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Abstract 
PREDICTION OF 1P/19Q CODELETION STATUS IN DIFFUSE GLIOMA PATIENTS 

USING PREOPERATIVE MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING 

 

Donnie Duckyeom Kim, B.S. 

 

Advisory Professor: Arvind Rao, Ph.D. 

 

A complete codeletion of chromosome 1p/19q is strongly correlated with better overall 

survival of diffuse glioma patients, hence determining the codeletion status early in 

the course of a patient’s disease would be valuable in that patient’s care. The current 

practice requires a surgical biopsy in order to assess the codeletion status, which 

exposes patients to risks and is limited in its accuracy by sampling variations. To overcome such 

limitations, we utilized four conventional magnetic resonance imaging sequences to predict the 

1p/19q status. We extracted three sets of image-derived features, namely texture-based, 

topology-based, and convolutional neural network (CNN)-based, and analyzed each feature’s 

prediction performance. The topology-based model (AUC = 0.855 +/- 0.079) performed 

significantly better compared to the texture-based model (AUC = 0.707 +/- 0.118) while 

comparably against the CNN-based model (0.787 +/- 0.195). However, none of the models 

performed better than the baseline model that is built with only clinical variables, namely, age, 

gender, and Karnofsky Performance Score (AUC = 0.703 +/- 0.256). In summary, predicting 

1p/19q chromosome codeletion status via MRI scan analysis can be a viable non-invasive 

assessment tool at an early stage of gliomas and in follow-ups although further investigation is 

needed to improve the model performance. 
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Chapter 1: Introduction 

1.1 New glioma classification in 2016 

Prior to 2016, gliomas, which are the most common primary brain tumors growing from 

glial cells, were classified simply based on their histologic phenotypes. The World Health 

Organization (WHO) classified oligodendrogliomas, astrocytomas, and oligoastrocytomas as 

lower grade gliomas (LGG) with grades II and III. Among these LGG patients, about 25 to 50%  

would experience recurrence or develop into a high-grade gliomas (HGG), known as 

glioblastoma with WHO grade IV (1, 2). Compared to LGG, HGG is much more aggressive and 

it has a poorer prognosis. For LGG cases, the five year survival rates range from 29.8% to 81.3% 

depending on subtypes whereas, for HGG, the five year survival rate is only 5.5% (3) .  

In 2016, WHO announced its new classification. For the diagnosis of LGG, the isocitrate 

dehydrogenase (IDH) mutation status and 1p/19q codeletions status are now considered 

alongside of the histologic phenotype (4) to reflect the recent reports showing that gliomas may 

have very different clinical responses and behaviors based on their molecular marker status (5, 

6). Figure 1 demonstrates how this new classification works based on histological and genetic 

features. For both the LGG and HGG cases, the IDH mutation status is first confirmed. For LGGs, 

the IDH mutation status is further categorized based on the 1p/19q chromosome codeletion 

status. In sum, the molecular subtypes of LGGs can be divided into three classes: IDH wild type, 

IDH1 mutated and no 1p/19q codeletion, and IDH mutated and 1p/19q codeletion. 
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Figure 1 New classification of diffuse glioma. First, they are classified by IDH mutation status. 
Then, for IDH mutant LGG cases, they are further classified by their 1p/19q chromosome 
codeletion status.  Redrawn with permission. D. N. Louis et al., “The 2016 World Health 
Organization Classification of Tumors of the Central Nervous System: a summary,” Acta 
Neuropathologica, vol. 131, no. 6. Springer Berlin Heidelberg, pp. 803–820, 09-Jun-2016e.  

  

1.2 1p/19q chromosomal codeletion 

1p/19q codeletion is defined as a complete deletion of both the short arm of chromosome 

1, or 1p, and the long arm of chromosome 19, or 19q, hence 1p/19q codeletion. As described in 

the previous section, 1p/19q codeletion is a molecular genetic feature of LGG that accounts for 

approximately 10 to 15% of adult patients (3). As a prognostic biomarker in glioma, the presence 

of the 1p/19q codeletion is strongly associated with better survival (5, 7–10). According to The 

Cancer Genome Atlas Research Network (TCGA), LGG patients with the IDH mutation and a 

1p/19q codeletion status had a median overall survival (OS) of 8.0 years, whereas it was only 

6.3 OS years in patients with an IDH mutation and no 1p/19q codeletion (5) (Figure 2). As a 

predictive biomarker, 1p/19q codeletion status is a good indicator for chemotherapy responses. 

According to Cairncross et al., patients with the 1p/19q codeletetion had twice the median OS of 

those with the wildtype gene (14.7 years vs. 7.3 years) under the treatment of 

procarbazine/lomustine/vincristine (PCV) chemotherapy in combination with radiotherapy (7). 
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Overall, the status of 1p/19q codeletion as a prognostic or predictive biomarker is crucial for 

patients’ treatment and thereby their OS. 

 

Figure 2  Survival analysis between 1p/19q codeletion and non-codeletion. This graph was 
generated via CBioPortal using the TCGA-LGG and TCGA-GBM cases. 

 

1.3 Determining 1p/19q codeletion status and Radiogenomics 

 Currently, determining a patient’s 1p/19q codeletion status requires a surgical biopsy 

followed by fluorescence in-situ hybridization (FISH) analysis of the specimen  (11). Such 

practice, however, exposes patients to risks and is limited by sampling variations, which suggests 

the need for a non-invasive way of assessing 1p/19q codeletion status. 
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As a non-invasive determination of 1p/19q codeletion status, radiogenomics, a field of 

study investigating the quantitative relationship between medical image features and genomic 

markers, has been investigated. In 2012, Jansen et al. reported that 18-F fluoroethyltyrosine- 

positron emission tomography (FET-PET) image feature analysis did not reliably predict the 

1p/19q codeletion status for WHO grade II and III patients (12). Fella et al. attempted to predict 

1p/19q codeletion status for WHO grade II and III oligodendroglioma and oligoastrocytoma 

patients by analyzing magnetic resonance (MR) imaging, including T1-weighted (T1), T2-

weighted (T2), T2*-weighted (T2*), fluid-attenuated inversion recovery (FLAIR), and T1-weighted 

post-contrast (T1-post), diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), 

and MR spectroscopy. In their analysis, they reported that the DWI, PWD, and MR spectroscopy 

showed little improvement in determining 1p/19q codeletion status compared to the more 

conventional MR sequences, namely T1, T1post, T2, T2*, and FLAIR sequences alone (13). In 

addition, Park et al. reported that whole tumor histogram and texture analyses of diffusion tensor 

imaging (DTI) can predict the 1p/19q codeletion status in grade II gliomas (14). Lastly, in 2017, 

Akkus et al. demonstrated that T1-post and T2 images can be analyzed to determine the 1p/19q 

codeletion status using machine intelligence (15). 

In light of these previous radiogenomics studies, this thesis investigates the feasibility of 

assessing 1p/19q codeletion status by analyzing multimodal MR sequence scans.  

 

1.4 Central Hypothesis 

There exists an underlying image level signature on multi-parametric MR scans (T1, 

T1post, T2, and FLAIR modalities) that distinguishes 1p/19q co-deleted from non-codeleted 

chromosomes.  

 

Specific Aim 1: Develop a pipeline that quantitatively extracts MR scans image features 
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To achieve this aim, we extract three set of distinctive image features, namely texture-based, 

topology-based, and convolutional neural network based, and evaluate their performances in 

predicting 1p/19q codeletion status.  

 

Specific Aim 2: Assess the feasibility of conventional MR sequences in prediction task of 

1p/19q codeletion status 

Hypothesis: Image feature analysis using conventional and universally performed MR 

sequences is not inferior to that using advanced MR sequences in predicting 1p/19q status. 

To achieve this aim, we compare our analysis results with those of reports in the literature. 

 

1.6 Organization of this thesis 

The overall goal of this thesis is to compare and contrast three different image features 

from multimodal MRI scans in the context of determining a patient’s 1p/19q codeletion status. 

First, Chapter 2 discusses the data acquisition and pre-processing steps. Then, Chapters 3, 4, 

and 5 address texture, topological (and specifically, persistent homology), and CNN feature 

acquisition procedures respectively. Then, Chapter 6 discusses the feature selection, feature 

reduction, and training procedures using those three set of features. Chapter 7 reports the results 

from Chapter 6. Finally, Chapter 8 concludes this thesis by comparing and contrasting the three 

different image analysis results.  
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Chapter 2: Data acquisition and pre-processing 

2.1 BRATS 2017 dataset 

 The multimodal Brain Tumor Image Segmentation Benchmark (BRATS) 2017 dataset 

was originally designed for the brain tumor segmentation challenge (16, 17) and comprises 

pathologically confirmed LGG (n = 65) and HGG (n = 102) cases from The Cancer Imaging 

Archive (TCIA) (18). The dataset contains pre-operative multi-modal MRI sequences, namely T1, 

T1post, T2, and FLAIR, and was acquired with differing imaging/clinical protocols and scanners 

from 19 different institutions (Figure 3). These four sequences were co-registered rigidly to the 

T1post sequence as it had the highest spatial resolution, and were then resampled to 1mm x 

1mm x 1mm isotropically in an axial orientation by using a linear interpolation algorithm. Then, 

all images were skull-stripped to anonymize the patient information. All tumor volumes in the 

imaging dataset have been segmented manually by one to four different experienced neuro-

radiologists: The pixels in necrotic and non-enhancing tumor (NCR/NET) were labeled 1, those 

in peritumoral edema (ED) were labeled 2, and those in gadolinium-enhancing tumors (Gd-ET) 

were labeled 4 (16, 17) so that each type is identified by a unique bit when these labels are 

viewed as binary numbers. 
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Figure 3 Some sample images from BRATS data. TCGA-CS-6666 is a non-codeleted case while 
TCGA-DU-5874 is codeleted. 

2.2 1p/19q status and patient information from TCGA 

 Since the BRATS 2017 dataset comes from TCIA, one can also find the corresponding 

molecular/genetic dataset from The Cancer Genome Atlas (TCGA): 

https://cancergenome.nih.gov/. Under TCGA/TCIA data use agreements, analysis of this cohort 

was exempt from IRB approval. We first retrospectively identified the patients with histologically 

confirmed WHO grade II-IV gliomas (n=1122) and their corresponding 1p/19q chromosome 

codeletion statuses (after surgical biopsy). In addition, the patients’ age, gender, Karnofskyi 

Performance Score (KPS) were collected as clinical variables.  

Considering both the imaging dataset from BRATS 2017 and the 1p/19q statuses from 

TCGA, only 143 patients had both. Figure 4 illustrates the data acquisition process in a diagram. 

 

Figure 4 Flow diagram of data collection. We first obtained the BRATS 2017 dataset that contains 
T1, T1post, T2, and FLAIR sequence images with tumor region mask. Then, we retrospectively 

https://cancergenome.nih.gov/
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collected patient 1p/19q codeletion status, age, gender, and KPS from the TCGA dataset. 
Considering those two, we obtained a cohort of 143 patients. 

2.3 Patient Characteristics 

 Table 1 summarizes the patient demographics and 1p/19q status. The median age, KPS, 

and male population proportion of the patient cohort was 54 years, 80, and 48.25% respectively. 

For WHO glioma grades, 44.76% (n=64) of the cohort was LGG cases while the remainder was 

HGG (n=79). For 1p/19q codeletion status, only 13 patients were codeleted and all came from 

the LGG cases while the remaining 130 patients were non-codeleted and came from both LGG 

(n=51) and HGG (n=79). There was thus a very large imbalance in the ratio (1:10) between the 

codeleted and non-codeleted patients. 

 

Age 54 (18-84) 

KPS 80 (50-100) 

Sex (% male) 69 (48.3 %) 

1p/19q codeletion rate 13 (9.1 %) 

Grade and 1p/19q codeletion status   

LGG (II and III) 51 (44.8 %) 

II non-codeleted 21 (14.7 %) 

II codeleted 6 (4.2 %) 

III non-codeleted 30 (21.0 %) 

III codeleted 7 (4.9 %) 

HGG (IV) 79 (55.2 %) 

IV non-codeleted 0 (0 %) 

IV codeleted 79 (55.2 %) 

Note: Age and KPS shown as median (min-max) 
  

Table 1 Patient demographics, KPS, 1p/19q codeletion status, and glioma grade. 

2.4 Train/test dataset split 

 When sampling the patient cohorts into either the train or the test datasets, the ratio 

between codeleted and non-codeleted must be kept the same. In order to do so, we divided the 

patient cohort randomly into 13 groups such that each group contained 1 codeleted and 10 non-

codeleted cases. Among these 13 groups, 2 random groups were assigned to be the testing 

dataset (2 codeleted/ 20 non-codeleted) while the remaining 11 groups were assigned to be the 
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training dataset (11 codeleted/ 110 non-codeleted). This process was repeated 10 times such 

that there were 10 independent train/test splits of the data. Figure 5 illustrates this process in a 

diagram. 

 

Figure 5 A diagram depicting train/test dataset split. First, we performed stratified random 
sampling such that each group contains 1 codeleted and 10 non-codeleted cases. Then, we 
randomly assigned 2 groups to test dataset while the remaining belongs to the training dataset. 
We repeated this process 10 times to obtain 10 train/test splits. 

 

 From now on, unless otherwise specified, all of the figures and tables are from train/test 

dataset split number 0 for simplicity. 

 

2.5 Image pre-processing pipeline 

2.5.1 N4 bias correction 

 One of the main assumptions of MRI scanning is a uniform magnetic field in the center of 

a scanner, which in reality is often not achieved. Consequently, some MRI scans can present 

low frequency intensity inhomogeneity, which can be detected as shading artifacts (19–21). In 
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order to correct this phenomenon, N4 bias correction was applied to remove any low frequency 

intensity inhomogeneity (22), (23). 

 

2.5.2 Intensity Normalization 

 Another problem with MRI scans is the arbitrary scaling of the voxel intensity. 

Computerized tomography (CT) scans have voxel intensity values that are a linear mapping of 

Hounsfield Unit (HU), which is derived from the linear attenuation coefficients of water and of air. 

In other words, CT voxel values can be mapped back to some “physical meaning” that is based 

upon the attenuation of the material in the voxel. However, MRI scans have no clear, consistent 

mapping from the voxel intensity values back to a simple “physical meaning”. Consequently, MRI 

scans are expressed in arbitrary units that are difficult to understand in an absolute sense and 

that may well differ among scanners, protocols, and institutions. Figure 6. showcases the 

intensity distributions that may be encountered among patients. For this illustration, 13 patients 

were chosen at random. In both the normal regions (Figures 6(a) and (b)) and normal tumor 

regions (Figures 6(c) and (d)), there exists some variability among the patients in the intensity 

distributions. 
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Figure 6 (a) shows the intensity distribution histogram while (b) shows the intensity distribution 
boxplot across 4 MRI sequences of normal brain region for 13 randomly chosen patients. There 
are some clear discrepancies in the intensity distribution ranges across patients. The same can 
be observed for the tumor region histogram (c) and the tumor region boxplot (d). 
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There have been several methods proposed (24–26) to deal with such a problem, but the 

simplest approach is normalizing relative to “normal brain”. For such an approach, two 

assumptions are made. First, there exists a linear mapping that maps the “true” or “physical 

meaning” distribution to what is seen in the MRI scan intensity distribution (i.e. the arbitrary unit 

distribution). Second, in this “true” or “physical meaning” distribution, the normal brain distribution 

should be consistent or at least similar across patients and scanners. This is a fair assumption 

since it is a normal brain, and hence the patient-to-patient distribution variability should be 

minimal in this “true” or “physical meaning” unit. Also, just as the normal brain intensity 

distributions across patients are similar, so should be the interquartile intensity values. Now, we 

realize that the interquartile intensity of normal brain scales according to which space it lies within, 

that is, whether it is in the “true”/ “physical meaning” distribution or the transformation of that (i.e. 

arbitrary unit distribution), since the transformation is a linear mapping. Therefore, we normalize 

image intensities in the following fashion: first, we subtract the median intensity of normal brain 

from the image, which would zero center the normal brain intensity distribution, and then divide 

by the interquartile intensity of normal brain. By so doing, in this “normalized space”, both the 

“physical meaning” distribution and the “arbitrary unit” distribution should map to the same 

distribution. Figures 7(a) and (b) show the normalized normal brain distribution and the 

corresponding boxplot. As expected, it is zero-centered with a nice normal distribution. Also, the 

boxplot of the normalized normal brain shows that the distributions in the individual patients 

overlap with each other in all four sequences. This indicates that our two major assumptions, a 

linear transformation and consistent normal brain distribution across patients, hold true. Figures 

7(c) and (d) show the normalized tumor distribution and the corresponding boxplot. A big 

difference between normal brain and tumor is the intensity distribution consistency. It is well 

known that gliomas exhibit heterogeneity [32-35], and if we consider our first assumption, the 

heterogeneity would still exist in the “true” intensity space and so also in the “normalized space”, 

which one can observe in Figures 7(c) and (d). 
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Figure 7 (a) shows the normalized intensity distribution histogram while (b) shows the normalized 
intensity distribution boxplot across four MRI sequences of normal brain region for 13 randomly 
chosen patients. In the normalized space, the histogram is now in a nice bell shape and zero-
centered. Also, the boxplot median and interquartile ranges line up well with each other across 
patients. On the other hand, for normalized tumor regions, there are still some discrepancies 
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across patients in intensity distribution ranges across patients for the histograms (c) and the 
boxplots (d). This reflects the patients’ individual tumor region heterogeneity. 

2.5.3 Intensity Discretization – Texture analysis only 

 Once the intensity distribution is normalized relative to the normal brain region, intensity 

discretization is implemented in the following fashion:  

𝑋𝑏,𝑖 = ⌊ 
𝑋𝑔𝑙,𝑖

𝑊
 ⌋ −  ⌊

𝑚𝑖𝑛(𝑋𝑔𝑙)

𝑊
 ⌋ +  1 

• 𝑋𝑔𝑙,𝑖 = gray level before discretization 

• 𝑋𝑏,𝑖 = gray level after discretization  

• 𝑊 = bin width specified by user 

Notice that the minimum gray level is 1 such that the minimum intensity value may be 

distinguished from the background, which is coded as 0. Also, it is important that the user specify 

the bin width because this bin width is the quantum of measurement in the gray level quantity. 

By supplying the user-defined bin width, the definition of a gray level unit of 1 is consistent, and 

hence the definition of “contrast” is consistent across patients. This process is crucial, especially 

when it comes to creating a matrix representation of the gray levels in the ROI, such as the gray 

level co-occurrence matrix (GLCM), or the gray level run length matrix (GLRLM), because such 

matrices assume a well-defined and consistent meaning of the gray level values.  

Our reasoning is perhaps best illustrated by considering the following example: assume 

that patient A has an intensity distribution that ranges from -5 to 5 whereas patient B has the 

distribution ranging from -10 to 10 after the normalization step. If we specify the bin width to be 

0.5, then patient A will uniquely yield 20 different gray levels whereas patient B will yield 40. They 

might have different gray level ranges, but that simply reflects the fact that patient B has the wider 

range of intensity distributions compare to patient A from the beginning. On the other hand, the 

definition of 1 gray level in patient A is same as that of in patient B, i.e. bin width of 0.5, hence 

two patients have the same physical meaning in 1 gray level unit (27) . 
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In our study, we chose the bin width of 0.0625 such that the resulting amount of bins fell 

between 30 and 130 bins following the recommendation from PyRadiomics FAQs 

 

2.5.4 Intensity Linearization – TDA and CNN analysis 

 Unlike texture analysis where 1 gray level unit is important, TDA and CNN analysis are 

less concerned with the definition of a gray level unit. This is the case because of their nature of 

feature extraction. Unlike texture-based features where gray level matrix representation must 

have the same physical meaning in gray level across patients, both topological features and CNN 

features are more concerned with relative rankings in voxel intensities. In other words, as long 

as the rankings of voxel intensities are preserved in a consistent manner, then we can enforce 

intensity distributions into the same window: 

𝑋𝑏,𝑖 =  ⌊
𝑋𝑔𝑙,𝑖 −  𝑚𝑖𝑛(𝑋𝑔𝑙)

𝑚𝑎𝑥 (𝑋𝑔𝑙) − 𝑚𝑖𝑛(𝑋𝑔𝑙)
 ⌋ +  1 

• 𝑋𝑔𝑙,𝑖 = gray level before discretization 

• 𝑋𝑏,𝑖 = gray level after discretization  

This is a simple min-max scaling scheme, but adding 1 on top of it so that every voxel 

intensity ranges from 1 to 2. Again, it starts from 1 to distinguish the minimum intensity value 

from background, which has the value 0. 

 

2.5.5 Tumor Patch Extraction 

 In order to extract a tumor region slice, the smallest bounding rectangle was drawn 

around the tumor to capture the tumor region, and then the image within that rectangle was 

resized to 142 by 142 pixels. Note that for texture and topological features, we extracted only the 

patches in the axial plane. On the other hand, for the CNN features, we extracted in all three 
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dimensions, namely in the coronal, sagittal, and axial planes, so that we could meet the input 

dimensions of the CNN architecture (Chapter 5 explains this in more detail).  

 As we already found out, there exists a very high imbalance in the dataset (which has 

only 13 codeleted vs 130 non-codeleted). To combat this imbalance as well as the small amount 

of available data, we extracted 20 slices from the codeleted cases but only 2 slices from the non-

codeleted cases when training. For codeleted patch extraction, the 20 largest tumor areas were 

selected. On the other hand, for non-codeleted, 100th and 75th percentile tumor areas were used. 

In total, we obtained 220/220 patches between codeleted and non-codeleted for the training 

dataset but 4/40 patches between codeleted and non-codeleted for the test dataset.  

 The process of this image pre-processing pipeline is depicted in Figure 8 as a diagram. 
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Figure 8 A flow chart of image pre-processing. From 4 MRI sequences, first the N4 bias correction 
was applied to remove low-level noises. Then, intensity normalization was applied to put the 
patients’ intensity ranges into the similar range. Then, for texture features, intensity discretization 
was applied while for topological and CNN features, intensity linearization was implemented. 
Then, the smallest bounding rectangle was drawn around the tumor to capture the tumor region, 
and the image within that rectangle was resized to 142 by 142 pixels. For the codeleted cases, 
the top 20 largest tumor areas were extracted, while for the non-codeleted cases, 100th and 75th 
percentile tumor areas were extracted for training dataset. In total we obtained 240/240, or 480 
tumor patches for training dataset. For test, we extracted 100th and 75th percentile tumor areas 
for both codeleted (4) and non-codeleted (40), resulting in 44 tumor patches. 
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Chapter 3: Texture features 

3.1 Introduction 

 The main goal of image analysis, whether it be of a medical image or a natural scene, is 

to “quantitatively” assess the image information based upon some metrics. For instance, in 

human words, one might describe an image as “smooth”, “rough”, or “honeycomb shaped”, but 

such descriptions lack consistency in interpretation and cannot produce numerical features that 

can be statistically analyzed by machines. Texture analysis attempts to solve such challenges 

by quantifying those qualitative descriptions as a function of spatial variation in pixel or voxel 

intensities, and has been shown to be successful in radiogenomics studies. For instance, texture 

features have shown promise for characterizing cancer genetics regardless of medical image 

modalities such as MRI (27), PET (28), and CT (29, 30). Also, texture analysis has been reported 

to be effective in characterizing a variety of cancer types including breast tumors (31), lung 

tumors (32, 33), and head and neck tumors (32). Considering these past reports on their 

successes on characterizing numerous cancer types with differing image modalities, it is not 

unreasonable to pursue such methods to predict the 1p/19q codeletion status.  

 

3.3 Texture Feature extraction 

Here, we defined six different subtypes of texture features which produced 91 features 

for a single modality. Since there are four modality sequences, we obtained a total of 364 

features. 

 

3.3.1 Texture Feature Calculation Software 

 The PyRadiomics software package version 1.3.0 was used for the calculation of all of 

the features in this chapter of study (27). This software is an open source Python based package 

that is freely available online at https://pyradiomics.readthedocs.io/en/latest/.  

https://pyradiomics.readthedocs.io/en/latest/
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Below, we defined six unique texture feature groups. For the exact definition of the 

calculation of each feature, please refer to the PyRadiomics website. 

 

3.3.2 First order statistics based features 

 First order statistics describes the voxel intensity distributions within the image region 

defined by the mask. Under this category, the following statistics were computed: 

1. Energy 

2. Total Energy 

3. Entropy 

4. Minimum 

5. 10th percentile 

6. 90th percentile 

7. Maximum 

8. Mean 

9. Median 

10. Interquartile Range 

11. Range 

12. Mean Absolute Deviation (MAD) 

13. Robust Mean Absolute Deviation (rMAD) 

14. Root Mean Squared (RMS) 

15. Standard Deviation 

16. Skewness 

17. Kurtosis 

18. Variance 

19. Uniformity 
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Most of these features were calculated directly from the original intensity distributions (i.e.no 

intensity discretization took in place) except for entropy and uniformity. For these, we used the 

bin width of 0.0625 (as specified in section 2.5.4). 

 

3.3.3 Shape based features 

 Shape-based features describe the size and shape of the ROI. The following features 

were computed: 

1. Volume 

2. Surface Area 

3. Surface Area-to-Volume ratio 

4. Sphericity 

5. Compactness 1 

6. Compactness 2 

7. Spherical Disproportion 

8. Maximum 3D diameter 

9. Maximum 2D diameter (Slice) 

10. Maximum 2D diameter (Column) 

11. Maximum 2D diameter (Row) 

12. Major Axis 

13. Minor Axis 

14. Elongation 

 

3.3.4 Gray Level Co-occurrence Matrix (GLCM) based features 

 The co-occurrence matrix (GLCM) is the matrix that counts the frequency of a specified 

gray level intensity of a pixel of interest in relation to its neighboring pixel/voxel in a specified 
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direction (34). Here, the intensity discretization method was applied (as it was as well for all of 

the other matrices defined below) to ensure that 1 gray level unit has the same physical meaning. 

The (i,j)th element of this matrix represents the number of times that the combination of gray 

levels i and j occur in two neighboring pixels in the image for a specified direction. For the 

neighbors, we considered all 8 directions (0º, 45º, 90º …, and 315 º). From this matrix, the 

following features were computed: 

1. Autocorrelation 

2. Joint Average 

3. Cluster Prominence 

4. Cluster Shade 

5. Cluster Tendency 

6. Contrast 

7. Correlation 

8. Difference Average 

9. Difference Entropy 

10. Difference Variance 

11. Joint Energy 

12. Joint Entropy 

13. Informal Measure of Correlation (IMC) 1 

14. Informal Measure of Correlation (IMC) 2 

15. Inverse Difference Moment (IDM) 

16. Inverse Difference Moment Normalized (IDMN) 

17. Inverse Difference (ID) 

18. Inverse Difference Normalized (IDN) 

19. Inverse Variance 

20. Maximum Probability 

21. Sum Average 
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22. Sum Entropy 

23. Sum of Squares 

Once all of the features for all eight directions were calculated, then the distance-weighted 

average was calculated. For neighbors in 0º, 90º, and 270º, the weight was 1 whereas for the 

diagonal angles (i.e. 45º, 135º, 225º, and 315º) the weight was √2 to account for the distance 

difference. 

 

3.3.5 Gray Level Run Length Matrix (GLRLM) based features 

The gray level run length matrix (GLRLM) quantifies gray level runs, which are defined 

as the length in the number of pixels that have the same gray level for a given direction. The 

element (i,j) in GLRLM describes the number of runs for a gray level i with length j that occur in 

the image in the specified direction. The following features were computed under this category 

(35–38):  

1. Short Run Emphasis (SRE) 

2. Long Run Emphasis (LRE) 

3. Gray Level Non-Uniformity (GLN) 

4. Gray Level Non-Uniformity Normalized (GLNN) 

5. Run Length Non-Uniformity (RLN) 

6. Run Length Non-Uniformity Normalized (RLNN) 

7. Run Percentage (RP) 

8. Gray Level Variance (GLV) 

9. Run Variance (RV) 

10. Run Entropy (RE) 

11. Low Gray Level Run Emphasis (LGLRE) 

12. High Gray Level Run Emphasis (HGLRE) 
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13. Short Run Low Gray Level Emphasis (SRLGLE) 

14. Short Run High Gray Level Emphasis (SRHGLE) 

15. Long Run Low Gray Level Emphasis (LRLGLE) 

 

3.3.6 Gray Level Size Zone Matrix (GLSZM) based features 

The gray level size zone matrix (GLSZM) quantifies gray level zones in an image. A gray 

level zone is defined as the number of connected voxels for a given gray level. In a GLSZM, the 

(i,j)th element represents the number of zones with gray level i and size j appear in image. The 

advantage of GLSZM over GLCM and GLRLM is that it is direction-independent by considering 

all of the neighbors when connecting voxels (34). From the GLSZM, we computed the following 

features: 

1. Small Area Emphasis (SAE) 

2. Large Area Emphasis (LAE) 

3. Gray Level Non-Uniformity (GLN) 

4. Gray Level Non-Uniformity Normalized (GLNN) 

5. Size-Zone Non-Uniformity (SZN) 

6. Size-Zone Non-Uniformity Normalized (SZNN) 

7. Zone Percentage (ZP) 

8. Gray Level Variance (GLV) 

9. Zone Variance (ZV) 

10. Zone Entropy (ZE) 

11. Low Gray Level Zone Emphasis (LGLZE) 

12. High Gray Level Zone Emphasis (HGLZE) 

13. Small Area Low Gray Level Emphasis (SALGLE) 

14. Small Area High Gray Level Emphasis (SAHGLE) 

15. Large Area Low Gray Level Emphasis (LALGLE) 
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16. Large Area High Gray Level Emphasis (LAHGLE) 

 

3.3.7 Neighboring Gray Tone Difference Matrix (NGTDM) based features 

 A Neighboring Gray Tone Difference Matrix (NGTDM) is a not really a matrix but rather 

is a vector that quantifies the difference between a gray value and the average gray value of its 

neighbors, which we defined as the eight adjacent pixels. Hence, an element i in the NGTDM 

represents the sum of absolute differences. Again, this matrix is direction-independent and can 

be used to compute the following terms (39): 

1. Coarseness 

2. Contrast 

3. Busyness 

4. Complexity 

5. Strength 
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Chapter 4: Topological features: Persistent homology 

4.1 Introduction 

 While many of the texture features were designed to quantify spatial variations in pixel or 

voxel intensities by assessing the relationship between the pixel/voxel of interest and its 

neighboring pixels/voxels, such features can capture only local intensity variations and are 

directionally dependent. For example, in the construction of a GLCM, every element (i,j) in the 

matrix represents only how many times a neighboring pixel has a certain gray level value in 

relation to the pixel of interest in a specified direction. Or, one might consider with GLZSM-based 

features where the matrix elements are direction-independent, yet it still accounts only for how 

many times a certain gray level occurs. For instance, consider the following binary figure (Figure 

9).  

 

Figure 9 An exemplary binary image. One can see that there is a point at the center and a 
rectangle surrounding it. However, GLZSM fails to detect such topological features but only 
returns the value of how many pixels are connected with the same gray level. 

 

It is quite easy for us humans to tell that there is a point at the center and a rectangle 

surrounding it. If we construct a GLZSM, we get a very simple matrix showing size zones of 1 

and 16 at gray level 1. However, it does not tell us any information about the geometrical shape, 

other than how many pixels are connected with the same gray level. In other words, while texture 

features are good for capturing pixel intensity distributions for a given gray level and a direction, 

it might fail to capture a geometrical or topological representation in the image. Hence, to better 
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capture the topological features, this chapter investigates topological data analysis in medical 

images. 

 

4.2 Theory 

 A review of the deep theoretical frame work of topology and persistent homology is 

beyond the scope of this study. Therefore, our focus will be on a graphical explanation of the 

application of computational topology to medical images following (40, 41).  

 

4.2.1. Definition of topology 

 Topology is the field of mathematics that is concerned with the properties of geometric 

spaces that remain invariant under certain transformations, such as bending or stretching. 

Persistent homology is an algebraic method for detecting these topological features of data, such 

as components, clusters, holes, graph structures, etc. For example, consider the example of a 

point cloud (Figure 10). It is quite easy to detect that the point cloud forms a ring. However, in a 

machine’s perspective, just purely from discrete points alone, it is hard to detect the ring, as the 

discrete points have a trivial topology, namely dots. 

 

Figure 10 An example of point cloud data. One can easily tell that those points form a ring. 
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4.2.2 Detecting topology 

 One way to detect some meaningful topological features is to connect neighboring data 

points by drawing circles around the points with a specific diameter, “d” (Figure 11). 

 

Figure 11 An example of detecting point cloud data. By drawing circles around the points with a 
specified diameter, “d”, we can connect dots and form a single cluster. However, it still fails to 
inform that there exists a tunnel within the cluster. 

Now the connected dots show that these points form a single “cluster” at diameter d, but 

it still does not tell us that there exists a tunnel (or hole) at the center. To detect the tunnel, or 

some “higher-order” features, first, we need to define the following terms. 

 

4.2.3 Simplicial complex and homology 

 A simplicial complex is an object built from combinations of points, edges, triangular faces, 

etc. For example, a simple point is a 0-dimensional simplex, an edge between two points is a 1-

dimensional simplex, a triangular face is a 2-dimensional simplex, and so on (Figure 12). If more 

than 2 simplices are connected with either the same or differing dimensionality, it is still a simplex 

and called a simplicial complex. These simplicial complexes are considered “trivial” and do not 

count towards Homology. 
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Figure 12 Some exemplary simplexes. A point forms a 0-simplex. A line that connects two points 
make 1-simplex, and a triangular face formed by 3 connected points make 2-simplex, and so on. 
A simplicial complex is an object built from combinations of these simplexes. 

 

Homology, in a very crude definition, is the term that counts connected components, 

holes, voids, etc. For example, in our simple example in Figure 13, homology counts 1 connected 

component and 1 tunnel at the center. In this study, since we deal with 2-D MRI tumor image 

patch data, we consider only connected components and tunnels. 

 

Figure 13 A graphical description of homology. Homology is the term that counts the number of 
connected components and holes. Here, we count 1 connected component and 1 tunnel. 

Now back to our original example. This time, we connect the dots that are within distance 

d from circles and also fill in the simplexes if any exists. Again, as a reminder, simple complexes 

do not count towards homology. Hence, we detect both a hole at the center and the connected 

components surrounding it (Figure 14). However, even if we detected some meaningful 

topological features now, we still have a problem: the distance, “d” is some arbitrary measure 

and needs to be specified. Hence, we consider every diameter d, namely from 0 to infinity. 
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Figure 14 From the cloud of points, using homology, we can count the number of tunnels. There 
is one tunnel at the center and one connected component surrounding it. 

 

4.2.4 Persistent Homology and Betti number 

 Here, we consider a new example shown in Figure 15. At diameter d1, we get a tunnel 

(Figure 15 (a)). But as we increase the diameter to d2, we lose the tunnel (Figure 15 (b)). This 

creation and destruction (or we could call them birth and death) of the tunnel can be visualized 

as a barcode (Figure 15(c)). This barcode represents the persistence of the tunnel as a pair 

(d1,d2).  
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Figure 15 (a) At diameter d1, we create a tunnel. (b) As we increase the dimeter of circles to d2, 
we now destruct a tunnel. (c) This creation and destruction of the tunnel can be visualized as a 
barcode. 

  

The Betti number (β) counts the number of these persistent homologies. Considering the 

example from Figure 15, we can see that there is one connected component that persists from 

d1 to infinity (β0). On the other hand, a single tunnel (β1) appears at d1 and then disappears at 

d2 This barcode representation is depicted in Figure 16. 

 

Figure 16 Betti number β counts the number of persistent homology. Considering the example 
from Figure 15, β0 represents the persistence of the connected components while β1 represents 
the persistence of the tunnel. 
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4.3 Why persistent homology? 

 It is well known that MRI scans suffer from different sources of degradation, including 

patient motion, inhomogeneous magnetic field (which has been addressed with N4 correction in 

Chapter 2), aliasing, etc. Hence, the integrity of our image data (i.e., the accuracy of the pixel 

intensities) always carries some uncertainty. However, it turns out that the persistent barcodes 

are stable under perturbations of the data (42), which allows one to analyze data within the 

margin of error. As such, persistent homology has been widely applied in many different fields, 

including machine learning (43), analysis of remote sensing data (44), and percolating surfaces 

and porous materials (45). It has also been utilized in medical datasets, such as brain networks 

(46), brain arterial tree structure (47), protein binding (48), orthodontics (44), gastrointestinal tract 

endoscopy images (49), and CT hepatic lesions (40).  

Overall, persistent homology analysis has been highlighted as one of the most novel and 

widely accepted mathematical approaches in analyzing complex datasets, and we attempt to 

analyze glioma MRI scans in light of persistent homology features.  

 

4.4 Applying Persistent Homology to image data 

 This part of the work closely follows that of Adcock et al. (40).  

  

So far, we have dealt only with a cluster of data points. In order to convert the cloud of 

data points into images, we first organize them into a 2D matrix and consider these points as 

vertices at the center pixels in an image. Then, instead of measuring distance as our metric to 

check the neighboring points, we can measure intensity values as our new metric. Specifically, 

we can construct persistent barcodes in the following procedures: 

1. Given an image and an ROI, set vertices at each ROI pixel (excluding the background 

pixels, which are labeled NA) 
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2. Increase the intensity from 0 to infinity (just as we did with distance for the cloud data 

points) 

3. If any neighboring pixels (among the eight adjacent pixels) meet the intensity threshold, 

then we connect them 

4. Count connected components and tunnels (but do not count simplex complexes) 

5. Draw persistent barcodes for different Betti numbers 

 

Figure 17 A process of creating persistent barcodes using image data. First we set vertices at 
each ROI pixel. Then, we increase the intensity from 0 to infinity. As we increase the intensity 
level, if any neighboring pixels meet the intensity threshold, we connect them and count the 
number of connected components and tunnels. For each Betti number, we draw persistent 
barcodes. This figure was redrawn with permission from A. Adcock, D. Rubin, and G. Carlsson, 
“Classification of Hepatic Lesions using the Matching Metric,” Oct. 2012. 

 

An example is demonstrated in Figure 17. First, we increase our intensity value from 0 to 

1. When the intensity value is equal to 1, we see that there are two connected components. 

Notice that we also created a 2-dimensional simplex (i.e., the triangular facet), which does not 

count as a tunnel. Also, we see a tunnel (or rather a ring) appears at intensity 1, which is reflected 

on β1. If we increase the intensity to 2, one of the connected components, specifically the point 

at the center, is now incorporated into the surrounding connected component, and hence 

disappears. This observation is reflected on the β0 barcode plot. Concurrently, we now obtain 

three tunnels, one from the original tunnel at intensity value 2, and two new tunnels. If we 
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increase the intensity to 3, we destroy all the tunnels (β1 barcode), and only the connected 

component persists to infinity. 

 

4.5 Persistent homology and barcode generation software 

The Geometry Understanding in Higher Dimensions (GUDHI) package version 2.1.0 was 

used for the calculation of persistent homology and for barcode generation. This software is an 

open source Python based package that is freely available online at http://gudhi.gforge.inria.fr/.    

 

4.6 Barcode generation from multimodal MRI tumor patches  

 In order to apply this approach to our four sequences of MRI tumor patches (T1, T1post, 

T2, and FLAIR), first we scaled the patch intensity distribution into the range of values from 1 to 

2. Please refer to section 2.5.4. for more information. Also, if the barcodes went to infinity, we 

terminated at 2.1. This occurred for the connected component (Betti number 0), as all of the 

higher-order features (i.e., the tunnels) eventually died off and get incorporated into connected 

components as the intensity value went up. 

 Below, some sample barcodes and their corresponding images are presented (Figure 18). 

 

 

 

 

 

http://gudhi.gforge.inria.fr/
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Figure 18 A sample patient tumor patch (TCGA-CS-6666) for all four MRI sequences with their corresponding persistent barcodes. 
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4.7 Barcode Feature Extraction 

 For the barcode feature extraction, we referred to Adcock et al. (41) and Giansiracuas et 

al. (50). The following features were computed: 

• Polynomial feature 1 = ∑ 𝑏𝑖(𝑑𝑖 − 𝑏𝑖)/𝑛𝑛
𝑖  

• Polynomial feature 2 = ∑ (𝑑𝑚𝑎𝑥 − 𝑑𝑖)(𝑑𝑖 − 𝑏𝑖)/𝑛𝑛
𝑖  

• Polynomial feature 3 = ∑ 𝑏𝑖
2(𝑑𝑖 − 𝑏𝑖)4/𝑛𝑛

𝑖  

• Polynomial feature 4 = ∑ (𝑑𝑚𝑎𝑥 − 𝑑𝑖)2(𝑑𝑖 − 𝑏𝑖)4/𝑛𝑛
𝑖  

• Mean/median/std. of 𝑏𝑖 (i.e. birth intensity) 

• Mean/median/std. of 𝑑𝑖 (i.e. death intensity) 

• Mean/median/std. of barcode length (i.e. death intensity – birth intensity) 

• Mean/median of (𝑑𝑚𝑎𝑥 − 𝑑𝑖) 

Where 

• 𝑏𝑖 = 𝑖𝑡ℎ 𝑏𝑖𝑟𝑡ℎ 

• 𝑑𝑖 = 𝑖𝑡ℎ  𝑑𝑒𝑎𝑡ℎ   

• 𝑑𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑎𝑡ℎ 

• 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟𝑠 

In sum, we extracted 4 polynomial + 11 statistics based = 15 features for 2 Betti numbers 

(connected components and tunnels) for 4 modalities, which resulted in 120 (15 x 2 x 4) features 

in total. 

  



38 
 

Chapter 5: Convolutional Neural Network Features 

5.1 Introduction 

So far, we have explored two very different features, texture-based and topology (or 

specifically, persistent homology) based, that capture different image information. While such 

features might be useful in classifying a patient’s 1p/19q codeletion status, there are some 

inherent limitations. To understand these limitations, one must first understand the radiomics 

study pipeline. In general, a radiomics study consists of the following steps: image acquisition, 

image segmentation, feature extraction, feature selection and statistical analysis (51). Other than 

the errors produced in the image acquisition and segmentation steps, the first problem arises 

from the feature extraction step. Because the features are human-engineered, depending on 

which features are being investigated in a radiomics study, the statistical analysis would produce 

very different results. There are some “popular” sets of features, such as GLCM, first order 

statistics, etc, that are preferred by the radiomics community, but none is standardized yet, which 

leaves the door open as to which features to utilize. Second, because there are often more 

radiomic features being computed than the number of patient cohorts in the radiomics study, 

feature selection and reduction steps generally take place to reduce the dimensionality of the 

feature space. However, such procedures invite another source of human bias as they require 

more manual engineering, such as deciding how many features to select or to what lower 

dimension that feature space would be transformed into. Lastly, there is no standard metric for 

image feature evaluation such that no one can verify its accuracy. Since it is hard to verify the 

reproducibility of the computed image features, there is always room for unintended errors (50) .  

To overcome some of the aforementioned shortcomings of radiomics methods, a 

convolutional neural network (CNN) was investigated in this study. A CNN is a subset of deep 

learning algorithms (or more broadly, machine learning algorithms) that allows hierarchical 

feature extraction and transformation of image data. The input image is passed through a series 

of convolutional layers with non-linear activation function units, and each layer learns its own 
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feature representation of the data from simple to complex as the network gets deeper (52). At 

the bottom layer, based on the learned hierarchical feature representation, the network produces 

a vector of probabilities for target labels. Unlike the conventional radiomics study, which requires 

a “manual” feature extraction and feature selection, a CNN performs both of them automatically, 

and hence no extra errors come into play due to feature calculations.  

 

5.2 Previous work 

CNN has been a buzzword for the past 6-7 years, especially in computer vision, due to 

its superhuman accuracy in object recognition tasks, such as the ImageNet challenge (53). It has 

also been used in the medical field including tumor segmentation (54), image registration (55), 

image denoising (56), and radiogenomics (57). In particular, Akkus et al. demonstrated that a 

multi-scale CNN can predict 1p/19q codeletion status (15). However, their study only included 

axial plane T1post and T2 MR scans, which limited the utilization of other sequences such as T1 

and FLAIR as well as dimensional information. In our approach, we utilized four sequences that 

are routinely acquired in most MR studies of the brain, namely FLAIR, T1, T1-post, and T2, in all 

three planes: axial, coronal, and sagittal.  

 

5.3 Residual Convolutional Neural Network  

Here, we considered a residual CNN (ResNet), which won the 2015 ImageNet challenge 

by introducing “residual connections” (58). Instead of simply stacking up non-linear layers in 

which the network is trained to learn the original mapping, by passing an identity mapping from 

one layer to those that are higher up, the network is optimized to learn the “residuals”.  

Our network was derived from a 34-layer ResNet. As with the original residual network 

architecture. Batch normalization was used after every convolutional layer to reduce internal 

covariate shift and overfitting (59). The top two layers of the original ResNet were modified as 

the size of our input (142 × 142) is smaller than that of the original one (224 × 224).  
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5.4 Transfer Learning: off the shelf approach 

 Transfer learning is a technique in which a pre-developed model for a source dataset is 

re-used to improve generalization in a target dataset. There are three possible benefits if the 

transfer learning is done right: A higher performance starting point, a higher learning slope, and 

a higher performance score  (60). Transfer learning works because the learned features from the 

source task are “general” such that these features are suitable to both the source and target task, 

not just specific to the source task (61).  

 For this study, we utilized a pre-trained ResNet-34 from Ken Chang’s work on IDH-1 

mutation (57). His model was particularly well-suited to this investigation because the network 

was trained with the very same set of MRI pulse sequences as those in the present work (i.e. 

FLAIR, T1, T1-post, and T2). Since the target dataset (i.e., the 1p/19q dataset) is small but of 

the same fundamental nature as the original (i.e., Chang’s dataset), one would expect his pre-

trained network would produce features that are relevant to determining the 1p/19q codeletion 

status. 

 

5.5 CNN Feature Extraction 

From the pre-trained ResNet-34, we took out the last classifying layer (or sigmoid layer). 

Then we fed our input images into the network, and extracted features from the flattened average 

pooling layer with 512 nodes. Hence, we obtained a vector of 512 features for all four modalities, 

resulting in 2048 features per sample. This process is depicted in Figure 19. 
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Figure 19 A modified ResNet-34. We took the pre-trained ResNet-34 as a feature extractor from 
Ken Chang’s work on predicting IDH mutation status for glioma patients. At the last flattened out 
average pooling layer, we obtained a vector of 512 features for each image. Since there are four 
MRI sequences, we obtained a total of 2048 features. Permission obtained from K. Chang et al., 
“Residual convolutional neural network for the determination of IDH status in low- and high-grade 
gliomas from MR imaging,” Clin. Cancer Res., vol. 24, no. 5, pp. 1073–1081, Mar. 2018. 
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Chapter 6. Feature Selection, Feature Reduction, and 

Modeling  

 Up until this point, we have discussed data acquisition, pre-processing, and feature 

acquisition processes. In this chapter, we will discuss feature selection and reduction and 

modeling processes. 

 

6.1 Feature Selection: Correlation filtration and Recursive Feature 

Elimination (RFE) 

In order to select a subset of given features, correlation filtration and recursive feature 

elimination were implemented. As the first step, we filtered out features that are linearly correlated. 

If the observed features are too correlated with each other, then several problems can arise: 1. 

the interpretation of individual predictor variables is no longer reliable. Most of the known linear 

regression or linear models assume uncorrelated features, hence the interpretation of the 

coefficient of a certain variable estimates the effect of that particular variable in predicting the 

target (while holding the other variables unchanged). If, however, two variables are correlated, 

and the uncorrelated feature assumption no longer holds, it is hard to estimate the true effect of 

an independent change in one variable. 2. As mentioned earlier, having more features than is 

necessary, especially when only one variable is enough to describe certain characteristics of the 

data, puts us into the curse of a high dimensionality problem. To overcome these two problems, 

we measured the Pearson correlation coefficient in a pairwise fashion. The coefficient value lies 

between -1 and 1, with -1 meaning perfect negative correlation while +1 means perfect positive 

correlation. A value of 0 means that there is no linear correlation between the two observed 

variables, which is what we want. Here, we used the absolute value of 0.8 as a threshold to filter 

out the correlated features. 
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Once we removed the linearly correlated features, we then implemented recursive feature 

elimination (RFE) (62) to further reduce the number of features to select. The way in which RFE 

works is the following: First, the user specifies an external estimator, which we chose to be a 

random forest classifier. Then, the classifier is trained with the initial set of features and calculates 

the importance of the individual feature, which is gini impurity in our case. Then, the least 

important features are pruned from the initial set of features, and this procedure is recursively 

repeated on the pruned set until the user-specified number of features is all that remains. The 

problem with such a method, however, is that the user has to specify the number of features, 

and often, that number is empirically determined by cross validation. Here, we measured the 

area under the curve (AUC) of the Receiver Operator Characteristic (ROC) curve across all 

possible numbers of features with 11-fold leave one group out (LOGO) cross validation. LOGO 

was implemented to prevent patches from one patient from spilling over into both the training 

and the validation datasets. In other words, the tumor region patches from one patient must 

belong to either the training or the validation set, but not to both. 

This feature selection was only applied to texture features and topological features 

because we could not find a single reference in the literature that applied feature selection on 

CNN features that had been produced by transfer learning. 

 

6.2 Feature Reduction: Principal Component Analysis (PCA) 

 Unlike feature selection where a subset of features is chosen and retains its original 

feature characteristics, feature reduction aims to reduce the dimensionality of features by 

projecting the original features into a lower dimensional space. Principal component analysis 

(PCA) achieves such a projection via Singular Value Decomposition (SVD) of the data while 

maximizing the total variance of the projection. By doing so, one also benefits from converting 

possibly correlated variables into a set of linearly independent variables (i.e. principal 

components). Here, we first standardized (i.e. transformed to zero mean and unit variance) our 
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training dataset, applied PCA, and looked for the number of PCs that explain 95% of the data 

variance. Once the number of PCs was fixed, we repeated PCA on the training dataset with the 

number of PCs specified. Then, using the same PCA statistics from the training dataset, we 

applied them to the test dataset.  

 

6.3 Modeling: Logistic Regression and Random Forest  

 Two classifiers were considered in this study: logistic regression and random forest (RF). 

Table 2 summarizes the hyper-parameters that were optimized during training. Again, we 

performed LOGO to ensure that there is no information spillage from training to validation or vice 

versa. Also, we considered the cases in which we provided the clinical variables, including KPS, 

age, and gender, or not. In total, we built eight different classifiers depending on the classifier 

type (RF vs Logistic Regression), the feature type (CORR + RFE selected vs PCA features), and 

clinical variables (either considered or not) (2 x 2 x 2 = 8). In addition, we built a logistic regression 

with clinical variables only (i.e., age, gender, and KPS) as our baseline. According to Boots-

Sprenger et al., age is correlated with 1p/19q codeletion status (63), hence it is not a bad choice 

of features around which to build a classifier. 

 For the assessment of each classifier, we computed the AUC from the ROC, accuracy, 

sensitivity, and specificity using Youden’s J statistic. 
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Random Forest Hyper-parameters 

Number of trees in the forest 200,400, …, 2000 

Number of features to consider 
when looking for the best split sqrt(number of features) 

Maximum depth of the tree 10,20, …, 100 

Minimum number of samples 
required to split an internal node 2,5,10 

Minimum number of samples 
required to be at a leaf node 1,2,4 

 

Logistic Regression Hyper-parameters 

Regularization Type L1, L2 

Regularization 
Strength 10E-4, 10E-3, … 10E4 

Table 2 Hyper-parameters for random forest and logistic regression. 

6.3.1 Feature Importance 

 In order to understand the contribution of each feature in predicting 1p/19q status, we 

extracted the feature importance from the classifiers. For the random forest, Gini impurity (in 

magnitude) was used as the feature importance. For logistic regression, the top three negative 

and the top three positive coefficients (or weights) of the feature variables were considered to be 

important features. 

 The reason that we retained the top three negative and the top three positive coefficients 

of the feature variables is the following. Recall that a basic form of the logistic regression equation 

is: 

𝑃(𝑌 = 1|𝑥) =
1

1 + 𝑒−𝑧
 𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝜃𝑇𝑥 

 
• 𝜃 : A coefficient vector in front of the feature variables where 𝜃 =  [𝜃0, 𝜃1, … , 𝜃𝑛]. n is the 

number of feature variables. Note that 𝜃0 is a real number that acts like a y-intercept (i.e. 

it is not multiplied by a feature variable), hence 𝜃 ∈ ℝ𝑛+1. 

• 𝑥 : A feature variable vector where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]. n is the number of feature variables. 

𝑥 ∈ ℝ𝑛. 
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From the equation, we can see that as 𝑧 → ∞,  𝑃 → 1. On the other hand, if 𝑧 → −∞,  𝑃 →

0. Now, we realize that it is the 𝜃𝑇𝑥 that determines the overall magnitude of z. We also realize 

that depending on the “sign” of 𝜃, or coefficients, z can either lean towards negative or positive. 

In other words, we can say that negative coefficients push towards the probability being 0, or 

non-codeleted, whereas positive coefficients push towards the probability being 1, or codeleted. 

Understanding of the meaning of negative and positive coefficients in logistic regression 

becomes important as we later on try to visualize the features back onto the image. 

 Also, note that only the classifiers that were trained with non-PCA reduced features were 

considered for this analysis, as PCA destroys the meaning of the original features as it projects 

the feature space into a lower dimensional subspace with possibly different basis vectors than 

the original feature space.  
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Chapter 7. Results 

7.1. Feature selection results 

 In theory, for CNNs, feature selection and reduction are performed automatically during 

the learning process, and hence only the “relevant” features are present at the final layer of the 

architecture. As such, feature selection was only performed on the texture and topological 

features, but not on the CNN features.  

 

7.1.1 Correlation filtering 

  Appendix A shows heatmaps of the Pearson coefficient of features after thresholding at 

an absolute value of 0.9. Recall that the lower this value is, the less correlated are the features. 

 From correlation filtering, we could retain 19.0% of linearly correlated data for the texture 

features (n=69) and 26.7% for the topological features (n=32). Still, it seems that there are just 

too many variables to consider given the number of training data, both for the texture and the 

topological features. 

 

7.1.2 RFE 

 Below, we present the mean AUC across 10 train/test splits vs. the number of features 

selected for 11-fold LOGO cross validation (Figure 20 (a) for the texture and (b) for the topological 

features). In practice, we want to see an increase in AUC initially, and then saturation as we 

consider more features. By inspecting the graphs, such a trend seems to be the case. For the 

optimal number of features, we simply selected the one that produced the highest AUC score 

(n=17 for texture and n=22 for topology). Once the number of features to select was fixed, we 

re-ran RFE and retained those as our final set of features to train with. For each train/test split, 

the final feature sets that were selected are listed in Appendix B. 



48 
 

 

 

Figure 20 The mean AUC across 10 train/test splits as a function of the number of features 
selected for 11-fold LOGO cross validation. We took the highest mean AUC yielding number of 
features as our optimal number of features to select. (a) is for texture features while (b) is for 
topological features. 

 

7.2. Feature reduction results 

 Figure 21 shows the percentage of the variance that is explained vs Principal Component 

number on the training data set.  
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Figure 21 The percentage of the variance explained vs. Principal Component number of the 
training data set for (a) texture-, (b) topological-, (c) CNN-based features. 
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The following figure shows the cumulative percentage of the variance that is explained over 

Principal Components (Figure 22). 

 

Figure 22 The cumulative percentage of the variance explained over Principal Components for 
(a) texture-, (b) topological-, (c) CNN-based features. 
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 To explain 95% of the total variance, we need 33, 26, and 22 PCs for texture, topology, 

and CNN features respectively. 

 

7.3 Modeling Results 

7.3.1 Model performance in predicting 1p/19q status 

 Here, we are reporting mean statistics (AUC, accuracy, sensitivity, and specificity) ± 

standard deviations across 10 different test sets (Table 3, Figure 23 and 24). 

Classifier Type Logistic Random Forest 

Metric 
AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity 

Features 

texture 
0.593 +/- 

0.222 
0.643 +/- 

0.285 
0.800 +/- 

0.230 
0.627 +/- 

0.328 
0.707 +/- 

0.118 
0.609 +/- 

0.161 
0.950 +/- 

0.105 
0.575 +/- 

0.186 

topology 
0.855 +/- 

0.079 
0.820 +/- 

0.107 
0.925 +/- 

0.169 
0.810 +/- 

0.126 
0.854 +/- 

0.116 
0.825 +/- 

0.133 
0.900 +/- 

0.175 
0.818 +/- 

0.148 

CNN 
0.787 +/- 

0.195 
0.905 +/- 

0.102 
0.775 +/- 

0.249 
0.917 +/- 

0.121 
0.503 +/- 

0.204 
0.652 +/- 

0.260 
0.725 +/- 

0.249 
0.645 +/- 

0.305 

Features 
+ Clin. 

Var 

texture 
0.645 +/- 

0.173 
0.666 +/- 

0.203 
0.875 +/- 

0.212 
0.645 +/- 

0.238 
0.747 +/- 

0.154 
0.659 +/- 

0.197 
1.000 +/- 

0.000 
0.625 +/- 

0.216 

topology 
0.861 +/- 

0.119 
0.811 +/- 

0.137 
0.975 +/- 

0.079 
0.795 +/- 

0.151 
0.863 +/- 

0.127 
0.845 +/- 

0.176 
0.925 +/- 

0.169 
0.838 +/- 

0.199 

CNN 
0.782 +/- 

0.183 
0.891 +/- 

0.145 
0.775 +/- 

0.249 
0.903 +/- 

0.169 
0.489 +/- 

0.212 
0.664 +/- 

0.285 
0.700 +/- 

0.258 
0.660 +/- 

0.332 

PCA 
featues 

texture 
0.594 +/- 

0.248 
0.695 +/- 

0.285 
0.725 +/- 

0.275 
0.693 +/- 

0.328 
0.576 +/- 

0.181 
0.541 +/- 

0.224 
0.875 +/- 

0.212 
0.507 +/- 

0.260 

topology 
0.811 +/- 

0.103 
0.773 +/- 

0.101 
0.925 +/- 

0.169 
0.758 +/- 

0.117 
0.763 +/- 

0.158 
0.705 +/- 

0.209 
0.925 +/- 

0.169 
0.682 +/- 

0.238 

CNN 
0.461 +/- 

0.207 
0.439 +/- 

0.217 
0.925 +/- 

0.169 
0.390 +/- 

0.251 
0.526 +/- 

0.138 
0.427 +/- 

0.124 
0.975 +/- 

0.079 
0.372 +/- 

0.138 

PCA 
features 
+ Clin. 

Var 

texture 
0.617 +/- 

0.209 
0.666 +/- 

0.303 
0.800 +/- 

0.258 
0.652 +/- 

0.350 
0.672 +/- 

0.197 
0.700 +/- 

0.208 
0.850 +/- 

0.211 
0.685 +/- 

0.238 

topology 
0.754 +/- 

0.135 
0.691 +/- 

0.149 
0.925 +/- 

0.169 
0.667 +/- 

0.170 
0.819 +/- 

0.135 
0.757 +/- 

0.144 
0.925 +/- 

0.121 
0.740 +/- 

0.154 

CNN 
0.665 +/- 

0.198 
0.620 +/- 

0.214 
0.950 +/- 

0.158 
0.588 +/- 

0.244 
0.697 +/- 

0.309 
0.734 +/- 

0.317 
0.900 +/- 

0.211 
0.718 +/- 

0.355 

* Mean value +/- standard deviation 

** Accuracy, sensitivity, and specificity computed with Youden's J index 

Table 3 AUC, accuracy, specificity, and sensitivity for three different feature types. 
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Figure 23 Mean AUC scores across 10 train/test split for different classifier cases. Error bars 
represent the standard deviation from the mean. 

 

Figure 24 Mean Accuracies across 10 train/test splits for different classifier cases. Error bars 
represent the standard deviation from the mean. 

At first glance, it is probably natural to select models that yield the highest AUC scores. 

For instance, for topology-based features, a Random Forest with clinical variables considered 

model yielded the best AUC (0.863 +/- 0.127). However, a logistic regression without clinical 

variables considered (in other words, a much simpler model) yielded a very similar AUC within 

the standard deviation (0.855 +/- 0.079). In other words, selecting a model simply based on the 
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best AUC score is such a short-sighted approach. In order to simplify the complexity of the model 

while maintaining a reasonable AUC score, we considered the following questions: 

1. Do clinical variables add any additional value in modeling? 

2. Which dimensionality reduction method yielded the better performance (i.e. 

Correlation filtration + RFE vs. PCA)? 

3. Which model to consider (i.e., Logistic regression or Random Forest)for each feature? 

4. Does combining all of the feature types help to improve the model performance? 

7.3.2 Assessing Clinical Variables impact on modeling 

 To assess if clinical variables added any additional value in modeling performance, we 

performed pair-wise Wilcoxon signed rank tests (Table 4). The null hypothesis was that the 

mean scores of the AUC between the model with clinical variables and the one without are the 

same. If the p-value is lower than 0.05, we rejected the null hypothesis and concluded that the 

means are significantly different.  

    

(texture, 
texture + 
clin. Var) 

(texture PCA, 
texture PCA+ 

clin. Var) 

(topology, 
topology+ 
clin. Var) 

(topology PCA, 
topology PCA + 

clin. Var) 

(CNN, CNN 
+ clin. Var) 

(CNN PCA, 
CNN PCA 
+ clin. Var) 

AUC 

Logistic 0.386 0.161 0.646 0.141 0.833 0.007 

Random 
Forest 

0.285 0.139 0.515 0.333 0.445 0.114 

Table 4 Pair-wise Wilcoxon signed rank test between the models with clinical variables 
considered and the ones without. P-values on AUC scores are reported. 

 From Table 4, one can conclude that considering the clinical variables did not improve 

the modeling performance in terms of AUC and accuracy. The only exception is the case of the 

CNN PCA features with a logistic regression for AUC (p-value <0.05). However, from Table 3, 

CNN PCA features with a logistic regression achieved AUC of 0.461 +/- 0.207, indicating that the 

classifier itself was worse than pure chance (which would have an AUC of 0.5). Hence, we 

concluded that clinical variables did not add any additional value in the modeling process and 

disregarded all models that incorporated clinical variables.  
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7.3.2 Feature selection vs. Feature reduction 

 To assess which feature dimensionality reduction method performed better in terms of 

AUC, we plotted the AUC scores between feature-selected models and feature-reduced (PCA). 

Also, we performed the Wilcoxon test between pairs of cases and reported their p-values. 

 

Figure 25 Mean AUC bar graphs between the feature-selected models and the feature-reduced 
models. Error bars represent the standard deviation. In general, the feature-selected models 
performed on a par with if not better than the feature-reduced models. 

    
(texture, texture 

PCA) 
(topology, topology 

PCA) 
(CNN, CNN 

PCA) 

AUC 

Logistic 0.959 0.059 0.013 

Random 
Forest 

0.012 0.037 0.445 

Table 5 Wilcoxon signed rank test between features selected and features reduced (PCA). P-
values of  AUC scores are reported here. 

Regardless whether it was a logistic regression or a random forest classifier, the 

feature-selected models performed on a par with, if not better than, the feature-reduced cases. 

Hence, we conclud that feature selection is the better approach to reducing the feature 

dimensionality. 
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7.3.3 Final model choices  

 After filtering out all of the clinical variables added models as well as PCA feature 

models, the remainder are feature-selected (Correlation filtration + RFE selected) models only 

(Figure 26). We also performed the pair-wise Wilcoxon signed rank test between the logistic 

regression and random forest model for each feature type, and reported the p-values (Table 6) 

 

Figure 26 Mean AUC score across 10 train/test splits for each feature type. The error bar 
represents the standard deviation from the mean. For texture features, we selected the random 
forest. For topology and CNN features, we selected the logistic regression. 

  Texture Topology CNN 

p-values 0.074 0.859 0.005 

Table 6 Pair-wise Wilcoxon signed rank test between logistic regression and Random forest. P-
values on AUC scores are reported here. 

 For CNN features, it is clearly better to select the logistic regression model as it yielded 

better AUC score significantly (p-value < 0.05). For topology features, there is really no AUC 

score difference between the two models (p-value >0.05), hence we selected the logistic 

regression as it is a simpler model. For texture features as well, it seems that there is no 

difference between two models (p-value >0.05). However, for the logistic regression case, the 

standard deviation is 0.222, which would put the mean AUC score under the 0.5 mark in the 

worst case. Hence, we decided to select the random forest model. 
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 From now on, unless stated otherwise, for CNN and topology features, a logistic 

regression model is used as our best model. On the other hand, for texture features, a random 

forest is used as the best classifier.  

7.3.4 Individual feature and Combined features model analysis 

Here, we wanted to assess which feature type performed the best among the three 

cases, namely texture-based, topology-based, and CNN-based. In addition, we built a logistic 

regression using all those three features to see if combining the features yields a better AUC 

score. To compare among these four different types of features, again, we performed a 

pairwise Wilcoxon signed rank test and assessed their p-values. Our null hypothesis was that 

the mean AUC scores are the same with our significance level at 0.05. 

 

Figure 27 Mean AUC across 10 train/test splits among three feature types and combined 
features models. 

  
(texture, 
topology) 

(texture, 
CNN) 

(texture,  
Combined 
features) 

(topology, 
CNN) 

(topology,  
Combined 
features) 

(CNN,  
Combined 
features) 

p-values 0.017 0.203 0.203 0.386 0.386 1.0 

* Combined features: texture + topology + CNN features 

Table 7 Pair-wise Wilcoxon signed rank test among individual feature models and combined 
features model. P-values on AUC scores are reported here. 

 From the pair-wise Wilcoxon signed rank test, we can see that the topology-based 

model outperformed the texture-based model significantly (p-value < 0.05). On the other hand, 
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combining all feature types did not help improving AUC score as none of the p-values was less 

than 0.05.  

 

7.3.5 Comparing against the clinical variables only model 

As our baseline, we built a logistic regression with clinical variables only (KPS, age, and 

gender) and compared it to our image features-derived models. To test our specific aim 2, we 

compared the AUC scores among the models and performed a pair-wise Wilcoxon signed rank 

test (Figure 28, Table 8). Also, Table 9 summarizes the AUC, accuracy, sensitivity, and 

specificity for each feature type using its best model case (that we selected from section 7.3.3). 

 

Figure 28 Mean AUC across 10 train/test splits among three feature types and clinical variables 
only model. 
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  (texture, baseline) (topology, baseline) (CNN, baseline) 

AUC 1.000 0.173 0.445 

* texture: Random Forest  

* topology: Logistic Regression 

* CNN: Logistic Regression  

* baseline: Logistic Regression with clinical variables only (KPS, age, gender) 
Table 8 Pair-wise Wilcoxon signed rank test between three image-derived feature models and 
the baseline. None of the image derived feature models significantly differed from the baseline 
in mean AUC score.  

 

Features AUC Accuracy Sensitivity Specificity 

texture (Random Forest) 
0.707 +/- 

0.118 
0.609 +/- 

0.161 
0.950 +/- 

0.105 
0.575 +/- 

0.186 

topology (Logistic Regression) 
0.855 +/- 

0.079 
0.820 +/- 

0.107 
0.925 +/- 

0.169 
0.810 +/- 

0.126 

CNN (Logistic Regression) 
0.787 +/- 

0.195 
0.905 +/- 

0.102 
0.775 +/- 

0.249 
0.917 +/- 

0.121 

Clin. Var. only (Logistic Regression) 
0.703 +/- 

0.256 
0.673 +/- 

0.206 
0.950 +/- 

0.158 
0.665 +/- 

0.272 

* Mean value +/- standard deviation       

** Sensitivity and Specificity computed with Youden's J index     
Table 9 AUC, accuracy, sensitivity, and specificity for each feature type and clinical variables 
only model. Accuracy, sensitivity, and specificity were computed using Youden’s J index. 

Surprisingly, none of the image-derived feature models significantly differed from the 

baseline in their mean AUC scores (p-value > 0.05). 

 

7.4 Feature importance analysis 

7.4.1 Modality-wise contributions to important features 

 For logistic regression (topology and CNN features), the top three negative and the top 

three positive coefficients (or weights) of the features were considered important. For the 

random forest (texture feature), the top six features that yielded the highest gini impurity were 

considered to be important. Appendix C. lists these top six important features across 10 

different train/test splits. From this table, we investigated the contributions of each modality in 

producing the important features (Figure 29).  
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Figure 29 Contributions of each modality in producing top 6 important features 

 It is noteworthy that for CNN, for both negative and positive coefficients, most of the 

important features came from the T1post sequence. For topology, the T2 sequence contributes 

almost half of the top six important features in both positive and negative coefficients. However, 

the contribution of T1post and FLAIR swaps depending on the “sign” of the coefficients (10% 

and 40.0% for T1post and FLAIR in negative coefficients compared to 46.7% and 6.7% in 

positive coefficients). For texture, most of the features came from the T1post and FLAIR 

sequences (85%). In addition, regardless of the feature types, the T1 sequence contributed 

either very little (a maximum of 6.7%) or none at all. 

 

7.4.2 Visualizing texture features back onto the image 

 For texture features, the feature importance was evaluated by the magnitude in the Gini 

impurity. From Appendix C, for train/test split: 6, Large Area High Gray Level Emphasis from 

GLSZM for the T1post sequence turned out to be the most important feature. This particular 

feature yields a high number if there exists a large region with a high gray level intensity. Since 

this particular feature was deemed to be important, one would find this to be discriminatory 

between the codeleted and non-codeleted cases. Hence, we picked a tumor patch for 

codeleted and non-codeleted from a test dataset (from train/test split: 6), and obtained its 

corresponding value for large area gray level emphasis from the T1 post sequence (Figure 30). 
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Figure 30 A sample tumor patch for codeleted and non-codleted case. By directly looking at the 
images and its important feature value, it is hard to understand why this particular feature 
turned out to be discriminatory between codeleted and non-codeleted. 

By directly assessing the images and their corresponding values, it is indeed difficult to 

comprehend. To the naked eye, it is actually the non-codeleted tumor patch that seems to have 

more bright regions than does the codeleted tumor patch, but somehow the former obtained a 

lower value. Also, it is hard to comprehend which region in the image would be discriminatory 

between the two labels by a visual inspection. Nonetheless, a machine somehow learned a 

very subtle difference between codeleted and non-codeleted tumor patches and was able to 

distinguish between the two labels.  
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7.4.3 Visualizing topology features back onto the image 

 Unlike texture features, some of the topological features can be actually visualized and 

localized back onto the image. In order to do so, first, we considered the train/test split: 6 case 

from Appendix C. For this particular split, the median bar length for tunnels (a feature that 

indicates how long a tunnel persists given the intensity ranges) from theT2 sequence was 

found to be the most important. It has a positive coefficient, indicating that this particular feature 

favors the codeleted case. Then, we picked a tumor patch for the codeleted case (from 

train/test split: 6), obtained the median value of the bar length for tunnels as well as the 

intensity range over which the bar persisted from the persistence barcode plot. Finally, using 

the intensity range, we could visualize and localize the birth and death of tunnels back on the 

actual image (Figure 31). 

 

Figure 31 Visualizing topological features back onto the image. First, we identify an important 
feature (for example, the median bar length for tunnels in the T2 sequence) based on the 
coefficients of the logistic regression. Then, for a given test tumor patch, we obtained the 
median bar length for tunnels, traced back to the persistence barcode plot, and then localized 
on the image.  

 For instance, in figure 31, for our test tumor patch, the median bar length for tunnels is 

0.008. Hence, we identified the persistent bars that yielded the median value of 0.008 from the 

persistent barcode plot, and obtained the intensity range for those bars. Here, there were two 

bars (indicated by the red arrow) that yielded a median bar length value of 0.008, and thus 
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there are two intensity ranges to consider, namely from 1.442 to 1.451 and from 1.458 to 1.465. 

Then, by sliding through the intensities ranging from 1.442 to 1.465 and saturating the image 

pixels that meet that intensity range, one could visualize where the tunnels were born and died. 

Here, the green arrow indicates where those tunnels are. 
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Chapter 8. Discussion 

Pretreatment identification of a patient’s 1p/19q codeletion status is important in clinical 

decision making as it can aid treatment planning on the choice of chemotherapy, radical 

resection, radiation therapy, etc. In this study, we demonstrated the utility of three distinctive 

MRI scan features: texture-based, topology-based, and CNN-based, to predict the 1p/19q 

codeletion status non-invasively using the BRATS dataset (which is based on TCIA) and its 

corresponding TCGA dataset. To our knowledge, this is the only study that has 

comprehensively compared three different unique image-derived features in predicting the 

1p/19q codeletion status from conventional MR imaging. Moreover, our approach has broad 

applicability by utilizing only conventional MRI scans, as advanced MR modality sequences, 

such as DWI, PWI, or functional MRI (fMRI), may not be so readily available. 

 We did not include WHO grade information or IDH-1/2 mutation status in our prediction 

model since such information would not be available prior to a histopathological assessment 

after an invasive surgical biopsy. The whole point of this investigation was to non-invasively 

predict the 1p/19q codeletion status by analyzing readily available conventional MRI 

sequences. Further, our study meets the emphasis on molecular genotype from the 2016 WHO 

classification algorithm of diffuse gliomas (4). 

 Park et al. reported that the histogram and GLCM features of the apparent diffusion 

coefficient (ADC) and fractional anisotropy maps achieved an AUC of 0.807 in determining the 

1p/19q codeletion status (14). Considering our texture feature-based model, which obtained an 

AUC of 0.707 +/- 0.118, one might be able to achieve the same level of AUC score by simply 

analyzing the conventional MRI sequences instead of more advanced ones. Also, we tried to 

visualize the most important features back on the image. But with the naked eye, differentiating 

1p/19q codeleted from non-codeleted was a challenging task purely based on feature numbers 

(Figure 30).  
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 To the best of our knowledge, this study is the first study to analyze the 1p/19q 

codeletion status using topological features. Not only did we find that topological features could 

reliably classify the 1p/19q codeletion status (AUC = 0.855 +/- 0.079), we also demonstrated 

how to visualize and localize important features back on the image. Such a visualization 

technique can actually be utilized in clinical settings too because finding such features is very 

intuitive. One simply has to pay attention where the tunnels or connected components appear 

and disappear as one slides through the intensity values. 

For the CNN features, we could confirm that a pre-trained model for the task of 

predicting IDH mutation status using conventional MRI scans can also produce features that 

are relevant to the task of predicting the 1p/19q codeletion status. This finding suggests that 

there are some deep underlying image-level signals that are shared by both IDH mutation and 

1p/19q codeletion. Also, Akkus et al. reported an accuracy of 87.7% in classifying the 1p/19q 

status using T1-post and T2 images via a CNN (14). Our best performing CNN-based model 

achieved an AUC of 0.787 +/- 0.195 and an accuracy of 0.905 +/- 0.102, suggesting that our 

model performed comparably to theirs, which had been trained from the ground up. 

Considering the amount of time and resources that are needed to train a CNN from scratch, 

this suggests that it is time- and cost-efficient to simply utilize the off-the-shelf approach by the 

process known as transfer learning.   

It is interesting that almost all of the important features, whether they have negative or 

positive coefficients, came from the T1post sequence for CNN features (Figure 29). On the 

other hand, for topological features, the T2 sequence contributed 43.3% and 46.7% for the 

negative and positive coefficients respectively. Additionally, depending on the “sign” of the 

coefficients, the contribution of T1post and FLAIR drastically changed. For the features with a 

negative coefficient, the T1post and FLAIR contributions were 10.0% and 40.0% whereas for 

those with a positive coefficient, the T1post and FLAIR contributions were 46.7% and 6.7%. 

Considering that negative coefficients bring the logistic regression probability to 0, i.e., non-

codeleted, and positive coefficients bring the probability to 1, i.e., codeleted, such a change in 
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contribution might be correlated with 1p/19q codeletion status. Additionally, Patel et al. found 

that the T2-FLAIR mismatch sign is a highly specific biomarker for IDH-mutant, 1p/19q non-

codeleted gliomas (64). This finding was further supported by Lasocki et al (65) who reported 

that the presence of calcifications suggests 1p/19q non-codeleted gliomas. Our findings from 

topological feature analysis agree with their claims, as T2 and FLAIR sequences contribute 

significantly (83.3% in total) to the non-codeleted important features.  

In this study, we analyzed texture-, topological-, and CNN-based features from 

conventional MRI sequences: T1, T1post, T2, and FLAIR. Among those three, the topological 

features predicted the 1p/19q status significantly better than did the texture features. Between 

the topological features and the CNN features, however, there was no clear difference in the 

prediction of 1p/19q status in terms of the AUC score. Also, we found that combining all three 

features did not help our classification of the 1p/19q status. We suspect that as we combined 

all these features together, we might have overfitted as the number of features increased, but 

further investigation of this conjecture is needed. In comparison with the baseline model 

(clinical variables only), none of the image-derived models outperformed the baseline. 

However, all of the image-derived models had AUC of 0.707 +/- 0.118, 0.855 +/- 0.079, and 

0.787 +/- 0.195 (in order of texture, topology, and CNN), suggesting that there exist some 

underlying image level signals that may be exploited to classify the 1p/19q status.  

 There are several potential improvements to this study that could be incorporated into 

future work. First, the MRI intensity normalization method could have benefited from more 

advanced mechanisms, such as, patch based (24), histogram matching (25), white stripe 

normalization (26). We did not explore the impact of different normalization methods on the 

prediction of the 1p/19q status, but a future study could assess such implications. Also, we could 

have extended our study by investigating the relationship between sub-tumor regions (e.g., 

necrotic and non-enhancing tumor, peritumoral edema, and gadolinium-enhancing tumor) and 

the 1p/19q codeletion status. Additionally, a small cohort size and a high imbalance between 

codeletion statuses were limiting factors in our study. We tried to overcome this by oversampling 
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the minority label by a factor of 10 to balance out the ratio between codeleted and non-codeleted 

when training, but having more patient data would have helped our modeling process significantly. 

Lastly, we analyzed our data only in 2D even though 3D image volume data were available. We 

tried to do 3D analysis for the CNN case by feeding all three planes of the MRI tumor patches as 

input, but it was not truly a 3D volume image. Hence, extending our study into 3D analysis 

remains as future work. 

 Overall, this thesis investigated the utilization of three distinct image features in predicting 

a patient’s 1p/19q codeletion status from standard MR images, and has demonstrated the 

noninferiority to the analysis of clinical indicators of a method for non-invasive assessment at an 

earlier stage of gliomas and in follow-ups. 
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Appendix 

Appendix A 
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Figure 32 Appendix A figure. A heatmap of spearman correlation filtered features (texture and topology in order). Any features that 
had a correlation coefficient of greater than absolute value of 0.9 were removed 
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Appendix B 
  train/tesst split: 0 train/tesst split: 1 train/tesst split: 2 train/tesst split: 3 train/tesst split: 4 

Textur
e 

Featur
e 

Names 

firstorder_10Percentile_
FLAIR 

firstorder_10Percentile_FLA
IR 

firstorder_10Percentile_FLA
IR 

firstorder_10Percentile_FLA
IR 

firstorder_10Percentile_FLA
IR 

firstorder_Kurtosis_FLA
IR firstorder_Kurtosis_FLAIR firstorder_Kurtosis_FLAIR firstorder_Kurtosis_FLAIR firstorder_Minimum_FLAIR 

firstorder_Skewness_F
LAIR firstorder_Skewness_FLAIR firstorder_Minimum_FLAIR firstorder_Minimum_FLAIR firstorder_Skewness_FLAIR 

glszm_LargeAreaHighG
rayLevelEmphasis_FLA
IR firstorder_90Percentile_T1 firstorder_Skewness_FLAIR firstorder_Skewness_FLAIR ngtdm_Coarseness_FLAIR 

firstorder_90Percentile_
T1 

glrlm_GrayLevelNonUnifor
mity_T1 

glszm_GrayLevelNonUnifor
mity_FLAIR 

glszm_LargeAreaHighGray
LevelEmphasis_FLAIR glrlm_RunEntropy_T1 

glszm_LargeAreaHighG
rayLevelEmphasis_T1 

glszm_LargeAreaHighGray
LevelEmphasis_T1 

glrlm_LongRunHighGrayLe
velEmphasis_T1 

glrlm_LongRunHighGrayLe
velEmphasis_T1 ngtdm_Coarseness_T1 

ngtdm_Coarseness_T1 glcm_Imc2_T1post 
glszm_LargeAreaHighGray
LevelEmphasis_T1 ngtdm_Coarseness_T1 ngtdm_Contrast_T1 

glcm_Imc2_T1post 
glszm_GrayLevelNonUnifor
mity_T1post ngtdm_Coarseness_T1 ngtdm_Contrast_T1 glcm_Correlation_T1post 

glszm_GrayLevelNonU
niformity_T1post 

glszm_LargeAreaHighGray
LevelEmphasis_T1post glcm_Imc2_T1post glcm_Imc2_T1post glcm_Imc2_T1post 

glszm_LargeAreaHighG
rayLevelEmphasis_T1p
ost glszm_ZoneEntropy_T1post 

glszm_GrayLevelNonUnifor
mity_T1post 

glszm_GrayLevelNonUnifor
mity_T1post 

glszm_GrayLevelNonUnifor
mity_T1post 

glszm_ZoneEntropy_T1
post ngtdm_Coarseness_T1post 

glszm_LargeAreaHighGray
LevelEmphasis_T1post 

glszm_LargeAreaHighGray
LevelEmphasis_T1post 

glszm_LargeAreaHighGray
LevelEmphasis_T1post 

ngtdm_Coarseness_T1
post firstorder_10Percentile_T2 ngtdm_Coarseness_T1post firstorder_10Percentile_T2 firstorder_10Percentile_T2 

firstorder_10Percentile_
T2 firstorder_Minimum_T2 firstorder_10Percentile_T2 firstorder_Kurtosis_T2 firstorder_Kurtosis_T2 

firstorder_Kurtosis_T2 glcm_ClusterShade_T2 firstorder_Kurtosis_T2 glcm_ClusterShade_T2 firstorder_Minimum_T2 

firstorder_Minimum_T2 
glszm_GrayLevelNonUnifor
mity_T2 firstorder_Minimum_T2 

glszm_GrayLevelNonUnifor
mity_T2 firstorder_Skewness_T2 

glszm_LargeAreaHighG
rayLevelEmphasis_T2 

glszm_LargeAreaHighGray
LevelEmphasis_T2 glcm_ClusterShade_T2 

glszm_LargeAreaHighGray
LevelEmphasis_T2 glcm_ClusterShade_T2 

ngtdm_Coarseness_T2 ngtdm_Coarseness_T2 
glszm_LargeAreaHighGray
LevelEmphasis_T2 ngtdm_Coarseness_T2 ngtdm_Coarseness_T2 
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train/tesst split: 5 train/tesst split: 6 train/tesst split: 7 train/tesst split: 8 train/tesst split: 9 

firstorder_Minimum_FLAI
R 

firstorder_10Percentile_FL
AIR 

firstorder_10Percentile_FL
AIR 

firstorder_10Percentile_FL
AIR 

firstorder_10Percentile_F
LAIR 

firstorder_Skewness_FLAI
R firstorder_Kurtosis_FLAIR firstorder_Kurtosis_FLAIR firstorder_Kurtosis_FLAIR firstorder_Kurtosis_FLAIR 

glszm_LargeAreaHighGra
yLevelEmphasis_FLAIR 

firstorder_Minimum_FLAI
R 

firstorder_Minimum_FLAI
R 

firstorder_Minimum_FLAI
R 

firstorder_Minimum_FLAI
R 

firstorder_90Percentile_T1 
firstorder_Skewness_FLAI
R 

firstorder_Skewness_FLAI
R 

firstorder_Skewness_FLAI
R 

firstorder_Skewness_FLA
IR 

firstorder_Kurtosis_T1post 
glszm_LargeAreaHighGra
yLevelEmphasis_FLAIR 

glszm_LargeAreaHighGra
yLevelEmphasis_FLAIR 

glszm_GrayLevelNonUnif
ormity_FLAIR 

glszm_LargeAreaHighGra
yLevelEmphasis_FLAIR 

firstorder_Skewness_T1p
ost 

glszm_LargeAreaHighGra
yLevelEmphasis_T1 

ngtdm_Coarseness_FLAI
R 

glszm_LargeAreaHighGra
yLevelEmphasis_FLAIR 

ngtdm_Coarseness_FLAI
R 

glcm_Correlation_T1post glcm_Imc2_T1post firstorder_90Percentile_T1 
ngtdm_Coarseness_FLAI
R 

firstorder_90Percentile_T
1 

glcm_Idmn_T1post 
glszm_GrayLevelNonUnif
ormity_T1post 

glrlm_LongRunHighGrayL
evelEmphasis_T1 glcm_ClusterShade_T1 glrlm_RunEntropy_T1 

glcm_Imc2_T1post 
glszm_LargeAreaHighGra
yLevelEmphasis_T1post 

glszm_GrayLevelNonUnif
ormity_T1post 

glrlm_LongRunHighGrayL
evelEmphasis_T1 glcm_Imc2_T1post 

glszm_GrayLevelNonUnif
ormity_T1post 

glszm_ZoneEntropy_T1po
st 

glszm_LargeAreaHighGra
yLevelEmphasis_T1post 

glszm_LargeAreaHighGra
yLevelEmphasis_T1 

glszm_GrayLevelNonUnif
ormity_T1post 

glszm_LargeAreaHighGra
yLevelEmphasis_T1post 

ngtdm_Coarseness_T1po
st 

glszm_ZoneEntropy_T1po
st glcm_Imc2_T1post 

glszm_ZoneEntropy_T1p
ost 

glszm_ZoneEntropy_T1po
st firstorder_10Percentile_T2 firstorder_10Percentile_T2 

glszm_GrayLevelNonUnif
ormity_T1post 

ngtdm_Coarseness_T1po
st 

ngtdm_Coarseness_T1po
st firstorder_Kurtosis_T2 firstorder_Kurtosis_T2 

glszm_LargeAreaHighGra
yLevelEmphasis_T1post firstorder_Minimum_T2 

firstorder_10Percentile_T2 firstorder_Minimum_T2 firstorder_Minimum_T2 
ngtdm_Coarseness_T1po
st firstorder_Skewness_T2 

glcm_ClusterShade_T2 glcm_ClusterShade_T2 firstorder_Skewness_T2 glcm_ClusterShade_T2 glcm_ClusterShade_T2 

glszm_LargeAreaHighGra
yLevelEmphasis_T2 

glszm_LargeAreaHighGra
yLevelEmphasis_T2 glcm_ClusterShade_T2 

glszm_LargeAreaHighGra
yLevelEmphasis_T2 

glszm_GrayLevelNonUnif
ormity_T2 

ngtdm_Coarseness_T2 ngtdm_Coarseness_T2 ngtdm_Coarseness_T2 glszm_ZoneEntropy_T2 glszm_ZoneEntropy_T2 

 

 

 



71 
 

 

 

  train/tesst split: 0 train/tesst split: 1 train/tesst split: 2 train/tesst split: 3 train/tesst split: 4 

Topology 
Feature 
Names 

polynomial_4_0_FLAIR polynomial_3_0_FLAIR polynomial_2_0_FLAIR polynomial_4_0_FLAIR polynomial_4_0_FLAIR 

polynomial_2_1_FLAIR polynomial_4_0_FLAIR polynomial_4_0_FLAIR polynomial_2_1_FLAIR polynomial_2_1_FLAIR 

polynomial_3_1_FLAIR std(bar length)_0_FLAIR polynomial_2_1_FLAIR polynomial_3_1_FLAIR polynomial_3_1_FLAIR 

polynomial_4_1_FLAIR polynomial_3_1_FLAIR polynomial_3_1_FLAIR polynomial_4_1_FLAIR 
median(bar 
length)_1_FLAIR 

median(bar 
length)_1_FLAIR polynomial_4_1_FLAIR polynomial_4_1_FLAIR std(bar length)_1_FLAIR std(bar length)_1_FLAIR 

polynomial_2_0_T1 std(bar length)_1_FLAIR 
median(bar 
length)_1_FLAIR polynomial_4_0_T1 median(bar length)_0_T1 

polynomial_4_0_T1 polynomial_2_0_T1 std(bar length)_1_FLAIR median(bar length)_0_T1 polynomial_3_1_T1 

polynomial_2_1_T1 polynomial_4_0_T1 polynomial_2_1_T1 polynomial_2_1_T1 median(bar length)_1_T1 

polynomial_3_1_T1 median(bar length)_1_T1 polynomial_3_1_T1 polynomial_3_1_T1 std(bar length)_1_T1 

median(bar length)_1_T1 std(bar length)_1_T1 median(bar length)_1_T1 median(bar length)_1_T1 polynomial_2_0_T1post 

std(bar length)_1_T1 polynomial_2_0_T1post std(bar length)_1_T1 std(bar length)_1_T1 polynomial_4_0_T1post 

polynomial_2_0_T1post polynomial_4_0_T1post polynomial_2_0_T1post polynomial_2_0_T1post 
median(bar 
length)_0_T1post 

median(bar 
length)_0_T1post 

median(bar 
length)_0_T1post polynomial_4_0_T1post polynomial_4_0_T1post polynomial_2_1_T1post 

polynomial_3_1_T1post polynomial_2_1_T1post 
median(bar 
length)_0_T1post 

median(bar 
length)_0_T1post 

median(bar 
length)_1_T1post 

median(bar 
length)_1_T1post polynomial_4_1_T1post 

median(bar 
length)_1_T1post polynomial_2_1_T1post std(bar length)_1_T1post 

std(bar length)_1_T1post 
median(bar 
length)_1_T1post std(bar length)_1_T1post std(bar length)_1_T1post polynomial_2_0_T2 

polynomial_4_0_T2 polynomial_2_0_T2 polynomial_2_0_T2 polynomial_2_0_T2 polynomial_4_0_T2 

median(bar length)_0_T2 polynomial_2_1_T2 polynomial_4_0_T2 polynomial_4_0_T2 polynomial_2_1_T2 

polynomial_2_1_T2 polynomial_3_1_T2 polynomial_2_1_T2 median(bar length)_0_T2 polynomial_3_1_T2 

polynomial_3_1_T2 polynomial_4_1_T2 polynomial_3_1_T2 polynomial_2_1_T2 polynomial_4_1_T2 

median(bar length)_1_T2 median(bar length)_1_T2 median(bar length)_1_T2 polynomial_3_1_T2 median(bar length)_1_T2 

std(bar length)_1_T2 std(bar length)_1_T2 std(bar length)_1_T2 median(bar length)_1_T2 std(bar length)_1_T2 
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train/tesst split: 5 train/tesst split: 6 train/tesst split: 7 train/tesst split: 8 train/tesst split: 9 

polynomial_2_0_FLAIR polynomial_4_0_FLAIR polynomial_4_0_FLAIR polynomial_2_0_FLAIR polynomial_2_0_FLAIR 

polynomial_4_0_FLAIR polynomial_2_1_FLAIR polynomial_2_1_FLAIR polynomial_4_0_FLAIR polynomial_3_0_FLAIR 

polynomial_2_1_FLAIR polynomial_3_1_FLAIR polynomial_3_1_FLAIR polynomial_2_1_FLAIR std(bar length)_0_FLAIR 

polynomial_3_1_FLAIR polynomial_4_1_FLAIR polynomial_4_1_FLAIR polynomial_3_1_FLAIR polynomial_2_1_FLAIR 

polynomial_4_1_FLAIR 
median(bar 
length)_1_FLAIR 

median(bar 
length)_1_FLAIR polynomial_4_1_FLAIR polynomial_3_1_FLAIR 

std(bar length)_1_FLAIR std(bar length)_1_FLAIR std(bar length)_1_FLAIR std(bar length)_1_FLAIR polynomial_4_1_FLAIR 

polynomial_2_0_T1 polynomial_2_0_T1 polynomial_2_0_T1 polynomial_4_0_T1 std(bar length)_1_FLAIR 

median(bar length)_0_T1 median(bar length)_0_T1 polynomial_3_1_T1 polynomial_2_1_T1 polynomial_3_1_T1 

polynomial_3_1_T1 polynomial_3_1_T1 std(bar length)_1_T1 polynomial_3_1_T1 median(bar length)_1_T1 

median(bar length)_1_T1 std(bar length)_1_T1 polynomial_2_0_T1post median(bar length)_1_T1 std(bar length)_1_T1 

std(bar length)_1_T1 polynomial_2_0_T1post polynomial_4_0_T1post std(bar length)_1_T1 polynomial_2_0_T1post 

polynomial_2_0_T1post polynomial_4_0_T1post 
median(bar 
length)_0_T1post polynomial_2_0_T1post polynomial_4_0_T1post 

polynomial_4_0_T1post 
median(bar 
length)_0_T1post polynomial_2_1_T1post polynomial_4_0_T1post 

median(bar 
length)_0_T1post 

median(bar 
length)_0_T1post polynomial_2_1_T1post polynomial_4_1_T1post 

median(bar 
length)_0_T1post polynomial_4_1_T1post 

polynomial_2_1_T1post polynomial_3_1_T1post 
median(bar 
length)_1_T1post polynomial_2_1_T1post 

median(bar 
length)_1_T1post 

median(bar 
length)_1_T1post polynomial_4_1_T1post std(bar length)_1_T1post polynomial_3_1_T1post std(bar length)_1_T1post 

polynomial_2_0_T2 
median(bar 
length)_1_T1post polynomial_2_0_T2 

median(bar 
length)_1_T1post polynomial_2_0_T2 

polynomial_2_1_T2 polynomial_2_0_T2 median(bar length)_0_T2 polynomial_2_0_T2 polynomial_2_1_T2 

polynomial_3_1_T2 polynomial_2_1_T2 polynomial_2_1_T2 polynomial_4_0_T2 polynomial_3_1_T2 

polynomial_4_1_T2 polynomial_3_1_T2 polynomial_3_1_T2 polynomial_2_1_T2 polynomial_4_1_T2 

median(bar length)_1_T2 median(bar length)_1_T2 median(bar length)_1_T2 median(bar length)_1_T2 median(bar length)_1_T2 

std(bar length)_1_T2 std(bar length)_1_T2 std(bar length)_1_T2 std(bar length)_1_T2 std(bar length)_1_T2 

Table 10 Appendix B Table. A table that lists out the RFE selected features for each train/test split. Note that only texture and topology 
features were filtered via RFE method as there was no precedent work that has been applied for CNN features.  
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Appendix C 
 

 

  

name
Importance 

(Gini Impurity)
name

Importance 

(variable weight)
name

Importance 

(variable weight)

glcm_Imc2_T1post 0.109 median(bar length)_1_T2 177.177 CNN_feature_445_T1post 4.107

glszm_GrayLevelNonUniformity_T1post 0.103 median(bar length)_1_T1post 122.000 CNN_feature_474_T1post 2.866

firstorder_Skewness_FLAIR 0.102 polynomial_2_1_T2 110.683 CNN_feature_256_T2 1.842

firstorder_Kurtosis_FLAIR 0.096 polynomial_3_1_T2 -368.371 CNN_feature_203_T1post -1.904

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.089 polynomial_3_1_FLAIR -431.239 CNN_feature_118_T1post -3.031

glszm_LargeAreaHighGrayLevelEmphasis_FLAIR 0.066 polynomial_2_1_FLAIR -473.890 CNN_feature_25_T1post -3.112

glszm_GrayLevelNonUniformity_T1post 0.129 median(bar length)_0_T1post 71.906 CNN_feature_445_T1post 5.122

glcm_Imc2_T1post 0.091 polynomial_2_0_T1post 64.799 CNN_feature_142_T1post 2.759

firstorder_10Percentile_FLAIR 0.077 polynomial_2_1_T2 64.490 CNN_feature_474_T1post 2.307

firstorder_Skewness_FLAIR 0.071 median(bar length)_1_T1 -33.262 CNN_feature_157_T1post -2.250

firstorder_Kurtosis_FLAIR 0.071 polynomial_2_0_T2 -60.670 CNN_feature_118_T1post -2.834

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.070 std(bar length)_1_FLAIR -64.507 CNN_feature_25_T1post -3.949

firstorder_10Percentile_FLAIR 0.125 median(bar length)_1_T2 133.858 CNN_feature_445_T1post 4.241

glszm_GrayLevelNonUniformity_T1post 0.098 polynomial_2_1_T2 129.330 CNN_feature_142_T1post 2.612

glcm_Imc2_T1post 0.079 median(bar length)_0_T1post 122.065 CNN_feature_474_T1post 2.344

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.072 polynomial_2_0_T2 -117.942 CNN_feature_411_T1post -1.520

firstorder_10Percentile_T2 0.060 polynomial_2_1_FLAIR -171.795 CNN_feature_157_T1post -1.639

firstorder_Skewness_FLAIR 0.056 polynomial_3_1_T2 -218.561 CNN_feature_25_T1post -2.817

firstorder_10Percentile_FLAIR 0.099 median(bar length)_0_T1post 87.566 CNN_feature_474_T1post 4.028

firstorder_Skewness_FLAIR 0.085 polynomial_2_0_T1post 71.439 CNN_feature_445_T1post 3.408

firstorder_Kurtosis_T2 0.078 median(bar length)_1_T2 69.237 CNN_feature_251_T1post 2.298

glszm_GrayLevelNonUniformity_T1post 0.072 polynomial_2_1_FLAIR -32.113 CNN_feature_25_T1post -1.819

glcm_Imc2_T1post 0.072 std(bar length)_1_FLAIR -50.021 CNN_feature_83_T1post -2.209

firstorder_Minimum_FLAIR 0.067 polynomial_2_0_T2 -61.505 CNN_feature_411_T1post -3.187

firstorder_10Percentile_FLAIR 0.101 polynomial_4_0_FLAIR 3250.809 CNN_feature_445_T1post 4.146

glszm_GrayLevelNonUniformity_T1post 0.099 polynomial_3_1_FLAIR 497.213 CNN_feature_474_T1post 3.158

ngtdm_Coarseness_FLAIR 0.091 median(bar length)_1_T2 189.798 CNN_feature_196_T1post 1.763

firstorder_Minimum_FLAIR 0.084 polynomial_3_1_T1 -564.474 CNN_feature_181_FLAIR -1.248

firstorder_Skewness_FLAIR 0.084 polynomial_3_1_T2 -1540.448 CNN_feature_457_T1post -1.248

firstorder_Kurtosis_T2 0.074 polynomial_4_0_T1post -6952.187 CNN_feature_25_T1post -2.341

Texture (RF) Topology (Logistic) CNN (Logistic)

train/test split: 0

train/test split: 1

train/test split: 2

train/test split: 3

train/test split: 4



74 
 

 

 

Table 11 Appendix C Table. A table that lists top 6 important features for each feature type. Note that for topology and CNN 
features, top three negative and top three positive features were selected as their models were logistic regressions. For  texture 
features, a random forest was used, hence top 6 gini impurity features were selected. 

firstorder_10Percentile_T2 0.083 median(bar length)_1_T2 143.913 CNN_feature_445_T1post 4.019

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.081 polynomial_2_1_T2 130.548 CNN_feature_474_T1post 2.540

firstorder_Minimum_FLAIR 0.081 median(bar length)_0_T1post 116.540 CNN_feature_196_T1post 2.286

firstorder_Skewness_FLAIR 0.077 polynomial_2_0_T2 -125.704 CNN_feature_181_FLAIR -0.977

firstorder_Skewness_T1post 0.069 polynomial_2_1_FLAIR -297.064 CNN_feature_213_T1 -1.672

glcm_ClusterShade_T2 0.069 polynomial_3_1_T2 -547.659 CNN_feature_25_T1post -3.724

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.094 median(bar length)_1_T2 154.313 CNN_feature_474_T1post 1.110

firstorder_10Percentile_T2 0.091 median(bar length)_0_T1post 135.447 CNN_feature_153_T1post 1.049

firstorder_10Percentile_FLAIR 0.086 polynomial_2_1_T2 86.604 CNN_feature_263_T1post 1.029

glcm_Imc2_T1post 0.081 polynomial_3_1_T1post -147.830 CNN_feature_110_T1post -0.965

ngtdm_Coarseness_T2 0.065 polynomial_3_1_T2 -175.984 CNN_feature_118_T1post -1.046

glszm_LargeAreaHighGrayLevelEmphasis_FLAIR 0.058 polynomial_2_1_FLAIR -205.384 CNN_feature_411_T1post -1.175

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.104 median(bar length)_1_T2 151.954 CNN_feature_474_T1post 1.160

glszm_GrayLevelNonUniformity_T1post 0.102 polynomial_2_1_T2 126.964 CNN_feature_153_T1post 1.124

ngtdm_Coarseness_FLAIR 0.096 median(bar length)_0_T1post 89.157 CNN_feature_251_T1post 1.066

firstorder_10Percentile_T2 0.075 polynomial_2_0_T2 -74.813 CNN_feature_110_T1post -0.922

glszm_LargeAreaHighGrayLevelEmphasis_FLAIR 0.069 polynomial_3_1_T2 -189.826 CNN_feature_63_T1post -0.969

glszm_ZoneEntropy_T1post 0.064 polynomial_2_1_FLAIR -193.277 CNN_feature_411_T1post -1.297

ngtdm_Coarseness_FLAIR 0.116 median(bar length)_1_T1post 69.456 CNN_feature_445_T1post 1.299

glszm_LargeAreaHighGrayLevelEmphasis_T1post 0.088 median(bar length)_0_T1post 68.937 CNN_feature_474_T1post 1.104

glcm_Imc2_T1post 0.081 median(bar length)_1_T2 63.820 CNN_feature_251_T1post 1.051

firstorder_Skewness_FLAIR 0.080 polynomial_3_1_T1post -45.060 CNN_feature_157_T1post -1.001

glszm_LargeAreaHighGrayLevelEmphasis_FLAIR 0.071 polynomial_2_0_T2 -46.818 CNN_feature_118_T1post -1.041

firstorder_10Percentile_FLAIR 0.067 polynomial_2_1_FLAIR -58.550 CNN_feature_411_T1post -1.084

ngtdm_Coarseness_FLAIR 0.117 median(bar length)_0_T1post 62.584 CNN_feature_445_T1post 5.900

firstorder_Skewness_FLAIR 0.114 median(bar length)_1_T1post 62.200 CNN_feature_474_T1post 2.899

glcm_ClusterShade_T2 0.071 polynomial_2_0_T1post 59.973 CNN_feature_206_T1 2.448

firstorder_Minimum_FLAIR 0.070 polynomial_2_1_FLAIR -42.167 CNN_feature_190_T1post -2.563

glszm_LargeAreaHighGrayLevelEmphasis_FLAIR 0.069 polynomial_2_0_T2 -46.629 CNN_feature_181_FLAIR -2.866

glcm_Imc2_T1post 0.067 std(bar length)_1_FLAIR -51.703 CNN_feature_25_T1post -4.858

train/test split: 5

train/test split: 6

train/test split: 7

train/test split: 8

train/test split: 9
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