatchable hours for energy storage - The amount of hours within a month that energy storage is 
dispatched base on capacity factor and merit order usage 

#23 
A  

 

average fossil generation usage hours (h/Month)  
= average off peak hours per month from fossil generation+average peak hours per month from fossil 
generation+average shoulder peak hours per month from fossil generation 
Description: Sum of hours per month that fossil generation is dispatched to meet the demand load 
Present in 1 view: 
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Financial and Economic Aspects 
Used by: 
average dispatchable hours for fossil generation - The amount of hours within a month that fossil generation is 
dispatched base on capacity factor and merit order usage 

#24 
C  

 

AVERAGE FOSSIL GENERATOR LIFETIME (Months [360,480])  
= 480 
Description: Global data suggest 35 years (420 months) as the nominal time. In São Miguel they suggest an 
extra 5 years from these generating units up to 480 months (Default value) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation decommissioning rate - Accounting for the depreciation of the fossil generation capacity. 

#25 
A  

 

average off peak hours per month from energy storage (h/Month [6,10,4])  
= STANDARD OFF PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor for energy storage during off peak 
hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average energy storage usage hours - Sum of hours per month that energy storage is dispatched to meet the 
demand load 

#26 
A  

 

average off peak hours per month from fossil generation (h/Month [?,?,4])  
= STANDARD OFF PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor for fossil generation during off peak 
hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average fossil generation usage hours - Sum of hours per month that fossil generation is dispatched to meet the 
demand load 

#27 
A  

 

average off peak hours per month from renewables (h/Month)  
average off peak hours per month from renewables [type] = STANDARD OFF PEAK HOURS PER DAY*DAYS PER 
MONTH*dispatch factor for renewables during off peak hours[type] 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average renewables usage hours - Sum of hours per month that renewables is dispatched to meet the demand 
load 

#28 
A  

 

average peak hours per month from energy storage (h/Month [1.5,4,0.5])  
= STANDARD PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor for energy storage during peak hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average energy storage usage hours - Sum of hours per month that energy storage is dispatched to meet the 
demand load 

#29 
A  

 

average peak hours per month from fossil generation (h/Month [1.5,4,0.5])  
= STANDARD PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor for fossil generation during peak hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average fossil generation usage hours - Sum of hours per month that fossil generation is dispatched to meet the 
demand load 

#30 
A  

 

average peak hours per month from renewablesaverage peak hours per month from renewablesaverage peak hours per month from renewablesaverage peak hours per month from renewables (h/Month [1.5,4,0.5])  
average peak hours per month from renewables [type] = STANDARD PEAK HOURS PER 
DAY*DAYS PER MONTH*dispatch factor for renewables during peak hours[type] 
Description:Description:Description:Description:    Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view:Present in 1 view:Present in 1 view:Present in 1 view: 

• Financial and Economic Aspects 

Used by:Used by:Used by:Used by: 
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• average renewables usage hours - Sum of hours per month that renewables is 
dispatched to meet the demand load 

#31 
C  

 

average renewable lifetime (Months [240,360])  
= 300 
Description: Assuming a project lifetime of 20 to 30 years (240 months) for a wind turbine project, geothermal 
and solarhttp://www.eia.gov/forecasts/aeo/assumptions/pdf/0554(2014).pdf pg 30 
Not Present In Any View 

#32 
C  

 

AVERAGE RENEWABLES LIFETIME (Months [120,540,1])  
AVERAGE RENEWABLES LIFETIME [type] = 420,540,540,240,300 
Description: Project lifetime of 20 years (240 months) for a wind turbine project35 years (420 months) for a 
Geothermal and 25 years(300 months) for Solar540 months for run of river and biomass 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables decommissioning rate - Accounting for the depreciation of the renewable capacity 

#33 
A  

 

average renewables usage hours (h/Month)  
average renewables usage hours [type] = average off peak hours per month from renewables[type]+average 
peak hours per month from renewables[type]+average shoulder peak hours per month from renewables[type] 
Description: Sum of hours per month that renewables is dispatched to meet the demand load 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average dispatchable hours for renewables - The amount of hours within a month that the specific renewable 
technology is dispatched base on capacity factor and merit order usage 

#34 
A  

 

average shoulder peak hours per month from energy storage (h/Month)  
= STANDARD SHOULDER PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor for energy storage during 
shoulder peak hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average energy storage usage hours - Sum of hours per month that energy storage is dispatched to meet the 
demand load 

#35 
A  

 

average shoulder peak hours per month from fossil generation (h/Month)  
= STANDARD SHOULDER PEAK HOURS PER DAY*DAYS PER MONTH*dispatch factor hours for fossil generation 
during shoulder peak hours 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average fossil generation usage hours - Sum of hours per month that fossil generation is dispatched to meet the 
demand load 

#36 
A  

 

average shoulder peak hours per month from renewables (h/Month)  
average shoulder peak hours per month from renewables [type] = STANDARD SHOULDER PEAK HOURS PER 
DAY*DAYS PER MONTH*dispatch factor for renewables during shoulder peak hours[type] 
Description: Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average renewables usage hours - Sum of hours per month that renewables is dispatched to meet the demand 
load 

#37 
L  

 

Avg Commercial Services Consumption (MW*h/Month)  
= ∫changing commercial services consumption+commercial services consumption reduction+changing from 
tourism consumption dt + [initial commercial services consumption] 
Description: Stock of commercial services consumption 
Present in 2 views: 
Net Electricity Demand 
Financial and Economic Aspects 
Used by: 
avg commercial services monthly consumption - This is the average commercial services consumption (based on 
the stochastic variation if (on)) 
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commercial services consumption reduction - Monthly change in commercial services consumption reduction, a 
negative value, as a flow into the average commercial services consumption 
reduction desired avg commercial services consumption - Desired average commercial services consumption 
based on the energy efficiency targets (policy) 

#38 
A  

 

avg commercial services monthly consumption (MW*h/Month)  
= Avg Commercial Services Consumption 
Description: This is the average commercial services consumption (based on the stochastic variation if (on)) 
Present in 2 views: 
Net Electricity Demand 
Financial and Economic Aspects 
Used by: 
avg total monthly consumer consumption - Aggregated monthly consumption of the various consumer sectors 
commercial services off peak hours consumption - Derived consumption during off peak hours 
commercial services peak hours consumption - Derived consumption during peak hours 
commercial services shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#39 
L  

 

Avg Consumption per Household (MW*h/(Month*households))  
= ∫household consumption growth+household consumption reduction dt + [initial household consumption] 
Description: Stock of average consumption per household 
Present in 1 view: 
Net Electricity Demand 
Used by: 
avg residential household monthly consumption - This is the monthly consumption from the number of 
households and the average consumption per household (based on the stochastic variation if (on)) 
desired avg consumption per household - Desired average consumption per household based on the energy 
efficiency targets (policy) 
household consumption reduction - Monthly change in household consumption reduction, a negative value, as 
a flow into the average household consumption 

#40 
L  

 

Avg Consumption per Industrial Business (MW*h/industries)  
= ∫industrial consumption growth+industrial consumption reduction dt + [initial industrial business 
consumption] 
Description: Stock of industrial business consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
avg industrial business monthly consumption - This is the average industrial business consumption (based on 
the stochastic variation if (on)) 
desired avg consumption per industrial business - Desired average consumption per industrial business based 
on the energy efficiency targets (policy) 
industrial consumption reduction - Monthly change in industrial business consumption reduction, a negative 
value, as a flow into the average industrial business consumption 

#41 
C  

 

AVG CONSUMPTION PER TOURIST NIGHT STAYS (MW*h/night stays [0.002,0.0039,0.0001])  
= 0.0027 
Description: Global data from http://www.onecaribbean.org/content/files/CHENACT%20-CREF.pdf pg60.0027 

as the default value 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing from tourism consumption - Due to the consumption from tourism overnight hotel stays 

#42 
C  

 

AVG ELECTRIC VEHICLE CHARGING HOURS PER DAY (h/day [0,24,1])  
= 10 
Description: Average number of hours per day for the EV operation which reflects the electrification demand 

that will be needed from the EV assuming the key charging times are between 10pm and 7am every night. 
Present in 3 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
avg electric vehicles electrification demand in MW - Based on the times of EV operation we can determine a 
more accurate average MW of electric vehicle consumption on a monthly time factor. 

#43 
C  

 

AVG ELECTRIC VEHICLE COMMUTING HOURS PER DAY (h/day [0, 24])  
= 2 
Description: average number of hours per day for the storage operation when EV is not charging or being 

driven. Assuming the key charging times are between 10pm and 5am every night and a further 2-3 hrs for 

commuting..........we have approximately 0.5 of a day per vehicle used for storage to the grid.....................24 
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hours in a day 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 

#44 
A  

 

avg electric vehicles electrification demand in MW (MW)  
= avg electric vehicles monthly travel consumption/(AVG ELECTRIC VEHICLE CHARGING HOURS PER DAY*DAYS 
PER MONTH) 
Description: Based on the times of EV operation we can determine a more accurate average MW of electric 

vehicle consumption on a monthly time factor. 
Present in 3 views: 
Net Electricity Demand 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
net avg electricity demand in MW - 720 hours per (30 days Vensim) month used to change from MWh to 
MW................electric vehicles MW consumption is calculated from the assumed operational hours of the EVs 
revised MIN MAX daily demand profile monthly influence from electric vehicles - Based on the adopted electric 
vehicles this is the monthly average reduction in the gap that can be achieved (increases in the demand base) 
rolling desired energy storage - Based on the MIN MAX influence policy fraction used........Looking at our long 
term installed capacity we will not enforce the energy storage policy if there is more demand than supply. 

#45 
A  

 

avg electric vehicles monthly travel consumption (MW*h/Month)  
= (Electric Vehicles Adopters*AVERAGE ELECTRICITY CONSUMPTION PER TRAVEL DISTANCE PER ELECTRIC 
VEHICLE*AVERAGE DISTANCE TRAVELLED PER DAY*DAYS PER MONTH) 
Description: The monthly MWh that is demanded by an average EV under normal operation 

0.00494MWh/vehicle considering average consumption per Km and the average distance travelled per month 
Present in 4 views: 
Net Electricity Demand 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
avg electric vehicles electrification demand in MW - Based on the times of EV operation we can determine a 
more accurate average MW of electric vehicle consumption on a monthly time factor. 
avg total monthly consumer consumption - Aggregated monthly consumption of the various consumer sectors 
electric vehicles off peak hours consumption - Derived consumption during off peak hours 
electric vehicles peak hours consumption - Derived consumption during peak hours 
electric vehicles shoulder peak hours consumption - Derived consumption during shoulder peak hours 
net avg electricity demand in MW - 720 hours per (30 days Vensim) month used to change from MWh to 
MW................electric vehicles MW consumption is calculated from the assumed operational hours of the EVs 

#46 
A  

 

avg industrial business monthly consumption (MW*h/Month)  
= Avg Consumption per Industrial Business*Industrial Businesses 
Description: This is the average industrial business consumption (based on the stochastic variation if (on)) 
Present in 2 views: 
Net Electricity Demand 
Financial and Economic Aspects 
Used by: 
avg total monthly consumer consumption - Aggregated monthly consumption of the various consumer sectors 
industrial off peak hours consumption - Derived consumption during off peak hours 
industrial peak hours consumption - Derived consumption during peak hours 
industrial shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#47 
A  

 

AVG NEW ELECTRIC VEHICLE FRACTION (fraction [0.001, 0.009])  
= =0.01 
Description: Percentage of new vehicles bought every month being an electric vehicle without any policy or 

marketing influence...... Own elaboration using Parness (2011) 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
increasing electric vehicles natural rate - Natural number of new electric vehicles bought every month without 
any policy or market influences 
increasing non electric vehicles natural rate - Number of new non-electric vehicles that are bought every month 

#48 
A  

 

"avg no. of households" (households)  
= Registered Population/AVG SIZE OF HOUSEHOLDS 
Description: Based on the registered population and the average size of households 
Present in 1 view: 
Net Electricity Demand 
Used by: 
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avg residential household monthly consumption - This is the monthly consumption from the number of 
households and the average consumption per household (based on the stochastic variation if (on)) 

#49 
A  

 

AVG NUMBER OF NEW VEHICLES PER MONTH (vehicles/Month [80,110])  
= =85 
Description: 1000 to 1200 per year = 83 to 100 per monthhttp://estatistica.azores.gov.pt/upl/%7B032836b6-

856d-44d7-b0ea-22cfb223d373%7D.htm and https://mitei.mit.edu/system/files/Environmental-Cost-Impacts-

Vehicle-Electrification-Azores-Parness.pdf 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
buying new vehicles rate - Inflow based on new vehicles buying rate 
increasing electric vehicles natural rate - Natural number of new electric vehicles bought every month without 
any policy or market influences 
increasing non electric vehicles natural rate - Number of new non-electric vehicles that are bought every month 

#50 
L  

 

Avg Public Services Consumption (MW*h/Month)  
= ∫changing public services consumption+public services consumption reduction dt + [initial public services 
consumption] 
Description: Stock of average public services consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
avg public services monthly consumption - This is the average monthly public services consumption (based on 
the stochastic variation if (on)) 
public services consumption reduction - Monthly change in public services consumption reduction, a negative 
value, as a flow into the average public services consumption 
reduction desired avg public services consumption - Desired average public services consumption based on the 
energy efficiency targets (policy) 

#51 
A  

 

avg public services monthly consumption (MW*h/Month)  
= Avg Public Services Consumption 
Description: This is the average monthly public services consumption (based on the stochastic variation if (on)) 
Present in 2 views: 
Net Electricity Demand 
Financial and Economic Aspects 
Used by: 
avg total monthly consumer consumption - Aggregated monthly consumption of the various consumer sectors 
public services off peak hours consumption - Derived consumption during off peak hours 
public services peak hours consumption - Derived consumption during peak hours 
public services shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#52 
A  

 

avg residential household monthly consumption (MW*h/Month)  
= Avg Consumption per Household*"avg no. of households" 
Description: This is the monthly consumption from the number of households and the average consumption per 

household (based on the stochastic variation if (on)) 
Present in 2 views: 
Net Electricity Demand 
Financial and Economic Aspects 
Used by: 
avg total monthly consumer consumption - Aggregated monthly consumption of the various consumer sectors 
residential off peak hours consumption - Derived consumption during off peak hours 
residential peak hours consumption - Derived consumption during peak hours 
residential shoulder peak hours consumption - Derived consumption during shoulder eak hours 

#53 
C  

 

AVG SIZE OF HOUSEHOLDS (people/households [2.5,3.45])  
= 3.45 
Description: http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_eu2

020_acores_en.pdf page 622.5 gives a better reflection to the total number of EDA electricity customers 
Present in 1 view: 
Net Electricity Demand 
Used by: 
"avg no. of households" - Based on the registered population and the average size of households 

#54 
A  

 

avg total monthly consumer consumption (MW*h/Month)  
= avg commercial services monthly consumption+avg public services monthly consumption+avg industrial 
business monthly consumption+avg residential household monthly consumption+avg electric vehicles monthly 
travel consumption 
Description: Aggregated monthly consumption of the various consumer sectors 
Present in 1 view: 
Net Electricity Demand 
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Used by: 
net avg electricity demand in MW - 720 hours per (30 days Vensim) month used to change from MWh to 
MW................electric vehicles MW consumption is calculated from the assumed operational hours of the EVs 

#55 
C  

 

avg usage factor of the installed fossil generation (fraction [0.2,0.75,0.05])  
= 0.45 
Description: In the base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of 

the installed base of 102.66MW 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 

#56 
A  

 

BASE YEAR DIFFERENCE (MW [10,40,10])  
= =30 
Description: Difference from trough to peak demand of the system in 2005 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
forecasted total capacity needed - Based on the present capacity margin and the forecasted peak demands of 
the system BAU case together with the derated capacity margins. 

#57 
A  

 

BASE YEAR POPULATION of VEHICLES (vehicles)  
= initial total population of vehicles 
Description: Number of vehicles in the island in 2005 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 

#58 
C  

 

BASE YEAR RENEWABLES POLICY PORTFOLIO (fraction [0,1,0.05])  
= 0.45 
Description: represents the fraction of the base year renewables that should be achieved 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
desired renewables generation - Absolute amount of renewables desired based on base year, 2005 values 

#59 
A  

 

BASE YEAR TOTAL CAPACITY (MW)  
= =133 
Description: The total amount of capacity from all generation technologies that was installed in the base year 

2005. This is 133MW 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
desired renewables generation - Absolute amount of renewables desired based on base year, 2005 values 

#60 
C  

 

base year vehicle population SWITCH (Dmnl [0,1])  
= 0 
Description: on (1) and off (0). Used for total vehicle base year population simulations 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 

#61 
A  

 

BIRTH FRACTION (fraction/Month)  
= =0.001042 
Description: Birth rate in 2005 per 1000 people. Divide by 12 for a monthly rate 
(12.5/1000)/12http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_e
u2020_acores_en.pdf 
pg59http://azores.gov.pt/Portal/en/entidades/pgra/noticias/Azores+lead+birth+rate+in+Portugal.htm 
(11.7/1000) birth rate 
Present in 1 view: 
Net Electricity Demand 
Used by: 
births - Inflow of births to the population 
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#62 
F,A  

  

 

births (people/Month)  
= Registered Population*BIRTH FRACTION 
Description: Inflow of births to the population 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Registered Population - The monthly amount of people counted as the population of São Miguel. Aging 
population details:plan_action_strategique_eu2020_acores_en.pdf page 60131609 in 2001 and 137830 in 
2011............2005 approximates to 134720Initial value from ERNA_andre_leonardo_kiti document137856 
population number in 2011 Azores censusdata2011 

#63 
A  

 

black box MIN MAX daily demand profiles monthly (MW)  
= MIN MAX daily demand profile LOOKUP(demand profile index) 
Description: Choosing the normalized profile based on the randomly given index of the data values 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
revised MIN MAX daily demand profile monthly influence from electric vehicles - Based on the adopted electric 
vehicles this is the monthly average reduction in the gap that can be achieved (increases in the demand base) 
revised MIN MAX daily demand profiles monthly energy storage influence - If the MIN MAX difference remains 
high then we should continue with the energy storage policy, if not then we can reduce the energy storage 
policy to 1%This assumes that the larger the gap then more excess storage supply is needed in the daytime 
proportional to the avoided curtailed amount in the night time. 
revised MIN MAX daily month demand profiles influence - If the MIN MAX difference remains high then we 
should continue with the electric vehicle policy, if not then we can reduce the electric vehicle policy to a faction 
of the current EV policy fraction 

#64 
F,A  

  

 

buying new vehicles rate (vehicles/Month)  
= AVG NUMBER OF NEW VEHICLES PER MONTH 
Description: Inflow based on new vehicles buying rate 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
Total Population of Vehicles - Stock of total vehicle population in the island system. 

#65 
C  

 

CAPACITY INVESTMENT TIMELINE (Months [12, 30, 3])  
= 18 
Description: Time to make investment decisions for new capacity additions. This is a fixed timeline when all 
investment decisions are considered 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#66 
A  

 

change in needed energy storage from policy (MW/Month)  
= (rolling desired energy storage-Installed Energy Storage Capacity)/energy storage POLICY TIMELINE used 
Description: Discrepancy needed to meet the energy policy goals. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 

#67 
F,A  

  

 

Change in Pink Noise (1/Months)  
Change in Pink Noise [type] = (White Noise[type] - Pink Noise[type])/Noise Correlation Time[type] 
Description: Change in the pink noise value; Pink noise is a first order exponential smoothing delay of the white 

noise input. Used sparingly in this thesis work 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
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Used by: 
Pink Noise - Pink Noise is first-order auto-correlated noise. Pink noise provides a realistic noise input to models 
in which the next random shock depends in part on the previous shocks. The user can specify the correlation 
time. The mean is 0 and the standard deviation is specified by the user. Adopted from Sterman (2000) 

#68 
F,A  

  

 

change in revenues ($/Month/Month)  
= (total electricity sold revenues-Expected Revenues)/REVENUE TIME HORIZON 
Description: Change in he revenuse generated over the revenue horizon 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
Expected Revenues - Stock of rolling average of revenues generated 

#69 
F,A  

  

 

change in total capacity needed (MW/Month)  
= (forecasted total capacity needed-expected total capacity needed)/FORECAST PERIOD 
Description: Inflow of total capacity needed 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
expected total capacity needed - Smoothing the total capacity needed based on the capacity investment 
timeline. 

#70 
F,A  

  

 

changing commercial services consumption (MW*h/Month/Month)  
= (COMMERCIAL SERVICES FACTOR*effect of local economic activity on consumption)/COMMERCIAL 
CONSUMPTION EFFECT EXPECTATION TIME 
Description: Commercial services consumption growth calculation as it relates to the economic activity of the 

island. MWh growth per month per month 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Commercial Services Consumption - Stock of commercial services consumption 

#71 
F,A  

  

 

changing from tourism consumption (MW*h/(Month*Month))  
= changing number of stays*AVG CONSUMPTION PER TOURIST NIGHT STAYS 
Description: Due to the consumption from tourism overnight hotel stays 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Commercial Services Consumption - Stock of commercial services consumption 

#72 
F,A  

  

 

changing number of stays (night stays/(Month*Month))  
= Room Night Tourist Stays*room night stays growth rate 
Description: Monthly change in number of room night stays from tourism 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing from tourism consumption - Due to the consumption from tourism overnight hotel stays 
Room Night Tourist Stays - Stock of room night tourist stays 

#73 
F,A  

  

 

changing numbers (industries/Month/Month)  
= (new industrial businesses-Industrial Businesses)/TIMELINE FOR CONSIDERING NEW INDUSTRY BUSINESSES 
Description: Number of monthly changing industries per month 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Industrial Businesses - Stock of industrial businesses 

#74 
F,A  

  

 

changing public services consumption (MW*h/Month/Month)  
= (PUBLIC SERVICE FACTOR*effect of local economic activity on consumption)/PUBLIC SERVICE CONSUMPTION 
EFFECT EXPECTATION TIME 
Description: Public services consumption growth calculation as it relates to the economic activity of the island. 

MWh growth per month per month 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Public Services Consumption - Stock of average public services consumption 

#75 
C  

 

CHARGING EV OFF PEAK PRICE (euro/(h*MW))  
= 57.1 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 

144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 



 

245 
 

Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 

#76 
C  

 

CHARGING EV PEAK PRICE (euro/(h*MW))  
= 124.6 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 

144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 

#77 
C  

 

CHARGING EV SHOULDER PEAK PRICE (euro/(h*MW))  
= 96.7 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 

144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 

#78 
A  

 

CO2 emissions reduction factor (tonnes/Month/Month)  
= (EU CO2 emissions target level-net monthly CO2 emissions)/time to meet EU emissions target 
Description: The monthly discrepancy resulting from the amount of CO2 emissions and the targeted CO2 

emissions reduction 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
renewable capacity replacement for CO2 emissions based fossil generation - The renewable potential from the 
gap of CO2 emissions. The amount of MW of renewable capacity needed to close the emissions gap. 

#79 
C  

 

CO2 EMISSIONS TARGET FRACTION (fraction)  
= 0.3 
Description: The percentage of CO2 emissions reduction of the base year (2005) value 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
EU CO2 emissions target level - Target year level of the total amount of CO2 emissions reduction needed over 
the subsequent years to achieve this value as a fraction of the base year value Given on a monthly assumption 
basis...... default of 30% reduction of 2005 emissions levels 

#80 
A  

 

COMMERCIAL CONSUMPTION EFFECT EXPECTATION TIME (Months)  
= =1 
Description: Consumption effect expectation time observed on a monthly basis 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing commercial services consumption - Commercial services consumption growth calculation as it relates 
to the economic activity of the island. MWh growth per month per month 

#81 
F,A  

  

 

commercial services consumption reduction (MW*h/(Month*Month))  
= ZIDZ((reduction desired avg commercial services consumption-Avg Commercial Services 
Consumption),ENERGY EFFICIENCY POLICY TIMELINE USED) 
Description: Monthly change in commercial services consumption reduction, a negative value, as a flow into the 

average commercial services consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Commercial Services Consumption - Stock of commercial services consumption 

#82 
A  

 

commercial services consumption revenues ($/Month)  
= EURO TO $ CONVERSION FACTOR*(commercial services off peak hours consumption*COMMERCIAL SERVICES 
OFF PEAK PRICE+commercial services shoulder peak hours consumption*COMMERCIAL SERVICES SHOULDER 
PEAK PRICE+commercial services peak hours consumption*COMMERCIAL SERVICES PEAK PRICE) 
Description: Revenues generated from commercial services consumption 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
total electricity sold revenues - Gives the revenues collected on a monthly basis due to the electricity sold and 
based on the tariff structures....The only way of generating income within the model 
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#83 
C  

 

COMMERCIAL SERVICES FACTOR (MW*h/Month)  
= 23.2 
Description: Elasticity measure for commercial services consumption. For a value of 0.5, a 1% increase in GDP 

will boost the consumption by 0.5% 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing commercial services consumption - Commercial services consumption growth calculation as it relates 
to the economic activity of the island. MWh growth per month per month 

#84 
A  

 

commercial services off peak hours consumption (h*MW/Month)  
= avg commercial services monthly consumption*percentage of monthly commercial services consumption 
within off peak hours 
Description: Derived consumption during off peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#85 
C  

 

COMMERCIAL SERVICES OFF PEAK PRICE (euro/(h*MW))  
= 57.1 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#86 
A  

 

commercial services peak hours consumption (h*MW/Month)  
= avg commercial services monthly consumption*percentage of monthly commercial consumption within peak 
hours 
Description: Derived consumption during peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#87 
C  

 

COMMERCIAL SERVICES PEAK PRICE (euro/(h*MW))  
= 124.6 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#88 
A  

 

commercial services shoulder peak hours consumption (h*MW/Month)  
= avg commercial services monthly consumption*percentage of monthly commercial services consumption 
within shoulder peak hours 
Description: Derived consumption during shoulder peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#89 
C  

 

COMMERCIAL SERVICES SHOULDER PEAK PRICE (euro/(h*MW))  
= 96.7 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 

#90 
C  

 

COMMERCIAL SERVICES TARGETED ENERGY EFFICIENCY REDUCTION (fraction [0, 1, 0.01])  
= 0.94 
Description: Percentage of commercial services electricity demand that is desired to be reduced. 6% reduction is 

equivalent to 94% of the current value 
Present in 1 view: 
Net Electricity Demand 
Used by: 
reduction desired avg commercial services consumption - Desired average commercial services consumption 
based on the energy efficiency targets (policy) 
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#91 
A  

 

considered electric vehicles (vehicles)  
= IF THEN ELSE(total vehicle population SWITCH = 1, Total Population of Vehicles, DESIRED ELECTRIC VEHICLES 
POLICY TARGET) 
Description: Choosing the policy method of the total amount of vehicles versus an absolute number of electric 

vehicles 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
vehicles considered for EV by policy - This is the absolute number of electric vehicles desired by policy makers at 
the specified time. The specified time is the time when the policy is enacted.....2015 is the default value....this is 
10 years or 120 months into the simulation. 

#92 
C  

 

CONTACT RATE (1/Months [2, 15])  
= 10 
Description: The rate at which active adopters come into contact with potential adopters. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 

#93 
L  

 

Cumulatively Depreciated Energy Storage Capacity (MW)  
= ∫energy storage decommissioning rate dt + [initial cumulatively depreciated energy storage] 
Description: Stock of all energy storage over the total simulation timeline. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
cumulatively installed storage capacity - Sum of the total ever installed storage capacity 

#94 
L  

 

Cumulatively Depreciated Fossil Generation Capacity (MW)  
= ∫fossil generation decommissioning rate dt + [initial cumulatively depreciated fossil generation] 
Description: Stock of all fossil generation over the total simulation timeline. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 

#95 
L  

 

Cumulatively Depreciated Renewables Capacity (MW)  
Cumulatively Depreciated Renewables Capacity [type] = ∫renewables decommissioning rate[type] dt + [initial 
cumulatively depreciated renewables capacity [type]] 
Description: Stock of all renewables generation over the total simulation timeline. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
cumulatively installed renewables capacity - Sum of the total ever installed renewable capacity of the specific 
renewable technologies 

#96 
DE 

cumulatively installed energy storage capacity previous year (MW)  
= DELAY FIXED (cumulatively installed storage capacity, 12, cumulatively installed storage capacity) 
Description: Cumulatively installed storage capacity for previous month: for use in learning curve formula 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of storage capacity - Learning curve cost reduction implementation. 

#97 
A  

 

cumulatively installed renewables capacity (MW)  
cumulatively installed renewables capacity [type] = Cumulatively Depreciated Renewables 
Capacity[type]+Installed Renewables Capacity[type] 
Description: Sum of the total ever installed renewable capacity of the specific renewable technologies 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
cumulatively installed renewables capacity previous year - Cumulatively installed renewable capacity for 
previous year: for use in learning curve formula 
marginal cost of renewables capacity - Learning curve cost reduction implementation. 

#98 
DE 

cumulatively installed renewables capacity previous year (MW)  
cumulatively installed renewables capacity previous year [type] = DELAY FIXED (cumulatively installed 
renewables capacity[type], 12, cumulatively installed renewables capacity[type]) 
Description: Cumulatively installed renewable capacity for previous year: for use in learning curve formula 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
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Used by: 
marginal cost of renewables capacity - Learning curve cost reduction implementation. 

#99 
A  

 

cumulatively installed storage capacity (MW)  
= Cumulatively Depreciated Energy Storage Capacity+Installed Energy Storage Capacity 
Description: Sum of the total ever installed storage capacity 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
cumulatively installed energy storage capacity previous year - Cumulatively installed storage capacity for 
previous month: for use in learning curve formula 
marginal cost of storage capacity - Learning curve cost reduction implementation. 

#100 
A  

 

DAYS PER MONTH (days/Month)  
= =30 
Description: Number of days in a month from the Vensim modelling software 
Present in 3 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
average off peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average off peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
average off peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
average shoulder peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
average shoulder peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 
145 table 4.12 
average shoulder peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
avg electric vehicles electrification demand in MW - Based on the times of EV operation we can determine a 
more accurate average MW of electric vehicle consumption on a monthly time factor. 
avg electric vehicles monthly travel consumption - The monthly MWh that is demanded by an average EV under 
normal operation 0.00494MWh/vehicle considering average consumption per Km and the average distance 
travelled per month 

#101 
A  

 

DEATH FRACTION (fraction/Month)  
= =0.00081 
Description: Death rate in 2005 per 1000 people. Divide by 12 for a monthly rate 

(9.7/1000)/12http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_eu

2020_acores_en.pdf 

pg59http://azores.gov.pt/Portal/en/entidades/pgra/noticias/Azores+lead+birth+rate+in+Portugal.htm 

(9.7/1000) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
deaths - Outflow of deaths from the population 

#102 
F,A  

  

 

deaths (people/Month)  
= Registered Population*DEATH FRACTION 
Description: Outflow of deaths from the population 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Registered Population - The monthly amount of people counted as the population of São Miguel. Aging 
population details:plan_action_strategique_eu2020_acores_en.pdf page 60131609 in 2001 and 137830 in 
2011............2005 approximates to 134720 Initial value from ERNA_andre_leonardo_kiti document137856 
population number in 2011 Azores censusdata2011 

#103 
A  

 

demand profile index (Dmnl)  
= RANDOM UNIFORM(1, 1095+1 , 0) 
Description: INTEGER(RANDOM UNIFORM(1, 1095+1 , 0))RANDOM UNIFORM(2013, 2016.03+0.002767, 0) 
Present in 1 view: 
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Mismatch and Demand Imbalance Black Box 
Used by: 
black box MIN MAX daily demand profiles monthly - Choosing the normalized profile based on the randomly 
given index of the dat values 

#104 
A  

 

demand vs supply capacity mismatch investments rate factor (Dmnl)  
= net avg demand vs net avg supply capacity mismatch 
Description: Gauge for ensuring that there is capacity investments but not too much or too little to prevent over 

investments and blackouts 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#105 
C  

 

DERATED CAPACITY MARGIN FACTOR (fraction [0.83,0.86,0.01])  
= 0.83 
Description: The capacity ratings of the thermal generator by a factor which reflects the statistically expected 

level of reliable availability from that plant type during a given season (monthly in our case)........This accounts 

for the downtime of the generation technologies etc. 

http://www.eia.gov/forecasts/aeo/assumptions/pdf/0554(2014).pdf gives 14% to 17% pg 100 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
forecasted total capacity needed - Based on the present capacity margin and the forecasted peak demands of 
the system BAU case together with the de-rated capacity margins. 

#106 
A  

 

desired avg consumption per household (MW*h/Month/households)  
= IF THEN ELSE(ENERGY EFFICIENCY POLICY TIMELINE USED>0, Avg Consumption per Household*HOUSEHOLD 
TARGETED ENERGY EFFICIENCY REDUCTION, Avg Consumption per Household) 
Description: Desired average consumption per household based on the energy efficiency targets (policy) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
household consumption reduction - Monthly change in household consumption reduction, a negative value, as 
a flow into the average household consumption 

#107 
A  

 

desired avg consumption per industrial business (MW*h/industries)  
= IF THEN ELSE(ENERGY EFFICIENCY POLICY TIMELINE USED>0, Avg Consumption per Industrial 
Business*INDUSTRY TARGETED ENERGY EFFICIENCY REDUCTION , Avg Consumption per Industrial Business) 
Description: Desired average consumption per industrial business based on the energy efficiency targets (policy) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
industrial consumption reduction - Monthly change in industrial business consumption reduction, a negative 
value, as a flow into the average industrial business consumption 

#108 
C  

 

DESIRED ELECTRIC VEHICLES POLICY TARGET (vehicles [3000,41000,1000])  
= 4800 
Description: Absolute number of electric vehicles desired.............base year of 2010 has 51000 
vehicles...........6% = 2500 and 80% = 41000 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
considered electric vehicles - Choosing the policy method of the total amount of vehicles versus an absolute 
number of electric vehicles 

#109 
C  

 

DESIRED RATIO OF DEMAND TO SUPPLY (fraction [0.3,1,0.05])  
= 0.8 
Description: Acceptable ratio of (avg demand/supply capacity) 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
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rolling desired electric vehicles - Based on the year of the policy and the MIN MAX influence policy fraction 
used........Looking at our long term installed capacity we will not enforce the electric vehicle policy if there is 
more demand than supply 

#110 
A  

 

desired renewables generation (MW)  
= BASE YEAR RENEWABLES POLICY PORTFOLIO*BASE YEAR TOTAL CAPACITY 
Description: Absolute amount of renewables desired based on base year, 2005 values 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
amount of renewables considered for RENEWABLES POLICY - This is the amount of renewables desired by policy 
makers at the specified time. The specified time is the time when the policy is enacted. 

#111 
A  

 

difference needed from renewables policy (MW/Month)  
= ZIDZ(amount of renewables considered for RENEWABLES POLICY-∑(Installed Renewables 
Capacity[type!]),RENEWABLES POLICY TIMELINE USED) 
Description: Monthly amount of capacity needed to achieve policy goals by the policy timeline. 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#112 
C  

 

dispatch factor for energy storage during off peak hours (fraction [0,1,0.05])  
= 0 
Description: EDA merit order dispatch: Percentage of time on a daily basis that energy storage is used during off 
peak hours. Less than 1 implies that the technology is curtailed........0 up to 2023 and then 0.05 in the reservoir 
storage investment year 2023 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average off peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 

#113 
C  

 

dispatch factor for energy storage during peak hours (fraction [0,1,0.05])  
= 0 
Description: EDA merit order dispatch: Percentage of time on a daily basis that energy storage is used during off 
peak hours. Less than 1 implies that the technology is curtailed........0 up to 2023 and then 0.5 in the reservoir 
storage investment year 2023 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 

#114 
C  

 

dispatch factor for energy storage during shoulder peak hours (fraction [0,1,0.05])  
= 0 
Description: EDA merit order dispatch: Percentage of time on a daily basis that energy storage is used during off 
peak hours. Less than 1 implies that the technology is curtailed........0 up to 2023 and then 0.3 in the reservoir 
storage investment year 2023 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average shoulder peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 

#115 
C  

 

dispatch factor for fossil generation during off peak hours (fraction [0,1,0.01])  
= 1 
Description: EDA merit order dispatch: Fraction of time on a daily basis that fossil generation is used during off 
peak hours. Less than 1 implies that the technology is curtailed........usually the 18.2 MW generator is left on for 
frequency balancing (18.2/102.8) at all time 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 



 

251 
 

average off peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 

#116 
C  

 

dispatch factor for fossil generation during peak hours (fraction [0,1,0.05])  
= 1 
Description: EDA merit order dispatch: Percentage of time on a daily basis that fossil generation is used during 
peak hours. Less than 1 implies that the technology is curtailed........usually about 3 or 4 of the generators is left 
on during this time period one/two 7.5MW and one/two 18.2 MW ((18.2+7.5)/102.8) at all time 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 

#117 
C  

 

dispatch factor for renewables during off peak hours (fraction [0,1,0.05])  
dispatch factor for renewables during off peak hours [type] = 1,1,0.5,0.2,0.05 
Description: EDA merit order dispatch: Percentage of time on a daily basis that renewables is used during off 
peak hours. Less than 1 implies that the technology is curtailed........1 for Geothermal, 1 for run of river, 0.2 for 
Wind, 0.5 for biomass and 0.02 for micro generation 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average off peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 

#118 
C  

 

dispatch factor for renewables during peak hours (fraction [0,1,0.05])  
dispatch factor for renewables during peak hours [type] = 1,1,1,1,0.5 
Description: EDA merit order dispatch: Percentage of time on a daily basis that renewables is used during peak 
hours. Less than 1 implies that the technology is curtailed........1 for Geothermal, 1 for run of river, 1 for 
biomass, 1 for Wind,0.5 micro generation 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 4.12 

#119 
C  

 

dispatch factor for renewables during shoulder peak hours (fraction [0,1,0.05])  
dispatch factor for renewables during shoulder peak hours [type] = 1,1,1,0.5,0.2 
Description: EDA merit order dispatch: Percentage of time on a daily basis that renewables is used during 
shoulder peak hours. Less than 1 implies that the technology is curtailed........1 for Geothermal, 1 for biomass,1 
for run of river,0.5 for Wind, 0.2 micro generation 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average shoulder peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 

#120 
C  

 

dispatch factor hours for fossil generation during shoulder peak hours (fraction [0,1,0.05])  
= 1 
Description: EDA merit order dispatch: Percentage of time on a daily basis that renewables is used during 
shoulder peak hours. Less than 1 implies that the technology is curtailed........usually about 2 of the generators 
is left on during this time period one 7.5MW and one 18.2 MW ((18.2+7.5)/102.8) at all time 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average shoulder peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 
145 table 4.12 

#121 
A  

 

effect of local economic activity on consumption (Dmnl)  
= local economic activity/REFERENCE GDP per capita 
Description: Normalised GDP per capita to 2005 reference year 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing commercial services consumption - Commercial services consumption growth calculation as it relates 
to the economic activity of the island. MWh growth per month per month 
changing public services consumption - Public services consumption growth calculation as it relates to the 
economic activity of the island. MWh growth per month per month 
household consumption growth - Household consumption growth calculation as it relates to the economic 
activity of the island. MWh growth per month per household per month 
industrial consumption growth - Industrial business consumption growth calculation as it relates to the 
economic activity of the island. MWh growth per month per industrial business 
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#122 
C  

 

electric vehicle MIN MAX daily demand profile monthly threshold (MW [5,15,1])  
= 12 
Description: The tolerated difference between peaks and troughs of daily demand 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
revised MIN MAX daily month demand profiles influence - If the MIN MAX difference remains high then we 
should continue with the electric vehicle policy, if not then we can reduce the electric vehicle policy to a faction 
of the current EV policy fraction 

#123 
A  

 

electric vehicle to grid storage fraction (vehicles/Month)  
= electric vehicles adoption rate*EV to GRID as STORAGE FRACTION 
Description: avg number of adopted electric vehicles that will provide storage on a monthly basis 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 

#124 
L,LI  

  

 

Electric Vehicles Adopters (vehicles)  
= ∫electric vehicles adoption rate+increasing electric vehicles natural rate-electric vehicles disadoption rate dt + 
[initial electric vehicles] 
Description: Stock of EVs. Initial value in 2005;we assume that this is about 50 EV in 2015 and 0 in 2005 
Present in 3 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
avg electric vehicles monthly travel consumption - The monthly MWh that is demanded by an average EV under 
normal operation 0.00494MWh/vehicle considering average consumption per Km and the average distance 
travelled per month 
electric vehicles disadoption rate - The discard rate is assumed to be first-order, with an average lifetime as 
given. 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 
policy influence based discrepancy for adoption - The monthly amount of adoption needed to achieve the 
desired electric vehicle policy within the given timeline 
Potential Electric Vehicles Adopters - The initial number of potential adopters is determined by the total 
population size and the current number of active adopters. It is reduced by adoption and increased when 
adopters discard their old unit and re-enter the market. 

#125 
F,A  

  

 

electric vehicles adoption rate (vehicles/Month)  
= IF THEN ELSE(total vehicle population SWITCH = 1, IF THEN ELSE(market based SWITCH =1,endogenous market 
based influence on adoption,IF THEN ELSE(market AND SWITCH = 1:AND: GET TIME VALUE(0,0,0)>(EV POLICY 
ENACTMENT YEAR+EV POLICY TIMELINE),endogenous market based influence on adoption+(ZIDZ(policy 
influence based discrepancy for adoption,ELECTRIC VEHICLES POLICY TIMELINE)),ZIDZ(policy influence based 
discrepancy for adoption,ELECTRIC VEHICLES POLICY TIMELINE))), IF THEN ELSE(market based SWITCH = 
1,endogenous market based influence on adoption,IF THEN ELSE(market AND SWITCH = 1 :AND: GET TIME 
VALUE(0,0,0)>(EV POLICY ENACTMENT YEAR+EV POLICY TIMELINE),endogenous market based influence on 
adoption+(ZIDZ(policy influence based discrepancy for adoption,ELECTRIC VEHICLES POLICY 
TIMELINE)),ZIDZ(policy influence based discrepancy for adoption,ELECTRIC VEHICLES POLICY TIMELINE)))) 
Description: The rate at which a potential adopter becomes an active adopter. When the total population switch 

is on we consider both the total population and the market based adoption from this. Otherwise if the market 

only based switch is on then we consider only adoption from the market contacts else we consider the absolute 

value as desired from the policy. 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
electric vehicle to grid storage fraction - avg number of adopted electric vehicles that will provide storage on a 
monthly basis 
Electric Vehicles Adopters - Stock of EVs. Initial value in 2005;we assume that this is about 50 EV in 2015 and 0 
in 2005 
Potential Electric Vehicles Adopters - The initial number of potential adopters is determined by the total 
population size and the current number of active adopters. It is reduced by adoption and increased when 
adopters discard their old unit and re-enter the market. 

#126 
A  

 

electric vehicles consumption revenues ($/Month)  
= EURO TO $ CONVERSION FACTOR*(electric vehicles off peak hours consumption*CHARGING EV OFF PEAK 
PRICE+electric vehicles shoulder peak hours consumption*CHARGING EV SHOULDER PEAK PRICE+electric 
vehicles peak hours consumption*CHARGING EV PEAK PRICE) 



 

253 
 

Description: Revenues generated from electric vehicles consumption 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
total electricity sold revenues - Gives the revenues collected on a monthly basis due to the electricity sold and 
based on the tariff structures....The only way of generating income within the model 

#127 
F,A  

  

 

electric vehicles disadoption rate (vehicles/Month)  
= Electric Vehicles Adopters/AVERAGE ELECTRIC VEHICLE LIFETIME 
Description: The discard rate is assumed to be first-order, with an average lifetime as given. 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Electric Vehicles Adopters - Stock of EVs. Initial value in 2005;we assume that this is about 50 EV in 2015 and 0 
in 2005 
Potential Electric Vehicles Adopters - The initial number of potential adopters is determined by the total 
population size and the current number of active adopters. It is reduced by adoption and increased when 
adopters discard their old unit and reenter the market. 

#128 
A  

 

electric vehicles off peak hours consumption (h*MW/Month)  
= avg electric vehicles monthly travel consumption*percentage of electric vehicles consumption within off peak 
hours 
Description: Derived consumption during off peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 

#129 
A  

 

electric vehicles peak hours consumption (h*MW/Month)  
= avg electric vehicles monthly travel consumption*percentage of electric vehicles consumption within peak 
hours 
Description: Derived consumption during peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 

#130 
C  

 

ELECTRIC VEHICLES POLICY FRACTION (fraction [0.01,0.5,0.05])  
= 0.06 
Description: Desired percentage of electric vehicles 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
revised MIN MAX daily month demand profiles influence - If the MIN MAX difference remains high then we 
should continue with the electric vehicle policy, if not then we can reduce the electric vehicle policy to a faction 
of the current EV policy fraction 

#131 
A  

 

ELECTRIC VEHICLES POLICY TIMELINE (Months [12,420,60])  
= IF THEN ELSE( GET TIME VALUE(0,0,0)>EV POLICY ENACTMENT YEAR :AND: GET TIME VALUE(0,0,0)<EV POLICY 
ENACTMENT YEAR+EV POLICY TIMELINE, EV POLICY TIMELINE ,NO POLICY TIME LAPSE) 
Description: The policy dates that the electric vehicles target should be achieved. Based on the different types of 

policies implemented with the "no policy" implementation 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 

#132 
A  

 

electric vehicles shoulder peak hours consumption (h*MW/Month)  
= avg electric vehicles monthly travel consumption*percentage of electric vehicles consumption within shoulder 
peak hours 
Description: Derived consumption during shoulder peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 
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#133 
A  

 

endogenous market based influence on adoption (vehicles/Month)  
= IF THEN ELSE(base year vehicle population SWITCH=1, (CONTACT RATE*ADOPTION FRACTION*Potential 
Electric Vehicles Adopters*Electric Vehicles Adopters)/BASE YEAR POPULATION of VEHICLES,(CONTACT 
RATE*ADOPTION FRACTION*Potential Electric Vehicles Adopters*Electric Vehicles Adopters)/Total Population 
of Vehicles) 
Description: Adoption by word of mouth is driven by the contact rate between potential adopters and active 

adopters and the fraction of times these interactions will result in adoption. The word of mouth effect is small if 

the number of active adopters relative to the total population size is small. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 

#134 
C  

 

ENERGY EFFICIENCY ENACTMENT YEAR (Months [60,540,12])  
= 84 
Description: Represents the year during the simulation time in months from 2005 when the policy is enacted84 

represents the year 2012 used as the default model value. 
Present in 1 view: 
Net Electricity Demand 
Used by: 
ENERGY EFFICIENCY POLICY TIMELINE USED - The policy dates that the energy efficiency target should be 
achieved. Default of 10 year policy starting in 2010 (60 months into simulation).Use of an infinity value......zero 
gives a floating point error 500years = 6000 months 

#135 
C  

 

ENERGY EFFICIENCY POLICY TIMELINE (Months [120, 540, 60])  
= 180 
Description: The policy dates that the energy efficiency target should be achieved. This is given in months as the 

lifetime of the target period starting in 2012 as default. 180 represents a 15 year energy efficiency target policy 

timeline. This is the default policy date that the energy efficiency target should be achieved. 
Present in 1 view: 
Net Electricity Demand 
Used by: 
ENERGY EFFICIENCY POLICY TIMELINE USED - The policy dates that the energy efficiency target should be 
achieved. Default of 10 year policy starting in 2010 (60 months into simulation).Use of an infinity value......zero 
gives a floating point error 500years = 6000 months 

#136 
A  

 

ENERGY EFFICIENCY POLICY TIMELINE USED (Month)  
= IF THEN ELSE( GET TIME VALUE(0,0,0)>ENERGY EFFICIENCY ENACTMENT YEAR :AND: GET TIME 
VALUE(0,0,0)<ENERGY EFFICIENCY ENACTMENT YEAR+ ENERGY EFFICIENCY POLICY TIMELINE, ENERGY 
EFFICIENCY POLICY TIMELINE ,NO POLICY TIME LAPSE) 
Description: The policy dates that the energy efficiency target should be achieved. Default of 10 year policy 

starting in 2010 (60 months into simulation).Use of an infinity value......zero gives a floating point error 500years 

= 6000 months 
Present in 1 view: 
Net Electricity Demand 
Used by: 
commercial services consumption reduction - Monthly change in commercial services consumption reduction, a 
negative value, as a flow into the average commercial services consumption 
desired avg consumption per household - Desired average consumption per household based on the energy 
efficiency targets (policy) 
desired avg consumption per industrial business - Desired average consumption per industrial business based 
on the energy efficiency targets (policy) 
household consumption reduction - Monthly change in household consumption reduction, a negative value, as 
a flow into the average household consumption 
industrial consumption reduction - Monthly change in industrial business consumption reduction, a negative 
value, as a flow into the average industrial business consumption 
public services consumption reduction - Monthly change in public services consumption reduction, a negative 
value, as a flow into the average public services consumption 
reduction desired avg commercial services consumption - Desired average commercial services consumption 
based on the energy efficiency targets (policy) 
reduction desired avg public services consumption - Desired average public services consumption based on the 
energy efficiency targets (policy) 

#137 
A  

 

energy storage capacity usage factor (Dmnl)  
= IF THEN ELSE((HOURS PER MONTH*(net avg electricity generation in MW-FREQUENCY BALANCING FOSSIL 
CAPACITY))-∑(installed renewables MW capacity hours to utilise[type!])>=installed energy storage MW capacity 
hours to utilise, installed energy storage MW capacity hours to utilise/(HOURS PER MONTH*net avg electricity 
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generation in MW),IF THEN ELSE((HOURS PER MONTH*FREQUENCY BALANCING FOSSIL CAPACITY)/(HOURS PER 
MONTH*net avg electricity generation in MW)+SUM(renewables capacity usage factor[type!])<1, 1-((HOURS 
PER MONTH*FREQUENCY BALANCING FOSSIL CAPACITY)/(HOURS PER MONTH*net avg electricity generation in 
MW)+SUM(renewables capacity usage factor[type!])), 0)) 
Description: Based on the merit order of the utility company......geothermal, run of river dispatched firstly along 

with the frequency balancing fossil generation, then biomass, then wind and extra fossil as needed.........if too 

much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for frequency balancing 

Energy storage will be used once installed 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
expected energy storage revenues per MW installed - Based on the expected installed capacity usage and 
expected revenues. Use of ZIDZ to avoid division errors 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
total capacity usage factor - Used for normalisation checking of the usage factor 

#138 
F,A  

  

 

energy storage construction rate (MW/Month)  
= Planned Energy Storage Investments/ENERGY STORAGE PROJECT APPROVAL TIME 
Description: Accounting for the delay between investment decision project write ups and financial approvals for 

the start of construction. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage online rate - Accounting for the delay from construction to commissioning of the energy storage. 
Energy Storage under Construction - The stock of energy storage under construction. 
Planned Energy Storage Investments - The stock of planned energy storage capacity investments. 

#139 
C  

 

ENERGY STORAGE CONSTRUCTION TIME (Months [6, 60, 2])  
= 36 
Description: 30 months for pumped hydro and 6 months for battery plant. Use of small reservoir as default: 36 

months 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage online rate - Accounting for the delay from construction to commissioning of the energy storage. 

#140 
F,A  

  

 

energy storage decommissioning rate (MW/Month)  
= IF THEN ELSE(GET TIME VALUE(0,0,0)<(AVERAGE ENERGY STORAGE LIFETIME-INITIAL ENERGY STORAGE 
ONLINE TIME),Installed Energy Storage Capacity/(AVERAGE ENERGY STORAGE LIFETIME-INITIAL ENERGY 
STORAGE ONLINE TIME),Installed Energy Storage Capacity/AVERAGE ENERGY STORAGE LIFETIME) 
Description: Accounting for the depreciation of energy storage 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
Cumulatively Depreciated Energy Storage Capacity - Stock of all energy storage over the total simulation 
timeline. 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 
Installed Energy Storage Capacity - Stock of installed energy storage based on capacity investments and 
decommissioning 
loss of capacity factor experience - Decrease in the capacity factor attribute 

#141 
L  

 

Energy Storage Dispatch Cost ($/(MW*h))  
= ∫marginal cost of storage capacity-marginal cost of storage capacity previous year dt + [initial cost of new 
energy storage capacity] 
Description: Stock of the energy storage LCOE cost in dollars 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of storage capacity previous year - Change in marginal cost of renewables technologies over time 
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needed breakeven monthly revenue per MW installed energy storage - Revenues needed due to installed 
energy storage capacities and usage of the capacity 

#142 
A  

 

energy storage grid attractiveness (MW)  
= energy storage grid experience attractiveness function(average capacity factor experience) 
Description: Attractiveness of the renewables technology based on the average grid capacity factor experiences. 

This represents the unit MW of energy storage that should be considered. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
grid experience input to energy storage - Inflow of potential capacity from grid quality 

#143 
T  

 

energy storage grid experience attractiveness function (MW)  
= [(0,0)-
(1,1)],(0.00611621,0.986842),(0.0458716,0.973684),(0.0825688,0.973684),(0.119266,0.969298),(0.159021,0.96
4912),(0.201835,0.947368),(0.220183,0.942982),(0.262997,0.916667),(0.293578,0.890351),(0.324159,0.855263
),(0.348624,0.833333),(0.373089,0.798246),(0.397554,0.758772),(0.422018,0.723684),(0.449541,0.684211),(0.
464832,0.644737),(0.48318,0.605263),(0.498471,0.552632),(0.51682,0.504386),(0.538226,0.451754),(0.553517
,0.412281),(0.562691,0.377193),(0.571865,0.320175),(0.58104,0.267544),(0.599388,0.22807),(0.614679,0.2061
4),(0.626911,0.175439),(0.648318,0.149123),(0.675841,0.105263),(0.733945,0.0482456),(0.798165,0.0263158),
(0.865443,0.0131579),(0.88685,0.0175439),(0.914373,0.0175439),(0.920489,0.0175439),(0.957187,0.0131579),
(0.975535,0.0131579),(0.990826,0.0131579) 
Description: Grid quality attractiveness lookup function for energy storage (Authors own elaboration) 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
energy storage grid attractiveness - Attractiveness of the renewables technology based on the average grid 
capacity factor experiences. This represents the unit MW of energy storage that should be considered. 
 

 
#144 

A  

 

energy storage investment attractiveness (Dmnl)  
= investment attractiveness function(energy storage profitability) 
Description: Based on energy storage technology profitability 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
financially desired energy storage capacity - The installed capacity that is desired based on the cost reduction 
learning curves and financial profitability of the energy storage capacity 

#145 
F,A  

  

 

energy storage investment rate (MW/Month)  
= MAX(0,energy storage investment rate real) 
Description: MAX formulation used to avoid negative energy storage investments 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
Planned Energy Storage Investments - The stock of planned energy storage capacity investments. 

#146 
A  

 

energy storage investment rate real (MW/Month)  
= IF THEN ELSE(GET TIME VALUE(0,0,0)<=ENERGY STORAGE POLICY ENACTMENT YEAR,MAX(0,(financially 
desired energy storage capacity-Installed Energy Storage Capacity)/CAPACITY INVESTMENT TIMELINE)+energy 
storage decommissioning rate,IF THEN ELSE(GET TIME VALUE(0,0,0)>ENERGY STORAGE POLICY ENACTMENT 
YEAR:AND: GET TIME VALUE(0,0,0)<ENERGY STORAGE POLICY ENACTMENT YEAR + ENERGY STORAGE POLICY 
TIMELINE,MAX(Alternate BAU Storage policy/ENERGY STORAGE POLICY TIMELINE,change in needed energy 
storage from policy) + energy storage decommissioning rate+ (Potential Energy Storage from Grid 
Quality/CAPACITY INVESTMENT TIMELINE),MIN(MAX(0,(financially desired energy storage capacity+Potential 
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Energy Storage from Grid Quality-Installed Energy Storage Capacity)/CAPACITY INVESTMENT TIMELINE) + 
MIN(0,energy storage decommissioning rate),MAX(0,(amount of expected total capacity as storage+Potential 
Energy Storage from Grid Quality-Installed Energy Storage Capacity)/CAPACITY INVESTMENT TIMELINE) + 
MAX(0,energy storage decommissioning rate)))) 
Description: During the energy policy timeline, energy storage capacity is considered. Financially desired energy 

storage is installed based on the usage of energy storage before, during and after energy policy timeline. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate - MAX formulation used to avoid negative energy storage investments 

#147 
C  

 

energy storage MIN MAX daily demand profile monthly threshold (MW [5,15,1])  
= 10 
Description: The tolerated difference between peaks and troughs of daily demand.....use of 10MW as the 

default value 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
revised MIN MAX daily demand profiles monthly energy storage influence - If the MIN MAX difference remains 
high then we should continue with the energy storage policy, if not then we can reduce the energy storage 
policy to 1%This assumes that the larger the gap then more excess storage supply is needed in the daytime 
proportional to the avoided curtailed amount in the night time. 

#148 
DE,F  

 

energy storage online rate (MW/Month)  
= DELAY3I(energy storage construction rate, ENERGY STORAGE CONSTRUCTION TIME , Energy Storage under 
Construction/ENERGY STORAGE CONSTRUCTION TIME ) 
Description: Accounting for the delay from construction to commissioning of the energy storage. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Energy Storage under Construction - The stock of energy storage under construction. 
Installed Energy Storage Capacity - Stock of installed energy storage based on capacity investments and 
decommissioning 

#149 
C  

 

ENERGY STORAGE POLICY ENACTMENT YEAR (Months [156,540,12])  
= 150 
Description: Represents the year during the simulation time in months from 2005 when the policy is enacted180 

represents the year 2020.....................150 represents the year end 2017/2018.......540 represents no policy 

enacted 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 
energy storage POLICY TIMELINE used - Timeline for the energy storage policy based on the shorter time step 
(daily profile) of the model effects to be considered. The policy dates that the energy storage target should be 
achieved. Default of 5 year policy starting in 2015(120 months into simulation)Use of an infinity value......zero 
gives a floating point error 500years = 6000 months 

#150 
C  

 

ENERGY STORAGE POLICY TIMELINE (Months [120, 540, 60])  
= 60 
Description: The policy dates that the energy storage policy target should be achieved by. This is given in months 

as the lifetime of the target period. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 
energy storage POLICY TIMELINE used - Timeline for the energy storage policy based on the shorter time step 
(daily profile) of the model effects to be considered. The policy dates that the energy storage target should be 
achieved. Default of 5 year policy starting in 2015(120 months into simulation)Use of an infinity value......zero 
gives a floating point error 500years = 6000 months 

#151 
A  

 

energy storage POLICY TIMELINE used (Months [12,420,60])  
= IF THEN ELSE( GET TIME VALUE(0,0,0)>ENERGY STORAGE POLICY ENACTMENT YEAR :AND: GET TIME 
VALUE(0,0,0)<ENERGY STORAGE POLICY ENACTMENT YEAR + ENERGY STORAGE POLICY TIMELINE, ENERGY 
STORAGE POLICY TIMELINE,6000) 
Description: Timeline for the energy storage policy based on the shorter time step (daily profile) of the model 
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effects to be considered. The policy dates that the energy storage target should be achieved. Default of 5 year 

policy starting in 2015(120 months into simulation)Use of infinity value......zero gives a floating point error 

500years = 6000 months 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
change in needed energy storage from policy - Discrepancy needed to meet the energy policy goals. 

#152 
A  

 

energy storage profitability (Dmnl)  
= ZIDZ(expected energy storage revenues per MW installed, needed breakeven monthly revenue per MW 
installed energy storage) 
Description: Ratio of revenues over needed LCOE baseline revenues. 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage investment attractiveness - Based on energy storage technology profitability 

#153 
C  

 

ENERGY STORAGE PROJECT APPROVAL TIME (Months [1,12,1])  
= 3 
Description: Accounting for the delay time between investment decision project write ups and financial 

approvals for start of construction....Use of 3 months as the default for energy storage projects. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage construction rate - Accounting for the delay between investment decision project write ups and 
financial approvals for the start of construction. 

#154 
L  

 

Energy Storage under Construction (MW)  
= ∫energy storage construction rate-energy storage online rate dt + [0] 
Description: The stock of energy storage under construction. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage online rate - Accounting for the delay from construction to commissioning of the energy storage. 

#155 
C  

 

EU CO2 EMISSIONS BASE YEAR LEVEL (tonnes/Month)  
= 16311 
Description: Base year of 2005. Give the total amount of CO2 emissions over the year. Total in 2005 is 562721 

with 195732 coming from electricity production (Pina, (2011)). The monthly value can be averaged to be 

195732/(12 months) per year..... 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
EU CO2 emissions target level - Target year level of the total amount of CO2 emissions reduction needed over 
the subsequent years to achieve this value as a fraction of the base year value Given on a monthly assumption 
basis...... default of 30% reduction of 2005 emissions levels 

#156 
A  

 

EU CO2 emissions target level (tonnes/Month)  
= CO2 EMISSIONS TARGET FRACTION*EU CO2 EMISSIONS BASE YEAR LEVEL 
Description: Target year level of the total amount of CO2 emissions reduction needed over the subsequent years 

to achieve this value as a fraction of the base year value Given on a monthly assumption basis...... default of 30% 

reduction of 2005 emissions levels 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
CO2 emissions reduction factor - The monthly discrepancy resulting from the amount of CO2 emissions and the 
targeted CO2 emissions reduction 

#157 
C  

 

EURO COST OF NEW ENERGY STORAGE CAPACITY (euro/(MW*h) [70,110,1])  
= 75 
Description: Initial marginal cost of new renewable capacity for initial year, 2005..............IEA (2005) and Sliva 

(2013) for these LCOE costs; Hydro 75 euro/MWh 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
initial cost of new energy storage capacity - Initial marginal cost of new energy storage for base year converted 
to dollars 

#158 
C  

 

EURO COST OF NEW RENEWABLES CAPACITY (euro/(MW*h) [70,107,0.5])  
EURO COST OF NEW RENEWABLES CAPACITY [type] = 84,75,107,74,230 
Description: Initial marginal cost of new renewable capacity for initial year, 2005..............IEA (2005) and Sliva 

(2013) for these LCOE costs Wind 74 euro/MWh; Hydro 75 euro/MWh; Geothermal 84 euro/MWh.....from Silva 
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(2013) but Ilic et al (2013) pgs 134,136 and 542 also has 19.8 euro/MWh pg. 136;Biomass 107 euro/MWh; Solar 

from IEA (2005) is around 230 euro/MWh 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
initial cost of new renewables capacity - Initial marginal cost of new renewable capacity for base year converted 
to dollars 

#159 
C  

 

EURO FOSSIL GENERATION COST (euro/(MW*h) [150,211])  
= 168 
Description: LCOE cost per MWh in euros the base year, 2005..................initial cost of new renewable capacity: 

Use of IEA (2005) and Sliva (2013) for LCOE costs 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
fossil generation cost - LCOE cost per MWh in dollars in the base year, 2005..................initial cost of new 
renewable capacity: Use of IEA (2005) and Sliva (2013) for LCOE costs 

#160 
C  

 

EURO TO $ CONVERSION FACTOR ($/euro [1.08,1.5,0.01])  
= 1.23 
Description: http://www.x-rates.com/historical/?from=USD&amount=1&date=2016-01-01Default value of 1.25 

based on the average over the last 10 years = 1.23 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
commercial services consumption revenues - Revenues generated from commercial services consumption 
electric vehicles consumption revenues - Revenues generated from electric vehicles consumption 
fossil generation cost - LCOE cost per MWh in dollars in the base year, 2005..................initial cost of new 
renewable capacity: Use of IEA (2005) and Sliva (2013) for LCOE costs 
industrial consumption revenues - Revenues generated from industrial consumption 
initial cost of new energy storage capacity - Initial marginal cost of new energy storage for base year converted 
to dollars 
initial cost of new renewables capacity - Initial marginal cost of new renewable capacity for base year converted 
to dollars 
public services consumption revenues - Revenues generated from public services consumption 
residential consumption revenues - Revenues generated from residential consumption 

#161 
C  

 

EV POLICY ENACTMENT YEAR (Months [60,540,12])  
= 540 
Description: Represents the year during the simulation time in months from 2005 when the policy is 
enacted120 represents the year 2015.....................540 represents no EV policy, the default value. 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 
ELECTRIC VEHICLES POLICY TIMELINE - The policy dates that the electric vehicles target should be achieved. 
Based on the different types of policies implemented with the "no policy" implementation 

#162 
C  

 

EV POLICY TIMELINE (Months [36, 420, 12])  
= 52 
Description: The policy dates that the electric vehicles target should be achieved. Set increments of months for 
the electric vehicles target policies. Use of STEP function to signal recent electric vehicles policy. Default of 5 
year policy starting in 2015(120 months into simulation) for 60 months 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 
ELECTRIC VEHICLES POLICY TIMELINE - The policy dates that the electric vehicles target should be achieved. 
Based on the different types of policies implemented with the "no policy" implementation 
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#163 
C  

 

EV to GRID as STORAGE FRACTION (fraction [0.1,1,0.05])  
= 0.75 
Description: average fraction of all newly adopted electric vehicles that can be considered as storage for the 
grid 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
electric vehicle to grid storage fraction - avg number of adopted electric vehicles that will provide storage on a 
monthly basis 

#164 
C  

 

EXPECTED CAPACITY MARGIN (fraction [0.15,0.65])  
= 0.32 
Description: the current capacity margin of the system in São Miguel 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
forecasted total capacity needed - Based on the present capacity margin and the forecasted peak demands of 
the system BAU case together with the de-rated capacity margins. 

#165 
A  

 

expected energy storage revenues per MW installed ($/(Month*MW))  
= ZIDZ( (energy storage capacity usage factor*Expected Revenues) , Installed Energy Storage Capacity) 
Description: Based on the expected installed capacity usage and expected revenues. Use of ZIDZ to avoid 
division errors 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage profitability - Ratio of revenues over needed LCOE baseline revenues. 

#166 
A  

 

expected fossil generation revenues per MW installed ($/(Month*MW))  
= (fossil generation capacity usage factor*Expected Revenues)/Installed Fossil Generation Capacity 
Description: Based on the expected installed fossil generation capacity usage and expected revenues 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
fossil generation profitability - Ratio of revenues over needed LCOE baseline revenues. 

#167 
A  

 

expected renewables revenues per MW installed ($/(Month*MW))  
expected renewables revenues per MW installed [type] = ZIDZ((renewables capacity usage 
factor[type]*Expected Revenues),Installed Renewables Capacity[type]) 
Description: Based on the expected installed renewable technologies capacity usage and expected revenues 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
renewables profitability - Ratio of revenues over needed LCOE baseline revenues. 

#168 
L  

 

Expected Revenues ($/Month)  
= ∫change in revenues dt + [total electricity sold revenues] 
Description: Stock of rolling average of revenues generated 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
change in revenues - Change in the revenues generated over the revenue horizon 
expected energy storage revenues per MW installed - Based on the expected installed capacity usage and 
expected revenues. Use of ZIDZ to avoid division errors 
expected fossil generation revenues per MW installed - Based on the expected installed fossil generation 
capacity usage and expected revenues 
expected renewables revenues per MW installed - Based on the expected installed renewable technologies 
capacity usage and expected revenues 

#169 
L  

 

expected total capacity needed (MW)  
= ∫change in total capacity needed dt + [forecasted total capacity needed] 
Description: Smoothing the total capacity needed based on the capacity investment timeline. 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
amount of expected total capacity as fossil - Given the investment portfolio we should have this amount of 
fossil in the generation mix to meet forecasted demand levels.. 
amount of expected total capacity as renewables - Given the investment portfolio we should invest in this 
amount of the specific renewable technology in the generation mix to meet forecasted demand levels. 
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amount of expected total capacity as storage - Given the investment portfolio we should have this amount of 
storage in the generation mix to meet forecasted demand levels. 
amount of renewables considered for RENEWABLES POLICY - This is the amount of renewables desired by policy 
makers at the specified time. The specified time is the time when the policy is enacted. 
change in total capacity needed - Inflow of total capacity needed 

#170 
A  

 

experience curve energy storage (Dmnl)  
= -LOG(PROGRESS RATIO ENERGY STORAGE, 2) 
Description: Logistic learning curve formula. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of storage capacity - Learning curve cost reduction implementation. 

#171 
A  

 

experience curve renewables (Dmnl)  
= -LOG(PROGRESS RATIO RENEWABLES, 2) 
Description: Logistic learning curve formula. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of renewables capacity - Learning curve cost reduction implementation. 

#172 
C  

 

FINAL TIME (Month)  
= 540 
Description: The final time for the simulation. 
Not Present In Any View 

#173 
A  

 

financially desired energy storage capacity (MW)  
= Installed Energy Storage Capacity*energy storage investment attractiveness 
Description: The installed capacity that is desired based on the cost reduction learning curves and financial 

profitability of the energy storage capacity 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 

#174 
A  

 

financially desired fossil generation capacity (MW)  
= Installed Fossil Generation Capacity*fossil generation investment attractiveness 
Description: The capacity that is desired based on the financial benefits of the fossil generation capacity 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 

#175 
A  

 

financially desired renewable capacity (MW)  
financially desired renewable capacity [type] = Installed Renewables Capacity[type]*renewable investment 
attractiveness[type] 
Description: The installed capacity that is desired based on the cost reduction learning curves and financial 

profitability of the renewables capacity 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#176 
C  

 

FORECAST PERIOD (Months [6,24,6])  
= 12 
Description: Time taken to perceive the peak electricity demand......smoothing period 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
change in total capacity needed - Inflow of total capacity needed 
Forecasted Peak Electricity Demand - Forecasting the peak electricity demand. 
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#177 
SM  

 

Forecasted Peak Electricity Demand (MW)  
= SMOOTH(PEAK FACTOR*net avg electricity demand in MW, FORECAST PERIOD) 
Description: Forecasting the peak electricity demand. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
forecasted total capacity needed - Based on the present capacity margin and the forecasted peak demands of 
the system BAU case together with the de-rated capacity margins. 

#178 
LI,A  

 

forecasted total capacity needed (MW)  
= BASE YEAR DIFFERENCE + (((EXPECTED CAPACITY MARGIN*Forecasted Peak Electricity Demand)+Forecasted 
Peak Electricity Demand)/DERATED CAPACITY MARGIN FACTOR) 
Description: Based on the present capacity margin and the forecasted peak demands of the system BAU case 

together with the de-rated capacity margins. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
change in total capacity needed - Inflow of total capacity needed 
expected total capacity needed - Smoothing the total capacity needed based on the capacity investment 
timeline. 

#179 
A  

 

FOSSIL CAPACITY PORTFOLIO (fraction [0, 1])  
= IF THEN ELSE(∑(RENEWABLE CAPACITY PORTFOLIO[type!])+STORAGE CAPACITY PORTFOLIO<1, 1-
(SUM(RENEWABLE CAPACITY PORTFOLIO[type!])+STORAGE CAPACITY PORTFOLIO) , 0) 
Description: The investment percentage that is targeted to fossil fuel generation 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
amount of expected total capacity as fossil - Given the investment portfolio we should have this amount of 
fossil in the generation mix to meet forecasted demand levels.. 

#180 
C  

 

FOSSIL CO2 per MWh PRODUCTION (tonnes/(MW*h) [0.55,0.9,0.01])  
= 0.59 
Description: Conversion of the 0.59 tonnes/MWh to tonnes/MW per month basis. DAPTRA quotes this value as 

being (527Kg/MWh) 0.59 tonnes/MWh. Silva (2013) quotes 0.8tonnes/MWh 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
net monthly CO2 emissions - The total monthly CO2 emissions given the amount of fossil generation that is used 
within the system 
renewable capacity replacement for CO2 emissions based fossil generation - The renewable potential from the 
gap of CO2 emissions. The amount of MW of renewable capacity needed to close the emissions gap. 

#181 
L  

 

Fossil Generation Capacity Under Construction (MW)  
= ∫fossil generation construction rate-fossil generation online rate dt + [0] 
Description: The stock of fossil generation capacity under construction. The initial value is zero in 2005. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation online rate - Accounting for the delay from construction of the fossil generation capacity 

#182 
A  

 

fossil generation capacity usage factor (Dmnl)  
= IF THEN ELSE((HOURS PER MONTH*(net avg electricity generation in MW-FREQUENCY BALANCING FOSSIL 
CAPACITY))-∑(installed renewables MW capacity hours to utilise[type!])-installed energy storage MW capacity 
hours to utilise>SUM(installed renewables MW capacity hours to utilise[type!]), 1-SUM(renewables capacity 
usage factor[type!]), 1-(SUM(renewables capacity usage factor[type!])+energy storage capacity usage factor)) 
Description: Based on the merit order of the utility company......geothermal, run of river dispatched firstly along 

with the frequency balancing fossil generation, then biomass, then wind and extra fossil as needed.........if too 

much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for frequency 

balancing......additional fossil is used if there is not enough renewables and storage. In the base year 34.27MW 

of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 102.66MW 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
expected fossil generation revenues per MW installed - Based on the expected installed fossil generation 
capacity usage and expected revenues 
net monthly CO2 emissions - The total monthly CO2 emissions given the amount of fossil generation that is used 
within the system 
total capacity usage factor - Used for normalisation checking of the usage factor 
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#183 
F,A  

  

 

fossil generation construction rate (MW/Month)  
= Planned Fossil Generation Investments/FOSSIL GENERATION PROJECT APPROVAL TIME 
Description: Accounting for the delay between investment decision project write ups and financial approvals for 

the start of capacity construction 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Fossil Generation Capacity Under Construction - The stock of fossil generation capacity under construction. The 
initial value is zero in 2005. 
fossil generation online rate - Accounting for the delay from construction of the fossil generation capacity 
Planned Fossil Generation Investments - The stock of planned fossil generation capacity investments ....there 
are no fossil generation capacity investment plans in 2005 

#184 
C  

 

FOSSIL GENERATION CONSTRUCTION TIME (Months [24, 60, 6])  
= 36 
Description: Fossil generation construction time ranges between 2-5 years. Use of 3 years (36 months) as 
default value. http://bv.com/docs/reports-studies/nrel-cost-report.pdf 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation online rate - Accounting for the delay from construction of the fossil generation capacity 

#185 
A  

 

fossil generation cost ($/(MW*h) [185,260])  
= EURO FOSSIL GENERATION COST*EURO TO $ CONVERSION FACTOR 
Description: LCOE cost per MWh in dollars in the base year, 2005..................initial cost of new renewable 
capacity: Use of IEA (2005) and Sliva (2013) for LCOE costs 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
needed breakeven monthly revenue per MW installed fossil generation - Revenues needed due to installed 
fossil generation capacities and usage of the capacity 

#186 
F,A  

  

 

fossil generation decommissioning rate (MW/Month)  
= IF THEN ELSE(GET TIME VALUE(0,0,0)<(AVERAGE FOSSIL GENERATOR LIFETIME-INITIAL FOSSIL GENERATOR 
ONLINE TIME),Installed Fossil Generation Capacity/(AVERAGE FOSSIL GENERATOR LIFETIME-INITIAL FOSSIL 
GENERATOR ONLINE TIME),Installed Fossil Generation Capacity/AVERAGE FOSSIL GENERATOR LIFETIME) 
Description: Accounting for the depreciation of the fossil generation capacity. 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
Cumulatively Depreciated Fossil Generation Capacity - Stock of all fossil generation over the total simulation 
timeline. 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
Installed Fossil Generation Capacity - Stock of installed fossil generation technology based on capacity 
investments and decommissioning 
loss of capacity factor experience - Decrease in the capacity factor attribute 

#187 
A  

 

fossil generation investment attractiveness (Dmnl)  
= investment attractiveness function(fossil generation profitability) 
Description: Based on fossil generation technology profitability 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
financially desired fossil generation capacity - The capacity that is desired based on the financial benefits of the 
fossil generation capacity 

#188 
F,A  

  

 

fossil generation investment rate (MW/Month)  
= MAX(0,fossil generation investment rate real) 
Description: MAX formulation used to avoid negative fossil generation investments 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
Planned Fossil Generation Investments - The stock of planned fossil generation capacity investments ....there 
are no fossil generation capacity investment plans in 2005 
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#189 
A  

 

fossil generation investment rate real (MW/Month)  
= IF THEN ELSE(GET TIME VALUE(0,0,0)<=RENEWABLES POLICY ENACTMENT YEAR :AND: demand vs supply 
capacity mismatch investments rate factor>0.25,fossil generation decommissioning rate,IF THEN ELSE(GET TIME 
VALUE(0,0,0)>RENEWABLES POLICY ENACTMENT YEAR:AND: GET TIME VALUE(0,0,0)<RENEWABLES POLICY 
ENACTMENT YEAR + RENEWABLES POLICY TIMELINE:AND: demand vs supply capacity mismatch investments 
rate factor>0.25,fossil generation decommissioning rate-MAX(difference needed from renewables 
policy,renewable capacity replacement for CO2 emissions based fossil generation) + Potential Fossil Generation 
from Grid Quality/CAPACITY INVESTMENT TIMELINE,IF THEN ELSE(Installed Fossil Generation 
Capacity>FREQUENCY BALANCING FOSSIL CAPACITY,MIN(MAX(0,(financially desired fossil generation capacity-
Installed Fossil Generation Capacity)/CAPACITY INVESTMENT TIMELINE+fossil generation decommissioning rate-
renewable capacity replacement for CO2 emissions based fossil generation+Potential Fossil Generation from 
Grid Quality/CAPACITY INVESTMENT TIMELINE),(amount of expected total capacity as fossil-Installed Fossil 
Generation Capacity)/CAPACITY INVESTMENT TIMELINE+fossil generation decommissioning rate-renewable 
capacity replacement for CO2 emissions based fossil generation+Potential Fossil Generation from Grid 
Quality/CAPACITY INVESTMENT TIMELINE),MAX(0,fossil generation decommissioning rate+Potential Fossil 
Generation from Grid Quality/CAPACITY INVESTMENT TIMELINE)))) 
Description: Decommissioned fossil is not brought back online before renewables policy, during and after the 
policy period but the grid quality aspects are considered.......if there is lower grid quality then more fossil 
generation can be installed. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate - MAX formulation used to avoid negative fossil generation investments 

#190 
DE,F  

 

fossil generation online rate (MW/Month)  
= DELAY3I(fossil generation construction rate, FOSSIL GENERATION CONSTRUCTION TIME, Fossil Generation 
Capacity Under Construction/FOSSIL GENERATION CONSTRUCTION TIME) 
Description: Accounting for the delay from construction of the fossil generation capacity 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Fossil Generation Capacity Under Construction - The stock of fossil generation capacity under construction. The 
initial value is zero in 2005. 
Installed Fossil Generation Capacity - Stock of installed fossil generation technology based on capacity 
investments and decommissioning 

#191 
A  

 

fossil generation profitability (Dmnl)  
= IF THEN ELSE(expected fossil generation revenues per MW installed=0 :OR: needed breakeven monthly 
revenue per MW installed fossil generation=0, 0, expected fossil generation revenues per MW installed/needed 
breakeven monthly revenue per MW installed fossil generation) 
Description: Ratio of revenues over needed LCOE baseline revenues. 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
fossil generation investment attractiveness - Based on fossil generation technology profitability 

#192 
C  

 

FOSSIL GENERATION PROJECT APPROVAL TIME (Months [1,12,1])  
= 6 
Description: 6 months is the default time for fossil generation projects 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation construction rate - Accounting for the delay between investment decision project write ups 
and financial approvals for the start of capacity construction 

#193 
A  

 

fossil grid attractiveness (MW)  
= fossil grid experience attractivness function(average capacity factor experience) 
Description: Attractiveness of the fossil generation technology based on the average grid capacity factor 

experiences. This represents the unit MW of renewables that should be considered. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
grid experience input to fossil generation - Inflow of potential capacity from grid quality 

#194 
T  

 

fossil grid experience attractiveness function (MW)  
= [(0,0)-
(1,1)],(0.00611621,0.995614),(0.0428135,0.97807),(0.088685,0.973684),(0.116208,0.973684),(0.149847,0.9692
98),(0.189602,0.964912),(0.235474,0.964912),(0.272171,0.964912),(0.314985,0.95614),(0.342508,0.95614),(0.
376147,0.951754),(0.412844,0.938596),(0.449541,0.907895),(0.474006,0.864035),(0.501529,0.828947),(0.5259
94,0.77193),(0.556575,0.675439),(0.58104,0.592105),(0.599388,0.526316),(0.611621,0.464912),(0.626911,0.39
4737),(0.64526,0.324561),(0.675841,0.254386),(0.685015,0.210526),(0.706422,0.166667),(0.721713,0.131579),
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(0.740061,0.100877),(0.75841,0.0745614),(0.785933,0.0526316),(0.807339,0.0350877),(0.83792,0.0263158),(0.
856269,0.0263158),(0.889908,0.0263158),(0.920489,0.0175439),(0.948012,0.0175439),(0.969419,0.0175439),(
0.993884,0.0175439) 
Description: Grid quality attractiveness lookup function for fossil generation (Authors own elaboration) 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
fossil grid attractiveness - Attractiveness of the fossil generation technology based on the average grid capacity 
factor experiences. This represents the unit MW of renewables that should be considered. 
 

 
#195 

C  

 

FREQUENCY BALANCING FOSSIL CAPACITY (MW [6, 20, 2])  
= 18 
Description: The minimal possible (technically) amount of fossil generation capacity needed for frequency 

balancing. Bothelo (2015) 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 

#196 
C  

 

FUTURE ECONOMIC ACTIVITY GROWTH (fraction/Month [0.00119,0.001191])  
= 0.0011905 
Description: GDP changed from 0.78 to 0.88 per month in 7 years (7*12) months = 840.0011905 per month is 

the forecasted default growth rate 
Present in 1 view: 
Net Electricity Demand 
Used by: 
local economic activity - Use of real data where available and a forecast for future trends 

#197 
C  

 

GRID CAPACITY FACTOR EXPERIENCE DECISION TIMELINE (Months [6,36,6])  
= 24 
Description: Observation timeline of the technology for considering new capacity based on the capacity 

experience 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 



 

266 
 

Used by: 
grid experience input to energy storage - Inflow of potential capacity from grid quality 
grid experience input to fossil generation - Inflow of potential capacity from grid quality 
grid experience input to renewables - Inflow of potential capacity from grid quality 

#198 
F,A  

  

 

grid experience input to energy storage (MW/Month)  
= energy storage grid attractiveness/GRID CAPACITY FACTOR EXPERIENCE DECISION TIMELINE 
Description: Inflow of potential capacity from grid quality 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Potential Energy Storage from Grid Quality - Stock of potential capacity from grid quality 

#199 
F,A  

  

 

grid experience input to fossil generation (MW/Month)  
= fossil grid attractiveness/GRID CAPACITY FACTOR EXPERIENCE DECISION TIMELINE 
Description: Inflow of potential capacity from grid quality 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Potential Fossil Generation from Grid Quality - Stock of potential capacity from grid quality 

#200 
F,A  

  

 

grid experience input to renewables (MW/Month)  
= renewable grid attractiveness/GRID CAPACITY FACTOR EXPERIENCE DECISION TIMELINE 
Description: Inflow of potential capacity from grid quality 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Potential Renewables Generation from Grid Quality - Stock of potential capacity from grid quality 

#201 
A  

 

HOURS PER DAY (h/day)  
= =24 
Description: Fixed constant of the number of hours in a day 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 

#202 
A  

 

HOURS PER MONTH (h/Month)  
= =720 
Description: Number of hours in a 30 day month 
Present in 4 views: 
Net Electricity Demand 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
net avg electricity demand in MW - 720 hours per (30 days Vensim) month used to change from MWh to 
MW................electric vehicles MW consumption is calculated from the assumed operational hours of the EVs 
renewable capacity replacement for CO2 emissions based fossil generation - The renewable potential from the 
gap of CO2 emissions. The amount of MW of renewable capacity needed to close the emissions gap. 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 

#203 
F,A  

  

 

household consumption growth (MW*h/(Month*households*Month))  
= (STANDARD OF LIVING INDEX IMPACT ON HOUSEHOLD CONSUMPTION*effect of local economic activity on 
consumption*RESIDENTIAL HOUSEHOLD FACTOR)/TIME TO OBSERVE HOUSEHOLD CONSUMPTION GROWTH 
Description: Household consumption growth calculation as it relates to the economic activity of the island. MWh 

growth per month per household per month 
Present in 1 view: 
Net Electricity Demand 
Used by: 
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Avg Consumption per Household - Stock of average consumption per household 

#204 
F,A  

  

 

household consumption reduction (MW*h/(Month*Month*households))  
= ZIDZ((desired avg consumption per household-Avg Consumption per Household),ENERGY EFFICIENCY POLICY 
TIMELINE USED) 
Description: Monthly change in household consumption reduction, a negative value, as a flow into the average 

household consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Consumption per Household - Stock of average consumption per household 

#205 
C  

 

HOUSEHOLD TARGETED ENERGY EFFICIENCY REDUCTION (fraction [0, 1, 0.02])  
= 0.94 
Description: Percentage of current household electricity demand that is desired to be reduced. 6% reduction is 

equivalent to 94% of the current value 
Present in 1 view: 
Net Electricity Demand 
Used by: 
desired avg consumption per household - Desired average consumption per household based on the energy 
efficiency targets (policy) 

#206 
A  

 

immigration rate (fraction/Month)  
= IN MIGRATION RATE-OUT MIGRATION RATE 
Description: Based on migrations into and out of the island 
Present in 1 view: 
Net Electricity Demand 
Used by: 
net immigration - Net change in registered population based on the immigration rate.....+ve indicates increase 
in population whilst -ve indicates a decrease in the population 

#207 
A  

 

IN MIGRATION RATE (fraction/Month)  
= =0.0017 
Description: http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_eu2

020_acores_en.pdf 
Present in 1 view: 
Net Electricity Demand 
Used by: 
immigration rate - Based on migrations into and out of the island 

#208 
F,A  

  

 

increasing electric vehicles natural rate (vehicles/Month)  
= AVG NUMBER OF NEW VEHICLES PER MONTH*AVG NEW ELECTRIC VEHICLE FRACTION 
Description: Natural number of new electric vehicles bought every month without any policy or market 

influences 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
Electric Vehicles Adopters - Stock of EVs. Initial value in 2005;we assume that this is about 50 EV in 2015 and 0 
in 2005 

#209 
F,A  

  

 

increasing non electric vehicles natural rate (vehicles/Month)  
= AVG NUMBER OF NEW VEHICLES PER MONTH*(1-AVG NEW ELECTRIC VEHICLE FRACTION) 
Description: Number of new non-electric vehicles that are bought every month 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
Potential Electric Vehicles Adopters - The initial number of potential adopters is determined by the total 
population size and the current number of active adopters. It is reduced by adoption and increased when 
adopters discard their old unit and re-enter the market. 

#210 
L  

 

Industrial Businesses (industries/Month)  
= ∫changing numbers dt + [initial number of industrial business] 
Description: Stock of industrial businesses 
Present in 1 view: 
Net Electricity Demand 
Used by: 
avg industrial business monthly consumption - This is the average industrial business consumption (based on 
the stochastic variation if (on)) 
changing numbers - Number of monthly changing industries per month 
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#211 
A  

 

INDUSTRIAL CONSUMPTION EFFECT EXPECTATION TIME (Months)  
= =1 
Description: Consumption effect expectation time observed on a monthly basis 
Present in 1 view: 
Net Electricity Demand 
Used by: 
industrial consumption growth - Industrial business consumption growth calculation as it relates to the 
economic activity of the island.MWh growth per month per industrial business 

#212 
C  

 

INDUSTRIAL CONSUMPTION FACTOR (MW*h/industries [0,0.5])  
= 0.2009 
Description: Elasticity measure for industrial business consumption. For a value of 0.5, a 1% increase in GDP will 

boost the consumption by 0.5% 
Present in 1 view: 
Net Electricity Demand 
Used by: 
industrial consumption growth - Industrial business consumption growth calculation as it relates to the 
economic activity of the island.MWh growth per month per industrial business 

#213 
F,A  

  

 

industrial consumption growth (MW*h/(Months*industries))  
= (effect of local economic activity on consumption*INDUSTRIAL CONSUMPTION FACTOR)/INDUSTRIAL 
CONSUMPTION EFFECT EXPECTATION TIME 
Description: Industrial business consumption growth calculation as it relates to the economic activity of the 

island. MWh growth per month per industrial business 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Consumption per Industrial Business - Stock of industrial business consumption 

#214 
F,A  

  

 

industrial consumption reduction (MW*h/(industries*Months))  
= ZIDZ((desired avg consumption per industrial business-Avg Consumption per Industrial Business),ENERGY 
EFFICIENCY POLICY TIMELINE USED) 
Description: Monthly change in industrial business consumption reduction, a negative value, as a flow into the 

average industrial business consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Consumption per Industrial Business - Stock of industrial business consumption 

#215 
A  

 

industrial consumption revenues ($/Month)  
= EURO TO $ CONVERSION FACTOR*(industrial off peak hours consumption*INDUSTRIAL OFF PEAK 
PRICE+industrial shoulder peak hours consumption*INDUSTRIAL SHOULDER PEAK PRICE+industrial peak hours 
consumption*INDUSTRIAL PEAK PRICE) 
Description: Revenues generated from industrial consumption 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
total electricity sold revenues - Gives the revenues collected on a monthly basis due to the electricity sold and 
based on the tariff structures....The only way of generating income within the model 

#216 
A  

 

industrial off peak hours consumption (h*MW/Month)  
= avg industrial business monthly consumption*percentage of monthly industrial consumption within off peak 
hours 
Description: Derived consumption during off peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#217 
C  

 

INDUSTRIAL OFF PEAK PRICE (euro/(h*MW))  
= 52.6 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#218 
A  

 

industrial peak hours consumption (h*MW/Month)  
= avg industrial business monthly consumption*percentage of monthly industrial consumption within peak 
hours 
Description: Derived consumption during peak hours 
Present in 1 view: 
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Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#219 
C  

 

INDUSTRIAL PEAK PRICE (euro/(h*MW))  
= 111.7 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#220 
A  

 

industrial shoulder peak hours consumption (h*MW/Month)  
= avg industrial business monthly consumption*percentage of monthly industrial consumption within shoulder 
peak hours 
Description: Derived consumption during shoulder peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#221 
C  

 

INDUSTRIAL SHOULDER PEAK PRICE (euro/(h*MW))  
= 87 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial consumption revenues - Revenues generated from industrial consumption 

#222 
C  

 

INDUSTRY TARGETED ENERGY EFFICIENCY REDUCTION (fraction [0, 1, 0.02])  
= 0.94 
Description: Percentage fraction of current electricity demand that is desired to be reduced. 6% reduction is 

equivalent to 94% of the current value 
Present in 1 view: 
Net Electricity Demand 
Used by: 
desired avg consumption per industrial business - Desired average consumption per industrial business based 
on the energy efficiency targets (policy) 

#223 
LI,C  

 

initial commercial services consumption (MW*h/Month [9840,10700,5])  
= 9853 
Description: initial value of the average commercial services consumption in 2005Base year consumption is 

11029MWh including the tourism assumed consumption.9853MWh is used without tourism 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Commercial Services Consumption - Stock of commercial services consumption 

#224 
LI,A  

 

initial cost of new energy storage capacity ($/(MW*h) [80,120,1])  
= EURO COST OF NEW ENERGY STORAGE CAPACITY*EURO TO $ CONVERSION FACTOR 
Description: Initial marginal cost of new energy storage for base year converted to dollars 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Energy Storage Dispatch Cost - Stock of the energy storage LCOE cost in dollars 

#225 
LI,A  

 

initial cost of new renewables capacity ($/(MW*h) [80,140,0.5])  
initial cost of new renewables capacity [type] = EURO COST OF NEW RENEWABLES CAPACITY[type]*EURO TO $ 
CONVERSION FACTOR 
Description: Initial marginal cost of new renewable capacity for base year converted to dollars 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Renewables Generation Cost - Stock of the renewable generation LCOE cost in dollars 

#226 
LI,C  

 

initial cumulatively depreciated energy storage (MW)  
= 0.001 
Description: Initial value of cumulatively depreciated energy storage in 2005. Use of 0.001 to avoid floating 

point error 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
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Cumulatively Depreciated Energy Storage Capacity - Stock of all energy storage over the total simulation 
timeline. 

#227 
LI,A  

 

initial cumulatively depreciated fossil generation (MW)  
= (11/30)*102.56 
Description: Initial value of cumulatively depreciated fossil generation in 2005 based on the fossil generation 

timeline. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Cumulatively Depreciated Fossil Generation Capacity - Stock of all fossil generation over the total simulation 
timeline. 

#228 
LI,C  

 

initial cumulatively depreciated renewables capacity (MW)  
initial cumulatively depreciated renewables capacity [type] = 14.8,3.53,0,0,0 
Description: We assumed only geothermal and run of river renewables in 2005 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Cumulatively Depreciated Renewables Capacity - Stock of all renewables generation over the total simulation 
timeline. 

#229 
LI,C  

 

initial electric vehicles (vehicles)  
= 0 
Description: Initial electric vehicles in 2005 is zero. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
Electric Vehicles Adopters - Stock of EVs. Initial value in 2005;we assume that this is about 50 EV in 2015 and 0 
in 2005 

#230 
LI,C  

 

initial energy storage capacity (MW [15,30,0.1])  
= 0 
Description: The inital amount of energy storage capacity already installed in 2005 is zero............Parness (2011) 

and EDA (2008) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Installed Energy Storage Capacity - Stock of installed energy storage based on capacity investments and 
decommissioning 

#231 
C  

 

INITIAL ENERGY STORAGE ONLINE TIME (Months [60, 180, 1])  
= 0 
Description: This gives the time that the installed technology was already online for in 2005. We assume from 

the data given that there is no energy storage. EDA (2008) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage decommissioning rate - Accounting for the depreciation of energy storage 

#232 
LI,C  

 

initial fossil generation capacity (MW [100,120,0.1])  
= 102.66 
Description: The initial amount of fossil capacity installed in 2005............Parness (2013) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Installed Fossil Generation Capacity - Stock of installed fossil generation technology based on capacity 
investments and decommissioning 

#233 
C  

 

INITIAL FOSSIL GENERATOR ONLINE TIME (Months [12, 180, 1])  
= 12 
Description: We assume from the data given that most of the thermal generators are between 3-15 years (36-

180 months) old. Less than 15% of installation are over 3 years old at time 0 (Jan 2005). 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation decommissioning rate - Accounting for the depreciation of the fossil generation capacity. 

#234 
LI,C  

 

initial household consumption (MW*h/(Month*households) [0.2,0.5,0.01])  
= 0.26 
Description: Data as given from Azores NESIS book for a 2006 household.......(3.462/12) = 0.2885 Divide by 12 to 

make this monthly for the whole Azores....... use of 0.26 for São Miguel19153MWh...........134720/3.45 
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=39049.........gives 0.4905 per month 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Consumption per Household - Stock of average consumption per household 

#235 
LI,C  

 

initial industrial business consumption (MW*h/industries [155,160,0.5])  
= 156 
Description: Using the average number of industries as 35 we get 5480/35 = 156.57MWh (Azores NESIS book) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Consumption per Industrial Business - Stock of industrial business consumption 

#236 
LI,C  

 

initial number of industrial business (industries/Month)  
= 35 
Description: initial number of industries in 2005 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Industrial Businesses - Stock of industrial businesses 
new industrial businesses - The percentage change of industry base due to the local economic growth 

#237 
LI,C  

 

initial planned energy storage capacity (MW [15,30,0.1])  
= 0 
Description: The initial amount of energy storage capacity already installed in 2005 is zero............Parness 

(2011), Bothelo (2015) and Nunes (2015) provided grounds that a 12MW hydro reservoir storage investment is 

to be planned to start the project in 2018. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Planned Energy Storage Investments - The stock of planned energy storage capacity investments. 

#238 
LI,C  

 

initial planned renewables capacity (MW [15,30,0.1])  
initial planned renewables capacity [type] = 0,0,0,7,0 
Description: 9MW wind planned to come online in 2012/2013.......Considering planning time and construction 

we assume that this is planned in 2011.....Use of 7 MW for wind. All other technologies are zero . However, 

Geothermal 5MW to be planned in 2017 and a 5MW biomass waste power plant to be planned at the end of 

2018 - This was detailed from Bothelo (2015) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Planned Renewables Investments - Stock of planned renewables capacity for the various technologies. The 
planned renewable capacity investments from the base year, 2005 onwards. 

#239 
LI,C  

 

initial public services consumption (MW*h/Month [3950,4060,10])  
= 3950 
Description: initial value of the average public services consumption in 2005Base year consumption is 3950MWh 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Public Services Consumption - Stock of average public services consumption 

#240 
LI,C  

 

initial renewables capacity (MW)  
initial renewables capacity [type] = 14.8,3.53,0.8,0.01,0.0001 
Description: The initial amount of renewables capacity already installed in 2005............Parness (2013) gives 

19.13MW total renewables. The capacity for the different technologies are: 14.8MW Geothermal Hydro run of 

river 3.53, 0.8MW biomass, (we use 0.01 MW for wind in 2005 since there is 9MW wind in 2012. O.0001MW is 

used for micro generation since 2MW is present in 2015.)The latter two values were done for ensuring no 

runtime errors within the model 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Installed Renewables Capacity - Stock of installed renewables technologies based on capacity investments and 
decommissioning 

#241 
LI,C  

 

initial renewables capacity under construction (MW)  
initial renewables capacity under construction [type] = 13,0,0,0,0 
Description: 13MW geothermal was under construction during this time to come online in 2 years. All other 

technologies do not have any current construction in 2005 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
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Used by: 
Renewables Capacity Under Construction - The stock of renewable capacity under construction. 

#242 
C  

 

INITIAL RENEWABLES ONLINE TIME (Months [60, 180, 1])  
INITIAL RENEWABLES ONLINE TIME [type] = 120,136,60,0,0 
Description: This gives the time that the installed technology was already online in the base year, 2005. We 

assume from the data given that the only renewables already installed was geothermal and run of river and it is 

about 11 years (132 months) old and 12 years old (136 months) respectively Parness (2013) 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables decommissioning rate - Accounting for the depreciation of the renewable capacity 

#243 
LI,C  

 

initial room night stays (night stays/Month)  
= 96000 
Description: 2005 room night stay as base year value use of room nights data from 

plan_action_strategique_eu2020_acores_en.pdf page 33 .........115000 excluding "other" as given from the 

data.....Divided by 12 for monthly value....Equals 96000 per 

monthhttp://estatistica.azores.gov.pt/upl/%7Bcc31256a-c638-463a-9ce2-c148d17e8e31%7D.pdf gives 120,000 

in 2016 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Room Night Tourist Stays - Stock of room night tourist stays 

#244 
C  

 

INITIAL TIME (Month)  
= 0 
Description: The initial time for the simulation. 
Not Present In Any View 
Used by: 
Time - Internally defined simulation time. 

#245 
LI,C  

 

initial total population of vehicles (vehicles)  
= 45000 
Description: Initial total population of all vehicles on the island in 2005 was 45,000 in 2005 and 49,000 in 

2008Parness (2011)http://estatistica.azores.gov.pt/upl/%7B032836b6-856d-44d7-b0ea-22cfb223d373%7D.htm 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
BASE YEAR POPULATION of VEHICLES - Number of vehicles in the island in 2005 
Total Population of Vehicles - Stock of total vehicle population in the island system. 

#246 
A  

 

Input (Dimensionless)  
Input [type] = 1+STEP(Step Height[type],Step Time[type])+(Pulse Quantity[type]/TIME STEP)*PULSE(Pulse 
Time[type],TIME STEP)+RAMP(Ramp Slope[type],Ramp Start Time[type],Ramp End Time[type])+Sine 
Amplitude[type]*SIN(2*3.14159*Time/Sine Period[type])+STEP(1,Noise Start Time[type])*Pink Noise[type] 
Description: Input is a dimensionless variable which provides a variety of test input patterns, including a step, 

pulse, sine wave, and random noise. Adopted from Sterman (2000) 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
seasonality effects on renewables availability - Seasonality is affected by this exogenous input, which can be set 
by the user to a step, pulse, ramp, sine wave, or noise functions. Used sparingly for this thesis 

#247 
L,LI  

  

 

Installed Energy Storage Capacity (MW)  
= ∫energy storage online rate-energy storage decommissioning rate dt + [initial energy storage capacity] 
Description: Stock of installed energy storage based on capacity investments and decommissioning 
Present in 4 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
average capacity factor experience - Capacity factor attribute as determined from the different main capacity 
stocks 
change in needed energy storage from policy - Discrepancy needed to meet the energy policy goals. 
cumulatively installed storage capacity - Sum of the total ever installed storage capacity 
energy storage decommissioning rate - Accounting for the depreciation of energy storage 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 
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expected energy storage revenues per MW installed - Based on the expected installed capacity usage and 
expected revenues. Use of ZIDZ to avoid division errors 
financially desired energy storage capacity - The installed capacity that is desired based on the cost reduction 
learning curves and financial profitability of the energy storage capacity 
installed energy storage MW capacity hours to utilise - For the monthly demand......active energy used hours 
from energy storage 
net electricity supply capacity in MW - Net electricity supply considering the losses that can occur within the 
generation and transmission of the system. (if on (1) stochastic variations (Not used for thesis) in supply can be 
simulated 
rolling desired energy storage - Based on the MIN MAX influence policy fraction used........Looking at our long 
term installed capacity we will not enforce the energy storage policy if there is more demand than supply. 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#248 
A  

 

installed energy storage MW capacity hours to utilise (MW*h/Month)  
= Installed Energy Storage Capacity*average dispatchable hours for energy storage 
Description: For the monthly demand......active energy used hours from energy storage 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
total MW capacity hours to utilise - Sum of all generating technologies available hours to meet demand load - 
based on installed capacities 

#249 
D,A  

 

installed fossil capacity real data :LOOK FORWARD: (MW)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b25') 
Description: Dan Cross (2008) Parness (2011) and EDA 
Not Present In Any View 

#250 
L,LI  

  

 

Installed Fossil Generation Capacity (MW)  
= ∫fossil generation online rate-fossil generation decommissioning rate dt + [initial fossil generation capacity] 
Description: Stock of installed fossil generation technology based on capcity investments and decommissioning 
Present in 4 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
average capacity factor experience - Capacity factor attribute as determined from the different main capacity 
stocks 
expected fossil generation revenues per MW installed - Based on the expected installed fossil generation 
capacity usage and expected revenues 
financially desired fossil generation capacity - The capacity that is desired based on the financial benefits of the 
fossil generation capacity 
fossil generation decommissioning rate - Accounting for the depreciation of the fossil generation capacity. 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
installed fossil generation MW capacity hours to utilise - For the monthly demand......active energy used hours 
from fossil generation 
net electricity supply capacity in MW - Net electricity supply considering the losses that can occur within the 
generation and transmission of the system. (if on (1) stochastic variations (Not used for thesis) in supply can be 
simulated 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#251 
A  

 

installed fossil generation MW capacity hours to utilise (h*MW/Month)  
= Installed Fossil Generation Capacity*average dispatchable hours for fossil generation 
Description: For the monthly demand......active energy used hours from fossil generation 
Present in 2 views: 
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Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
net monthly CO2 emissions - The total monthly CO2 emissions given the amount of fossil generation that is used 
within the system 
total MW capacity hours to utilise - Sum of all generating technologies available hours to meet demand load - 
based on installed capacities 

#252 
D,A  

 

installed renewable capacity real data:LOOK FORWARD: (MW)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b23') 
Description: Dan Cross (2008) Parness (2011) and EDA 
Not Present In Any View 

#253 
A  

 

Installed Renewables Aggregated Capacity (MW)  
= ∑(Installed Renewables Capacity[type!]) 
Description: Sum of all the different renewable technologies considered in the model, namely; Geothermal, run 

of river, wind, biomass, micro/solar generation. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 

#254 
L,LI  

  

 

Installed Renewables Capacity (MW)  
Installed Renewables Capacity [type] = ∫renewables online rate[type]-renewables decommissioning 
rate[type] dt + [initial renewables capacity[type]] 
Description: Stock of installed renewables technologies based on capacity investments and decommissioning 
Present in 4 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
average capacity factor experience - Capacity factor attribute as determined from the different main capacity 
stocks 
cumulatively installed renewables capacity - Sum of the total ever installed renewable capacity of the specific 
renewable technologies 
difference needed from renewables policy - Monthly amount of capacity needed to achieve policy goals by the 
policy timeline. 
expected renewables revenues per MW installed - Based on the expected installed renewable technologies 
capacity usage and expected revenues 
financially desired renewable capacity - The installed capacity that is desired based on the cost reduction 
learning curves and financial profitability of the renewables capacity 
Installed Renewables Aggregated Capacity - Sum of all the different renewable technologies considered in the 
model, namely; Geothermal, run of river, wind, biomass, micro/solar generation. 
installed renewables MW capacity hours to utilise - For the monthly demand......active energy used hours from 
the different renewables technologies 
net electricity supply capacity in MW - Net electricity supply considering the losses that can occur within the 
generation and transmission of the system. (if on (1) stochastic variations (Not used for thesis) in supply can be 
simulated 
renewables decommissioning rate - Accounting for the depreciation of the renewable capacity 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#255 
A  

 

installed renewables MW capacity hours to utilise (h*MW/Month)  
installed renewables MW capacity hours to utilise [type] = Installed Renewables Capacity[type]*average 
dispatchable hours for renewables[type] 
Description: For the monthly demand......active energy used hours from the different renewables technologies 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
aggregated renewables dispatchable MW capacity hours - used to normalise the usage of the renewables 
technologies 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
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fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 
total MW capacity hours to utilise - Sum of all generating technologies available hours to meet demand load - 
based on installed capacities 

#256 
D,A  

 

installed storage capacity real data:LOOK FORWARD: (MW)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b24') 
Description: Dan Cross (2008) Parness (2011) and EDA 
Not Present In Any View 

#257 
T  

 

investment attractiveness function (Dmnl [0,1])  
= [(0,0)-(10,10)],(0,0.1),(0.5,0.6),(0.8,0.9),(1,1),(1.2,1.1),(1.5,1.25),(2,1.5),(5,1.5),(10,1.5) 
Description: The attractiveness of profitability that can be used for capacity 

expansion/investments..........Investment attractiveness lookup function (from Black, 2005) fig 7-13 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage investment attractiveness - Based on energy storage technology profitability 
fossil generation investment attractiveness - Based on fossil generation technology profitability 
renewable investment attractiveness - Based on the renewable technologies profitability 
 

 
#258 

I  

 

last GDP per capita month (Month)  
= INITIAL(GET DATA LAST TIME(real data GDP per capita)) 
Description: Used for GDP per capita forecast function after last available GDP per capita data point 
Present in 1 view: 
Net Electricity Demand 
Used by: 
local economic activity - Use of real data where available and a forecast for future trends 

#259 
A  

 

local economic activity (Thousands of Euros/Month)  
= real data GDP per capita*EXP(FUTURE ECONOMIC ACTIVITY GROWTH*MAX(0,Time-last GDP per capita 
month)) 
Description: Use of real data where available and a forecast for future trends 
Present in 3 views: 
Net Electricity Demand 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
effect of local economic activity on consumption - Normalised GDP per capita to 2005 reference year 
new industrial businesses - The percentage change of industry base due to the local economic growth 

#260 
F,A  

  

 

loss of capacity factor experience (MW/Month)  
= average capacity factor experience*(fossil generation decommissioning rate+energy storage decommissioning 
rate+∑(renewables decommissioning rate[type!])) 
Description: Decrease in the capacity factor attribute 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
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Used by: 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 

#261 
F,A  

  

 

marginal cost of renewables capacity ($/(MW*h)/Month)  
marginal cost of renewables capacity [type] = marginal cost renewables capacity previous year[type] * 
(cumulatively installed renewables capacity[type]/cumulatively installed renewables capacity previous 
year[type])^(-experience curve renewables) 
Description: Learning curve cost reduction implementation. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Renewables Generation Cost - Stock of the renewable generation LCOE cost in dollars 

#262 
F,A  

  

 

marginal cost of storage capacity ($/(MW*h)/Month)  
= marginal cost of storage capacity previous year * (cumulatively installed storage capacity/ cumulatively 
installed energy storage capacity previous year)^(-experience curve energy storage) 
Description: Learning curve cost reduction implementation. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Energy Storage Dispatch Cost - Stock of the energy storage LCOE cost in dollars 

#263 
F,A  

  

 

marginal cost of storage capacity previous year ($/(MW*h)/Month)  
= Energy Storage Dispatch Cost/TIMELINE FOR CHANGE IN COST OF STORAGE CAPACITY 
Description: Change in marginal cost of renewables technologies over time 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Energy Storage Dispatch Cost - Stock of the energy storage LCOE cost in dollars 
marginal cost of storage capacity - Learning curve cost reduction implementation. 

#264 
F,A  

  

 

marginal cost renewables capacity previous year ($/(MW*h)/Month)  
marginal cost renewables capacity previous year [type] = Renewables Generation Cost[type]/TIMELINE FOR 
CHANGE IN COST OF RENEWABLES CAPACITY 
Description: Change in marginal cost of renewables technologies over time 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of renewables capacity - Learning curve cost reduction implementation. 
Renewables Generation Cost - Stock of the renewable generation LCOE cost in dollars 

#265 
C  

 

market AND SWITCH (Dmnl [0,1,1])  
= 0 
Description: on (1) and off (0). Used for the Bass diffusion market and policy simulations. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 

#266 
C  

 

market based SWITCH (Dmnl [0,1,1])  
= 0 
Description: on (1) and off (0). Used for the Bass difusion simulations. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 

#267 
T,D,A 

  

 

MIN MAX daily demand profile LOOKUP (MW)  
= GET XLS LOOKUPS('black box data.xlsx', 'Sheet 1', 'a','c3') 
Description: Accessing the excel values to be used for the lookup relationship. Data of the 2013 to 2015 

(Bothelo, 2015) hourly consumption is queried. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
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black box MIN MAX daily demand profiles monthly - Choosing the normalized profile based on the randomly 
given index of the dat values 

#268 
A  

 

needed breakeven monthly revenue per MW installed energy storage ($/(MW*Month))  
= Energy Storage Dispatch Cost*average dispatchable hours for energy storage 
Description: Revenues needed due to installed energy storage capacitites and usage of the capacity 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage profitability - Ratio of revenues over needed LCOE baseline revenues. 

#269 
A  

 

needed breakeven monthly revenue per MW installed fossil generation ($/(MW*Month))  
= fossil generation cost*average dispatchable hours for fossil generation 
Description: Revenues needed due to installed fossil generation capacitites and usage of the capacity 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
fossil generation profitability - Ratio of revenues over needed LCOE baseline revenues. 

#270 
A  

 

needed breakeven monthly revenue per MW installed renewables ($/(MW*Month))  
needed breakeven monthly revenue per MW installed renewables [type] = Renewables Generation 
Cost[type]*average dispatchable hours for renewables[type] 
Description: Revenues needed due to the installed renewable technologies capacity and usage of this capacity 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
renewables profitability - Ratio of revenues over needed LCOE baseline revenues. 

#271 
A  

 

net avg demand vs net avg supply capacity mismatch (Dmnl)  
= net avg electricity demand in MW/net electricity supply capacity in MW 
Description: Net electricity demand in MW/net electricity supply in MW > 1 indicates a blackout when demand is 

greater than supply. 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Installed Supply Capacity and Learning Curve 
Used by: 
demand vs supply capacity mismatch investments rate factor - Gauge for ensuring that there is capacity 
investments but not too much or too little to prevent over investments and blackouts 
rolling desired electric vehicles - Based on the year of the policy and the MIN MAX influence policy fraction 
used........Looking at our long term installed capacity we will not enforce the electric vehicle policy if there is 
more demand than supply 
rolling desired energy storage - Based on the MIN MAX influence policy fraction used........Looking at our long 
term installed capacity we will not enforce the energy storage policy if there is more demand than supply. 

#272 
A  

 

net avg electricity demand in MW (MW)  
= (avg total monthly consumer consumption-avg electric vehicles monthly travel consumption)/HOURS PER 
MONTH + avg electric vehicles electrification demand in MW 
Description: 720 hours per (30 days Vensim) month used to change from MWh to MW................electric vehicles 

MW consumption is calculated from the assumed operational hours of the EVs 
Present in 4 views: 
Net Electricity Demand 
Mismatch and Demand Imbalance Black Box 
Financial and Economic Aspects 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Forecasted Peak Electricity Demand - Forecasting the peak electricity demand. 
net avg demand vs net avg supply capacity mismatch - Net electricity demand in MW/net electricity supply in 
MW > 1 indicates a blackout when demand is greater than supply. 
net avg electricity generation in MW - This takes into account any losses in the system...........calculated as a 
percentage of the average demand usage 

#273 
A  

 

net avg electricity generation in MW (MW)  
= net avg electricity demand in MW+(SUPPLY AND TRANSMISSION LOSSES FRACTION*net avg electricity 
demand in MW) 
Description: This takes into account any losses in the system...........calculated as a percentage of the average 

demand usage 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
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fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 

#274 
A  

 

net electricity supply capacity in MW (MW)  
= (Installed Fossil Generation Capacity+∑(Installed Renewables Capacity[type!])+Installed Energy Storage 
Capacity) 
Description: Net electricity supply considering the losses that can ouccur within the generation and transmission 

of the system. (if on (1) stochastic variations (Not used for thesis) in supply can be simulated 
Present in 3 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Used by: 
net avg demand vs net avg supply capacity mismatch - Net electricity demand in MW/net electricity supply in 
MW > 1 indicates a blackout when demand is greater than supply. 

#275 
F,A  

  

 

net immigration (people/Month)  
= Registered Population*immigration rate 
Description: Net change in registered population based on the immigration rate.....+ve indicates increase in 

population whilst -ve indicates a decrease in the population 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Registered Population - The monthly amount of people counted as the population of São Miguel. Aging 
population details:plan_action_strategique_eu2020_acores_en.pdf page 60131609 in 2001 and 137830 in 
2011............2005 approximates to 134720Initial value from ERNA_andre_leonardo_kiti document137856 
population number in 2011 Azores censusdata2011 

#276 
F,A  

  

 

net monthly CO2 emissions (tonnes/Month)  
= installed fossil generation MW capacity hours to utilise*fossil generation capacity usage factor*FOSSIL CO2 
per MWh PRODUCTION 
Description: The total monthly CO2 emissions given the amount of fossil generation that is used within the 

system 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
Accumulated CO2 Emissions - The stock of accumulated CO2 emissions level. The initial value is based on the 
amount of CO2 emissions assumed in 2005. 195732 
CO2 emissions reduction factor - The monthly discrepancy resulting from the amount of CO2 emissions and the 
targeted CO2 emissions reduction 

#277 
C  

 

NEW INDUSTRIAL BUSINESS per GDP (industries/Thousands of Euros [0,1])  
= 1 
Description: assuming 1 new industry per 1 million euros or 1 thousand euros of GDP per capita.......This gives 

0.001......we assume 0.1 to consider foreign investments 
Present in 1 view: 
Net Electricity Demand 
Used by: 
new industrial businesses - The percentage change of industry base due to the local economic growth 

#278 
A  

 

new industrial businesses (industries/Month)  
= initial number of industrial business + (local economic activity*NEW INDUSTRIAL BUSINESS per GDP) 
Description: The percentage change of industry base due to the local economic growth 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing numbers - Number of monthly changing industries per month 

#279 
C  

 

NO POLICY PORTFOLIO (fraction [0, 0.05])  
= 0.25 
Description: Fraction of renewables needed when the renewables policy is not enacted. Equivalent to the base 
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year values of 2005 percentage of renewables production 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 

#280 
C  

 

NO POLICY TIME LAPSE (Months [6000, 24000, 120])  
= 0 
Description: Assuming no policy this is the infinite time over which the model simulates. 
Present in 3 views: 
Net Electricity Demand 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
ELECTRIC VEHICLES POLICY TIMELINE - The policy dates that the electric vehicles target should be achieved. 
Based on the different types of policies implemented with the "no policy" implementation 
ENERGY EFFICIENCY POLICY TIMELINE USED - The policy dates that the energy efficiency target should be 
achieved. Default of 10 year policy starting in 2010 (60 months into simulation).Use of an infinity value......zero 
gives a floating point error 500years = 6000 months 
RENEWABLES POLICY TIMELINE USED - Use of an infinity value......zero gives a floating point error 500years = 
6000 months 

#281 
C  

 

Noise Correlation Time (Months)  
Noise Correlation Time [type] = 2 
Description: The correlation time constant for Pink Noise. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Change in Pink Noise - Change in the pink noise value; Pink noise is a first order exponential smoothing delay of 
the white noise input. Used sparingly in this thesis work 
White Noise - White noise input to the pink noise process implemented for renewables seasonality effects (used 
sparingly in this thesis). 

#282 
C  

 

Noise Standard Deviation (Dimensionless)  
Noise Standard Deviation [type] = 0 
Description: The standard deviation of the pink noise process. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
White Noise - White noise input to the pink noise process implemented for renewables seasonality effects (used 
sparingly in this thesis). 

#283 
C  

 

Noise Start Time (Months)  
Noise Start Time [type] = 3 
Description: Start time for the random input. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#284 
A  

 

OUT MIGRATION RATE (fraction/Month)  
= =0.00125 
Description: http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_eu2

020_acores_en.pdf 
Present in 1 view: 
Net Electricity Demand 
Used by: 
immigration rate - Based on migrations into and out of the island 

#285 
C  

 

PEAK FACTOR (fraction [1.1,1.6,0.05])  
= 1.55 
Description: Using averages from the data 

(http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-

El%C3%A9trica.aspx) the peak is consistently about 50% larger than the average demand in MW 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Forecasted Peak Electricity Demand - Forecasting the peak electricity demand. 

#286 
C  

 

percentage of electric vehicles consumption within off peak hours (fraction [0,1,0.01])  
= 0.85 
Description: The electric vehicles consumption can be tied to the residential but we separate it to allow a better 
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resolution for off peak charging means.... 5% for peak, 10% for shoulder peak and 85-90% in the off peak period 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles off peak hours consumption - Derived consumption during off peak hours 

#287 
C  

 

percentage of electric vehicles consumption within peak hours (fraction [0,0.5,0.01])  
= 0.05 
Description: The electric vehicles consumption can be tied to the residential but we separate it to allow a better 

resolution for off peak charging means.... 5% for peak, 10% for shoulder peak and 85-90% in the off peak period 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles peak hours consumption - Derived consumption during peak hours 

#288 
C  

 

percentage of electric vehicles consumption within shoulder peak hours (fraction [0,1,0.01])  
= 0.1 
Description: The electric vehicles consumption can be tied to the residential but we separate it to allow a better 

resolution for off peak charging means.... 5% for peak, 10% for shoulder peak and 85-90% in the off peak period 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
electric vehicles shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#289 
C  

 

percentage of monthly commercial consumption within peak hours (fraction [0,1,0.01])  
= 0.25 
Description: For the work week times of 12 hours there are on average 3 peak hours per day hence 25% during 

peak hours,65% during shoulder peak with the possible 10% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services peak hours consumption - Derived consumption during peak hours 

#290 
C  

 

percentage of monthly commercial services consumption within off peak hours (fraction [0,1,0.01])  
= 0.1 
Description: For the work week times of 12 hours there are on average 3 peak hours per day hence 25% during 

peak hours,65% during shoulder peak with the possible 10% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services off peak hours consumption - Derived consumption during off peak hours 

#291 
C  

 

percentage of monthly commercial services consumption within shoulder peak hours (fraction [0,1,0.01])  
= 0.65 
Description: For the work week times of 12 hours there are on average 3 peak hours per day hence 25% during 

peak hours,65% during shoulder peak with the possible 10% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
commercial services shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#292 
C  

 

percentage of monthly industrial consumption within off peak hours (fraction [0,1,0.01])  
= 0.05 
Description: For the work week times of 10 hours there are on average 2 peak hours per day hence 20% during 

peak hours and the other 75-80% during shoulder peak with the possible 5% from load shifting in the off-peak 

hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial off peak hours consumption - Derived consumption during off peak hours 

#293 
C  

 

percentage of monthly industrial consumption within peak hours (fraction [0,1,0.01])  
= 0.2 
Description: For the work week times of 10 hours there are on average 2 peak hours per day hence 20% during 

peak hours and the other 75-80% during shoulder peak with the possible 5% from load shifting in the off-peak 

hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial peak hours consumption - Derived consumption during peak hours 
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#294 
C  

 

percentage of monthly industrial consumption within shoulder peak hours (fraction [0,1,0.01])  
= 0.75 
Description: For the work week times of 10 hours there are on average 2 peak hours per day hence 20% during 

peak hours and the other 75-80% during shoulder peak with the possible 5% from load shifting in the off-peak 

hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
industrial shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#295 
C  

 

percentage of monthly public services consumption within off peak hours (fraction [0,1,0.01])  
= 0.15 
Description: Similar to commercial services once you consider the street lighting etc. For the work week times of 

10 hours there are on average 3-4 peak hours per day hence 25% during peak hours,60% during shoulder peak 

with the possible 15% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services off peak hours consumption - Derived consumption during off peak hours 

#296 
C  

 

percentage of monthly public services consumption within peak hours (fraction [0,0.3,0.01])  
= 0.25 
Description: Similar to commercial services once you consider the street lighting etc. For the work week times of 

10 hours there are on average 3-4 peak hours per day hence 25% during peak hours,60% during shoulder peak 

with the possible 15% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services peak hours consumption - Derived consumption during peak hours 

#297 
C  

 

percentage of monthly public services consumption within shoulder peak hours (fraction [0,1,0.01])  
= 0.6 
Description: Similar to commercial services once you consider the street lighting etc. For the work week times of 

10 hours there are on average 3-4 peak hours per day hence 25% during peak hours,60% during shoulder peak 

with the possible 15% from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services shoulder peak hours consumption - Derived consumption during shoulder peak hours 

#298 
C  

 

percentage of residential consumption within off peak hours (fraction [0,1,0.01])  
= 0.2 
Description: For the work week times of 7-8 hours there are on average 2-3 peak hours per day but that is the 

largest time for consumption hence 40% during peak hours,40% during shoulder peak with the possible 20% 

from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential off peak hours consumption - Derived consumption during off peak hours 

#299 
C  

 

percentage of residential consumption within peak hours (fraction [0,0.5,0.01])  
= 0.4 
Description: For the work week times of 7-8 hours there are on average 2-3 peak hours per day but that is the 

largest time for consumption hence 40% during peak hours,40% during shoulder peak with the possible 20% 

from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential peak hours consumption - Derived consumption during peak hours 

#300 
C  

 

percentage of residential consumption within shoulder peak hours (fraction [0,1,0.01])  
= 0.4 
Description: For the work week times of 7-8 hours there are on average 2-3 peak hours per day but that is the 

largest time for consumption hence 40% during peak hours,40% during shoulder peak with the possible 20% 

from load shifting in the off-peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential shoulder peak hours consumption - Derived consumption during shoulder peak hours 
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#301 
L  

 

Pink Noise (Dimensionless)  
Pink Noise [type] = ∫Change in Pink Noise[type] dt + [0] 
Description: Pink Noise is first-order autocorrelated noise. Pink noise provides a realistic noise input to models in 

which the next random shock depends in part on the previous shocks. The user can specify the correlation time. 

The mean is 0 and the standard deviation is specified by the user. Adopted from Sterman (2000) 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Change in Pink Noise - Change in the pink noise value; Pink noise is a first order exponential smoothing delay of 
the white noise input. Used sparingly in this thesis work 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#302 
L  

 

Planned Energy Storage Investments (MW)  
= ∫energy storage investment rate-energy storage construction rate dt + [initial planned energy storage 
capacity] 
Description: The stock of planned energy storage capacity investments. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage construction rate - Accounting for the delay between investment decision project write ups and 
financial approvals for the start of construction. 

#303 
L  

 

Planned Fossil Generation Investments (MW)  
= ∫fossil generation investment rate-fossil generation construction rate dt + [0] 
Description: The stock of planned fossil generation capacity investments ....there are no fossil generation 

capacity investment plans in 2005 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation construction rate - Accounting for the delay between investment decision project write ups 
and financial approvals for the start of capacity construction 

#304 
L  

 

Planned Renewables Investments (MW)  
Planned Renewables Investments [type] = ∫renewables investment rate[type]-renewables construction 
rate[type] dt + [initial planned renewables capacity[type]] 
Description: Stock of planned renewables capacity for the various technologies. The planned renewable capacity 

investments from the base year, 2005 onwards. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables construction rate - Accounting for the delay between investment decision project write ups and 
financial approvals for the start of construction 

#305 
A  

 

policy influence based discrepancy for adoption (vehicles)  
= (rolling desired electric vehicles-Electric Vehicles Adopters) 
Description: The monthly amount of adoption needed to achieve the desired electric vehicle policy within the 

given timeline 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 

#306 
C  

 

POLICY REDUCTION FRACTION EV (fraction [0,0.5,0.05])  
= 0.25 
Description: Fractional amount of the present policy fraction that can be used when not enforcing the full 

policy.......default of 25% 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
revised MIN MAX daily month demand profiles influence - If the MIN MAX difference remains high then we 
should continue with the electric vehicle policy, if not then we can reduce the electric vehicle policy to a faction 
of the current EV policy fraction 
rolling desired electric vehicles - Based on the year of the policy and the MIN MAX influence policy fraction 
used........Looking at our long term installed capacity we will not enforce the electric vehicle policy if there is 
more demand than supply 
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#307 
C  

 

POLICY REDUCTION FRACTION STORAGE (fraction [0,0.5,0.05])  
= 0.25 
Description: Fractional amount of the present policy fraction that can be used when not enforcing the full 

policy.......default of 25% 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
revised MIN MAX daily demand profiles monthly energy storage influence - If the MIN MAX difference remains 
high then we should continue with the energy storage policy, if not then we can reduce the energy storage 
policy to 1%This assumes that the larger the gap then more excess storage supply is needed in the daytime 
proportional to the avoided curtailed amount in the night time. 
rolling desired energy storage - Based on the MIN MAX influence policy fraction used........Looking at our long 
term installed capacity we will not enforce the energy storage policy if there is more demand than supply. 

#308 
L  

 

Potential Electric Vehicles Adopters (vehicles)  
= ∫electric vehicles disadoption rate+increasing non electric vehicles natural rate-electric vehicles adoption 
rate dt + [Total Population of Vehicles-Electric Vehicles Adopters] 
Description: The initial number of potential adopters is determined by the total population size and the current 

number of active adopters. It is reduced by adoption and increased when adopters discard their old unit and re-

enter the market. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 

#309 
L  

 

Potential Energy Storage from Grid Quality (MW)  
= ∫grid experience input to energy storage dt + [0] 
Description: Stock of potential capacity from grid quality 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
energy storage investment rate real - During the energy policy timeline, energy storage capacity is considered. 
Financially desired energy storage is installed based on the usage of energy storage before, during and after 
energy policy timeline. 

#310 
L  

 

Potential Fossil Generation from Grid Quality (MW)  
= ∫grid experience input to fossil generation dt + [0] 
Description: Stock of potential capacity from grid quality 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 

#311 
L  

 

Potential Renewables Generation from Grid Quality (MW)  
= ∫grid experience input to renewables dt + [0] 
Description: Stock of potential capacity from grid quality 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#312 
A  

 

PROGRESS RATIO ENERGY STORAGE (Dmnl [0.5,1])  
= =0.9 
Description: A progress ratio of 90% means that for each doubling of the cumulatively installed capacity leads to 

a cost reduction of 10% 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
experience curve energy storage - Logistic learning curve formula. 
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#313 
A  

 

PROGRESS RATIO RENEWABLES (Dmnl)  
= =0.9 
Description: A progress ratio of 90% means that for each doubling of the cumulatively installed capacity leads to 
a cost reduction of 10% 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
experience curve renewables - Logistic learning curve formula. 

#314 
A  

 

PUBLIC SERVICE CONSUMPTION EFFECT EXPECTATION TIME (Months)  
= =1 
Description: Consumption effect expectation time observed on a monthly basis 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing public services consumption - Public services consumption growth calculation as it relates to the 
economic activity of the island. MWh growth per month per month 

#315 
C  

 

PUBLIC SERVICE FACTOR (MW*h/Month)  
= 0.01 
Description: Elasticity measure for public services consumption. For a value of 0.5, a 1% increase in GDP will 
boost the consumption by 0.5% 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing public services consumption - Public services consumption growth calculation as it relates to the 
economic activity of the island. MWh growth per month per month 

#316 
F,A  

  

 

public services consumption reduction (MW*h/(Month*Month))  
= ZIDZ((reduction desired avg public services consumption-Avg Public Services Consumption),ENERGY 
EFFICIENCY POLICY TIMELINE USED) 
Description: Monthly change in public services consumption reduction, a negative value, as a flow into the 
average public services consumption 
Present in 1 view: 
Net Electricity Demand 
Used by: 
Avg Public Services Consumption - Stock of average public services consumption 

#317 
A  

 

public services consumption revenues ($/Month)  
= EURO TO $ CONVERSION FACTOR*(public services off peak hours consumption*PUBLIC SERVICES OFF PEAK 
PRICE+public services shoulder peak hours consumption*PUBLIC SERVICES SHOULDER PEAK PRICE+public 
services peak hours consumption*PUBLIC SERVICES PEAK PRICE) 
Description: Revenues generated from public services consumption 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
total electricity sold revenues - Gives the revenues collected on a monthly basis due to the electricity sold and 
based on the tariff structures....The only way of generating income within the model 

#318 
A  

 

public services off peak hours consumption (h*MW/Month)  
= avg public services monthly consumption*percentage of monthly public services consumption within off peak 
hours 
Description: Derived consumption during off peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#319 
C  

 

PUBLIC SERVICES OFF PEAK PRICE (euro/(h*MW))  
= 57.1 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#320 
A  

 

public services peak hours consumption (h*MW/Month)  
= avg public services monthly consumption*percentage of monthly public services consumption within peak 
hours 
Description: Derived consumption during peak hours 
Present in 1 view: 
Financial and Economic Aspects 
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Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#321 
C  

 

PUBLIC SERVICES PEAK PRICE (euro/(h*MW))  
= 124.6 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#322 
A  

 

public services shoulder peak hours consumption (h*MW/Month)  
= avg public services monthly consumption*percentage of monthly public services consumption within shoulder 
peak hours 
Description: Derived consumption during shoulder peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#323 
C  

 

PUBLIC SERVICES SHOULDER PEAK PRICE (euro/(h*MW))  
= 96.7 
Description: Use of Ilic et al.(2011) pgs. 144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
public services consumption revenues - Revenues generated from public services consumption 

#324 
C  

 

PUBLIC SERVICES TARGETED ENERGY EFFICIENCY REDUCTION (fraction [0, 1, 0.02])  
= 0.94 
Description: Percentage of current public services electricity demand that is desired to be reduced. 6% 
reduction is equivalent to 94% of the current electricity demand value 
Present in 1 view: 
Net Electricity Demand 
Used by: 
reduction desired avg public services consumption - Desired average public services consumption based on the 
energy efficiency targets (policy) 

#325 
C  

 

Pulse Quantity (Dimensionless*Months)  
Pulse Quantity [type] = 0 
Description: The quantity to be injected as a fraction of the base value of Input. For example, to pulse in a 
quantity equal to 50% of the current value of input, set to .50. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#326 
C  

 

Pulse Time (Months)  
Pulse Time [type] = 5 
Description: Time at which the pulse in Input occurs. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#327 
C  

 

Ramp End Time (Months)  
Ramp End Time [type] = 1e+009 
Description: End time for the ramp input. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#328 
C  

 

Ramp Slope (1/Months)  
Ramp Slope [type] = 0 
Description: Slope of the ramp input, as a fraction of the base value (per month). 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
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Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#329 
C  

 

Ramp Start Time (Months)  
Ramp Start Time [type] = 3 
Description: Start time for the ramp input. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#330 
D,A  

 

real data avg yearly commercial consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b69') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#331 
D,A  

 

real data avg yearly industrial consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b71') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#332 
D,A  

 

real data avg yearly public services consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b72') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#333 
D,A  

 

real data avg yearly residential consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b70') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#334 
D,A  

 

real data commercial consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b35') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#335 
D,A  

 

real data GDP per capita:INTERPOLATE: (Thousands of Euros/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b28') 
Description: 15.5 GDP per Capita in 2010Use of GDP per capita data for Azores * 70% for São Miguel.........divide 
by 12 to convert to monthly GDP per capita Data sources: 
http://ec.europa.eu/regional_policy/archive/activity/outermost/doc/plan_action_strategique_eu2020_acores_
en.pdf orhttp://estatistica.azores.gov.pt/upl/%7B119e7ec6-2716-4ab8-94ef-1a52b55b6263%7D.pdf 
Not Present In Any View 

#336 
D,A  

 

real data industrial consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b38') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#337 
D,A  

 

real data public services consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b41') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#338 
D,A  

 

real data registered population (people)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b30') 
Description: http://estatistica.azores.gov.pt/default.aspx?lang_id=2 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
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#339 
D,A  

 

real data residential consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b36') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#340 
D,A  

 

real data total monthly consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b42') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#341 
D,A  

 

real data total yearly avg consumption:LOOK FORWARD: (MW*h/Month)  
= GET XLS DATA('datamonth.xlsx','Sheet1' , '1', 'b73') 
Description: 2005 to 2015 data from 
EDA:http://www.eda.pt/Mediateca/Publicacoes/Producao/Paginas/Produ%C3%A7%C3%A3o-de-Energia-
El%C3%A9trica.aspx 
Not Present In Any View 

#342 
A  

 

reduction desired avg commercial services consumption (MW*h/Month)  
= IF THEN ELSE(ENERGY EFFICIENCY POLICY TIMELINE USED>0, Avg Commercial Services 
Consumption*COMMERCIAL SERVICES TARGETED ENERGY EFFICIENCY REDUCTION, Avg Commercial Services 
Consumption) 
Description: Desired average commercial services consumption based on the energy efficiency targets (policy) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
commercial services consumption reduction - Monthly change in commercial services consumption reduction, a 
negative value, as a flow into the average commercial services consumption 

#343 
A  

 

reduction desired avg public services consumption (MW*h/Month)  
= IF THEN ELSE(ENERGY EFFICIENCY POLICY TIMELINE USED>0, Avg Public Services Consumption*PUBLIC 
SERVICES TARGETED ENERGY EFFICIENCY REDUCTION, Avg Public Services Consumption) 
Description: Desired average public services consumption based on the energy efficiency targets (policy) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
public services consumption reduction - Monthly change in public services consumption reduction, a negative 
value, as a flow into the average public services consumption 

#344 
C  

 

REFERENCE GDP per capita (Thousands of Euros/Month)  
= 0.78 
Description: Value of GDP per capita in reference year 2005 
Present in 1 view: 
Net Electricity Demand 
Used by: 
effect of local economic activity on consumption - Normalised GDP per capita to 2005 reference year 

#345 
L  

 

Registered Population (people)  
= ∫births+net immigration-deaths dt + [131609] 
Description: The monthly amount of people counted as the population of São Miguel. Aging population 

details:plan_action_strategique_eu2020_acores_en.pdf page 60131609 in 2001 and 137830 in 

2011............2005 approximates to 134720Initial value from ERNA_andre_leonardo_kiti document137856 

population number in 2011 Azores censusdata2011 
Present in 1 view: 
Net Electricity Demand 
Used by: 
"avg no. of households" - Based on the registered population and the average size of households 
births - Inflow of births to the population 
deaths - Outflow of deaths from the population 
net immigration - Net change in registered population based on the immigration rate.....+ve indicates increase 
in population whilst -ve indicates a decrease in the population 

#346 
A  

 

RENEWABLE CAPACITY PORTFOLIO (fraction [0,1,0.05])  
RENEWABLE CAPACITY PORTFOLIO [type] = IF THEN ELSE(GET TIME VALUE(0,0,0)<=RENEWABLES POLICY 
ENACTMENT YEAR,renewables capacity usage factor[type],IF THEN ELSE(GET TIME VALUE(0,0,0)>RENEWABLES 
POLICY ENACTMENT YEAR :AND: GET TIME VALUE(0,0,0)<RENEWABLES POLICY ENACTMENT 
YEAR + RENEWABLES POLICY TIMELINE,renewables capacity usage factor[type],renewables capacity usage 
factor[type])) 
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Description: The investment percentage that is targeted to renewables technology investments 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
amount of expected total capacity as renewables - Given the investment portfolio we should invest in this 
amount of the specific renewable technology in the generation mix to meet forecasted demand levels. 
amount of renewables considered for RENEWABLES POLICY - This is the amount of renewables desired by policy 
makers at the specified time. The specified time is the time when the policy is enacted. 
FOSSIL CAPACITY PORTFOLIO - The investment percentage that is targeted to fossil fuel generation 

#347 
A  

 

renewable capacity replacement for CO2 emissions based fossil generation (MW/Month)  
= MAX(0,-(CO2 emissions reduction factor/FOSSIL CO2 per MWh PRODUCTION)/HOURS PER MONTH) 
Description: The renewable potential from the gap of CO2 emissions. The amount of MW of renewable capacity 

needed to close the emissions gap. 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#348 
A  

 

renewable grid attractiveness (MW)  
= renewables grid experience attractiveness function(average capacity factor experience) 
Description: Attractiveness of the renewables technology based on the average grid capacity factor experiences. 

This represents the unit MW of renewables that should be considered. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
grid experience input to renewables - Inflow of potential capacity from grid quality 

#349 
A  

 

renewable investment attractiveness (Dmnl)  
renewable investment attractiveness [type] = investment attractiveness function(renewables profitability[type]) 
Description: Based on the renewable technologies profitability 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
financially desired renewable capacity - The installed capacity that is desired based on the cost reduction 
learning curves and financial profitability of the renewables capacity 

#350 
L  

 

Renewables Capacity Under Construction (MW)  
Renewables Capacity Under Construction [type] = ∫renewables construction rate[type]-renewables online 
rate[type] dt + [initial renewables capacity under construction[type]] 
Description: The stock of renewable capacity under construction. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables online rate - Accounting for the delay for construction of renewable capacity 

#351 
A  

 

renewables capacity usage factor (Dmnl)  
renewables capacity usage factor [type] = IF THEN ELSE((HOURS PER MONTH*(net avg electricity generation in 
MW-FREQUENCY BALANCING FOSSIL CAPACITY))>=∑(installed renewables MW capacity hours to 
utilise [type!]), installed renewables MW capacity hours to utilise[type]/(HOURS PER MONTH*net avg electricity 
generation in MW),(installed renewables MW capacity hours to utilise[type]/aggregated renewables 
dispatchable MW capacity hours)*(HOURS PER MONTH*(net avg electricity generation in MW-FREQUENCY 
BALANCING FOSSIL CAPACITY))/(HOURS PER MONTH*net avg electricity generation in MW)) 
Description: Based on the merit order of the utility company......geothermal, run of river dispatched firstly along 

with the frequency balancing fossil generation, then biomass, then wind and extra fossil as needed.........if too 

much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for frequency balancing 

(8-16MW) 
Present in 3 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
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energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
expected renewables revenues per MW installed - Based on the expected installed renewable technologies 
capacity usage and expected revenues 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
RENEWABLE CAPACITY PORTFOLIO - The investment percentage that is targeted to renewables technology 
investments 
total capacity usage factor - Used for normalisation checking of the usage factor 

#352 
F,A  

  

 

renewables construction rate (MW/Month)  
renewables construction rate [type] = Planned Renewables Investments[type]/RENEWABLES PROJECT 
APPROVAL TIME[type] 
Description: Accounting for the delay between investment decision project write ups and financial approvals for 

the start of construction 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Planned Renewables Investments - Stock of planned renewables capacity for the various technologies. The 
planned renewable capacity investments from the base year, 2005 onwards. 
Renewables Capacity Under Construction - The stock of renewable capacity under construction. 
renewables online rate - Accounting for the delay for construction of renewable capacity 

#353 
C  

 

RENEWABLES CONSTRUCTION TIME (Months [0,42])  
RENEWABLES CONSTRUCTION TIME [type] = 30,36,24,12,6 
Description: Onshore wind is 12 months. Solar is 3 (residential) and 12-24 for solar farms......use of 6 months. 

Geothermal is 30 months. Run of river is 36 months and Biomass is 24 months. http://bv.com/docs/reports-

studies/nrel-cost-report.pdf 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables online rate - Accounting for the delay for construction of renewable capacity 

#354 
F,A  

  

 

renewables decommissioning rate (MW/Month)  
renewables decommissioning rate [type] = IF THEN ELSE(GET TIME VALUE(0,0,0)<(AVERAGE RENEWABLES 
LIFETIME[type]-INITIAL RENEWABLES ONLINE TIME[type]),Installed Renewables Capacity[type]/(AVERAGE 
RENEWABLES LIFETIME[type]-INITIAL RENEWABLES ONLINE TIME[type]),Installed Renewables 
Capacity[type]/AVERAGE RENEWABLES LIFETIME[type]) 
Description: Accounting for the depreciation of the renewable capacity 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
Cumulatively Depreciated Renewables Capacity - Stock of all renewables generation over the total simulation 
timeline. 
Installed Renewables Capacity - Stock of installed renewables technologies based on capacity investments and 
decommissioning 
loss of capacity factor experience - Decrease in the capacity factor attribute 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 

#355 
L  

 

Renewables Generation Cost ($/(MW*h))  
Renewables Generation Cost [type] = ∫marginal cost of renewables capacity[type]-marginal cost renewables 
capacity previous year[type] dt + [initial cost of new renewables capacity[type]] 
Description: Stock of the renewable generation LCOE cost in dollars 
Present in 2 views: 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost renewables capacity previous year - Change in marginal cost of renewables technologies over 
time 
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needed breakeven monthly revenue per MW installed renewables - Revenues needed due to the installed 
renewable technologies capacity and usage of this capacity 

#356 
T  

 

renewables grid experience attractiveness function (MW)  
= [(0,0)-
(1,1)],(0.0030581,0.00877193),(0.140673,0.0263158),(0.229358,0.0350877),(0.299694,0.0394737),(0.35474,0.0
438596),(0.428135,0.0570175),(0.486239,0.0570175),(0.53211,0.0614035),(0.617737,0.0657895),(0.712538,0.0
833333),(0.782875,0.100877),(0.831804,0.109649),(0.874618,0.122807),(0.917431,0.140351),(0.941896,0.1622
81),(0.966361,0.201754),(0.975535,0.245614),(0.981651,0.285088),(0.987768,0.315789),(0.990826,0.359649) 
Description: Grid quality attractiveness lookup function for renewable technologies (Authors own elaboration) 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
renewable grid attractiveness - Attractiveness of the renewables technology based on the average grid capacity 
factor experiences. This represents the unit MW of renewables that should be considered. 
 

 
#357 
F,A  

  

 

renewables investment rate (MW/Month)  
renewables investment rate [type] = MAX (0,renewables investment rate real[type]) 
Description: MAX formulation used to avoid negative renewables investments 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Used by: 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
Planned Renewables Investments - Stock of planned renewables capacity for the various technologies. The 
planned renewable capacity investments from the base year, 2005 onwards. 

#358 
A  

 

renewables investment rate real (MW/Month)  
renewables investment rate real [type] = IF THEN ELSE(GET TIME VALUE(0,0,0)<=RENEWABLES POLICY 
ENACTMENT YEAR :AND: demand vs supply capacity mismatch investments rate factor>0.25,MAX(0,((financially 
desired renewable capacity[type]-Installed Renewables Capacity[type])/CAPACITY INVESTMENT 
TIMELINE))+renewables decommissioning rate[type],IF THEN ELSE(GET TIME VALUE(0,0,0)>RENEWABLES 
POLICY ENACTMENT YEAR:AND: GET TIME VALUE(0,0,0)<RENEWABLES POLICY ENACTMENT 
YEAR + RENEWABLES POLICY TIMELINE :AND: demand vs supply capacity mismatch investments rate 
factor>0.25,MAX(renewable capacity replacement for CO2 emissions based fossil 
generation/ELMCOUNT(type),difference needed from renewables policy/ELMCOUNT(type)) + renewables 
decommissioning rate[type] + (Potential Renewables Generation from Grid 
Quality/ELMCOUNT(type))/CAPACITY INVESTMENT TIMELINE,MIN(MAX(0,(amount of expected total capacity as 
renewables[type]-Installed Renewables Capacity[type])/CAPACITY INVESTMENT TIMELINE+renewables 
decommissioning rate[type]),(financially desired renewable capacity[type]+(Potential Renewables Generation 
from Grid Quality/ELMCOUNT(type))-Installed Renewables Capacity[type])/CAPACITY INVESTMENT 
TIMELINE+renewables decommissioning rate[type]))) 
Description: Looking at all of the potential amount of renewable replacements needed directly and 

indirectly.........we derive the amount of investments that can occur as in real systems. Investments is shared 

across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle the 

technologies represented as subscripts 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables investment rate - MAX formulation used to avoid negative renewables investments 
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#359 
DE,F  

 

renewables online rate (MW/Month)  
renewables online rate [type] = DELAY3I(renewables construction rate[type], RENEWABLES CONSTRUCTION 
TIME[type] , Renewables Capacity Under Construction[type]/RENEWABLES CONSTRUCTION TIME[type] ) 
Description: Accounting for the delay for construction of renewable capacity 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
Installed Renewables Capacity - Stock of installed renewables technologies based on capacity investments and 
decommissioning 
Renewables Capacity Under Construction - The stock of renewable capacity under construction. 

#360 
C  

 

RENEWABLES POLICY ENACTMENT YEAR (Months [12, 540, 12])  
= 32 
Description: Represents the year during the simulation time in months from 2005 when the policy is enacted,32 

months, the default value represents the year 2007. 
Present in 3 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
RENEWABLE CAPACITY PORTFOLIO - The investment percentage that is targeted to renewables technology 
investments 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 
RENEWABLES POLICY TIMELINE USED - Use of an infinity value......zero gives a floating point error 500years = 
6000 months 

#361 
C  

 

RENEWABLES POLICY TIMELINE (Months [120, 540, 60])  
= 156 
Description: The policy dates that the renewables target should be achieved by. Default of 10 year policy 

starting in 2010 (60 months into simulation) 
Present in 4 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
fossil generation investment rate real - Decommissioned fossil is not brought back online before renewables 
policy, during and after the policy period but the grid quality aspects are considered.......if there is lower grid 
quality then more fossil generation can be installed. 
RENEWABLE CAPACITY PORTFOLIO - The investment percentage that is targeted to renewables technology 
investments 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 
RENEWABLES POLICY TIMELINE USED - Use of an infinity value......zero gives a floating point error 500years = 
6000 months 

#362 
A  

 

RENEWABLES POLICY TIMELINE USED (Months [12,420,60])  
= IF THEN ELSE( GET TIME VALUE(0,0,0)>RENEWABLES POLICY ENACTMENT YEAR :AND: GET TIME 
VALUE(0,0,0)<RENEWABLES POLICY ENACTMENT YEAR+ RENEWABLES POLICY TIMELINE, RENEWABLES POLICY 
TIMELINE ,NO POLICY TIME LAPSE ) 
Description: Use of an infinity value......zero gives a floating point error 500years = 6000 months 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
difference needed from renewables policy - Monthly amount of capacity needed to achieve policy goals by the 
policy timeline. 

#363 
A  

 

renewables profitability (Dmnl)  
renewables profitability [type] = IF THEN ELSE(expected renewables revenues per MW installed[type]=0 
:OR: needed breakeven monthly revenue per MW installed renewables[type]=0, 0, expected renewables 
revenues per MW installed[type]/needed breakeven monthly revenue per MW installed renewables[type]) 
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Description: Ratio of revenues over needed LCOE baseline revenues. 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
renewable investment attractiveness - Based on the renewable technologies profitability 

#364 
C  

 

RENEWABLES PROJECT APPROVAL TIME (Months [1,12,1])  
RENEWABLES PROJECT APPROVAL TIME [type] = 6,6,6,6,3 
Description: Accounting for the delay time between investment decision project write ups and financial 

approvals for start of construction....Use of 6 months as the default for all renewables projects except micro 

generation with 3 months. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
renewables construction rate - Accounting for the delay between investment decision project write ups and 
financial approvals for the start of construction 

#365 
C  

 

RENEWABLES TIME FOR ONLINE (Months [18,30,6])  
= 24 
Description: Total time from investment decision to commissioning of the technology for 

generation.........Renewables is 2-3 years on average 
Not Present In Any View 

#366 
A  

 

residential consumption revenues ($/Month)  
= EURO TO $ CONVERSION FACTOR*(residential off peak hours consumption*RESIDENTIAL OFF PEAK 
PRICE+residential shoulder peak hours consumption*RESIDENTIAL SHOULDER PEAK PRICE+residential peak 
hours consumption*RESIDENTIAL PEAK PRICE) 
Description: Revenues generated from residential consumption 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
total electricity sold revenues - Gives the revenues collected on a monthly basis due to the electricity sold and 
based on the tariff structures....The only way of generating income within the model 

#367 
C  

 

RESIDENTIAL HOUSEHOLD FACTOR (MW*h/(Month*households))  
= 0.009 
Description: Elasticity measure for household consumption. For a value of 0.5, a 1% increase in GDP will boost 

the consumption by 0.5% 
Present in 1 view: 
Net Electricity Demand 
Used by: 
household consumption growth - Household consumption growth calculation as it relates to the economic 
activity of the island. MWh growth per month per household per month 

#368 
A  

 

residential off peak hours consumption (h*MW/Month)  
= avg residential household monthly consumption*percentage of residential consumption within off peak hours 
Description: Derived consumption during off peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#369 
C  

 

RESIDENTIAL OFF PEAK PRICE (euro/(h*MW))  
= 57.1 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 

144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#370 
A  

 

residential peak hours consumption (h*MW/Month)  
= avg residential household monthly consumption*percentage of residential consumption within peak hours 
Description: Derived consumption during peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#371 
C  

 

RESIDENTIAL PEAK PRICE (euro/(h*MW))  
= 124.6 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 
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144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#372 
A  

 

residential shoulder peak hours consumption (h*MW/Month)  
= avg residential household monthly consumption*percentage of residential consumption within shoulder peak 
hours 
Description: Derived consumption during shoulder peak hours 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#373 
C  

 

RESIDENTIAL SHOULDER PEAK PRICE (euro/(h*MW))  
= 96.7 
Description: Same as commercial and public services except for the simple tariff: Use of Ilic et al. (2011) pgs. 

144-145 price data and EDA (2015) estimates 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
residential consumption revenues - Revenues generated from residential consumption 

#374 
C  

 

REVENUE TIME HORIZON (Months)  
= 24 
Description: Time to perceive revenues to avoid single year anomalies due to prices etc. 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
change in revenues - Change in the revenues generated over the revenue horizon 

#375 
A  

 

revised MIN MAX daily demand profile monthly influence from electric vehicles (MW)  
= black box MIN MAX daily demand profiles monthly-avg electric vehicles electrification demand in MW 
Description: Based on the adopted electric vehicles this is the monthly average reduction in the gap that can be 

achieved (increases in the demand base) 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
revised MIN MAX daily month demand profiles influence - If the MIN MAX difference remains high then we 
should continue with the electric vehicle policy, if not then we can reduce the electric vehicle policy to a faction 
of the current EV policy fraction 

#376 
A  

 

revised MIN MAX daily demand profiles monthly energy storage influence (fraction)  
= IF THEN ELSE(black box MIN MAX daily demand profiles monthly>0 :AND: black box MIN MAX daily demand 
profiles monthly>energy storage MIN MAX daily demand profile monthly threshold, STORAGE CAPACITY 
PORTFOLIO, POLICY REDUCTION FRACTION STORAGE*STORAGE CAPACITY PORTFOLIO) 
Description: If the MIN MAX difference remains high then we should continue with the energy storage policy, if 

not then we can reduce the energy storage policy to 1%This assumes that the larger the gap then more excess 

storage supply is needed in the daytime proportional to the avoided curtailed amount in the night time. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
rolling desired energy storage - Based on the MIN MAX influence policy fraction used........Looking at our long 
term installed capacity we will not enforce the energy storage policy if there is more demand than supply. 

#377 
A  

 

revised MIN MAX daily month demand profiles influence (fraction)  
= IF THEN ELSE(revised MIN MAX daily demand profile monthly influence from electric vehicles>electric vehicle 
MIN MAX daily demand profile monthly threshold:AND: black box MIN MAX daily demand profiles 
monthly>0, ELECTRIC VEHICLES POLICY FRACTION, POLICY REDUCTION FRACTION EV*ELECTRIC VEHICLES 
POLICY FRACTION) 
Description: If the MIN MAX difference remains high then we should continue with the electric vehicle policy, if 

not then we can reduce the electric vehicle policy to a faction of the current EV policy fraction 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
vehicles considered for EV by policy - This is the absolute number of electric vehicles desired by policy makers at 
the specified time. The specified time is the time when the policy is enacted.....2015 is the default value....this is 
10 years or 120 months into the simulation. 
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#378 
A  

 

rolling desired electric vehicles (vehicles)  
= IF THEN ELSE(net avg demand vs net avg supply capacity mismatch<DESIRED RATIO OF DEMAND TO 
SUPPLY,vehicles considered for EV by policy, POLICY REDUCTION FRACTION EV*vehicles considered for EV by 
policy) 
Description: Based on the year of the policy and the MIN MAX influence policy fraction used........Looking at our 

long term installed capacity we will not enforce the electric vehicle policy if there is more demand than supply 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
policy influence based discrepancy for adoption - The monthly amount of adoption needed to achieve the 
desired electric vehicle policy within the given timeline 

#379 
A  

 

rolling desired energy storage (MW)  
= IF THEN ELSE(net avg demand vs net avg supply capacity mismatch<0.5 :AND: Installed Energy Storage 
Capacity<avg electric vehicles electrification demand in MW, Installed Energy Storage Capacity*revised MIN 
MAX daily demand profiles monthly energy storage influence , POLICY REDUCTION FRACTION 
STORAGE*Installed Energy Storage Capacity) 
Description: Based on the MIN MAX influence policy fraction used........Looking at our long term installed 

capacity we will not enforce the energy storage policy if there is more demand than supply. 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
change in needed energy storage from policy - Discrepancy needed to meet the energy policy goals. 

#380 
C  

 

room night stays growth rate (fraction/Month [8.3e-005,0.01667])  
= 0.0014 
Description: Default value represents 10% per annum growth from 2005 up to 2016. Equivalent to 0.00139 per 

month (divided by 12) 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing number of stays - Monthly change in number of room night stays from tourism 

#381 
L  

 

Room Night Tourist Stays (night stays/Month)  
= ∫changing number of stays dt + [initial room night stays] 
Description: Stock of room night tourist stays 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing number of stays - Monthly change in number of room night stays from tourism 

#382 
A  

 

SAVEPER (Month [0,?])  
= TIME STEP 
Description: The frequency with which output is stored. 
Not Present In Any View 

#383 
A  

 

seasonality effects on renewables availability (Dmnl)  
seasonality effects on renewables availability [type] = Input[type] 
Description: Seasonality is affected by this exogenous input, which can be set by the user to a step, pulse, ramp, 

sine wave, or noise functions. Used sparingly for this thesis 
Present in 2 views: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
actual average capacity factor experience per installed MW renewables - Gives the capacity factor experience 
based on the monthly seasonality influences. The yearly effects of the renewables on the amount of capacity 
factor experience......Accounts for the maintenance and downtime of the technology100% capacity factor is 1.0. 
A monthly measure of 0.9 means 90% of the month of capacity factor experience is achieved. 

#384 
C  

 

Sine Amplitude (Dimensionless)  
Sine Amplitude [type] = 0 
Description: Amplitude of sine wave in seasonality (fraction of mean). 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#385 
C  

 

Sine Period (Months)  
Sine Period [type] = 50 
Description: Period of sine wave in seasonality effects. 
Present in 1 view: 
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Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#386 
A  

 

STANDARD OF LIVING INDEX IMPACT ON HOUSEHOLD CONSUMPTION (fraction [0, 0.5, 0.001])  
= =0.015 
Description: 0.03% increment per year from world bank data. Divided by 12 to convert to a monthly 

value.......0.01 default value. This will reflect the possible consumption growth of the individual households 

based on their individual outputs - works out to 41euro cents per month equivalent change 
Present in 1 view: 
Net Electricity Demand 
Used by: 
household consumption growth - Household consumption growth calculation as it relates to the economic 
activity of the island. MWh growth per month per household per month 

#387 
C  

 

STANDARD OFF PEAK HOURS PER DAY (h/day [6,10,4])  
= 10 
Description: EDA stipulated number of off peak hours in a day....it also includes the super off peak hours 

1:30am-5:30amIlic et al. (2013) pg 145 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average off peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average off peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
average off peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 

#388 
C  

 

STANDARD PEAK HOURS PER DAY (h/day [1.5,6,0.5])  
= 4 
Description: EDA stipulated number of peak hours in a day....Ilic et al. (2013) pg 145 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 4.12 

#389 
C  

 

STANDARD SHOULDER PEAK HOURS PER DAY (h/day [8,12,2])  
= 10 
Description: EDA stipulated number of shoulder peak hours in a day....Ilic et al. (2013) pg 145 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
average shoulder peak hours per month from energy storage - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
average shoulder peak hours per month from fossil generation - Data source for derivation: Ilic et al (2013) pg 
145 table 4.12 
average shoulder peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 

#390 
C  

 

Step Height (Dimensionless)  
Step Height [type] = 0 
Description: Height of step input to seasonality, as fraction of initial value. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#391 
C  

 

Step Time (Months)  
Step Time [type] = 5 
Description: Time for the step input. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
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Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 

#392 
C  

 

STORAGE CAPACITY PORTFOLIO (fraction [0,1,0.05])  
= 0.05 
Description: The investment percentage that is targeted to energy storage 
Present in 2 views: 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
amount of expected total capacity as storage - Given the investment portfolio we should have this amount of 
storage in the generation mix to meet forecasted demand levels. 
FOSSIL CAPACITY PORTFOLIO - The investment percentage that is targeted to fossil fuel generation 
revised MIN MAX daily demand profiles monthly energy storage influence - If the MIN MAX difference remains 
high then we should continue with the energy storage policy, if not then we can reduce the energy storage 
policy to 1%This assumes that the larger the gap then more excess storage supply is needed in the daytime 
proportional to the avoided curtailed amount in the night time. 

#393 
C  

 

SUPPLY AND TRANSMISSION LOSSES FRACTION (fraction [0.005,0.2,0.005])  
= 0.1 
Description: The generation and transmission losses that can occur within the grid system....this is expressed as 

a percentage of the demand 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
net avg electricity generation in MW - This takes into account any losses in the system...........calculated as a 
percentage of the average demand usage 

#394 
C  

 

TIME STEP (Month [0,?])  
= 0.015625 
Description: The time step for the simulation. 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 
SAVEPER - The frequency with which output is stored. 
White Noise - White noise input to the pink noise process implemented for renewables seasonality effects (used 
sparingly in this thesis). 

#395 
C  

 

time to meet EU emissions target (Months [120,540])  
= 180 
Description: The set date that the reduction in CO2 emissions should be achieved. This is given in months as the 
lifetime of the reduction period starting in 2005. 15 (2020) to 45 (2050) years. Set increments of 120 months or 
10 year CO2 policies. 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
CO2 emissions reduction factor - The monthly discrepancy resulting from the amount of CO2 emissions and the 
targeted CO2 emissions reduction 

#396 
A  

 

TIME TO OBSERVE HOUSEHOLD CONSUMPTION GROWTH (Months [?,?,6])  
= =1 
Description: The number of months for observing household consumption growth 
Present in 1 view: 
Net Electricity Demand 
Used by: 
household consumption growth - Household consumption growth calculation as it relates to the economic 
activity of the island. MWh growth per month per household per month 

#397 
A  

 

TIMELINE FOR CHANGE IN COST OF RENEWABLES CAPACITY (Months [1,12,11])  
= =12 
Description: Gives the timeline for perceiving the yearly cost of the new renewables capacity 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost renewables capacity previous year - Change in marginal cost of renewables technologies over 
time 

#398 
A  

 

TIMELINE FOR CHANGE IN COST OF STORAGE CAPACITY (Months [1,12,11])  
= =12 
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Description: Gives the timeline for perceiving the yearly cost of the new energy storage capacity 
Present in 1 view: 
Installed Supply Capacity and Learning Curve 
Used by: 
marginal cost of storage capacity previous year - Change in marginal cost of renewables technologies over time 

#399 
A  

 

TIMELINE FOR CONSIDERING NEW INDUSTRY BUSINESSES (Months [12,36])  
= =24 
Description: Every two years for the investment into new industries to come online 
Present in 1 view: 
Net Electricity Demand 
Used by: 
changing numbers - Number of monthly changing industries per month 

#400 
C  

 

total capacity supply SWITCH (Dmnl [0,1,1])  
= 0 
Description: on (1) and off (0) 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
amount of renewables considered for RENEWABLES POLICY - This is the amount of renewables desired by policy 
makers at the specified time. The specified time is the time when the policy is enacted. 

#401 
A  

 

total capacity usage factor (Dmnl)  
= fossil generation capacity usage factor+∑(renewables capacity usage factor[type!])+energy storage capacity 
usage factor 
Description: Used for normalisation checking of the usage factor 
Present in 1 view: 
Financial and Economic Aspects 

#402 
LI,A  

 

total electricity sold revenues ($/Month)  
= industrial consumption revenues+commercial services consumption revenues+public services consumption 
revenues+residential consumption revenues+electric vehicles consumption revenues 
Description: Gives the revenues collected on a monthly basis due to the electricity sold and based on the tariff 

structures....The only way of generating income within the model 
Present in 1 view: 
Financial and Economic Aspects 
Used by: 
change in revenues - Change in the revenues generated over the revenue horizon 
Expected Revenues - Stock of rolling average of revenues generated 

#403 
A  

 

total MW capacity hours to utilise (h*MW/Month)  
= installed energy storage MW capacity hours to utilise+installed fossil generation MW capacity hours to 
utilise+∑(installed renewables MW capacity hours to utilise[type!]) 
Description: Sum of all generating technologies available hours to meet demand load - based on installed 

capacities 
Present in 1 view: 
Financial and Economic Aspects 

#404 
L,LI  

  

 

Total Population of Vehicles (vehicles)  
= ∫buying new vehicles rate dt + [initial total population of vehicles] 
Description: Stock of total vehicle population in the island system. 
Present in 2 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
considered electric vehicles - Choosing the policy method of the total amount of vehicles versus an absolute 
number of electric vehicles 
endogenous market based influence on adoption - Adoption by word of mouth is driven by the contact rate 
between potential adopters and active adopters and the fraction of times these interactions will result in 
adoption. The word of mouth effect is small if the number of active adopters relative to the total population 
size is small. 
Potential Electric Vehicles Adopters - The initial number of potential adopters is determined by the total 
population size and the current number of active adopters. It is reduced by adoption and increased when 
adopters discard their old unit and re-enter the market. 

#405 
L  

 

Total System Capacity Factor Experience ((MW*Month)/Month)  
= ∫additional capacity factor experience from new capacity-loss of capacity factor experience dt + [Installed 
Fossil Generation Capacity*average capacity factor experience per installed MW fossil generation+Installed 
Energy Storage Capacity*average capacity factor experience per installed MW energy storage+∑(Installed 
Renewables Capacity[type!]*actual average capacity factor experience per installed MW renewables[type!])] 
Description: Initial value will be determined from 2005 average based on the total amount of the co-flow 
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attribute 
Present in 1 view: 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Used by: 
average capacity factor experience - Capacity factor attribute as determined from the different main capacity 
stocks 

#406 
C  

 

total vehicle population SWITCH (Dmnl [0,1,1])  
= 0 
Description: on (1) and off (0). Used for total vehicle population simulations. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
considered electric vehicles - Choosing the policy method of the total amount of vehicles versus an absolute 
number of electric vehicles 
electric vehicles adoption rate - The rate at which a potential adopter becomes an active adopter. When the 
total population switch is on we consider both the total population and the market based adoption from this. 
Otherwise if the market only based switch is on then we consider only adoption from the market contacts else 
we consider the absolute value as desired from the policy. 
vehicles considered for EV by policy - This is the absolute number of electric vehicles desired by policy makers at 
the specified time. The specified time is the time when the policy is enacted.....2015 is the default value....this is 
10 years or 120 months into the simulation. 

#407 
Sub  

 

type  
: geothermal, run of river hydro, biomass, wind, micro mini generation 
Present in 5 views: 
Mismatch and Demand Imbalance Black Box 
Policy, CO2 Emissions, Capacity Factor and Grid Q 
Financial and Economic Aspects 
Installed Supply Capacity and Learning Curve 
Seasonality Effects Expected Capacity and Real Da 
Used by: 
actual average capacity factor experience per installed MW renewables - Gives the capacity factor experience 
based on the monthly seasonality influences. The yearly effects of the renewables on the amount of capacity 
factor experience......Accounts for the maintenance and downtime of the technology100% capacity factor is 1.0. 
A monthly measure of 0.9 means 90% of the month of capacity factor experience is achieved. 
additional capacity factor experience from new capacity - Increase in the capacity factor experience attribute 
aggregated renewables dispatchable MW capacity hours - used to normalise the usage of the renewables 
technologies 
amount of expected total capacity as renewables - Given the investment portfolio we should invest in this 
amount of the specific renewable technology in the generation mix to meet forecasted demand levels. 
amount of renewables considered for RENEWABLES POLICY - This is the amount of renewables desired by policy 
makers at the specified time. The specified time is the time when the policy is enacted. 
average capacity factor experience - Capacity factor attribute as determined from the different main capacity 
stocks 
average dispatchable hours for renewables - The amount of hours within a month that the specific renewable 
technology is dispatched base on capacity factor and merit order usage 
average off peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 
4.12 
average peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 table 4.12 
average renewables usage hours - Sum of hours per month that renewables is dispatched to meet the demand 
load 
average shoulder peak hours per month from renewables - Data source for derivation: Ilic et al (2013) pg 145 
table 4.12 
Change in Pink Noise - Change in the pink noise value; Pink noise is a first order exponential smoothing delay of 
the white noise input. Used sparingly in this thesis work 
Cumulatively Depreciated Renewables Capacity - Stock of all renewables generation over the total simulation 
timeline. 
cumulatively installed renewables capacity - Sum of the total ever installed renewable capacity of the specific 
renewable technologies 
cumulatively installed renewables capacity previous year - Cumulatively installed renewable capacity for 
previous year: for use in learning curve formula 
difference needed from renewables policy - Monthly amount of capacity needed to achieve policy goals by the 
policy timeline. 
energy storage capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing Energy storage will be used once installed 
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expected renewables revenues per MW installed - Based on the expected installed renewable technologies 
capacity usage and expected revenues 
financially desired renewable capacity - The installed capacity that is desired based on the cost reduction 
learning curves and financial profitability of the renewables capacity 
FOSSIL CAPACITY PORTFOLIO - The investment percentage that is targeted to fossil fuel generation 
fossil generation capacity usage factor - Based on the merit order of the utility company......geothermal, run of 
river dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra 
fossil as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept 
online for frequency balancing......additional fossil is used if there is not enough renewables and storage. In the 
base year 34.27MW of fossil was used to meet the demand which is (34.27/102.66), 35% of the installed base of 
102.66MW 
initial cost of new renewables capacity - Initial marginal cost of new renewable capacity for base year converted 
to dollars 
Input - Input is a dimensionless variable which provides a variety of test input patterns, including a step, pulse, 
sine wave, and random noise. Adopted from Sterman (2000) 
Installed Renewables Aggregated Capacity - Sum of all the different renewable technologies considered in the 
model, namely; Geothermal, run of river, wind, biomass, micro/solar generation. 
Installed Renewables Capacity - Stock of installed renewables technologies based on capacity investments and 
decommissioning 
installed renewables MW capacity hours to utilise - For the monthly demand......active energy used hours from 
the different renewables technologies 
loss of capacity factor experience - Decrease in the capacity factor attribute 
marginal cost of renewables capacity - Learning curve cost reduction implementation. 
marginal cost renewables capacity previous year - Change in marginal cost of renewables technologies over 
time 
needed breakeven monthly revenue per MW installed renewables - Revenues needed due to the installed 
renewable technologies capacity and usage of this capacity 
net electricity supply capacity in MW - Net electricity supply considering the losses that can occur within the 
generation and transmission of the system. (if on (1) stochastic variations (Not used for thesis) in supply can be 
simulated 
Pink Noise - Pink Noise is first-order auto-correlated noise. Pink noise provides a realistic noise input to models 
in which the next random shock depends in part on the previous shocks. The user can specify the correlation 
time. The mean is 0 and the standard deviation is specified by the user. Adopted from Sterman (2000) 
Planned Renewables Investments - Stock of planned renewables capacity for the various technologies. The 
planned renewable capacity investments from the base year, 2005 onwards. 
RENEWABLE CAPACITY PORTFOLIO - The investment percentage that is targeted to renewables technology 
investments 
renewable investment attractiveness - Based on the renewable technologies profitability 
Renewables Capacity Under Construction - The stock of renewable capacity under construction. 
renewables capacity usage factor - Based on the merit order of the utility company......geothermal, run of river 
dispatched firstly along with the frequency balancing fossil generation, then biomass, then wind and extra fossil 
as needed.........if too much supply capacity then the wind is curtailed......at least 18-20% fossil is kept online for 
frequency balancing (8-16MW) 
renewables construction rate - Accounting for the delay between investment decision project write ups and 
financial approvals for the start of construction 
renewables decommissioning rate - Accounting for the depreciation of the renewable capacity 
Renewables Generation Cost - Stock of the renewable generation LCOE cost in dollars 
renewables investment rate - MAX formulation used to avoid negative renewables investments 
renewables investment rate real - Looking at all of the potential amount of renewable replacements needed 
directly and indirectly.........we derive the amount of investments that can occur as in real systems. Investments 
is shared across the different renewables technologies based on their usage. ELMCOUNT(type) is used to handle 
the technologies represented as subscripts 
renewables online rate - Accounting for the delay for construction of renewable capacity 
renewables profitability - Ratio of revenues over needed LCOE baseline revenues. 
seasonality effects on renewables availability - Seasonality is affected by this exogenous input, which can be set 
by the user to a step, pulse, ramp, sine wave, or noise functions. Used sparingly for this thesis 
total capacity usage factor - Used for normalisation checking of the usage factor 
total MW capacity hours to utilise - Sum of all generating technologies available hours to meet demand load - 
based on installed capacities 
Total System Capacity Factor Experience - Initial value will be determined from 2005 average based on the total 
amount of the co-flow attribute 
White Noise - White noise input to the pink noise process implemented for renewables seasonality effects (used 
sparingly in this thesis). 
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#408 
A  

 

vehicles considered for EV by policy (vehicles [100,2500])  
= IF THEN ELSE( total vehicle population SWITCH = 1 , revised MIN MAX daily month demand profiles 
influence*considered electric vehicles, considered electric vehicles ) 
Description: This is the absolute number of electric vehicles desired by policy makers at the specified time. The 

specified time is the time when the policy is enacted.....2015 is the default value....this is 10 years or 120 months 

into the simulation. 
Present in 1 view: 
Mismatch and Demand Imbalance Black Box 
Used by: 
rolling desired electric vehicles - Based on the year of the policy and the MIN MAX influence policy fraction 
used........Looking at our long term installed capacity we will not enforce the electric vehicle policy if there is 
more demand than supply 

#409 
A  

 

White Noise (Dimensionless)  
White Noise [type] = Noise Standard Deviation[type]*((24*Noise Correlation Time[type]/TIME 
STEP)^0.5*(RANDOM 0 1 - 0.5)) 
Description: White noise input to the pink noise process implemented for renewables seasonality effects (used 

sparingly in this thesis). 
Present in 1 view: 
Seasonality Effects Expected Capacity and Real Data 
Used by: 
Change in Pink Noise - Change in the pink noise value; Pink noise is a first order exponential smoothing delay of 
the white noise input. Used sparingly in this thesis work 
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Appendix B Further Validations of Synthesis Model 

This appendix gives details of some further validations of the synthesis model performed in the 

development of the model. 

 

B.1 Reality Checks and Extreme Case Testing 

Making use of the modelling software, the reality check functionality can be employed for model 

testing/validation. In this work the use of test inputs for the conditional part of the constraint equation 

is used to test the model. When the condition is true and the consequence is not true, then Vensim 

reports a reality check error. In general the structure is: 

name :THE CONDITION: condition :IMPLIES: consequence 

The main constraint tests used were: 

(a) no expected revenues : THE CONDITION: expected revenues = 0 :IMPLIES: 

investments reduces to zero     - TEST PASSED 

(b) no fossil generation capacity : THE CONDITION: fossil generation capacity = 0 

:IMPLIES: monthly CO2 emissions = 0    - TEST PASSED 

(c) no net avg electricity demand : THE CONDITION: net avg electricity demand = 0 

:IMPLIES: net avg demand vs net avg supply capacity mismatch = 0    

 - TEST PASSED 

In addition a few extreme case testing were completed. These tests were used to gauge the wide 

ranging sensitivity of the model to extreme (hypothetical) situations. Three such tests conducted were: 
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(a) Increasing the revenues expected to 20 times the simulated value in 2020, it was observed 

that there were large increases in the capacity investments of fossil generation and 

renewables. 

(b) Very large GDP per capita gave very high net monthly electricity demand. 

(c)  Large amounts of fossil generation capacity gave very large accumulated CO2 emissions. 
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B.2 General Sensitivity Analysis 

The sensitivity analysis performed here is used for supporting the validity of the model when calibrated 

to other system characteristics that are similar but not the same as the island of São Miguel.  

 

Table showing the variables used for the sensitivity analysis and the ranges explored 

These variables/model constants were chosen as input since they are key policy and influential values 

within the model. The variables in red are the ones that are not sensitivity tested in Chapter 6. For the 

sensitivity analysis, the standard Vensim multivariate MCMC is conducted for 500 simulations from 
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2005 up to 2050. The confidence bounds using the percentiles 50%, 75%, 95% and 100% are shown as 

yellow, green, blue and grey colours respectively. The following figures show the range of possible 

outcomes from these sensitivity simulations. Also shown in the diagrams are the simulation run (blue 

line) of the base case scenario of São Miguel. The diagrams show that for the variables of installed 

capacities there are a larger range of possible outcomes. For the average monthly consumer 

consumption and expected revenues there are a smaller range of possible outcomes. 
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Appendix C Black box Details 

The back box is used in Chapters 5 and 6 for capturing the short-term day/night peak and troughs of 

the demand profiles. This difference in peaks and troughs is used to decide whether to continue with 

the current EV policy objectives or to lower it to prior policy levels. The black box implemented within 

this thesis is very simple and can be extended later to be more comprehensive to capture (auto) 

correlation of the demand over time. The implementation of the black box involves the following steps: 

a. Using the daily 30 min demand output for São Miguel from EDA for the 2012 to 2015 three-

year period to determine the difference of the minimum and maximum daily demand 

values of the demand within each month (30 days) of the dataset.  

b. The next step is Normalization: Starting from the first month of the dataset, a month at a 

time, until the end of the dataset, use the largest minimum maximum difference for the 

month and then divide each of the other minimum maximum difference by this value for 

the month. At the end of the process all profiles would be normalized.   

c. The three normalized values for each of the months Jan, Feb, .., Dec for the three years 

are then called within the Vensim program using the following implementation:  

i. They are put into a lookup, where the x-axis is the integer number of the point: 

Normalised MIN MAX Lookup 

x: 1, 2, 3, 4, ..., N 

y: 32, 17, 39, 24, ..., 29 

ii. Then pick an integer at random and use that with the lookup: 

Black box index = INTEGER( RANDOM UNIFORM(1,N+1,0) ) 

Finally, use the black box index to pick a demand value: 

Demand = Demand Lookup(Demand Index)



 

  

308 
 

References 
 

Aghaei, J., Nezhad, A. E., Rabiee, A. and Rahimi, E. (2016) ‘Contribution of Plug-in Hybrid Electric 
Vehicles in power system uncertainty management’, Renewable and Sustainable Energy Reviews, 
59, pp. 450–458. doi: 10.1016/j.rser.2015.12.207. 

Arango, S., Smith, R., Dyner, I. and Osorio, S. (2002) ‘System dynamic model to analize 
investments in power generation in Colombia’, in The 20th International Conference of the System 

Dynamics Society. Palermo, Italy. 

Bakker, S. and Jacob Trip, J. (2013) ‘Policy options to support the adoption of electric vehicles in 
the urban environment’, Transportation Research Part D: Transport and Environment, 25, pp. 18–
23. doi: 10.1016/j.trd.2013.07.005. 

Balnac, K., Bokhoree, C. and Bassi, A. (2009) ‘A System Dynamics Model of the Mauritian Power 
Sector’, in Proceedings of the 27th International Conference of the System Dynamics Society. 
Boston, MA. 

Baptista, P., Camus, C., Silva, C. and Farias, T. (2009) ‘Impact of the Introduction of Electric Based 
Vehicles in São Miguel Island’, in Second International Symposium on Engineering Systems. 
Cambridge, MA. 

Barlas, Y. (1989) ‘Multiple tests for validations of system dynamics type of simulation models.’, 
European Journal of Operational Research, 1(42), pp. 59–87. 

Barnes, D. (2007) The challenge of rural electrification : strategies for developing countries. 
Washington  DC: Resources for the Future  ;Energy Sector Management Assistance Program. 

Barrett, M. (2006) A renewable electricity system for the UK – a response to the 2006 energy 

review, Complex Built Environment Systems Group, Bartlett School of Graduate Studies, University 

College London. Available at: www.cbes.ucl.ac.uk/projects/EnergyReview.htm. (Accessed: 1 
September 2016). 

Bass, F. M. (1969) ‘A New Product Growth for Model Consumer Durables’, Management Science.  
INFORMS , 15(5), pp. 215–227. doi: 10.1287/mnsc.15.5.215. 

Bekebrede, G. (2010) Experiencing Complexity A gaming approach for understanding 

infrastructure systems. Delft University of Technology. Available at: 
file://userdata/documents3/gjm383/Downloads/Proefschrift_4_juli_2010_b.pdf (Accessed: 18 
May 2017). 

Bermonte, P. (2015) ‘Electricidade dos Açores’. São Miguel: Electricidade dos Açores. 

Bildik, Y., Van Daalen, C. E., Yücel, G., Ortt, J. R. and Thissen, W. A. H. (2015) ‘Modelling Wind 
Turbine Diffusion: A comparative study of California and Denmark 1980-1995’, in 33rd 

International Conference of the System Dynamics Society. 

Black, J. (2005) Integrating Demand into the U . S . Electric Power System : Technical , Economic , 

and Regulatory Frameworks for Responsive Load. Massachusetts Institute of Technology. 

Bompard, E., Connors, S., Fulli, G., Han, B., Masera, M., Mengolini, A. and Nuttall, W. J. (2012) 
Smart Energy Grids and Complexity Science, Joint Research Centre Scientific and Policy Reports. 
doi: 10.2790/69368. 

Botelho, F. (2013) ‘The Azores and the Renewables’. São Miguel. 



References 

  

309 
 

Botelho, F. (2015) ‘Electricidade dos Açores’. São Miguel: EDA. 

Brinkman, G. (2015) ‘Renewable Electricity Futures: Operational Analysis of the Western 
Interconnection at Very High Renewable Penetrations’, (September). 

Brown, M. and Zhou, S. (2012) ‘The Emergence of Smart-Grid Policies’, Encyclopedia of 

Sustainability Science and Technology, (Springer Science+Business Media, LLC). 

Bruchon, M. B. (2013) Operational Impacts of Responsive Electricity Loads : A Modeling 

Framework Including Policy Implications for Cyprus by. MIT. 

Camus, C. and Farias, T. (2012) ‘The electric vehicles as a mean to reduce CO2 emissions and 
energy costs in isolated regions. The São Miguel (Azores) case study’, Energy Policy, 43, pp. 153–
165. doi: 10.1016/j.enpol.2011.12.046. 

Caravajal, S., Arango, A. and Arango, S. (2011) ‘Management of Voltage Control Using Distributed 
Generation in the Colombian Power System: a system dynamics approach’, in The 29th 

International Conference of the System Dynamics Society. Washington DC, USA. 

Centeno, E. (2009) ‘Capacity generation expansion analysis using bi-level programming.’, in 
Informs Annual Meeting. San Diego, USA. 

Chappin, É. (2011) Simulating Energy Transitions, PhD Thesis. Next Generation Infrastructures 
Foundation. doi: ISBN: 978-90-79787-30-2. 

Chmiel, Z. and Bhattacharyya, S. C. (2015) ‘Analysis of off-grid electricity system at isle of eigg 
(Scotland): Lessons for developing countries’, Renewable Energy. Elsevier Ltd, 81, pp. 578–588. 
doi: 10.1016/j.renene.2015.03.061. 

Chyong, C.-K. (2014) TPE8 System Dynamics for Policy and Management. Cambridge. 

Chyong Chi, K., Nuttall, W. J. and Reiner, D. M. (2009) ‘Dynamics of the UK natural gas industry: 
System dynamics modelling and long-term energy policy analysis’, Technological Forecasting and 

Social Change. Elsevier Inc., 76(3), pp. 339–357. doi: 10.1016/j.techfore.2008.06.002. 

Climate Interactive (2014a) C-Roads. Available at: http://www.climateinteractive.org/tools/c-
roads/ (Accessed: 6 July 2014). 

Climate Interactive (2014b) En-Roads. Available at: http://www.climateinteractive.org/tools/en-
roads/ (Accessed: 6 July 2014). 

Collins, R. D., Gowharji, W., Habib, A., Alwajeeh, R. and Stephen, R. (2013) ‘Evaluating scenarios of 
capacity expansion given high seasonal variability of electricity demand : the case of Saudi Arabia’, 
pp. 1–15. 

Connors, S. R., Schenler, W. W., Cheng, C. C., Hansen, C. J. and Gheorghe, A. V. (2002) ‘Integrated 
Assessment of Sustainable Energy Systems in China’, Laboratory for Energy and the Environment: 

Massachusetts Institute of Technology. 

Critz, D. K., Busche, S. and Connors, S. (2013) ‘Power systems balancing with high penetration 
renewables: The potential of demand response in Hawaii’, Energy Conversion and Management. 
Elsevier Ltd, 76, pp. 609–619. doi: 10.1016/j.enconman.2013.07.056. 

Cross-Call, D. F. (2013) Matching Energy Storage to Small Island Electricity Systems: A Case Study 

of the Azores. MIT. 

DER-CAM (2017) Distributed Energy Resources Customer Adoption Model. Available at: 
https://der.lbl.gov/projects/der-cam (Accessed: 5 May 2015). 



 

  

310 
 

Dijkema, G. (2004) Process System Innovation by Design Towards a Sustainable Petrochemical 

Industry. Delft University of Technology, Delft. 12,. Available at: 
http://repository.tudelft.nl/islandora/object/uuid:e5ff09af-7704-4a46-b955-
7509b6e89b4a/datastream/OBJ/view (Accessed: 18 May 2017). 

Dimitrovski, A., Ford, A. and Tomsovic, K. (2007) ‘An Interdisciplinary Approach to Long-Term 
Modelling for Power System Expansion’, International Journal of Critical Infrastructures, 3, pp. 
235–264. 

Dyner, I. (1996) System dynamics platforms for integrated energy analysis. University of London 
London Business School. 

Dyner, I. and Larsen, E. R. (2001) ‘From Planning to Strategy in the Electricity Industry’, Energy 

Policy, 29, pp. 1145–1154. 

EDA (2008) Electricidade dos Açores, Caracterização da Procura e da Oferta de Energia Eléctrica 

2009-2013. Available at: http://www.eda.pt/Investidores/Rating/EDA 2009 2014.pdf (Accessed: 
16 August 2016). 

EDA (2016) Electricidade dos Açores. Available at: http://www.eda.pt/Paginas/default.aspx 
(Accessed: 16 August 2014). 

EDA Estimates (2015) The Autonomous Region of the Azores Electricity Tariffs. São Miguel. 

EIA (2017) U.S. Energy Information Administration Glossary. Available at: 
https://www.eia.gov/tools/glossary/?id=G#gen_nameplate (Accessed: 2 July 2017). 

Ekanayake, J., Liyanage, K., Wu, J., Yokoyama, A. and Jenkins, N. (2012) Smart Grid: Technology 

and Applications, Smart Grid: Technology and Applications. Chichester, UK: John Wiley & Sons, 
Ltd. doi: 10.1002/9781119968696. 

Erdinc, O., Paterakis, N. G. and Catalaõ, J. P. S. (2015) Overview of insular power systems under 

increasing penetration of renewable energy sources: Opportunities and challenges, Renewable 

and Sustainable Energy Reviews. doi: 10.1016/j.rser.2015.07.104. 

ERSE (2012) Entidade reguladora dos serviços energéticos, Plano de Promoção da Eficiência no 

Consumo de Energia Eléctrica para 2012-2013. Available at: 
http://www.erse.pt/eng/electricity/tariffs/Paginas/default.aspx (Accessed: 18 March 2014). 

ERSE (2014) Entidade reguladora dos serviços energéticos, Tarifas e preços para a energia 

eléctrica e outros serviços em 2015 e parãmetros para o periodo de regulação 2015-2017. 
Available at: http://www.erse.pt/eng/electricity/tariffs/Paginas/default.aspx (Accessed: 1 
September 2016). 

ETI (2017) ‘Islands playbook - Energy Transition Initiative’. Available at: 
http://www.eere.energy.gov/islandsplaybook/. 

Eurelectric (2012) EU islands: Towards a Sustainable Energy Future. doi: D/2012/12.105/24. 

European Commission (2013) The Autonomous Region of the Azores. Available at: 
http://ec.europa.eu/regional_policy/sources/activity/outermost/doc/plan_action_strategique_eu
2020_acores_en.pdf. 

European Commission (2016) Low Carbon Technologies. Available at: 
http://ec.europa.eu/clima/policies/lowcarbon_en. 

Ford, A. (1975) A Dynamic Model of the U.S. Electric Utility Industry. Dartmouth College. Hanover, 
New Hampshire. 



References 

  

311 
 

Ford, A. (1997) ‘System Dynamics and the Electric Power Industry’, in Jay Wright Forrester Prize 

Lecture, pp. 57–85. 

Ford, A. (2008) ‘Simulation scenarios for rapid reduction in carbon dioxide emissions in the 
western electricity system’, Energy Policy, 36(1), pp. 443–455. doi: 10.1016/j.enpol.2007.09.023. 

Ford, A. (2010) ‘Greening the Economy with New Markets : System Dynamics Simulations of 
Energy and Environmental Markets’, International Conference of the System Dynamics Society, pp. 
1–26. 

Ford, A., Vogstad, K.-O. and Flynn, H. (2007) ‘Simulating price patterns for tradable green 
certificates to promote electricity generation from wind’, Energy Policy, 35(1), pp. 91–111. doi: 
10.1016/j.enpol.2005.10.014. 

Forrester, J. (1968) ‘Principles of Systems’, Productivity Press. Cambridge, MA. 

Forrester, J. and Senge, P. (1980) ‘Tests for building confidence in systemdynamicsmodels’, TIMS 

Studies in Management Sciences, 14, pp. 209–289. 

Forrester, J. W. (1961) Industrial dynamics. Cambridge, Massachusetts: M.I.T. Press. Available at: 
http://jsterman.scripts.mit.edu/docs/Lane-2011 Profiles in Operations Research.pdf. 

Forrester, J. W. (1987) ‘Lessons from system dynamics modeling’, System Dynamics Review. John 
Wiley & Sons, Ltd., 3(2), pp. 136–149. doi: 10.1002/sdr.4260030205. 

Foxon, T. (2013) ‘Transition pathways for a UK low carbon electricity future’, Energy Policy, 52, pp. 
10–24. doi: 10.1016/j.enpol.2012.04.001. 

Foxon, T. J. (2011) ‘A coevolutionary framework for analysing a transition to a sustainable low 
carbon economy’, Ecological Economics, 70(12), pp. 2258–2267. doi: 
10.1016/j.ecolecon.2011.07.014. 

Gary, M. S., Kunc, M., Morecroft, J. D. W. and Rockart, S. F. (2008) ‘System dynamics and 
strategy’, System Dynamics Review, 24(4), pp. 407–429. doi: 10.1002/sdr.402. 

Geels, F. W. (2002) ‘Technological transitions as evolutionary reconfiguration processes: a multi-
level perspective and a case-study’, Research Policy, 31(8–9), pp. 1257–1274. doi: 10.1016/S0048-
7333(02)00062-8. 

Geels, F. W. and Schot, J. (2007) ‘Typology of sociotechnical transition pathways’, Research Policy, 
36(3), pp. 399–417. doi: 10.1016/j.respol.2007.01.003. 

GEEREF (2016) Bringing clean power to developing countries fighting climate change with equity 

investments. Available at: http://geeref.com/. 
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