1,372 research outputs found

    Virtual Exploration of Underwater Archaeological Sites : Visualization and Interaction in Mixed Reality Environments

    Get PDF
    This paper describes the ongoing developments in Photogrammetry and Mixed Reality for the Venus European project (Virtual ExploratioN of Underwater Sites, http://www.venus-project.eu). The main goal of the project is to provide archaeologists and the general public with virtual and augmented reality tools for exploring and studying deep underwater archaeological sites out of reach of divers. These sites have to be reconstructed in terms of environment (seabed) and content (artifacts) by performing bathymetric and photogrammetric surveys on the real site and matching points between geolocalized pictures. The base idea behind using Mixed Reality techniques is to offer archaeologists and general public new insights on the reconstructed archaeological sites allowing archaeologists to study directly from within the virtual site and allowing the general public to immersively explore a realistic reconstruction of the sites. Both activities are based on the same VR engine but drastically differ in the way they present information. General public activities emphasize the visually and auditory realistic aspect of the reconstruction while archaeologists activities emphasize functional aspects focused on the cargo study rather than realism which leads to the development of two parallel VR demonstrators. This paper will focus on several key points developed for the reconstruction process as well as both VR demonstrators (archaeological and general public) issues. The ?rst developed key point concerns the densi?cation of seabed points obtained through photogrammetry in order to obtain high quality terrain reproduction. The second point concerns the development of the Virtual and Augmented Reality (VR/AR) demonstrators for archaeologists designed to exploit the results of the photogrammetric reconstruction. And the third point concerns the development of the VR demonstrator for general public aimed at creating awareness of both the artifacts that were found and of the process with which they were discovered by recreating the dive process from ship to seabed

    Transition Contour Synthesis with Dynamic Patch Transitions

    Get PDF
    In this article, we present a novel approach for modulating the shape of transitions between terrain materials to produce detailed and varied contours where blend resolution is limited. Whereas texture splatting and blend mapping add detail to transitions at the texel level, our approach addresses the broader shape of the transition by introducing intermittency and irregularity. Our results have proven that enriched detail of the blend contour can be achieved with a performance competitive to existing approaches without additional texture, geometry resources, or asset preprocessing. We achieve this by compositing blend masks on-the-fly with the subdivision of texture space into differently sized patches to produce irregular contours from minimal artistic input. Our approach is of particular importance for applications where GPU resources or artistic input is limited or impractical

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces

    Data visualization within urban models

    Get PDF
    Models of urban environments have many uses for town planning, pre-visualization of new building work and utility service planning. Many of these models are three-dimensional, and increasingly there is a move towards real-time presentation of such large models. In this paper we present an algorithm for generating consistent 3D models from a combination of data sources, including Ordnance Survey ground plans, aerial photography and laser height data. Although there have been several demonstrations of automatic generation of building models from 2D vector map data, in this paper we present a very robust solution that generates models that are suitable for real-time presentation. We then demonstrate a novel pollution visualization that uses these models

    Holographic visions for architecture in a park.

    Get PDF
    The Monza Park, with its more than 7 square meters of green area, divided between lawn and woods, its 110,000 tall trees, its 13 farmhouses, 3 historic villas, 13 m of fences and 90,000 visitors on spring Sundays, represents an irreplaceable source of wellness and sustainability for those who live near it. The pandemic situation of the 20s and 21s by reducing the movements and the possibility of coexistence of a large public in an open space has suggested the possibility of new forms of use and interaction of the same, even remotely, reproducing accurate Virtual Reality experiences. With this paper, the authors intend to illustrate a workflow from Scan to VR applications, taking advantage of the opportunity to explore digital acquisitions and additional materials available and functional to convey the values of open space and historical monuments immersed in them. The VR experiences have been structured for the navigation from the scale of architectural detail to the environmental one, with the goal of using the accurate model results for two different and remote instrumentations: a 7m diameter 360° theatre and a Holographic table, Euclideon Hologram Table©. Both situations, as opposed to hardware tools such as headset, favour the fruition for small groups of users

    Asteroid modeling for testing spacecraft approach and landing

    Get PDF

    Realtime projective multi-texturing of pointclouds and meshes for a realistic street-view web navigation

    Get PDF
    International audienceStreet-view web applications have now gained widespread popularity. Targeting the general public, they offer ease of use, but while they allow efficient navigation from a pedestrian level, the immersive quality of such renderings is still low. The user is usually stuck at specific positions and transitions bring out artefacts, in particular parallax and aliasing. We propose a method to enhance the realism of street view navigation systems using a hybrid rendering based on realtime projective texturing on meshes and pointclouds with occlusion handling, requiring extremely minimized pre-processing steps allowing fast data update, progressive streaming (mesh-based approximation, with point cloud details) and unaltered raw data precise visualization
    corecore