1,312 research outputs found

    Integrated Visualization of Human Brain Connectome Data

    Get PDF
    Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases

    Monte Carlo-based Noise Compensation in Coil Intensity Corrected Endorectal MRI

    Get PDF
    Background: Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations. Methods: In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available. Results: SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement of 11.7 dB and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared to existing approaches. Conclusions: A new noise compensation method was developed for the purpose of improving the quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise compensation performance can be achieved for the proposed approach, which is particularly important for processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.Comment: 23 page

    Visualization and analysis of diffusion tensor fields

    Get PDF
    technical reportThe power of medical imaging modalities to measure and characterize biological tissue is amplified by visualization and analysis methods that help researchers to see and understand the structures within their data. Diffusion tensor magnetic resonance imaging can measure microstructural properties of biological tissue, such as the coherent linear organization of white matter of the central nervous system, or the fibrous texture of muscle tissue. This dissertation describes new methods for visualizing and analyzing the salient structure of diffusion tensor datasets. Glyphs from superquadric surfaces and textures from reactiondiffusion systems facilitate inspection of data properties and trends. Fiber tractography based on vector-tensor multiplication allows major white matter pathways to be visualized. The generalization of direct volume rendering to tensor data allows large-scale structures to be shaded and rendered. Finally, a mathematical framework for analyzing the derivatives of tensor values, in terms of shape and orientation change, enables analytical shading in volume renderings, and a method of feature detection important for feature-preserving filtering of tensor fields. Together, the combination of methods enhances the ability of diffusion tensor imaging to provide insight into the local and global structure of biological tissue

    Visualizing Diffusion Tensor Images of the Mouse Spinal Cord

    Get PDF
    Within biological systems water molecules undergo continuous stochastic Brownian motion. The rate of this diffusion can give clues to the structure of underlying tissues. In some tissues the rate is anisotropic - faster in some directions than others. Diffusion-rate images are second-order tensor fields and can be calculated from diffusion-weighted magnetic resonance images. A 2D diffusion tensor image (DTI) and an associated anatomical scalar field, created during the tensor calculation, define seven dependent values at each spatial location. Understanding the interrelationships among these values is necessary to understand the data. We present two new methods for visually representing DTIs. The first method displays an array of ellipsoids where the shape of each ellipsoid represents one tensor value. The novel aspect of this representation is that the ellipsoids are all normalized to approximately the same size so that they can be displayed in context. The second method uses concepts from oil painting to represent the seven-valued data with multiple layers of varying brush strokes. Both methods successfully display most or all of the information in DTIs and provide exploratory methods for understanding them. The ellipsoid method has a simpler interpretation and explanation than the painting-motivated method; the painting-motivated method displays more of the information and is easier to read quantitatively. We demonstrate the methods on images of the mouse spinal cord. The visualizations show significant differences between spinal cords from mice suffering from Experimental Allergic Encephalomyelitis (EAE) and spinal cords from wild-type mice. The differences are consistent with pathology differences shown histologically and suggest that our new non-invasive imaging methodology and visualization of the results could have early diagnostic value for neurodegenerative diseases

    Brain explorer for connectomic analysis

    Get PDF
    Visualization plays a vital role in the analysis of multimodal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional, and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomical structure. In this paper, new surface texture techniques are developed to map non-spatial attributes onto both 3D brain surfaces and a planar volume map which is generated by the proposed volume rendering technique, spherical volume rendering. Two types of non-spatial information are represented: (1) time series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image-based phenotypic biomarkers for brain diseases

    Visual Analytics and Interactive Machine Learning for Human Brain Data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This study mainly focuses on applying visualization techniques on human brain data for data exploration, quality control, and hypothesis discovery. It mainly consists of two parts: multi-modal data visualization and interactive machine learning. For multi-modal data visualization, a major challenge is how to integrate structural, functional and connectivity data to form a comprehensive visual context. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. For interactive machine learning, we propose a new visual analytics approach to interactive machine learning. In this approach, multi-dimensional data visualization techniques are employed to facilitate user interactions with the machine learning process. This allows dynamic user feedback in different forms, such as data selection, data labeling, and data correction, to enhance the efficiency of model building

    Radiomic data mining and machine learning on preoperative pituitary adenoma MRI

    Get PDF
    Pituitary adenomas are among the most frequent intracranial tumors, accounting for the majority of sellar/suprasellar masses in adults. MRI is the preferred imaging modality for detecting pituitary adenomas. Radiomics represents the conversion of digital medical images into mineable high-dimensional data. This process is motivated by the concept that biomedical images contain information that reflects underlying pathophysiology and that these relationships can be revealed via quantitative image analyses. The aim of this thesis is to apply machine learning algorithms on parameters obtained by texture analysis on MRI images in order to distinguish functional from non-functional pituitary macroadenomas, to predict their ki-67 proliferation index class, and to predict pituitary macroadenoma surgical consistency prior to an endoscopic endonasal procedure

    PREDICTION OF 1P/19Q CODELETION STATUS IN DIFFUSE GLIOMA PATIENTS USING PREOPERATIVE MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING

    Get PDF
    A complete codeletion of chromosome 1p/19q is strongly correlated with better overall survival of diffuse glioma patients, hence determining the codeletion status early in the course of a patient’s disease would be valuable in that patient’s care. The current practice requires a surgical biopsy in order to assess the codeletion status, which exposes patients to risks and is limited in its accuracy by sampling variations. To overcome such limitations, we utilized four conventional magnetic resonance imaging sequences to predict the 1p/19q status. We extracted three sets of image-derived features, namely texture-based, topology-based, and convolutional neural network (CNN)-based, and analyzed each feature’s prediction performance. The topology-based model (AUC = 0.855 +/- 0.079) performed significantly better compared to the texture-based model (AUC = 0.707 +/- 0.118) while comparably against the CNN-based model (0.787 +/- 0.195). However, none of the models performed better than the baseline model that is built with only clinical variables, namely, age, gender, and Karnofsky Performance Score (AUC = 0.703 +/- 0.256). In summary, predicting 1p/19q chromosome codeletion status via MRI scan analysis can be a viable non-invasive assessment tool at an early stage of gliomas and in follow-ups although further investigation is needed to improve the model performance
    • …
    corecore