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1. Introduction 

 

1.1 Pituitary adenomas 

Pituitary adenomas are among the most frequent intracranial tumors, accounting for the majority of sellar/suprasellar 

masses in adults with a prevalence ranging from 1 in 865 persons to 1 in 2688 persons [1–5]. 

Conversely, pituitary carcinomas are rare neoplasms, representing less than 0.5% of the pituitary symptomatic tumors. 

They are indistinguishable from adenomas on imaging and defined only by the presence of central nervous system or 

systemic metastases [6]. 

Pituitary adenomas are classified by size into microadenomas (<10 mm), macroadenomas (≥10 mm), and giant 

adenomas (≥40 mm). 

Although most pituitary adenomas arise within the sella turcica, ectopic adenomas have been described in different sites 

including sphenoid sinus, nasopharynx, third ventricle, and suprasellar cistern tumors [7]. 

About two-thirds of pituitary adenomas may secrete excess hormones. Clinical case-finding studies showed that 32% to 

66% of tumors were secreting prolactin, 14% to 54% were clinically nonfunctioning adenomas, 8% to 16% were 

secreting growth hormone, 2% to 6% were secreting adrenocorticotropic hormone, and less than 1% were secreting 

thyrotropin persons [1–5]. 

In most clinically nonfunctioning adenomas, stain for gonadotropins or their subunits is positive. However, rarely they 

may stain for growth hormone, adrenocorticotropic hormone, or prolactin without hypersecretion of these hormones, 

and are defined “silent” somatotrope, corticotrope, or lactotrope tumors, respectively [8]. 

The pathogenesis of most pituitary adenomas remains unknown. Cells with multipotent progenitor have been identified 

in the adult pituitary gland and may play a key role in tumorigenesis. In the presence of alterations in the normal 

microenvironment, uncoordinated proliferation of these pituitary stem cells may lead to pituitary adenoma formation 

[9]. 

Trans-sphenoidal surgical resection is the initial treatment for all tumors except prolactinomas, for which dopamine 

agonists administration is recommended as first-line treatment. Irradiation is reserved for patients who do not achieve 

adequate reduction in tumor size or hormone levels after surgery and/or medical therapy, and it is now always 

performed with stereotaxic technique [10, 11]. 

 

1.2 State-of-the-art imaging of pituitary adenomas 

MRI is the preferred imaging modality for detecting pituitary adenomas. The standard protocol includes a sagittal spin-

echo T1-weighted sequence, a coronal turbo spin-echo T2-weighted sequence and a coronal spin-echo T1-weighted 



 5 

sequence. Contrast administration is recommended when an intrasellar lesion is suspected on the sequences without 

contrast, followed by the acquisition of coronal T1-weighted images. It is preferable to use a lower dose of contrast 

medium because the excessive enhancement of the glandular parenchyma could hide small intraglandular lesions. 

In the case of a macroadenoma with suprasellar extension, coronal and sagittal post-contrast T1-weighted sequences 

and 3D gradient echo T1-weighted acquisition are recommended. In the investigation of suspected microadenoma, in 

particular in patients with Cushing disease, dynamic contrast-enhanced MR in the coronal plane using a power injector 

has to be performed. Gradient echo T2*- and susceptibility-weighted imaging can be useful in visualizing intralesional 

hemorrhagic components, while diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps 

have been proposed for tumor consistency assessment with variable accuracy [12]. 

Computed tomography imaging is complementary to MR imaging for the depiction of bony changes, including 

remodeling or frank bone destruction. 

 

1.3 Radiomics 

Radiomics represents the conversion of digital medical images (computed tomography, magnetic resonance, or positron 

emission tomography images) into mineable high-dimensional data. This process is motivated by the concept that 

biomedical images contain information that reflects underlying pathophysiology and that these relationships can be 

revealed via quantitative image analyses [13]. 

Radiomics has been recognized to have a great potential offering different applications especially in the oncologic field, 

from tissue characterization to treatment response prediction or prognosis. For this reason, it plays an essential role in 

so-called “personalized medicine” for which the availability of robust and validated biomarkers is essential. 

The radiomic workflow include several steps: 

- acquiring the images; 

- identifying the volumes of interest; 

- segmenting the volumes; 

- extracting and qualifying descriptive features from the volume 

- using these to populate a database; 

- mining these data to develop classifier models either alone or in combination with additional information. 

Two types of features can be extracted in radiomics, semantic and agnostic ones. Semantic features are commonly used 

by radiologists to describe lesions and can be somehow quantized. On the other hand, agnostic features are 

mathematically extracted quantitative descriptors, and can be divided into first-, second-, or higher order statistical 

outputs. First-order statistics describe the distribution of grey level values of individual voxels (histogram-based 



 6 

methods). Second-order statistics are general defined “texture” features and describe interrelationships between voxels 

with similar (or dissimilar) contrast values. 

 

1.4 Artificial intelligence 

Machine learning (ML) is a subset of Artificial Intelligence (AI), characterized by the ability of software to learn from 

data and make predictions without explicit prior programming. It is based on algorithms which can be divided based on 

learning type. In supervised learning, labelled data is available for the training process thus creating a ground truth. In 

unsupervised learning, the software finds hidden structure in data automatically without prior categorization of the 

training set. In reinforcement learning, positive and negative reinforcement contribute to the improvement of the 

predictive model [14]. In other words, it learns from the consequences of its interactions with a dynamic environment. 

ML has potential applications in multiple fields of medicine, though it has been most frequently applied to imaging. In 

this setting, it has shown promising performance in cancer patients for lesion detection, characterization and staging.[6–

10] ML analysis has also been used in non-oncologic pathology, with promising results [15, 16]. Another interesting 

aim of ML is represented by the automated segmentation of medical images. Though manual segmentation represents 

the gold standard, AI tools might have higher accuracy and reproducibility [17]. 

Although AI has been widely used in imaging, it has other applications as it enables fast and accurate analysis of large 

amounts of data. This ability can be employed to create predictive models both for classification and regression. 

 

1.5 Structure of the Manuscript and Objective/Contribution 

The manuscript is organized as follows: 

- Chapter 2 presents the first contribution of the thesis, which consists in evaluating the functional status of 

pituitary macroadenomas using a machine learning analysis. In particular, a machine learning approach has 

been applied in order to classify pituitary adenomas into functional and non-functional starting from 

preoperative MRI features. Multinomial logistic regression and K nearest neighbor classifiers achieved 

accuracies beyond 92.0% and an Area Under the Receiving Characteristic Operator Curve till 98.4%. The 

novelty of this paper lies in proving the ability of the combination of radiomics and machine learning to pre-

operatively predict adenoma function, previously only possible with blood tests or histopathological analysis. 

The study included in this chapter has been presented at MEDICON 2019 and published as a conference paper 

on IFMBE Proceedings [18]. 

- Chapter 3 presents the second contribution of the thesis, to assess the accuracy of machine learning analysis of 

texture-derived parameters from pituitary adenomas preoperative MRI for the prediction of ki-67 proliferation 
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index class. The ki-67 labeling index represents a proliferative marker which correlates with pituitary adenoma 

aggressiveness. The higher this index, the higher the clinically aggressive behavior, with recurrent disease and 

resistance to multimodal therapy. From T2-weighted MR images, quantitative features were extracted. 

Subsequently, different supervised feature selection methods were employed and a k-nearest neighbors 

classifier was used to predict macroadenoma high or low proliferation index with a train-test approach. The 

overall accuracy of the k-NN in the test group was of 91.67% of correctly classified patients. In this study 

machine learning analysis of texture-derived parameters from preoperative T2 MRI has proven to be effective 

for the prediction of pituitary macroadenomas ki-67 proliferation index class. This might aid the surgical 

strategy making a more accurate preoperative lesion classification and allow for a more focused and cost-

effective follow-up and long-term management. This chapter was published as a journal article on 

Neuroradiology [19]. 

- Chapter 4 presents the third contribution of the thesis, the crucial importance of preoperatively investigating 

pituitary adenoma consistency. Indeed, tumor consistency can influence the ease of lesion removal during 

surgery, especially when using a transsphenoidal approach. Unfortunately, it is not assessable on standard 

qualitative MRI. In this study, radiomic texture features were extracted from original and filtered T2-weighted 

MR images. After hyperparameter tuning via stratified 5-fold cross-validation, the Extra Trees classifier 

obtained an accuracy of 93%, demonstrating that preoperative T2-weighted MRI texture analysis and ML 

could predict pituitary macroadenoma consistency. This chapter was published as a journal article on 

Neuroradiology [20]. 

- Chapter 5 presents a narrative review which provides an overview of the main concepts in ML and to analyze 

its applications in the imaging of pituitary adenomas. Pre-treatment assessment and neurosurgical outcome 

prediction were the potential ML applications using magnetic resonance imaging. Regarding pre-treatment 

assessment, ML methods were used to have information about tumor consistency, predict cavernous sinus 

invasion and high proliferative index, discriminate null cell adenomas, which respond to neo-adjuvant 

radiotherapy from other subtypes, predict somatostatin analogues response and visual pathway injury. 

Regarding neurosurgical outcome prediction, the following applications were discussed: Gross total resection 

prediction, evaluation of Cushing disease recurrence after transsphenoidal surgery and prediction of 

cerebrospinal fluid fistula’s formation after surgery. Although clinical applicability requires more replicability, 

generalizability and validation, results are promising, and ML software can be a potential power to facilitate 

better clinical decision making in pituitary tumor patients. This chapter was published as a journal article on 

Artificial Intelligence in Medical Imaging [21]. 
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Finally, chapter 6 concludes the thesis by summarizing the contributions and providing some perspectives. 

 

1.6 List of Publications and Award 

 

Journal articles 

- Ugga L, Cuocolo R, Solari D, Guadagno E, D'Amico A, Somma T, Cappabianca P, Del Basso de Caro ML, 

Cavallo LM, Brunetti A. Prediction of high proliferative index in pituitary macroadenomas using MRI-based 

radiomics and machine learning. Neuroradiology. 2019 Dec;61(12):1365-1373. doi: 10.1007/s00234-019-

02266-1. Epub 2019 Aug 2. PMID: 31375883 [19]; 

- Cuocolo R, Ugga L, Solari D, Corvino S, D'Amico A, Russo D, Cappabianca P, Cavallo LM, Elefante A. 

Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-

weighted MRI. Neuroradiology. 2020 Dec;62(12):1649-1656. doi: 10.1007/s00234-020-02502-z. Epub 2020 

Jul 23. PMID: 32705290 [20]; 

- Guerriero E, Ugga L, Cuocolo R. Artificial intelligence and pituitary adenomas: a review. Artificial 

Intelligence in Medical Imaging. 2020 Aug;1(2): 70-77. doi: 10.35711/aimi.v1.i2.70 [21]. 

 

Conference papers 

- Ricciardi C, Cuocolo R, Cesarelli G, Ugga L, Improta G, Solari D, Romeo V, Guadagno E, Cavallo LM, 

Cesarelli M. Distinguishing Functional from Non-functional Pituitary Macroadenomas with a Machine 

Learning Analysis. In: Henriques J., Neves N., de Carvalho P. (eds) XV Mediterranean Conference on Medical 

and Biological Engineering and Computing - MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. 

doi: 10.1007/978-3-030-31635-8_221 [18]. 

 

Award 

- Federico Bartolazzi 2019 Grant of the Italian Society of Neurosurgery for the research project “Preoperative 

identification of pituitary macroadenomas with high proliferative index on magnetic resonance: radiomic 

study with machine learning approach”. 
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2. Pituitary adenoma functional status 

 

2.1 Introduction 

Pituitary adenomas are rare intracranial tumors, presenting with a prevalence of 1/1500 in the general population. In 

most cases, they are benign lesions, whose clinical manifestations are related to mass effect signs - depending on tumor 

size and/or to hormone hypersecretion syndromes. On the other hand, low dimension intrasellar adenomas may be 

clinically silent and their diagnosis often comes as an incidental finding on MR scans [22–25]. 

Radiomics, consisting in the conversion of images into mineable data and subsequent analysis for decision support, is 

an emerging field allowing tumor classification [13]. In particular, texture analysis is a postprocessing technique for 

quantitative parameter extraction from pixel grey level heterogeneity. It consists of statistical analysis based on both 

simple intensity value distribution histograms and more complex gray level distribution matrix analyses which also 

retain information on spatial distribution of voxel intensities [26]. 

In this setting, machine learning can be applied in order to predict the outcome of patients and help clinicians in 

decision-making [27–30]. There is a wide range of applications of machine learning in different areas of medicine, from 

cardiology to radiology [14, 31]. In particular, studies applying machine learning on texture analysis according to the 

“radiomic process” were described by Kumar et al. [32]; Zacharaki et al. classified brain tumor type and grade using 

MRI texture and shape through Linear Discriminant Analysis with Fisher’s discriminant rule, k-nearest neighbour 

(KNN), nonlinear Support Vector Machine (SVM) and employing leave one out crossvalidation [33]; Juntu et al. 

differentiated benign from malignant soft‐tissue tumours in T1‐MRI images testing three classifiers (neural networks, 

decision tree and SVM) [34]; Romeo et al. characterized adrenal lesions on unenhanced MRI images [35]; finally, 

Stanzione and colleagues have recently demonstrated the potential of this approach in prostate cancer local staging [36]. 

Moreover, recent studies investigated the relevance of first and second order histogram features obtained by diffusion-

weighted imaging magnetic resonance in differentiating functional from non-functional pituitary macroadenoma 

through a classic statistical analysis [37]. 

Therefore, the aim of this study is to apply machine learning algorithms on parameters obtained by texture analysis on 

MRI images in order to distinguish functional from non-functional pituitary macroadenomas. 

 

2.2 Materials and methods 

 

2.2.1 Subjects 
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We retrospectively reviewed data of 50 patients, who received so-called standard endoscopic endonasal approach for 

the removal of a pituitary adenoma, between January 2013 and December 2017, at the Division of Neurosurgery of the 

University of Naples ‘Federico II’ in Italy. All of them underwent preoperative MRI at our Institution prior to the 

surgical procedure. Demographic data, preoperative assessment - i.e., endocrinological and visual status and presenting 

signs - tumor features, prior Distinguishing Functional from Non-functional Pituitary 1823 treatments, surgical results 

and complications, were retrieved from our electronic database (Filemaker Pro 11 - File Maker Inc, Santa Clara, CA, 

USA). 

 

2.2.2 MRI Acquisition and Texture Analysis 

All exams were acquired on a 1.5-Tesla scanner (Gyroscan Intera, Philips, Eindhoven, The Netherlands). The imaging 

protocol always included a coronal T2-weighted Turbo Spin Echo sequence (TR/TE: 2600/89 ms, FOV: 180 x 180 mm; 

matrix: 288 x 288; thk: 3 mm) used for the following radiomic feature extraction. First of all, lesions were detected by 

an expert neuroradiologist who then performed their manual contouring by means of a bidimensional polygonal ROI 

after selection of the slice where it showed maximum extension (Fig. 2.1). Further editing with a brush tool was 

performed, when needed. This process was carried on using a freely available segmentation software (ITKSnap v3.6.0) 

[38]. 

 

 

Fig. 2.1. Coronal T2-weighted MRI exam showing the maximum extension slice of a functioning pituitary 

macroadenoma (A). Image B depicts the result of the image annotation of the region of interest to be employed for 

subsequent texture feature extraction 

 

Image pre-processing and feature extraction were performed on an open-source Python radiomics software 

(Pyradiomics v2.1.2) [39]. The first step consisted of image gray level normalization with a scale of 100). This step was 

mandatory since T2-weighted images are not quantitative and intensity values are not absolute in contrast to T2 maps. 
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The latter were not available as only routine clinical scans were selected for the analysis, also in order to guarantee 

reproducibility of the results in the clinical setting. Subsequently, all volumes and corresponding lesion masks were 

resampled to a 2 x 2 x 2 mm voxel resolution. The next pre-processing step consisted of intensity value discretization. 

For this task, a fixed bin width approach was chosen, obtaining an ideal bin count between 16 and 128, as suggested in 

previous studies [40]. The use of wavelet decomposition, yielding all possible combinations of High and Low pass 

filtering in the x, y and z dimensions, and edge enhancement Laplacian of Gaussian (LoG) filters, emphasizing gray 

level change at different texture coarseness, allowed additional feature extraction from the derived images. shape and 

first order statistics, we also obtained higher order class parameters. In detail, these were derived from the symmetrical 

Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix 

(GLRLM, Neighboring Gray Tone Difference Matrix (NGTDM) and Gray Level Dependence Matrix (GLDM). 

 

2.2.3 Tool 

Knime analytics platform (v. 3.7.1) was chosen to conduct this machine learning study, as it is a well-known open-

source platform implementing a wide range of machine learning algorithms and integrated with Weka, Python and other 

software; moreover, it was already employed in literature for other studies [41][42]. The algorithms used in this paper 

are briefly presented in the next section. 

 

2.2.4 Algorithms and Evaluation Metrics 

J48 is the Java implementation of a C4.5 decision tree [43], which consists of the evolution of the ID3 algorithm. It is 

an easy structure made up of leaves, representing classes, and nodes, representing test phases over an attribute. 

Multinomial Logistic Regression (MLR) with ridge estimator is applied through the “Logistic” node of Weka that 

follows the implementation of Le Cessie, and van Houwelingen [44, 45]. 

K Nearest Neighbour (KNN) is an easy instance-based classifier that assigns a label basing its choice on the dominance 

of a class in the nearest neighbours [46]. For all these algorithms, “smote” (Synthetic Minority Over-sampling 

Technique) was applied [47]. Smote generates artificial data by extrapolating between a real object of a given class and 

one of its nearest neighbours (of the same class). Boosting was implemented for J48, it converts weak learners into 

strong learners that predict with higher accuracy; it selects only the parameters that can improve the predictive ability of 

algorithms during the training phase, making the complexity in terms of dimension decrease and improving execution 

time [48]. The evaluation metrics employed in this study are: 

- Accuracy: correct classifications over the total; 

- Error: misclassifications over the total; 
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- Recall: the ratio of positives correctly classified; 

- Precision: the ratio of positives correctly predicted in the positive class; 

- Sensitivity: capacity to detect true positives; 

- Specificity: capacity to detect true negatives. 

Moreover, Area Under the Curve Receiving Characteristic Operator (AUCROC) was computed for each algorithm and 

for both bagging and boosting groups. 

 

2.3 Results 

Of the included lesions, 25 were functioning adenomas (5 Adreno-cortico-tropic Hormone, 8 Growth Hormone, 5 

Growth Hormone/Prolactin, 6 Prolactin and 1 Thyroid-Stimulating Hormone secreting) and 25 non-functioning. A total 

of 1128 features was extracted from each patient. 

Due to the small number of patients, smote technique was applied to make the number of records rise from 50 to 100. 

Then, a procedure of feature selection was applied to reduce the number of features extracted by the images: the matrix 

of correlation was computed among all variables and a threshold of correlation of 0.4 was chosen: all the variables with 

a correlation higher than the threshold were excluded because they did not add information to the classifiers. It allowed 

us to reduce the number of features from more than one thousand to 28. As the number of patients was not so high, 

leave one out was applied for all the implemented algorithms. J48, MLR and KNN were implemented together with the 

boosting node of Knime. Results are summarized in Table 2.1 while Table 2.2 shows the features used to build the 

models. 

 

Table 2.1. Scores for each algorithm. 

 
Accuracy 

[%] 

Error 

[%] 

Recall 

[%] 

Precision 

[%] 

Sensitivity 

[%] 

Specificity 

[%] 

AUCROC 

[%] 

Boosting 

J48 
83.0 17.0 82.0 83.7 82.0 84.0 89.8 

MLR 97.0 3.0 96.0 98.0 96.0 98.0 98.4 

KNN 90.0 10.0 90.0 90.0 90.0 90.0 90.0 

 

 

Table 2.2. Features used to build the predictive models. 

log-sigma-2-0-mm-

3D_gldm_LargeDependenceLowGrayLevelEmphasis 
wavelet-LHH_firstorder_Skewness 

log-sigma-2-5-mm-3D_glcm_InverseVariance wavelet-LHH_firstorder_Entropy 
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log-sigma-2-5-mm-3D_firstorder_Range wavelet-LLH_glcm_ClusterShade 

log-sigma-3-0-mm-

3D_gldm_LargeDependenceLowGrayLevelEmphasis 
wavelet-LLH_glcm_Contrast 

log-sigma-3-5-mm-

3D_gldm_LargeDependenceLowGrayLevelEmphasis 
wavelet-LLH_firstorder_Kurtosis 

log-sigma-3-5-mm-

3D_gldm_LargeDependenceHighGrayLevelEmphasis 
wavelet-HLH_glcm_Id 

log-sigma-3-5-mm-3D_firstorder_Maximum wavelet-HLH_firstorder_Skewness 

wavelet-HLL_glcm_ClusterProminence wavelet-HLH_firstorder_Median 

wavelet-HLL_firstorder_Skewness wavelet-HHH_firstorder_Skewness 

wavelet-HLL_firstorder_Maximum wavelet-LLL_glcm_ClusterShade 

wavelet-LHL_glcm_Correlation wavelet-LLL_firstorder_Kurtosis 

wavelet-LHL_firstorder_Skewness original_glcm_Correlation 

wavelet-LHL_firstorder_Mean original_firstorder_Skewness 

wavelet-LHH_gldm_DependenceVariance original_firstorder_Kurtosis 

 

MLR obtained the highest accuracy, recall, precision, sensitivity, specificity and AUCROC among the three 

implemented algorithms. Despite getting the lowest accuracy (83.0%), J48 reached an AUCROC comparable to the 

KNN’s one. 

 

2.4 Discussion 

First, the MRI acquisition of 50 patients was performed at the department of Advanced Biomedical Sciences of the 

University Hospital “Federico II” of Naples. Furthermore, a texture analysis was conducted to extract more than one 

thousand quantitative features from the MRI images. The machine learning analysis was finally performed in order to 

carry out some evaluation metrics as regards the algorithms. 

Mentioning other studies that employed radiomics and machine learning, Romeo et al. [35] characterized adrenal 

lesions with a diagnostic accuracy of 80%, while Juntu et al. [34] distinguished benign from malignant tumors with an 

accuracy of 93%; Zacharaki et al. [33] obtained 85% of accuracy classifying type and grade of brain tumors. Although a 

direct comparison with other studies would not be completely fair (due to the use of different datasets), this study shows 

greater capacity to correctly make classifications (functional and non-functional pituitary macroadenomas), exploiting 

features extracted through texture analysis. A comparison may be done with the study of Sanei et al. [37] who 

distinguished functional from non-functional pituitary macroadenomas with lower scores than those obtained through a 

machine learning analysis. 

The functional status of pituitary lesions has a significant influence on the clinical manifestations of disease: the correct 

diagnosis and management is crucial for the selection of the correct therapeutic strategy and therefore cure this 
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multifaceted disease. Although a previous study has shown the promise of Apparent Diffusion Coefficient values of 

pituitary lesions in this assessment [38], Diffusion Weighted Imaging is not routinely performed in the imaging of the 

sellar region. It is known that this area is potentially more prone to artefacts on echo-planar imaging and this technique 

is time consuming. For these reasons, an approach that obtains similar results while employing routine MRI sequences 

has more potential for its application in the current clinical setting. 

Of course, this study is affected by some limitations: the dataset was augmented with artificial data in order to improve 

its size allowing us to perform the analysis. Major dataset could be studied, and machine learning analysis could be 

performed to reach 100% accuracy in this classification. Nevertheless, machine learning proved to be the best way to 

distinguish functional from non-functional pituitary macroadenomas using texture analysis on MRI images. 

 

2.5 Conclusion 

This paper proved that the combination of radiomics and machine learning can be used to predict tumoral behavior pre-

operatively while only blood tests or histopathological analysis were known as providers of this information. 
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3. Pituitary adenoma proliferative index 

 

3.1 Introduction 

Pituitary adenomas are among the most frequent intracranial tumors, with a 1/1500 prevalence [49]. They are mostly 

benign and typically presents with hormone hypersecretion syndromes and/or mass effect signs. Small intrasellar 

tumors can be clinically silent and diagnosed only as incidental MRI findings. Nonetheless, some entities among the 

different subtypes of adenoma show more aggressive and unpredictable behavior: these - such as sparsely granulated 

somatotroph adenomas, Crooke cell adenomas, and plurihormonal Pit-1-positive adenomas - tend to disclose local 

invasiveness, high recurrence risk and rarely present features of highly aggressive cancer. Surgery is considered the first 

line of treatment in most cases but in this latter group, multimodality management therapy - as per neurooncological 

guidelines - is mandatory. The possibility of predicting pituitary tumor behavior at the preoperative stage cannot be yet 

considered reliable as no valid factor has been identified, and though it remains the critical groundwork of the 

pathologists. 

The 2017 WHO classification revealed that former categories of typical adenomas, atypical adenomas, and pituitary 

carcinomas have no relevance from a clinical standpoint, introducing the definition of "high-risk" adenomas in 

reference to tumors with rapid growth, radiological invasion, and high Ki-67 proliferation index [50–52]. 

Considering the above, early identification of any radiological feature defining such behavior can be crucial in order 

allow timely diagnosis and treatment. In this regard, radiomics, consisting in the conversion of images into mineable 

data and subsequent analysis for decision support, has been emerging [13]. In particular, texture analysis is a 

postprocessing technique for quantitative parameter extraction from pixel grey level heterogeneity. More recently, 

texture analysis-derived features have been used in association with data mining machine learning algorithms, aiding in 

the interpretation of the large amount of information produced. Machine learning is the branch of artificial intelligence 

dealing with computer algorithms capable of learning and improving in accuracy by analyzing datasets, without prior 

explicit programming [53]. It leads to the creation of automated predictive models to solve classification problems. The 

usefulness of the radiomics approach is being assessed in different fields of radiology [15, 35, 36, 54–58]. 

The aim of our study was to assess the accuracy of machine learning analysis of texture-derived parameters from 

preoperative MRI of pituitary macroadenomas for the prediction of ki-67 proliferation index class. 

 

3.2 Materials and methods 

This study was approved by the local institutional review board, which waived the necessity for informed consent due 

to the retrospective nature of the study.  
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3.2.1 Subjects 

We retrospectively reviewed data of 108 consecutive patients, who underwent endoscopic endonasal procedures for 

pituitary adenoma removal between January 2013 and December 2017, at the University of Naples “Federico II” 

Neurosurgery Unit. 

Only patients with available ki-67 labeling index in the histopathological report were included (n = 106). Exclusion 

criteria were: any previous treatment for pituitary adenoma (radiation or medical therapy) (n = 9), extensively necrotic 

or hemorrhagic lesions (n = 6), significant artifacts on the images used for the analysis (n = 2). 

Demographic data, preoperative assessment, tumor features and histopathological characteristics were retrieved from 

our electronic database (Filemaker Pro 11 - File Maker Inc, Santa Clara, CA, USA).  

 

3.2.2 Surgical approach 

Endonasal surgical procedures were performed using a rigid 0-degree endoscope, 18 cm in length and 4 mm in diameter 

(Karl Storz Endoscopy, Tuttlingen, Germany), as the sole visualizing tool. The use of 30°-45° angled endoscopes was 

reserved to explore large intra-suprasellar post-surgical tumor cavities. They were run according to techniques already 

described in previous publications [25, 59–62]. 

 

3.2.3 Pathological data 

Specimens were obtained as formalin-fixed tissue. For the evaluation of the proliferation index ki-67 (Labeling Index, 

L.I.), “hot spot” areas were chosen at low magnification and an average of the values on 5 adjacent fields (at least 500 

neoplastic cells) was calculated (Fig. 3.1). 
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Fig. 3.1. Segmentation examples on coronal T2-weighted images in two patients with low (upper row, A) and high 

(lower row, D) proliferation index pituitary adenomas, showing hand-drawn ROI placement (B and E, respectively). 

Pictures C and F show corresponding immunohistochemical evaluation (40x magnification) of ki-67 cell labeling index, 

respectively, 1 and 6%. 

 

3.2.4 MRI acquisition data 

Imaging studies were performed either on a 1.5-Tesla scanner (Gyroscan Intera, Philips, Eindhoven, The Netherlands), 

or 3T MR scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany). Both protocols included a 

coronal T2-w TSE sequence (TR/TE: 2600/89 ms, FOV: 180x180 mm; matrix: 288x288; thk: 3 mm, at 1.5 T; TR/TE: 

3000/98 ms FOV: 200x200 mm; matrix: 384x384; thk: 3 mm, at 3 T). 

 

3.2.5 Image analysis  

Tumors were identified by an expert neuroradiologist who proceeded to manual segmentation using a bidimensional 

polygonal ROI on the slice of lesion maximum extension with further editing with a brush tool, when needed. This 

process was carried on using a freely available segmentation software (ITKSnap v3.6.0) [38] (Fig. 3.1). A second 

segmentation on a sample of 35 patients was performed by another neuroradiologist, blinded to the prior annotations 

and clinical data, to assess inter-operator reproducibility of the selected features. 

Image pre-processing and feature extraction were performed on an open-source Python radiomics software 

(Pyradiomics v2.1.2) [39]. In particular, as two MRI scanners by different vendors and with distinct acquisition 

parameters were employed, image voxels were first normalized by subtracting the mean intensity and dividing by the 

standard deviation with an expected resulting range ~ [-3, 3], a mean of 0 and standard deviation of 1 in the normalized 
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image. Then, a scale of 100 was applied, resulting in an intensity range mainly within [-300, 300]. This would have 

been required even using a single scanner as non-quantitative sequences were evaluated (e.g., T2-w images and not T2 

maps). All images and corresponding ROI masks were also resampled to a 2x2x2 mm resolution. To optimize 

extraction time, making it less memory intensive, images were automatically cropped based on ROI masks keeping a 

10-voxel padding in order to consent subsequent filter application. 

As for image discretization, the employed software allows both for a fixed bin count and bin width. As suggested by the 

developers, we decided to use a fixed bin width that allowed us to obtain an ideal bin count between 16 and 128 [40]. 

To do so, a preliminary extraction of first order parameters was performed in all patients, calculating using the gray-

level range an optimal bin width of 3. To avoid negative gray values after normalization, potentially affecting first order 

feature extraction, an array shift of 300 (3 standard deviations x 100) was applied. 

Various filters were also used to generate derived images for additional texture feature extraction. In particular, wavelet 

decomposition yielding all possible combinations of High and Low pass filtering in the x and y dimensions; edge 

enhancement Laplacian of Gaussian (LoG) filter emphasizing gray level change at different texture coarseness. Due to 

the applied resampling resolution and lesion size, we chose four LoG sigma values ranging from 2.0 (maximum 

fineness) to 3.5 mm (maximum coarseness) with 0.5 mm increments. 

Regarding feature extraction, to bidimensional shape and first order statistics, commonly referred to as histogram 

analysis, we added higher order class parameters. In detail, the symmetrical Gray Level Co-occurrence Matrix (GLCM) 

characterizes image texture by calculating how often pairs of voxels with specific intensity levels and spatial 

relationship occur in an image, extracting statistical measures from the deriving matrix [63]. Gray Level Size Zone 

Matrix (GLSZM) features quantify gray level zones, defined as the number of connected voxels that share the same 

intensity value [64]. The Gray Level Run Length Matrix (GLRLM) evaluates gray level runs, which are the length of 

consecutive pixels with the same gray level [65]. Neighboring Gray Tone Difference Matrix (NGTDM) features assess 

differences between pixel values and neighbor average gray value within a set distance [66]. Finally, employing Gray 

Level Dependence Matrix (GLDM) derived parameters, the dependency of connected voxels, expressed as their number 

within a set distance, to the center voxel can be determined [67]. 

 

3.2.6 Statistical analysis 

Feature scaling was performed through normalization. Subsequently, in order to remove irrelevant and redundant data, 

which can reduce computation time, improve learning accuracy, and facilitate a better understanding for the learning 

model or data, different supervised feature selection methods were employed [68]. This process and subsequent steps in 

our machine learning pipeline were performed on a freely available data mining software (Weka v3.8) [69]. To balance 
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data dimensionality reduction and loss of information, we tested eight feature selection method belonging to three 

different families: 

1. Embedded classifier methods, both ranking attribute worth with the OneR (1R) algorithm and C4.5 decision 

tree, and selecting the best feature subset for C4.5 decision tree and Random Tree algorithms [34]; 

2. Feature ranking methods using a direct Pearson’s correlation and a ReliefF Evaluator, a filter-method approach 

sensitive to feature interactions [70]; 

3. Subset feature search selection method, which evaluates attribute subset worth considering both feature 

predictive ability and redundancy [70]. 

Absolute agreement intra-class correlation coefficient (ICC) values were calculated for the selected texture features 

using SPSS version 17. 

A k-nearest neighbors (k-NN) classifier was employed to predict macroadenoma proliferation index class. It represents 

a non-parametric, lazy learning algorithm, not making any assumption on the underlying data distribution and not using 

training data points to do generalization, deferring computation until classification [45]. We utilized a k = 3, linear 

nearest neighbor search with Euclidean distance function and no distance weighting. 

Algorithm validation was performed with a train-test approach, randomly splitting the patients in training (60%) and 

test (40%) groups. Feature selection and model training were performed on the first while the latter was employed for 

classifier validation and calculation of accuracy metrics. 

Our radiomics workflow pipeline is illustrated in Figure 3.2. 

 

 

Fig. 3.2. Radiomic workflow pipeline. Manual segmentation of the lesions was performed on coronal T2-weighted 

images using a bidimensional polygonal ROI. Image pre-processing included resampling of all images and 
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corresponding ROI masks to a 2x2x2 mm resolution, discretization and normalization of voxel gray levels. Feature 

extraction (histogram and texture analysis) was performed on both native and filtered images. Subsequently, in order to 

remove irrelevant and redundant data, different supervised feature selection methods were employed. A k-NN classifier 

was employed to predict macroadenoma proliferation index class with a train-test approach. 

 

3.3 Results 

 

3.3.1 Subjects and pathological data 

According to inclusion and exclusion criteria, the final population consisted of 89 patients (51 males and 38 females; 

mean age 52,17±1 years; range, 16 – 80). As stated above, they were divided in training (n = 53) and test (n = 36) 

groups. 

Of the included lesions, 25 were functioning adenomas (5 ACTH, 8 GH, 5 GH/PRL, 6 PRL and 1 TSH secreting) and 

64 non-functioning. Concerning tumor location, 13 were purely intrasellar, 40 presented suprasellar infradiaphragmatic 

extension, while 36 involved the supradiaphragmatic space (Table 3.1). 

 

Table 3.1. Patient population clinical data. 

Characteristic Low ki-67 LI High ki-67 LI 

No. of patients 59 30 

Age (mean) (yr) 54,8 47,6 

Sex M (No.) (%) 

        F (No.) (%) 

35 (59.3%) 

24 (40.6%)  

16 (53.3%) 

14 (46.7%) 

Tumor type F (12)   

NF (47) 

F (13)  

NF (17) 

   

MRI availability (No.)   

3 T 14 7 

1.5 T 45 23 

 

LI = labelling index; F = functioning macroadenomas; NF = non-functioning macroadenomas. 

 

Surgical treatment was performed via “standard” endoscopic endonasal approach in 79 cases, with a transtuberculum 

transplanum “extended” approach in the remaining. Overall gross total removal was obtained in 74 cases with a subtotal 

removal in the other 15 patients. 
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In regard to pathological features, we identified 59 lesions (12 functioning and 47 non-functioning tumors) whose ki-67 

was lesser than 3% (low proliferation index), whilst in 30 cases (13 functioning and 17 non-functioning lesions) it 

resulted equal to or greater than 3% (high proliferative index)[71]. 

The training group included 20 high proliferation and 33 low proliferation index patients, while the test one included 

respectively 10 and 26 patients for each class. 

 

3.3.2 Image analysis 

A total of 1128 features was extracted from each patient, represented on the correlation clustermap shown in Figure 3.3. 

 

 

Fig. 3.3. Feature correlation matrix represented as a hierarchically-clustered heatmap. 

 

Of the 12 subsets derived from feature selection (feature number range = 1-6), the best performing one was constituted 

by the 4 highest-correlating parameters at Pearson’s test. They were: kurtosis derived from the filtered LoG (sigma = 

3.5), Zone Variance from both the GLSZM of the original image and after low-high pass wavelet transform, and Large 

Area Emphasis from the GLSZM after low-high pass wavelet transform. Their ICC values were respectively 0.87, 0.97, 

0.93 and 0.95, indicating very good reproducibility [72]. Figures 3.4 and 3.5 present univariate and pairwise feature 

distribution for this data subset in our population. 
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Fig. 3.4. Box plot of the distribution for each feature of the selected subset in relation to the proliferation index class. 

 

 

 

Fig. 3.5. Pairwise bivariate distribution with regression lines for the selected feature subset in relation to the 

proliferation index class. 

 

The k-NN overall accuracy was 91.67% (33/36) of correctly classified patients. Other evaluation metrics are reported in 

table 2, derived from the confusion matrix in table 3. Among these, some accuracy measures more commonly used in 

machine learning but less in other fields included: 

- F-score, the harmonic average of the precision (also Positive Predictive Value) and recall (also Sensitivity) 

ranging from 0 to 1 (perfect accuracy), which in our case was 0.92; 
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- Matthews Correlation Coefficient, a measure of the quality of binary classifications in machine learning (+1 

representing a perfect prediction, 0 an average random prediction and -1 and inverse prediction), was 0.78; 

- the area under the Precision-Recall Curve representing an alternative to the area under the Receiver Operator 

Characteristics curve that is considered more informative for imbalanced classes. A high area under the curve, 

0.88 in our case, represents both high recall and high precision. 

 

Table 3.2. k-NN accuracy metrics weighted average and by class. 

Class Sensitivity Specificity Precision MCC F-score ROC Area PRC Area 

Low ki-67 LI 0,96 0,80 0,93 0.79 0.94 0,87 0,91 

High ki-67 LI 0,80 0,96 0,89 0.79 0.84 0,87 0,79 

WA 0,92 0,86 0,92 0.79 0.92 0,87 0,88 

LI = labelling index; WA = weighted average; MCC = Matthews Correlation Coefficient; ROC = Receiver Operator 
Curve; PRC = Precision Recall Curve. 
 

 

Table 3.3. Confusion matrix for the test group. 

  Actual class 

  Low ki-67 LI High ki-67 LI 

Pr
ed

ic
te

d 
cl

as
s Low ki-67 LI 25 1 

High ki-67 LI 2 8 

LI = labelling index. 
 

 

3.4 Discussion 

In the previous edition of the WHO Classification of Tumors of the Pituitary Gland (2004), pituitary neuroendocrine 

tumors were divided into typical adenoma, atypical adenoma, and carcinoma. Atypical adenomas were identified by an 

elevated mitotic index and ki-67-labeling index ³ 3%, suggestive of aggressive clinical behavior. Using this 

classification, atypical adenomas incidence was relatively variable and lacking valid and reliable prognostic correlations 

[73]. Therefore, Trouillas and colleagues proposed a new clinicopathological classification using MRI invasiveness 

signs (cavernous and/or sphenoid sinus involvement), immunocytochemistry and proliferative markers, labeling 

adenomas according to size, type and grade (grade 1a: non-invasive, 1b: non-invasive and proliferative, 2a: invasive, 
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2b: invasive and proliferative, and 3: metastatic) [50]. Along this line, the fourth WHO classification edition (2017) 

emphasizes pituitary adenoma histopathological aspects and molecular genetics, abandons the term “atypical” and 

strongly recommends an accurate assessment of tumor subtyping, proliferative potential and clinical parameters such as 

tumor invasion for consideration of aggressive adenomas [74, 75]. However, it does not provide any hint to correlate 

these elements to define pituitary adenomas subtypes [76]. 

In this setting, artificial intelligence could contribute to better allocate individual cases in relation to aggressiveness. 

Machine learning applications have proved promising in recent published papers, providing insights into how predictive 

modeling can improve patient perioperative management. Hollon and colleagues reported an accuracy of 87% in 

prediction of early postoperative outcomes in a retrospective cohort of 400 consecutive pituitary adenoma patients [77]. 

At the same time, Staartjes et al. demonstrated the usefulness of deep learning to preoperatively predict gross-total 

resection likelihood in 140 patients, reporting a 91% accuracy [78]. Furthermore, using radiomics, MRI proved accurate 

in predicting non-functioning pituitary adenomas subtypes [79] and cavernous sinus invasion [80]. 

To our knowledge, this is the first study investigating proliferative index prediction using a radiomics analysis, possibly 

affecting surgical approach and postoperative management. Interestingly, MRI had already proved promising in 

proliferative index prediction, using diffusion weighted imaging. Indeed, a strong correlation of ADC values and ki-67 

has been recently reported [81]. Our study demonstrates that data mining from non-diffusion-weighted sequences can 

provide similar results. 

A frequent limitation of radiomic machine learning studies is applicability across different sites, varying scanner 

vendors and field intensity. We chose to analyze images acquired on both 1.5 and 3 T scanners by different vendors, 

suggesting that our results could more easily be confirmed using exams from different Institutions/equipment. 

Obviously, this approach requires accurate pre-processing of images to reduce scanner-induced variability. 

Another recurring issue in radiomics and machine learning applications is optimal feature number choice. It depends on 

both sample size and algorithm employed [82]. As texture analysis often yields very large datasets, data dimensionality 

reduction methods are necessary to select optimal subsets for the proposed classification problem. As error distribution 

usually cannot be known prior to classification, it is best to test a wider range of feature-set sizes derived from different 

selection methods. In our case, when feature selection output was represented by a ranking, a range of 4-6 parameters 

was used to create distinct sets. Among these, the 4-feature set ranked by direct correlation with high Ki-67 expression 

proved most effective in combination with k-NN. 

Recently, a growing interest has been shown for deep learning applications in medical imaging [83]. Their complex 

technical aspects are surely more fascinating than simpler machine learning algorithms such as the k-NN we employed. 

On the other hand, deep learning presents its own sets of issues, such as the “black box” nature of its feature extraction 
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and selection as well as decision process, limiting software assumption correctness assessment and subsequent wide 

scale applicability. Furthermore, data required for training such networks is exponentially larger and computational time 

is also increased compared to post-processing pipelines such as the one we used. For these reasons, it would be more 

correct to start by using simpler, less resource-intensive machine learning methods, reserving more complex approaches 

in case satisfactory results are not obtainable by other means. 

This study has some limitations which have to be pointed out. A further study on a more numerous population is 

necessary to further validate and possibly expand these results. Only T2 weighted images were used as contrast 

enhanced sequences were not taken into consideration due to the presence of both Gradient Echo and Spin Echo 

sequences; DWI was not performed for all lesions. However, obtaining valuable data without contrast agent 

administration could represent an added value. Finally, while very good, feature reproducibility was only tested after 

their selection on a subset of patients. 

Obviously, proliferative index is only one of many aspects to be taken into consideration. However, with the proposed 

approach, from a T2-weighted sequence it might be possible to obtain data concerning size, invasiveness and 

proliferative index, as well as information on secretory activity [37] and on collagen content [84], useful for predicting 

tumor consistency. Regarding the last, a recent study by Zeynalova [85] employed a Neural Network on data extracted 

from 55 pituitary adenoma patients to assess, with good results (72.5% accuracy). It is interesting to note that only T2 

images were employed, as done in our study. T2-weighted MR images also proved effective in predicting response to 

somatostatin analogues in patients with acromegaly and GH-secreting pituitary macroadenoma using a radiomic 

machine learning approach [86, 87]. 

For this reason, a possible future application of artificial intelligence in the study of macroadenomas could derive from 

consideration, in addition to data originating from advanced image analysis (intensity, texture, shape and wavelet), of 

clinical data, immunohistotype, proliferative indices and invasiveness parameters (cavernous sinuses, sphenoid sinus), 

also evaluating other omics such as proteomics and genomics, to improve lesion classification and disease treatment 

choice. 

 

3.5 Conclusion 

We analyzed pituitary adenoma proliferative index class preoperative prediction, based on T2-weighted MR imaging. 

Our findings might aid the surgical strategy making a more accurate preoperative lesion classification and allow for a 

more focused and cost-effective follow up and long-term management. 
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4. Pituitary adenoma consistency 

 

4.1 Introduction 

Pituitary adenomas are frequent tumors of the pituitary gland. Although most pituitary macroadenomas have a soft 

consistency, some are rather fibrous and therefore more challenging to remove by transsphenoidal adenomectomy. 

Indeed, tumor consistency has been reported as one of the principal determinants of transsphenoidal surgery success 

rate [88]. For this reason, the ability to preoperatively assess adenoma consistency could improve surgical planning and 

reduce complication rate and risk of residual tumor presence [89].  

Radiomics, consisting of conversion of images into mineable data and subsequent analysis for decision support, has 

been gaining attention in recent years [13]. In particular, texture analysis is a post-processing technique allowing for 

quantitative description of pixel gray level heterogeneity. More recently, texture analysis-derived features have been 

used in association with data mining and machine learning algorithms, aiding in the interpretation of a large amount of 

information produced. Machine learning (ML) is the branch of artificial intelligence including algorithms capable of 

modeling themselves and improving in accuracy by analyzing datasets, without prior explicit programming [53]. It 

leads to the creation of predictive models that are able, among other tasks, to solve classification problems. The 

usefulness of the radiomic approach is being assessed in different fields of radiology [56, 58, 90–92]. 

Our aim was to assess the accuracy of a ML model trained on radiomic data mined from MRI exams to predict pituitary 

macroadenoma surgical consistency prior to an endoscopic endonasal procedure. 

 

4.2 Methods and materials 

 

4.2.1 Patient population 

This retrospective study was conducted in accordance with the 1964 Helsinki Declaration and its later amendments. The 

local Institutional Review Board gave its approval and waived the need for informed consent. We reviewed all patients 

referred to our Institution for endoscopic endonasal pituitary adenoma removal (January 2013-December 2017). Those 

with history of previous treatment for pituitary adenoma (radiation or medical therapy) at the time of MRI, lesions 

smaller than 10 mm, extensively necrotic or hemorrhagic areas or significant artifacts on the images used for the 

analysis were excluded. 

 

4.2.2.Consistency assessment 
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All patients were operated on by two neurosurgeons with over 10 years of experience in a third level referral center in 

the field of pituitary surgery [93]. Tumor consistency, classified as soft or fibrous, was assessed in blinded doublecheck 

by the two surgeons according to the lesions’ inner surgical features. In detail, adenomas easily removable with 

conventional maneuvers of curettage and suction were defined as soft; more resistant ones, difficult to remove and thus 

requiring more complex maneuvers, such as extracapsular dissection, were classified as fibrous [59, 94–96]. 

 

4.2.3 Image acquisition 

All patients underwent MRI exams either on a 1.5 (Gyroscan Intera, Philips, Eindhoven, The Netherlands) or 3 Tesla 

MR scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany). The imaging protocol always included 

a coronal T2-weighted (T2-w) Turbo Spin Echo sequence whose detailed parameters are reported in table 4.1. 

 

Table 4.1. Coronal T2-weighted Turbo Spin Echo sequence parameters for 1.5 and 3 Tesla scanners. 

 TR TE FOV matrix thk ETL Slice gap Acquisition time 

1.5 Tesla 2600 ms 89 ms 180x180 mm 288x288 3 mm 17 no gap 2 min 17 s 

3 Tesla 3000 ms 98 ms 200x200 mm 384x384 3 mm 18 no gap 3 min 22 s 

TR: Repetition Time; TE: Echo Time; FOV: Field of View; thk: slice thickness; ETL: echo train length. 

 

 

4.2.4 Handcrafted radiomics 

Adenomas were manually annotated by a neuroradiologist (8 years of experience) by placing a 2D polygonal region of 

interest (ROI) on the coronal slice of maximum lesion extension on a freely available segmentation software (ITKSnap 

v3.8.0) (Figure 4.1). Two other readers (both > 5 years’ experience) also performed lesion segmentation on all patients, 

blinded to the first neuroradiologist’s ROI placement, to perform radiomic feature stability testing. 
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Fig. 4.1. Pituitary macroadenoma segmentation example on coronal T2-weighted (A), showing hand-drawn ROI 

placement (B). 

 

A freely available, well-established and open-source Python software platform was used for image pre-processing and 

radiomic parameter extraction (Pyradiomics, v2.2.0). First of all, images and ROIs were resampled to a 2x2x2 mm 

isotropic voxel, as required for further pre-processing (i.e., correct use of image filters). All voxel intensity values were 

also normalized by subtracting the mean intensity and dividing by the standard deviation and discretized by using a 

fixed bin width (=3). Filtered images were also employed for feature extraction in addition to the pre-processed original 

T2-w ones. In particular, a Laplacian of Gaussian filter, with sigma values ranging from 2.0 (most fine texture) to 3.5 

(most coarse) in 0.5 increments, and all available combinations of wavelet decomposition high and low-pass filtering in 

the x, y and z dimensions. While 2D ROIs were drawn, we still chose to employ a 3-dimensional wavelet 

decomposition as after resampling the software will detect an ROI z-axis value >1. This is not an issue for the analysis 

as we excluded shape features and the following feature selection steps will remove all redundant parameters that could 

have been extracted from similar wavelet decomposition-derived images. 

 

4.2.5 Data Mining and Machine Learning 

Initial assessment and processing of the extracted data was performed on Python in particular using the numpy, pandas 

and scikit-learn packages. First of all, the intraclass correlation coefficient (ICC) was calculated for each parameter as 

extracted using ROIs from the three readers. A two-way, absolute agreement and single rater ICC was employed and 

only features with values ≥0.75 were considered stable. Non-informative, low variance (variance ≤0.1) features were 

also excluded from the dataset. Then, a pairwise correlation matrix was calculated for these in order to remove all 

features with an intercorrelation ≥0.8. As we expect an unbalanced dataset due to the relative rarity of fibrous adenomas 

compared to soft ones, the Synthetic Minority Oversampling Technique (SMOTE) was employed [42]. Then, 80% of 

the data was used for hyperparameter tuning via stratified 5-fold cross-validation while a 20% hold-out set was 
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employed for its testing on unseen data. In detail, the following steps were exclusively performed on the first set. A 

normalization scaler was calculated to remove biases due to feature scale and was later applied to the hold-out test set. 

Finally, recursive feature elimination (RFE), employing a logistic regression algorithm and stratified 5-fold cross-

validation, was used to select the better performing feature subset. 

The resulting data was used to train an ensemble learning meta-algorithm, the Extra Trees Classifier (ET). These often 

demonstrate good performance on radiomic medical image data [43]. Its performance for consistency prediction was 

finally assessed on the test set. 

Accuracy metrics were obtained using the scikit-learn package and further analyzed on the R software (R for 

Unix/Linux, version 3.4.4, the R Foundation for Statistical Computing, 2014). In particular, DeLong’s test (pROC 

package) was used to obtain 95% confidence intervals (95%CI) of the area under the Receiver Operating Characteristic 

curve (AUC) and the confusion matrix function (caret package) those of the classifier’s accuracy and compare its 

performance to the no information rate. 

The described radiomics workflow pipeline is illustrated in Figure 4.2. 

 

Fig. 4.2. Radiomics workflow pipeline. 

 

4.3 Results 

According to selection’s criteria, 89 patients were included in this study; 51 were males and 38 females, with mean age 

52.17 ± 14.64 years (range 16-80). Average lesion size was 25 ± 8 mm (range 8-46 mm). The pituitary lesions were 
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classified as soft in 68 patients and fibrous in the remaining 21. In detail, 19 soft (8 ACTH, 7 GH, 4 PRL) and 6 fibrous 

(2 ACTH, 2 PRL, 1 GH, 1 TSH) were functioning (25/89, 28% in total). In none of the cases there was discordance 

among the neurosurgeons in lesion classification. Patient population clinical data are presented in Table 4.2. 

 

Table 4.2. Patient population clinical data. 

 Tumor consistency 

Total (n = 89) Soft (n = 68) Fibrous (n = 21) 

Age (mean) (year) 52.2 ± 14.6 53.2 ± 15.5 54.6 ± 14.6 

Sex 

Males (n) (%) 

Females (n) (%) 

 

51 (57%) 

38 (43%) 

 

39 (57%) 

29 (43%) 

 

12 (57%) 

9 (43%) 

Tumor type 

Functioning (n) (%) 

Non-functioning (n) (%) 

 

25 (28%) 

64 (72%) 

 

19 (28%) 

49 (72%) 

 

6 (21%) 

15 (78%) 

 

 

A total of 1118 texture features were extracted, including first and higher order texture features from the original and 

filtered images. The correlation cluster map of the extracted features is shown in Figure 4.3. Their detailed description 

is available in the online Pyradiomics documentation (https://pyradiomics.readthedocs.io/en/latest/features.html). After 

feature stability analysis, 741 were retained for the subsequent steps. Of these, 4 had low variance while 625 were 

highly-intercorrelated. RFE then identified a 14-feature subset as most accurate (Figure 4.4), whose features are listed 

below: 

- Original firstorder Energy 

- Original firstorder Kurtosis 

- Original firstorder Skewness 

- Log-sigma-3-0-mm-3D firstorder Skewness 

- Log-sigma-3-0-mm-3D glcm Imc1 

- Log-sigma-3-0-mm-3D glszm SizeZoneNonUniformityNormalized 

- Log-sigma-3-5-mm-3D firstorder Minimum 

- Wavelet-LHL firstorder InterquartileRange 

- Wavelet-LHL gldm DependenceVariance 

- Wavelet-LHH firstorder 10Percentile 

- Wavelet-LHH firstorder Maximum 
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- Wavelet-HLH firstorder Maximum 

- Wavelet-HLH firstorder Mean 

- Wavelet-HLH firstorder Minimum. 

 

 

Fig. 4.3. Hierarchically clustered heatmap of the feature correlation matrix. Features with an intercorrelation above the 

selected threshold (³ 0.8) were removed from the dataset. 

 

 

 

Fig. 4.4. Plot of the feature selection process by recursive feature elimination. The x-axis contains the total number of 

features, from which one is removed at each iteration. The y-axis contains the average cross-validation score for each 

feature total. 
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The ET model obtained an overall accuracy, in terms of correctly classified lesions, of 86% (±10%) in the training set 

cross-validation. The classifier tuned parameters are reported in the supplementary materials. In the test set, the 

accuracy was of 93% (95%CI = 77-99%), sensitivity of 100% and specificity of 87%. The AUC was of 0.99 (95%CI = 

0.97-1.00) (Figure 4.5), equal to the area under the Precision-Recall curve (0.99), often used in binary ML 

classifications (Fig AUC). The classifier was significantly better (p = 8e-6) than the no information rate. The confusion 

matrix and detailed accuracy metrics are shown in Tables 4.3 and 4.4. 

 

 

Fig. 4.5. Receiver Operating Characteristics curve of the Extra Trees Classifier accuracy. 

 

 

Table 4.3. Confusion matrix for the test group. 

 Predicted class 

Soft Fibrous 

A
ct

ua
l c

la
ss

 Soft 13 2 

Fibrous 0 13 

 

 

Table 4.4. Extra Trees Classifier accuracy metrics 

Class Recall Precision F-score AUC AUPRC 
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Soft 0.87 1.00 0.93 0.99 0.99 

Fibrous 1.00 0.87 0.93 0.99 0.99 

WAvg 0.94 0.93 0.93 0.99 0.99 

 

WAvg = weighted average, AUC = Area under the Receiver Operating Characteristic curve; AUPRC = Area under the 

Precision-Recall Curve. 

 

 

4.4 Discussion 

Preoperative assessment of pituitary macroadenoma consistency is useful for planning surgical approach and reducing 

residuals and recurrence’s rate. For this reason, several studies have investigated the correlation between preoperative 

MRI features and tumor hardness. In particular, there are conflicting studies on the value of the relative signal on T2-

weighted MRI and the macroadenoma consistency, with some works demonstrating a positive correlation between low 

signal and hardness [97–100] and other concluding that relative signal intensity values do not correlate [101–104]. 

Indeed besides collagen amount, which mainly correlates with the hardness, other factors such as intratumoral 

hematoma, amyloid, iron, calcification or protein-rich fluid may affect the T2 signal intensity [105]. 

Diffusion weighted imaging ability to predict tumor consistency also showed divergent results, both indicating a 

significant correlation [88, 106] and not [101, 107]. Furthermore, the lower spatial resolution and the presence of 

susceptibility artefacts in the sellar region related to bone and sinus pneumatization limit the use of this technique. 

Finally, in two studies by Romano et al. and Yamamoto et al. contrast-enhanced MRI showed a strong correlation for 

tumor consistency [89, 108]. Perfusion imaging parameters have also been investigated as possible biomarkers of 

pituitary macroadenoma consistency, but no added value was found compared to precontrast T1-weighted images [109]. 

A more interesting advanced technique in this setting is represented by MR elastography. Pituitary adenoma stiffness 

was found to correlate with their consistency and, if it became widely available, could offer additional data to mine with 

a radiomic approach [110, 111]. 

Regarding texture analysis there are only three studies exploring this issue, to the best of our knowledge. In the first, 

Rui et al. explored the value of MRI texture analysis in assessing pituitary macroadenoma consistency, obtaining good 

accuracy values [112]. However, this study was conducted using contrast-enhanced 3D-SPACE images and without a 

ML approach. Fan and colleagues explored this issue in acromegalic patients using ML for radiomic feature selection 

prior to building a nomogram obtaining an AUC of 0.81 [113]. Zeynalova et al also performed an analysis on ML 

preoperative evaluation of pituitary macroadenoma consistency [85]. Their study presented some similarities with our 

own. They also used PyRadiomics for feature extraction from bidimensional ROIs, although they utilized different 
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sigma settings (2, 4 and 6 mm) for the LoG filter and obtained a total of 162 parameters. The lower number of features 

is probably due to their exclusive focus on first order histogram-derived ones. These are more reproducible but convey 

less information on tissue texture compared to higher order parameters. As their in-plane resolution was higher (0.5x0.8 

mm) they were able to use a 1x1 mm resampling size compared to our 2x2 mm. It is interesting to note the use of a very 

narrow bin width value of 0.06, as the number of bins should not exceed 128, following the developer 

recommendations. They also performed a feature robustness assessment with our same ICC threshold, while their inter-

correlation threshold was lower (0.7 vs 0.8). After data dimensionality reduction, they identified 6 informative features 

using the Weka data mining platform and a wrapper-based selector. In our study the entire analysis was conducted 

using the scikit-learn Python package. Some other major differences are represented by the use of cross-validation, 

without further assessment on a separate test set. Their reported accuracy is 72.5%, with an AUC of 0.71. Therefore, 

our algorithm presents a clearly superior performance. This could be in part explained by their use of a Multilayer 

Perceptron neural network, which may not be the best suited algorithm for a small dataset obtained from 55 patients. 

Finally, Zenyalova and colleagues also used collagen amount within the tumor on histopathological examination for 

their reference standard. As consistency information is mainly useful for surgical strategy planning, we believe 

intraoperative consistency assessment represents a more practical and useful reference standard as the final recipient of 

the information should be a neurosurgeon. As the two neurosurgeons involved in our study never had disagreements, 

we also found this assessment to be reproducible.  

By analyzing our confusion matrix, it can be seen that the mistakes made by the classifier were 2 cases of soft lesions 

identified as fibrous. Given the clinical setting of our investigation, this kind of error is somewhat more acceptable than 

a false negative, as it would be more auspicable to sometimes overestimate the difficulty of a surgery rather than the 

opposite. 

In our study, we chose to employ an ET ML algorithm. This belongs to the decision tree ensemble methods, in 

particular constituted by a large number of highly randomized decision trees which are fitted on data sub-samples. Each 

of these outputs a prediction, and a majority vote determines the final outcome. Ensemble learning is based on the 

assumption that a decision by committee made by a large number of weak classifiers will perform better than a single 

algorithm. A sufficient diversification of the random trees included in the ET is guaranteed by random sampling, with 

replacement, of patients from the training dataset (bootstrap aggregation or bagging) and of their available features (n = 

3 in our case). This in turn ensures low correlation of each tree, improving the ET’s overall performance [43]. As the 

dataset lesion classes were imbalanced, SMOTE was employed. This is a known solution to address this issue and has 

demonstrated its value in the setting of medical imaging radiomic ML analysis [42, 114–116]. 
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We have chosen a handcrafted radiomics approach rather than a fully automated deep learning one as this gave us better 

control on the initial data analysis and following ML model construction. Both approaches have been object of 

discussion in current literature as they possess peculiar merits and limitations. It is our belief that a handcrafted analysis 

is more appropriate for relatively smaller datasets as it allows greater involvement of radiologists and better 

understanding of the whole pipeline. Only when extremely large datasets will become available in medical imaging, as 

in other fields, the less time-consuming completely neural network-based approach will be a practical necessity. Until 

then, the value of greater involvement of the radiologist and finer quality control of patient or lesion data outweigh the 

larger amount of time needed to extract medical imaging radiomics. Furthermore, medicine and especially treatments 

are evolving in the direction of precision, patient-tailored therapies. Contrary to the current desire in radiology to 

aggregate as many patients as possible to train ML algorithms, this determines a need to work with ever smaller patient 

subgroups within each pathological entity. Therefore, a future with space for both deep learning software to apply on 

large populations and engineered approaches for more specific tasks can be envisioned. 

Our study has some limitations which have to be acknowledged. As is often the case for ML, future studies on larger 

populations is necessary to confirm and possibly expand our results. The need for oversampling given the unbalanced 

nature of the classes further highlight this necessity but was expected given epidemiological data. Only T2-weighted 

images were used, without investigating the added value of other sequences. However, obtaining valuable data without 

contrast agent administration and streamlining the pipeline to incorporate a single MRI sequence could also represent an 

added value. Furthermore, considering previous works, T2-weighted MRI alone proved effective to provide data 

concerning proliferative index [19], secretory activity [37] and response prediction to somatostatin analogues in patients 

with acromegaly and GH secreting pituitary macroadenoma [86, 87]. 

 

4.5 Conclusion 

The ML model trained on radiomic data extracted from T2-weighted MRI demonstrated a high accuracy in the 

classification of soft and fibrous pituitary macroadenomas. Therefore, this tool could prove valuable in the presurgical 

planning of these patients if further developed and validated on larger datasets. 
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5. Artificial intelligence and pituitary adenomas: a review 

 

5.1 Introduction 

Pituitary adenomas are benign tumors accounting for 15%-20% of all intracranial neoplasms, with an incidence of 80–

90 cases per 100000 population [1, 117]. Microadenomas are defined as tumors < 10 mm in maximum diameter, 

whereas larger adenomas are considered macroadenomas. Their peak age of presentation is between the fourth and 

seventh decades. Almost two-thirds of pituitary adenomas are hormone-secreting, prolactin most commonly, followed 

by growth hormone, corticotropin and thyrotropin, and cause typical hypersecretion syndromes. Non-functioning, small 

intrasellar tumors can be clinically silent and diagnosed only as incidental magnetic resonance findings, while bulky 

pituitary macroadenomas typically present with mass effect signs, such as headache, visual disturbances, and 

hypopituitarism [118, 119]. The 2017 World Health Organization (WHO) classification adopted pituitary 

adenohypophyseal cell lineage as the main principle guiding the classification of adenomas. According to this principle 

we distinguish the acidophilic lineage (in which the involved transcription factor is PIT1), the corticotrope lineage 

(TPIT transcription factor), and the gonadotroph lineage (SF1 transcription factor). Null-cell adenomas (NCAs) are now 

defined as tumors that have no immunohistochemical evidence of cell-type-specific differentiation considering both 

pituitary hormones and transcription factors. Furthermore, in the new WHO classification the term “atypical adenoma” 

has been abandoned and replaced by “high risk adenoma”, in reference to tumors with high proliferation index and 

tendency to invasion. In particular, emphasis is placed on the evaluation of tumor proliferation (mitotic count and Ki-67 

index), tumor invasion, and on special adenomas variants for which clinical behavior has been shown to be more 

aggressive due to their intrinsic histological features: lactotroph adenoma in men, sparsely granulated somatotroph 

adenoma, the silent corticotroph adenoma, the Crooke’s cell adenoma and the plurihormonal PIT1-positive adenoma 

[76]. Magnetic resonance imaging (MRI) is the investigation of choice for a complete evaluation of pituitary adenomas 

[120]. Various parameters regarding the extent, consistency, and contrast enhancement can be analyzed in order to help 

neurosurgeons in planning an appropriate surgical approach and long-term follow-up [107]. 

Attempting to predict invasion (cavernous and/or sphenoid sinus involvement) based on imaging is an important 

challenge. The Knosp classification is one of the more commonly used systems to determine the likelihood of 

cavernous sinus invasion by pituitary macroadenomas, but the highest accuracy of this grading system is observed in 

extreme cases of overt invasion or non-invasion, while sensitivity and specificity are low in intermediate cases [121, 

122]. 

Tumor consistency in pituitary macroadenomas has been known to be one of the main factors that determine the success 

rate of the transsphenoidal approach. The role of MRI in predicting the consistency of pituitary macroadenomas is 
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controversial. Several studies suggested that relative signal intensity or signal intensity ratio on T2-weighted MRI 

correlates with the tumor consistency, while some others concluded that they have no predictive value [97, 103, 105]. A 

similar controversy has been reported in several studies which investigated the usefulness of diffusion-weighted 

imaging in tumor consistency prediction [101, 106, 123]. 

Considering the above, it is still difficult to achieve an early identification of clinical and radiological features 

suggestive of an aggressive behavior, characterized by rapid growth, local invasion, and high ki-67 proliferation index. 

In this setting, artificial intelligence (AI) has proved promising in recently published papers. Machine learning (ML) is 

a subfield of AI that employs algorithms to allow computers to learn directly from the data and subsequently perform 

predictions without explicit prior programming. The potential impact of ML on medicine, and particularly medical 

imaging, is relative to its ability to analyze large datasets including gray level textural features that humans do not 

consciously assess. Unlike classical rule-based algorithms, machine learning can take advantage of increased exposure 

to new data and learn over time [124]. ML techniques can be further divided into supervised, unsupervised learning and 

reinforcement learning [13, 14, 125, 126]. In supervised learning there is a ground truth which is directly used to guide 

the algorithm training process. The goal of the resulting model is usually to learn a general rule that maps inputs to 

outputs and is applicable to new, unseen cases. In unsupervised learning there is no preliminary labeling and therefore 

its goal is to cluster the given inputs based solely on the underlying data structure. Finally, reinforcement learning 

consists of a computer program performing an assigned task in a dynamic environment and consequently receiving 

feedback as a positive or negative reinforcement. To improve algorithm’s performance, these approaches can be 

combined, some examples are semi-supervised, self-supervised and multi-instance learning. 

Deep learning (DL) is an ML approach employing networks inspired by brain’s structure, with a large number of simple 

interconnected units performing complicated tasks. The DL algorithms most applied to medical imaging are 

convolutional neural networks. Lower level information inputs, derived from imaging data transformed in feature 

vectors, form connections to the next level or “layer” of neurons. Each neuron in this second layer can combine the 

inputs from lower level neurons to form a newer, more complex output. As the number of intermediate or hidden layers 

increases, the final output from the highest layer becomes richer and more complex. 

ML tasks are not limited to tumor property prediction but include many possible applications in other medical imaging 

and daily workflow fields, such as image acquisition, segmentation, image quality analytics, automated dose estimation 

and radiology reporting [83, 127, 128]. Despite the high number of recent ML successes, there are still many limitations 

in its clinical use [15, 16, 129, 130]. First of all, an obstacle to AI adoption in the clinical setting is identifiable in its 

limited interpretability, especially true for DL. Clinicians are consequently reluctant to trust and to adopt something 

whose decision process is not fully understood. Secondly, ML research has to deal with issues due to the nature of the 
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health domain, including the lack of large amounts of data, necessary during the training phase, the need for algorithm 

frequent updating and potential model overfitting.  

This review aims to give an overview of the current applications of ML methods in pituitary adenomas evaluation. 

 

5.2 Pretreatment assessment 

Tumor consistency is one of the main factors that determine the success-rate of transsphenoidal adenomectomy. For this 

reason, pre-operative information about tumor consistency would help neurosurgeons in planning the most appropriate 

surgical approach. Zeynalova et al [85] demonstrated the utility of ML-based histogram analysis (from 55 pituitary 

adenoma patients) to predict tumor consistency and compared it with a conventional signal intensity ratio (SIR) 

evaluation. Histogram features were extracted from coronal T2-weighted original, filtered and transformed MRI images 

by manual segmentation. The high dimensionality of the histogram texture features was reduced with reproducibility 

analysis, collinearity analysis and wrapper-based feature selection. They employed the artificial neural network (ANN) 

as ML classifier. The reference-standard was consensual evaluations of neurosurgeons and pathologists. For histogram 

analysis, the ANN correctly classified 72.5% of pituitary macroadenomas with an area under the receiver operating 

characteristic (ROC) curve (AUC) value of 0.710. As for SIR evaluation, accuracy and AUC values were 74.5% and 

0.551, respectively. Considering AUC values, ML-based histogram analysis performed better than SIR evaluation. 

Fan et al [113] demonstrated how a radiomics model can assist neurosurgeons in predicting tumor consistency in 

patients with acromegaly before surgery and facilitate the determination of an appropriate therapeutic approach. 158 

patients (training group n = 100, validation group n = 58) were included in this retrospective study, while 30 were 

enrolled in a prospective multi-center study for model validation. The consistency of the tumor was classified as soft or 

firm according to the neurosurgeon’s evaluation. All patients underwent MRI examination which included T1-, T2- and 

contrast-enhanced T1-weighted sequences in the coronal plane, used for feature extraction. The radiomics features were 

collected based on the regions of interest drawn by an expert neuroradiologist and verified by a second expert. Total 

1561 quantitative features were collected for every sequence. The radiomics features were determined using the elastic 

net feature selection algorithm, and the radiomics signature was constructed. Next, a radiomics model was developed 

using the radiomics signature and clinical characteristics, which were further screened according to the Akaike 

information criterion. Then, 30 patients with acromegaly from three hospitals were enrolled for multicenter validation 

of the model. The prediction accuracy was then evaluated through ROC analyses and associated classification 

measures. The radiomics model constructed in this study showed an AUC of 0.83 and 0.81 in the primary and 

validation cohorts, respectively. In conclusion, this model was convenient to use and could accurately predict the tumor 

consistency in a multicenter prospective validation before surgery. 
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The pre-operative prediction of cavernous sinus (CS) invasion by pituitary adenomas (Knosp grade 2-3) can help 

neurosurgeons in planning the surgical approach, follow-up, and long-term management. Niu et al [80] used a 

radiomics method to predict CS invasion, enrolling 194 patients with Knosp grade 2-3 (training set n = 97; test set n = 

97) and extracting 2553 quantitative imaging texture features from contrast-enhanced T1- and T2-weighted MR images. 

A linear support vector machine (SVM) was used to fit the predictive model, then a nomogram was constructed 

incorporating radiomics signature and clinico-radiological risk factors. Radiomics model yielded an AUC of 0.852 and 

0.826 for the training and test set, respectively. The nomogram yielded an AUC of 0.899 in the training test and 0.871 

in the test set. 

According to the 2017 WHO classification, “high risk” pituitary adenomas are tumors with rapid growth, radiological 

invasion, and high Ki-67 proliferation index. MRI had already proved promising in proliferative index prediction, using 

diffusion-weighted imaging. Indeed, Tamrazi et al [81] performed a retrospective review of diffusion imaging and 

immunohistochemical characteristics of 17 with pituitary macroadenomas and demonstrated an inverse relationship 

between apparent diffusion coefficient values and Ki-67. In this context, machine learning can be effective for the early 

identification of “high risk” adenomas and could allow making a more accurate pre-operative assessment and long-term 

follow-up. Regarding the last, a recent study by Ugga et al [19] employed ML analysis of texture-derived parameters 

from pre-operative coronal T2-weighted MR images. A total of 89 patients that underwent endoscopic endonasal 

procedure were included. Pituitary adenomas were classified in high versus low Ki-67 proliferation index according to 

pathological data. Total 1128 features were extracted, and different supervised feature selection methods were 

employed to select the most informative features. A k-nearest neighbors (k-NN) classifier was used to predict the 

proliferative index, then algorithm validation was performed with a train-test approach. The accuracy of k-NN in the 

test group was 91.67% of correctly classified patients. 

Non-functioning pituitary adenomas are a huge group of adenomas and can be divided in NCAs, oncocytomas and 

gonadotrophic adenomas. Patients with NCAs are more likely to respond to neo-adjuvant radiotherapy, so radiomics 

could play a role in discriminating preoperatively NCAs from other subtypes. Zhang et al [79] enrolled 112 patients 

(training set n = 75; test set n = 37) with non-functioning pituitary adenomas who underwent MR examination. In their 

retrospective study a SVM trained a predictive model that was validated using a ROC analysis on an independent test 

set. Then, a nomogram was constructed incorporating clinical characteristics and the radiomics signature for a more 

individualized predictive model. T1-weighted image features yielded an AUC value of 0.83 and 0.80 for the training 

and test sets, respectively. The nomogram incorporating sex and the T1 radiomics signature yielded good calibration in 

the training and test sets (concordance index of 0.854 and 0.857, respectively). 
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Somatostatin analogues (SAs) response prediction is an essential information in acromegalic patient medical treatment 

in the presence of GH-secreting pituitary adenomas. Indeed, this medical treatment can improve the surgical outcome, 

but it is burdened by high costs. Heck et al [86] showed how quantitative analysis of T2-weighted MR images could 

predict response to SAs in patients with acromegaly. However, they verified that conventional visual T2 intensity 

assessment achieved similar results. This retrospective cohort study included 58 newly diagnosed patients. Parameters 

from the T2 histogram analyses (T2 intensity ratio and T2 homogeneity ratio) were correlated to visually assessed T2 

intensity (hypo-, iso- or hyperintense), baseline characteristics, response to SA treatment, and histological granulation 

pattern (anti-Cam5.2). T2 intensity ratio was lowest in the hypointense tumors and highest in the hyperintense tumors. 

T2 intensity at baseline correlated with reduction in GH (r = -0.67) and IGF-1 (r = -0.36) after primary SA treatment (n 

= 34). The T2 homogeneity ratio correlated with adenoma size reduction (r = -0.45). Sparsely granulated adenomas, 

which are typically associated to resistance to SAs, had a higher T2 intensity than densely or intermediately granulated 

adenomas. In conclusion, using T2 histogram analyses the authors found that high T2 intensity correlated with more 

aggressive adenoma subtypes, larger adenoma size, lower GH and IGF-1 production, and blunted response to an 

octreotide test dose at baseline. Moreover, a better biochemical response to SA therapy was observed in adenomas with 

low T2 intensity. In their retrospective study, Kocak et al [87] demonstrated the potential role of ML-based high-

dimensional quantitative texture analysis (qTA) in predicting SAs response in acromegalic patients with a GH-secreting 

pituitary adenoma. They showed how ML performs better than relative signal intensity (rSI) evaluation or 

immunohistochemical granulation pattern evaluation. Coronal T2-weighted images of 47 patients (24 SA responsive 

and 23 SA resistant patients) were used for qTA and quantitative and qualitative rSI evaluation, while the 

immunohistochemical evaluation was based on the granulation pattern of the adenomas. ML classifiers were k-NN and 

C4.5 algorithm. The reference standard was the biochemical response status (6 months post-therapy). Predictive 

performance of qTA was compared with that of the quantitative and qualitative rSI and immunohistochemical 

evaluation. For the qTA, k-NN correctly classified 85.1% macroadenomas with an AUC of 0.847. The accuracy and 

AUC ranges of the other methods were lower, equal to 57.4/70.2% and 0.575/0.704, respectively. 

Pituitary tumor growth can lead to compression of the anterior visual pathways, leading to visual impairment, which is 

the most common and earliest symptom in this pathology. In their retrospective study Lilja et al [131] demonstrated that 

diffusion Tensor imaging (DTI) and a prediction model may be an additional diagnostic tool that provides objective 

data about visual pathway injury, guiding treatment decisions. Total 23 patients with pituitary adenomas and 20 healthy 

patients underwent a complete neuro-ophthalmological examination and an MRI study, which included 3D T1-weighted 

and DTI sequences. A prediction model using logistic regression was constructed to test the capability of DTI 

parameters to correctly classify a subject as a patient (before surgery) or a control. Total 12 features quantifying mean 
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DTI parameters from the optic tract regions were included. Based on the axial diffusivity and fractional anisotropy, the 

prediction model could separate patients from controls with high sensitivity. The prediction model correctly classified 

all patients with visual field defects (sensitivity = 1.0), 9 of 12 patients without visual field defects (sensitivity = 0.75), 

and 17 of 20 controls (specificity = 0.85). 

 

5.3 Neurosurgical outcome prediction 

Gross total resection (GTR) is the main surgical goal in transsphenoidal surgery for most pituitary adenomas. Predictive 

analytics for GTR may help in surgical decision-making, especially in intermediate cases (Knops grade 2-3A). In their 

retrospective study, Staartjes et al [78] investigated the potential value of deep neural network for predicting GTR in 

comparison with the Knops classification and logistic regression. They enrolled a total of 140 patients who underwent 

endoscopic transsphenoidal surgery and trained a deep neural network to predict GTR from 16 preoperatively available 

neuro-radiological and procedural variables. Their DL model (AUC = 0.96; accuracy = 91%; sensitivity = 94%; 

specificity = 89%) outperformed both the Knosp classification (AUC = 0.87; accuracy = 81%; sensitivity = 92%; 

specificity = 70%) and logistic regression (AUC = 0.86; accuracy = 82%; sensitivity = 81%; specificity = 83%). 

In their retrospective study, Liu et al [132] aimed to develop machine learning-based predictive models to evaluate 

Cushing disease recurrence after initial transsphenoidal surgery and to investigate their performance. Seventeen 

radiomic features including tumor volume computed from pre-operative MRI (contrast-enhanced T1-weighted MRI) 

and other pre/post-operative clinical variables were evaluated. Five supervised ML algorithms, including decision tree, 

gradient boosting decision tree, random forest (RF), adaptive boosting, and extreme gradient boost and 2 conventional 

models (Logistic regression, Naïve Bayes) were applied. Models were evaluated based on their AUC. The study 

demonstrated that ML-based predictive models for neurosurgical outcomes performed well, better than some 

conventional models such as logistic regression. Using 17 variables, several ML-based predictive models for recurrence 

were developed, and most of them (4/5) maintained high performance, with AUCs ranging from 0.694 to 0.781 which 

were much higher than that of conventional statistics. The best performance (AUC = 0.781) was obtained introducing 8 

variables to RF algorithm, which was much better than that of logistic regression (AUC = 0.684) and that of using only 

postoperative morning serum cortisol (AUC = 0.635). According to the feature selection algorithms, the top predictors 

were age, postoperative serum cortisol, and postoperative ACTH. 

Cerebrospinal fluid (CSF) fistulas remain a major complication of transnasal transsphenoidal surgery for pituitary 

adenoma. Staartjes et al [133] developed a neural network–based model with the aim of classifying pituitary surgeries 

in having high versus low-risk of CSF leak. From a prospective registry, 154 patients who underwent endoscopic 

transnasal transsphenoidal surgery for pituitary adenoma were identified and underwent an MRI study. Moreover, risk 
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factors for intraoperative CSF leaks were identified using conventional statistical methods. Selected features included 

both imaging features from inter-carotid distances and other clinical pre/post-operative variables. The authors built a 

predictive model for intraoperative CSF leaks based on a deep multilayer perceptron with 5 hidden layers. The deep 

neural network–based prediction model could identify patients at high risk for intraoperative CSF leak. It correctly 

classified 88% of patients in the test set, with an AUC of 0.84. Sensitivity and specificity were high, of 83% and 89% 

respectively. The positive predictive value was 71%, negative predictive value was 94%, and F1 score was 0.77. 

 

5.4 Conclusion 

We reviewed a set of articles related to ML applications in pituitary adenomas. These studies showed that ML has a 

certain potential to improve the diagnostic performance of MRI in pre-treatment assessment and neurosurgical outcome 

prediction. In current studies there is not a standardized procedure, ML methodologies vary a lot, different types of 

classifiers are applied and only a few models are validated on an external set. The major limits of these studies are the 

replicability and generalizability. Publicly available datasets are needed, and clinical applicability still requires more 

robust validation across different sites, scanner vendors and field intensity. However, the research in the years is 

growing rapidly and ML software can be a potential power to facilitate better clinical decision making in pituitary 

tumor patients. 
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6. Conclusions and Perspectives 

The presented studies demonstrate the promising role of radiomics in the preoperative evaluation of patients with 

pituitary macroadenomas. In fact, using radiomic features extracted from T2-weighted images, and analyzing them with 

a machine learning approach, we obtained high accuracy values in predicting functional status, proliferative index and 

tumor consistency. Although further studies are needed to validate the reported results, these preliminary studies lay the 

foundations for the practical use of radiomics in a clinical setting, which could influence patient management toward 

precision medicine. 
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