912 research outputs found

    AffectEcho: Speaker Independent and Language-Agnostic Emotion and Affect Transfer for Speech Synthesis

    Full text link
    Affect is an emotional characteristic encompassing valence, arousal, and intensity, and is a crucial attribute for enabling authentic conversations. While existing text-to-speech (TTS) and speech-to-speech systems rely on strength embedding vectors and global style tokens to capture emotions, these models represent emotions as a component of style or represent them in discrete categories. We propose AffectEcho, an emotion translation model, that uses a Vector Quantized codebook to model emotions within a quantized space featuring five levels of affect intensity to capture complex nuances and subtle differences in the same emotion. The quantized emotional embeddings are implicitly derived from spoken speech samples, eliminating the need for one-hot vectors or explicit strength embeddings. Experimental results demonstrate the effectiveness of our approach in controlling the emotions of generated speech while preserving identity, style, and emotional cadence unique to each speaker. We showcase the language-independent emotion modeling capability of the quantized emotional embeddings learned from a bilingual (English and Chinese) speech corpus with an emotion transfer task from a reference speech to a target speech. We achieve state-of-art results on both qualitative and quantitative metrics

    Cross-Lingual Voice Conversion with Non-Parallel Data

    Get PDF
    In this project a Phonetic Posteriorgram (PPG) based Voice Conversion system is implemented. The main goal is to perform and evaluate conversions of singing voice. The cross-gender and cross-lingual scenarios are considered. Additionally, the use of spectral envelope based MFCC and pseudo-singing dataset for ASR training are proposed in order to improve the performance of the system in the singing context

    Real time speaker recognition using MFCC and VQ

    Get PDF
    Speaker Recognition is a process of automatically recognizing who is speaking on the basis of the individual information included in speech waves. Speaker Recognition is one of the most useful biometric recognition techniques in this world where insecurity is a major threat. Many organizations like banks, institutions, industries etc are currently using this technology for providing greater security to their vast databases.Speaker Recognition mainly involves two modules namely feature extraction and feature matching. Feature extraction is the process that extracts a small amount of data from the speaker’s voice signal that can later be used to represent that speaker. Feature matching involves the actual procedure to identify the unknown speaker by comparing the extracted features from his/her voice input with the ones that are already stored in our speech database.In feature extraction we find the Mel Frequency Cepstrum Coefficients, which are based on the known variation of the human ear’s critical bandwidths with frequency and these, are vector quantized using LBG algorithm resulting in the speaker specific codebook. In feature matching we find the VQ distortion between the input utterance of an unknown speaker and the codebooks stored in our database. Based on this VQ distortion we decide whether to accept/reject the unknown speaker’s identity. The system I implemented in my work is 80% accurate in recognizing the correct speaker.In second phase we implement on the acoustic of Real Time speaker ecognition using mfcc and vq on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations

    Text-Independent Voice Conversion

    Get PDF
    This thesis deals with text-independent solutions for voice conversion. It first introduces the use of vocal tract length normalization (VTLN) for voice conversion. The presented variants of VTLN allow for easily changing speaker characteristics by means of a few trainable parameters. Furthermore, it is shown how VTLN can be expressed in time domain strongly reducing the computational costs while keeping a high speech quality. The second text-independent voice conversion paradigm is residual prediction. In particular, two proposed techniques, residual smoothing and the application of unit selection, result in essential improvement of both speech quality and voice similarity. In order to apply the well-studied linear transformation paradigm to text-independent voice conversion, two text-independent speech alignment techniques are introduced. One is based on automatic segmentation and mapping of artificial phonetic classes and the other is a completely data-driven approach with unit selection. The latter achieves a performance very similar to the conventional text-dependent approach in terms of speech quality and similarity. It is also successfully applied to cross-language voice conversion. The investigations of this thesis are based on several corpora of three different languages, i.e., English, Spanish, and German. Results are also presented from the multilingual voice conversion evaluation in the framework of the international speech-to-speech translation project TC-Star

    A Hybrid voice/text electronic mail system: an application of the integrated services digital network

    Get PDF
    The objective of this thesis is to present a useful application for the Integrated Services Digital Network (ISDN) that is expected to one day replace the analog phone system in use today. ISDN itself and its continuing evolution are detailed. The system developed as a part of this thesis involved the creation of an inexpensive phone terminal that can serve as an ISDN terminal and also as a bridge to a Local Area Network (LAN). The phone terminal provides a hybrid electronic mail system that allows the attachment of speech to text within a message. Messages created with this phone terminal could theoretically be sent locally using the LAN interface and globally using ISDN to other users with either phone terminals or multimedia personal computers. For this project, the two phone terminals created were interconnected via an Ethernet and using an 80486 PC to act as a Central Office System. This Central Office System provides speech/message storage for the phone terminals. It makes use of speech compression techniques to minimize the storage requirements. The speech compression techniques used as well as the field of speech coding in general are discussed

    Discussion On Effective Restoration Of Oral Speech Using Voice Conversion Techniques Based On Gaussian Mixture Modeling

    Get PDF
    Today\u27s world consists of many ways to communicate information. One of the most effective ways to communicate is through the use of speech. Unfortunately many lose the ability to converse. This in turn leads to a large negative psychological impact. In addition, skills such as lecturing and singing must now be restored via other methods. The usage of text-to-speech synthesis has been a popular resolution of restoring the capability to use oral speech. Text to speech synthesizers convert text into speech. Although text to speech systems are useful, they only allow for few default voice selections that do not represent that of the user. In order to achieve total restoration, voice conversion must be introduced. Voice conversion is a method that adjusts a source voice to sound like a target voice. Voice conversion consists of a training and converting process. The training process is conducted by composing a speech corpus to be spoken by both source and target voice. The speech corpus should encompass a variety of speech sounds. Once training is finished, the conversion function is employed to transform the source voice into the target voice. Effectively, voice conversion allows for a speaker to sound like any other person. Therefore, voice conversion can be applied to alter the voice output of a text to speech system to produce the target voice. The thesis investigates how one approach, specifically the usage of voice conversion using Gaussian mixture modeling, can be applied to alter the voice output of a text to speech synthesis system. Researchers found that acceptable results can be obtained from using these methods. Although voice conversion and text to speech synthesis are effective in restoring voice, a sample of the speaker before voice loss must be used during the training process. Therefore it is vital that voice samples are made to combat voice loss
    corecore