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Abstract

In this project a Phonetic Posteriorgram (PPG) based Voice Conversion system is

implemented. The main goal is to perform and evaluate conversions of singing voice.

The cross-gender and cross-lingual scenarios are considered. Additionally, the use

of spectral envelope based MFCC and pseudo-singing dataset for ASR training are

proposed in order to improve the performance of the system in the singing context.
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Chapter 1

Introduction

Voice Conversion (VC) is a machine learning technique that aims to change the

personal characteristics of a voice message while preserving the linguistic component.

In other words, given a source speaker, and a target speaker, the goal is to make an

utterance from the source speaker sound as if it was produced by the target speaker.

VC have potential applications in a broad set of fields. In a world where Text-to-

Speech (TTS) systems are more used every day, VC allows an efficient way of creating

new voices from the already existing models. The field of interpreted telephony tries

to analyze speech in order to perform re-synthesis to allow real time conversations

among different languages. This technique could be improved if the voice identity

of the speaker is not lost after the synthesis by means of VC [1]. On the film

industry, VC could be used for film dubbing while preserving the original voice of

the actor. In the professional music industry, it is common among multilingual

singers to release songs in different languages. VC would allow to achieve similar

results for monolingual singers with the help of a performer in the target language.

The application of this technology to the entertainment and game industry is also

very promising. Other potential applications include the security related usage or

vocal pathology treatment.

Given the huge amount of fields to exploit, a big amount of contributions and dif-

ferent approaches to VC have been proposed in the last decades. However, there is

1



2 Chapter 1. Introduction

still a big headroom between the results of the State of the Art algorithms and what

could be considered as natural sounding results [2]. Furthermore, another drawback

of some of the best sounding VC approaches is the need of training for each specific

set of source and target speakers, which restricts a lot the potential cases of use.

1.1 Motivation

A recent publication proposed the use of phonetic features in a new VC schema

[3]. This system obtained good results and is attractive because it does not need

parallel datasets and it is suitable for very diverse scenarios, like cross-lingual VC.

Nevertheless, the robustness of the system is highly influenced by the quality of

phonetic features, defined by the author as Phonetic Posteriorgrams (PPG). PPG

can be obtained using a Speaker Independent Automatic Speech Recognition (SI-

ASR) toolkit, but this system are normally developed for general speech. Thus, the

behavior of the system in the singing voice scenario may be something uncertain.

According to this, a series of objectives are proposed in relation to this topic with

the overall goal of testing and improving the method in the field of singing voice.

1.2 Objectives

1. Develop a PPG based Voice Conversion system.

2. Evaluate the system in the context of constrained singing voice.

3. Propose improvements in order to adapt the system to the case of singing

voice.

1.3 Structure of the Report

The rest of this thesis is organized as follows. On the second chapter, a review of the

most prominent approaches to VC is presented. This is completed with a revision on

the work done in the areas of non-parallel, cross-lingual and singing VC. Elements

that are of crucial importance to understand the scope and goals of this project.
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On the third chapter the methodologies developed for accomplishing this thesis

are presented. The results of the application of these methodologies with different

configurations and in different scenarios are presented in the fourth chapter. Finally,

these results are discussed in the fifth chapter.



Chapter 2

State of the Art

2.1 Literature Review

Defining the concept of voice identity may be a complex question as it depends in

several parameters. The pitch contour, the spectral envelope, the speaking rate,

the duration of the pauses or the prosody of the speaker are important features

influencing on it. However, modeling all these features could be very complex and

not all of them are crucial for the speaker identification [4]. In the other hand,

there is strong evidence that distinct speakers can be efficiently discriminated by

comparing their spectral envelopes [5]. Thus, the biggest part of the VC approaches

have been focused in the transformation of the spectral envelope [2]. As the scope

of this project is also devoted to the spectral envelope transformation, only this sort

of methods are reviewed in this chapter.

This section offers an explanation of the most successful approaches on the literature:

Codebook Mapping and Mixture Gaussian Models. After this, some alternatives are

presented.

2.1.1 Codebook Mapping

The simplest way to create a VC oriented codebook, would be to use parallel utter-

ances from the target and the source speakers. If the sentences are properly aligned,

4
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then it is easy to create a mapping codebook as a combination of the source speaker

frame-wise feature vectors.

In the approach proposed by Abe [6], Vector-Quantization is applied to the spectral

envelope of the audio frames in order to create codebooks of the source and target

speakers. The fundamental frequency (f0) and the power of each frame are computed

and also quantized as scalar codebooks. Dynamic Time Warping (DTW) is used to

obtain the frame-level match between the source and target frames. For each source

entry, the correspondences to the target codebook entries are accumulated in form

of histograms.

In order to synthesize new utterances, the frames are analyzed to obtain the cor-

respondent entries on the source codebook. Each converted frame is generated as

a linear combination of the elements of the target codebook using the histogram

associated with the current entry as a weighting function. f0 and the power are

directly taken from the element with the higher number of repetitions in the his-

togram. This algorithm provides an intuitive and interesting framework. However,

the author reported that just 65% of the converted utterances were identified as

belonging to the target speaker.

Some alternatives have been proposed in order to improve the behavior of this

method. As the application of an hierarchical codebook architecture [7]. In this

technique, an additional stage is introduced for the model training. Once the con-

ventional codebooks are trained, some conversions are performed and a new code-

book is trained to map the source spectral envelopes to the residual of the converted

envelopes. Then, this residual can be added to the synthesis schema. This technique

adds some quality improvements to the converted spectral envelope.

In general, the main advantage of codebook approaches is that the synthesis rely

directly on combinations of the original source features. Thus, the identity of the tar-

get is preserved in the synthesized spectral envelope frames. However, this method

has limitations in order to produce high quality conversions due to the artifacts

introduced by the abrupt discontinuities produced in the time domain. This hap-



6 Chapter 2. State of the Art

pens because the entries of the codebook are chosen relying exclusively in a feature

similarity criteria, without considering the temporal context.

2.1.2 Gaussian Mixture Models

Another famous set of approaches work by obtaining a mapping function between

the source and target spectral features. Once this function is available, conversion

is done by transforming the statistical properties of the source in order to fit the

characteristics of the target. Among them, the based on Gaussian Mixture Model

(GMM) are probably the most successful and researched in the literature.

The GMM approach assumes that the probability distribution of the acoustic fea-

tures can be expressed as a combination of Gaussian distributions. Assuming that

these features are p-dimensional vectors, as for instance the famous Mel frequency

cepstral coefficients (MFCC), these Gaussian are then multivariate distributions that

can be expressed as,

p(x) =
M∑
c=1

αcN(x;µc,Σc) (2.1)

where N denotes a Gaussian characterized by the mean vector of size p, µ and the

covariance matrix of size p x p, Σ, and M is the number of distributions.

First, the training data is used to obtain the parameters of the GMM, typically

through the Expectation-Maximization (EM) iterative approach. EM tries to adapt

the parameters of each Gaussian (αc, µc,Σc) in order to maximize the log-likelihood,

which can be understood as maximizing the capability of the model to explain the

training data. This is achieved by computing the posterior probabilities of each

Gaussian given each training sample. By applying the Bayes rule,

P (c|x) = αcN(x;µc,Σc)∑M
j=1 αjN(x;µj,Σj)

(2.2)

P (c|x) is sometimes refereed as the responsibility of the Gaussian c to explain the
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sample x. The Maximization step of the algorithm shifts αc, µc, Σc towards fitting

the samples of which it is more responsible.

Once the GMM is fit to all the training data, it can be used to generate a mapping

function between the source and the target speakers. This is commonly done by one

of the two approaches explained in the next lines.

On the approach proposed by Stylianou et al. [1], parallel data of the source and

target is required. MFCC are used as a representation of the spectral acoustic

features with a reduced dimensionality. The EM training stage is done using just

the MFCC of the source speaker.

As said above, the goal of the second part of the algorithm is to compute a conversion

function. To do this, a parametric transformation function with the following form

is proposed,

F (xt) =
M∑
c=1

P (c|x)[vc + ΓcΣ
−1
c (xt − µc)] (2.3)

where the parameters vc and Γc are a mean vector and a covariance matrix. This

means that the converted MFCC are obtained as a combination of different mean

and variance transformations of the source frames, where each transformation is

weighted by its posterior probabilities. vc and Γc are found applying least squares

optimization (LSO) in order to minimize the distance between the converted MFCC,

F (xt), and its parallel MFCC directly extracted from the target.

In the approach proposed by Kain & Macon [8], GMM is trained to fit the joint

density vector of the source and the speaker features zt = [xT
t , y

T
t ]

T . This is also

known as JD-GMM. In order to generate the density vector, it is also necessary to

have parallel aligned data. EM is applied as explained before to fit the joint data.

Given the shape of the joint data, the resulting mean a covariance matrix have the

following form,

µc =

 µx
c

µy
c

 , Σc =

 Σxx
c Σxy

c

Σyx
c Σyy

c

 (2.4)

This approach has the advantage of creating a model that contains relevant informa-
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tion for both, the source and the target. Furthermore, it is not necessary to use an

optimization technique in order to obtain the conversion function, as the parameters

for the transformations can be directly estimated from the joint data. The piecewise

mapping function for this approach can be expressed as follows,

F (xt) =
M∑
c=1

P (c|x)[µy
c + Σyx

c (Σxx
c )−1(xt − µx

c )] (2.5)

where super-indexes x, y, xx and xy indicates the submatrix from eq.2.4.

GMM based approaches have been widely used showing state of the art results.

However some authors have pointed to some important disadvantages. GMM relies

on the use of covariance matrices. If the method uses a full-covariance matrix, the

number of parameters is in the order of the number of Gaussian by dimension of the

acoustic features squared, which can be computationally expensive. Furthermore, if

a low amount of training data is used, the model can overfit the training data. This

problem can be tackled by using a diagonal covariance matrix instead. However,

this means that each component of the feature vector is mapped in a one-by-one

sense instead of considering the interdependencies with the rest of components.

Helander et al. [9] also found that using Least Squares Optimization can lead to

overfitting in the conversion function of the Stylianou approach. They tacked this

problem by using Partial Least Squares (PLS) for the regression.

In the other hand, oversmoothing is another problem that can diminish the quality

of the converted voice. In the frequency domain, this problem is represented as a loss

on the capacity to fit the spectral details. Toda et al. [10] found that using warped

spectra contributed to reduce the oversmoothing effect. Chen et al. [11] pointed

the time domain oversmoothing as a source of synthesis quality loss. The author

points to the covariance adaptation product Σyx(Σxx)−1, present in the JD-GMM

conversion function, eq.2.5, to be close to zero on most of the cases. As it can be

easily seen, this fact lets the target as only dependent on a weighted sum of mean

vectors, which could explain the small time fluctuations on the converted data. To

avoid this problem, the author propose the use of a greater training dataset combined
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with the elimination of the covariance adaptation term from the conversion function.

A last problem attached to GMM methods is the lack of temporal dependency

modeling, as the conversion is performed independently for each frame. It has been

shown that the long term context contains important information in order to obtain

smooth spectral transitions. Furthermore, Helander found that sometimes there is

one Gaussian component dominating on each frame [9]. This means that, when this

happens, the GMM behaves pretty much like a hard clustering method, which in the

end makes it susceptible to incur into frame-by-frame discontinuities such as in the

codebook mapping case. In order to smooth this time-independence problem, Toda

et al. [12] proposed the use of Maximum-Likelihood Parameter Generation (MLPG).

This method can be used as a post-processing step to the JD-GMM conversion in

order to reduce the artifacts of the frame-wise analysis. In the training step, the

first and second order derivatives are added to the joint density vector. Then, the

method makes an estimation of the spectral parameters trajectory.

2.1.3 Artificial Neural Networks

Artificial Neural Networks are other famous approach in order to generate a spectral

mapping function. In that sense, their goal is very similar to the goal of the GMM.

However, while the former obtain a non-linear mapping function by adding the

posterior-probability-weighted set of linear mappings, the last one directly rely on

non-linear functions to model the target. These functions form what is commonly

know as artificial neurons, and are stacked in several layers. A basic network could

be composed by an input a middle (or hidden) and and output layer. The number

of neurons in the input and output layers have to fit shape of input and output

acoustic features. Depending on the experiment, the shape of the hidden layer can

vary. But it is sometimes related with the size of the dataset used for the training

process.
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As a basic example, the equation defining a neuron can be written as follows,

y = f(Wx+ b) (2.6)

where f , W and b represent the activation function, the weight and the bias for

a input x. In the training process, W and b are optimized according to certain

objective function.

Neredranath et al. [13] used ANN in order to map the formants of the source speaker

to the formants of the target. The obtained features could be used to feed a formant

synthesizer. Desai et al. [14] [15] used a similar approach, but using the MFCC

instead, which can be adapted to feed most of the modern vocoder based speech

synthesizers.

Chen [16] used Restricted Boltzmann Machines (RBM) instead of GMM in order

to model the Spectral joint density. RBM showed a bigger flexibility than GMM in

order to capture the inter-speaker and inter-dimensional dependencies, improving

the quality of the converted voice in terms naturalness.

Following the recent impact of Deep Neural Networks (DNN), some authors have

explored different configurations. Typically, an ANN is considered a DNN when it

has more than 1 hidden layer. This kind of architectures are intended to provide

more flexibility in order to model complex non-linear dependencies.

Chen [17] proposed the use of DNN to construct the mapping relationship between

the spectral envelopes of source and target speakers. He proposed a four-layer archi-

tecture trained layer-by-layer from a cascade of a Bernoulli bidirectional associative

memory (BBAM) and two RBMs. In the approach by Nakashka et at. [18], they

used RBMs based network in order to learn a high order source and target speaker

eigen-spaces from features on the cepstral domain. Then another ANN was trained

to learn a map between these spaces.

Nevertheless, these algorithms still have two problems in common with the GMM

and the codebook approaches. First, they are frame-based methods unable to con-
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sider the temporal dependency in successive instances. On the other hand, despite

standard Recurrent Neural Networks (RNN) are able to take the time context into

account, they have limited capability to model it. Furthermore, they have access

to the past values, but not to the future ones. And it is difficult for them to learn

about long-range context dependencies.

To overcome this problems, Sun proposed Bidirectional Long Short-Term Memory

RNN (BLSTM-RNN) [19]. This architecture has been probed to outperform regular

RNN in several applications evolving sequence modeling. This is because of its

ability to store an optimal amount of context information over a long period of

time thanks to its capability to establish recurrent connections both, forward and

backward. Furthermore, while the standard RNN normally use the sigmoid or the

hyperbolic tangent as activation function, the LSTM networks are based in units

called memory blocks that are reported to learn long range context dependencies.

This memory blocks are designed to have input, output and forget gates, which has

been proved to have a determinant weight in problems involving continuous or very

long input vectors [20].

2.2 Non Parallel Voice Conversion

One of the main drawbacks of the traditional VC methods is their dependency on

parallel data. This supposes a problem in practical applications, as the system has

to be trained again every time it is desired to add a new speaker into the system.

Furthermore, this implies the creation of an specific dataset, and obtaining parallel

recordings is not always an easy task.

In order to tackle this, some authors have develop new algorithms, or adaptations

for the existing ones in order to get rid of such dependency. Sundermann et al.

[21] relied on the fact that GMM approach is time independent to perform a frame-

wise feature clustering of the non-parallel source and target signals. They used the

spectral centroid of the frames to feed a K-Means classifier. However, the reported

accuracy was 25% below the results with parallel data. Ye [22] used an AS) system
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based on Hidden Markov Models (HMM) to retrieve the phonetic clusters improving

this result.

2.3 Cross-Lingual Voice Conversion

Cross-lingual VC research is a particular area inside the non parallel methods that

consider the case where the input and source speakers have different languages. The

principal point of this set of methods is that the source and the target are not

constrained to have the same set of phonemes anymore.

INCA [23] approach tackled the monolingual problem by means of a recursive algo-

rithm. It looks up for similar frames among the source and the target and performs

a GMM based conversion. This process is then repeated again obtaining an output

that sounds closer to the target on each iteration.

Recently, Xie [24] proposed a DNN-based approach attempting to equalize the

speaker differences between different languages and using Kullback-Leibler diver-

gence to measure the phonetic distortion. However, methods not relaying in parallel

data are still far from the quality obtained by the parallel ones.

Sun used an SI-ASR model in order to extract a phonetic description of the audio

frame in terms of PPG [3]. For a given audio frame, PPG represent the likelihood of

belonging to sub-phonetic states called senones. Each phoneme is typically divided

in 3 or 4 senones. The process of training the SI-ASR has a critical impact on the

quality of this system. However, it is a wide topic and, hence, it would be explained

apart in the next chapter. For the scope of VC, what is interesting from the PPG is

their capacity to provide a phonetic, and thus, speaker independent, representation

of the acoustic features. As any potential source speaker would ideally produce the

same PPG, once this feature is mapped to the acoustic features of the target speaker

(MCEP), the system does not have to be trained again for new source speakers.

This is sometimes called, many-to-one VC. In order to model the relation between

the PPG and the MCEP features, a DBLSTM recurrent neural network is trained

through several utterances of the target speaker. When the system is trained, it is
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Source Speaker

MCEP PPG

BLSTM-RNN*

Target Speaker

PPG

BLSTM-RNN*

MCEP

Synthesis

Training stage Synthesis stage

Figure 1: Flow diagram of the Sun’s algorithm. * represents that the blocks are the
same model.

possible to extract the PPG of an arbitrary source speaker and use this model to

retrieve an estimation of the MCEP of the target speaker for the input utterance. In

the synthesis stage, the fundamental frequency of the input utterance is combined

with the converted MCEP to feed a vocoder. This steps are represented in the fig.1.

What is interesting from this approach, is that it supposes a significant improvement

of quality compared to the rest of algorithms not relying in parallel data. However,

one of the main drawbacks is the long times required for the training of the SI-ASR

and the RNN.

2.4 Singing Voice Conversion

The scope if this thesis is related with VC algorithms applied to singing voice. this

section shows a small review of the related work. Up to this point, all the exposed

techniques are intended for general purpose speech. However, it is worthy to take a

look to the main approaches of VC that have been evaluated for singing.

Tuk [25] used weighted codebook mapping to achieve cross-lingual VC and applied

it to rap songs. The system used parallel utterances in English to train the model.

Then, a source speaker with the ability to rap in two languages could convert his

voice into the target speaker’s. Despite the curious of the experiment, the depen-

dency on a bilingual singer makes it unsuitable for real scenarios.
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Villavicencio & Bonada applied the JD-GMM approach to high-quality sining datasets

in the context of concatenative singing-voice synthesis [26]. In their study they fo-

cused on assessing the impact of the pitch in cross-gender VC. They found that con-

version towards lower pitched voices resulted in lower quality than towards higher

pitched voices.

Kawakami [27] also applied the GMM approach to sining VC. In this approach he

used the vocal tract area function to model the voice.Toda [28] proposed a GMM

based method called Eigen Voice GMM (EV-GMM) . In [29] a framework to gen-

erate new utterances from the source singer made the system able to operate as a

non parallel data dependent method. But the quality is still far from the parallel

methods.

2.5 Conclusion

Following this review, the method proposed in this thesis would be placed among

the non-parallel, cross-lingual methods featuring many-to-one VC. And it will be

evaluated in the context of singing voice. In regards to the promising results recently

obtained by Sun [3], the use of PPG is explored. Nevertheless, due to the additional

complexity of the singing voice, the are several questions that should be answered

along this project.

On the chosen method, the final conversion quality depends on the robustness of

the PPG and the capability of the DNN to map them the speaker spectral envelope.

Thus, these elements have to be evaluated on the scope of singing VC.

The first point to tackle with is the behavior of the ASR system when the input is

singing voice. As the strong pitch variance or the modulation done by some singers

can hinder the recognition process. SI-ASR are normally designed for general speech

an thus, the behavior on singing has to be evaluated and adapted. Moreover, [30]

probed that PPG are sufficient to model the speaker identity in the context of speech.

But in most of the cases, singing voice requires a high level of expressibility. The

capability of the PPG to represent this expressibility has to be assessed.



Chapter 3

Methods

The model proposed in this thesis relies in a ASR system to obtain a phonetic

description of voice (PPG). Then, a DNN is trained to map these PPG into the

features related to the target speaker. This process can be divided in two training

stages that are developed in the following sections.

3.1 Learning the Phonetic Model

The goal of this stage is to retrieve phonetic information (PPG) out of the input

acoustic features. This is a key point of the project because here is where the speaker

dependent features become independent (i.e., for two parallel recordings, the wave-

form contains information about the speaker voice, but the phonetic transcription

does not).

This section contains an informal description of the ASR framework used to obtain

the PPG followed by a detailed explanation of the datasets, features, transformations

and steps of the process.

3.1.1 ASR with weighted finite-state transducers

The goal of an ASR system is to transform a waveform into words. In order to model

the complexity of the speech recognition task, it is normally divided in 4 layers: the

15
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word-level grammar, the pronunciation lexicon, the context dependency transducer

and the HMM transducer. An example of this representation is available on fig.2

The world-level grammar can be created by rules or learned from exiting data. It

is composed of by strings of valid combination of words. However, this layer is not

explained in detail as it is not relevant for the scope of the project.

One step lower there is the pronunciation model. For each world, there can be more

than one valid pronunciation. The units of this model are the phonemes and the

output are words. One of the most relevant problems in this layer is the homophone

indetermination. As, if two words are pronounced the same, it is not trivial to

retrieve the word. This layer is also not relevant.

A third layer of abstraction would be in charge of mapping from the phonemes

with context to the raw phonemes. It has been shown that it is more informative

to use phonetic context information (which are the previous and next phonemes)

than the raw phonemes. The reason of doing this is because the transition between

two phones may be more informative than their stationary parts, so considering this

contextual information is useful. A triphone is a phoneme with the knowledge of the

previous and next phoneme. Thus, given a dictionary of p phonemes, the amount

of triphonemes is O(p3).

The lowest layer represents the HMM. Each phonetic unit is modeled with a HMM,

typically following the 3-state Bakis model. Nevertheless, more complex phonemes

can use more states. These steps represent the beginning, middle and final part

of the phoneme. The emission of the each state is a Probability Density Function

(PDF) that is trained to fit the acoustic features. If the phonetic unit is context

dependent, for instance a triphone, the number of required HMM increases by the

order of the number of phonemes by the power of 3 and so does the amount of data

needed for the training. On these cases some states among different triphones can

be grouped to reduce the number of PDFs to estimate. It is known that simple

Gaussian distributions are not enough to fit the complexity of the spectral features

described above. Thus, it is typical to use GMM for this task.
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word

phonemes

triphones

HMM

bad

/’b/ - /æ/ - /d/

SIL -> /’b/ -> /æ/
/’b/ -> /æ/ -> /d/

/æ/ -> /d/ -> SIL

s0 s1 s2

Figure 2: The world "bad" represented on the different layers. From the top to
thew bottom: written language, phonetic description, triphonic description and as
a HMM.

This stack of layers, allows to map from acoustic features to words. Weighted finite-

state transducers (WFST) offers a common algorithmic framework useful to perform

this task. WFST can be informally defined as an entity that recognize each string

that can be read along a path from a start to a final state with an attached input

label, output label and weight. A toy-example of a WFST can be found in fig.3.

This architecture can represent a relationship between different levels of abstraction,

which makes it very suitable for the ASR layers exposed above. This can be easily

done using the operation of composition. Composition is an operation that allows

to merge WFST models representing each of the ASR layers in just one model.

To understand the theory behind this idea, the reader can find a mathematically

well-defined explanation on this paper by Mohri [31].

In order to train the model, the Viterbi algorithm is used to find the best state

sequence for each training utterance. The number of feature vectors corresponding

to each state and the number of transitions between states are counted. The transi-

tion probabilities between states are computed as the normalized ratio between the

transitions produced from the source state to the target state during the training

stage over the total number of transitions produced from the source state. The PDF

of each state is re-estimated using all the feature vectors that were clustered on that
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0
1 2 3 4

5 6

ey:ε/0.5

d:dew/1

d:data/1

uw:ε/1

ae:ε/0.5

t:ε/0.3

dx:ε/0.7

ax:ε/1

Figure 3: Weighted finite-state transdice example. The input label i, output label o,
and weight t of a transition are marked on the corresponsing arc as i :o/w, following
the notation of [31].

particular state during the training. If the PDFs are computed from GMM, the

Expectation-Maximization algorithm can be used for this task.

3.1.2 Datasets

In order to train the phonetic model the TIMIT1 corpus was initially used. This

corpus was created to perform ASR research. TIMIT contains broadband record-

ings of 630 speakers of eight major dialects of American English, each reading ten

phonetically rich sentences [32]. The dataset is composed of the audio recordings

with the corresponding textual and phonetic annotations.

In addition the Zxx2 dataset was considered. Zxx is a dataset composed by anno-

tated constrained singing utterances by 11 different singers. Constrained singing is

understood as singing where the cadence and intonation remains constant and the

singers are asked to avoid any voice technique such as vibrato. There is about 30

minutes of recordings of each artist.

While the TIMIT dataset was designed to provide a wide coverage over different

American dialects, the goal of Zxx is to cover all the possible phonetic combinations

for a small number of singers. This makes Zxx more suitable to the research in

voice synthesis rather than ASR. Nevertheless, as the target of this project is the
1Corpus design was a joint effort among the Massachusetts Institute of Technology (MIT), SRI

International (SRI) and Texas Instruments, Inc. (TI).
2Zxx is a proprietary dataset and at this time it is not commercially available.
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conversion of singing voice, it is interesting to assess the behavior of the phonetic

recognition step when the ASR is trained with data potentially closer to the project

target instead of usual speech data.

3.1.3 Acoustic Features

The acoustic features retrieved from the datasets are MFCC, well know for their

capability to capture timbre information. Cepstral Mean Variance Normalization

(CMVN) is applied for each speaker. The goal is to eliminate the speaker dependent

information (vocal tract characteristics, mean pitch...) in order to reduce the bias

towards the training speaker particularities.

As the acoustic descriptor is supposed to be just informative about the timbre of the

different phonemes, it should be independent of the pitch of the speaker. However, in

case of high pitched singing voice this requirement can be not reached. In case that

the pitch is sufficiently high, the filter-bank can start tracking the harmonics of the

voice. In order to prevent this to happen, the CheapTrick algorithm [33] was used

to estimate the spectral envelope of the input before computing the filter-bank for

the MFCC. The different filter-banks produced by the FFT and the SP approaches

can be seen in fig.4.

3.1.4 HMM-Models training

This subsection describes how the ASR system is built from the input acoustic

features. The process is based on a the TIMIT recipe contained in the Kaldi[34]

framework. This script was originally designed to be trained with the TIMIT dataset

featuring default MFCC. For the scope of this project, new scripts were crated based

on the Zxx corpus and using Spectral Envelope based MFCC3. Now the steps of the

ASR building process are explained.

From a practical point of view, it is better to start building the ASR model with a

simple monophonic HMM model and iterate adding complexity to the features and

3https://github.com/pabloEntropia/kaldi/tree/master/egs/timit/

https://github.com/pabloEntropia/kaldi/tree/master/egs/timit/
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Figure 4: Example of FFT and SP based filter-bank for a vocal frame of a female
singer. It can be seen how the FFT filter-bank tracks the lower harmonics instead
of follow the envelope.

HMM model. On the first iteration, HMM represent monophones, i.e., phonemes

without context. In this architecture, each phoneme is represented as a HMM. Typ-

ically, each phoneme is modeled with 3 or 4 states. The weights for the monophone

model serve a a basis to train a more complex models using triphones. Thus, in

this phase the number of HMM is tripled. As explained before, some states along

phonemes are clustered to reduce the global number of GMM for computational

reasons. In this step the first and second order derivatives of the MFCC are added

to the feature vector.

After this, a new triphone model is trained after modifying the feature vector. In

order to add more contextual information at the feature-vector level, for each frame,

3 past and 3 future frames are stacked. Provided that 13 MFCC coefficients are used

in the analysis this leads to a 91 dimensions feature vector. Linear Discriminant

Analysis (LDA) is used to reduce this dimensionality to 40 components.

Following this, Maximum Likelihood Linear Transform (MLLT) is applied [35].

MLLT is a square feature-transformation matrix. Its objective function is the aver-

age per-frame log-likelihood of the transformed features given the model, plus the
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log determinant of the transform. The means of the model are also rotated by

transform in the update phase.

The last iteration is called Speaker Adapted Training (SAT). This speaker-wise

adaptation is achieved through feature-space Maximum Likelihood Linear Regres-

sion (fMLLR)[36]. Here, a transformation matrix is trained to maximize the likeli-

hood of a set of data given the previous HMM set. This transform has been proved

to be useful for environment compensation and speaker adaptation. The Maximum

Likelihood transform is detailedly explained on [37].

3.1.5 DNN

Finally, a DNN is used to map the acoustic features to the PDF ids. The network

is built on top of the fMLLR features obtained for the last model.

After computing the features, a pre-training stage is performed according to Ge-

off Hinton’s tutorial paper [38]. The training algorithm is Contrastive Divergence

with 1-step of Markov Chain Monte Carlo sampling. The first RBM has Gaussian-

Bernoulli units, and following RBMs have Bernoulli-Bernoulli units. The training is

unsupervised, so it is sufficient to provide single data-directory with input features.

Finally, a DNN classifies frames into triphone-state emissions, i.e., PDF ids. This

is done by mini-batch Stochastic Gradient Descent. The DNN uses sigmoid hidden

units, softmax output units and fully connected layers. A good explanation of the

DNN can be found on [38].

However, for the scope of this project, instead of using the output of the net, which

is a discrete sequence of the most probable PDF ids per frame, the weight vector

of all the PDF ids is used. This is what was previously presented as PPG. The

goal of doing this is to have a smoother representation of the phonetic information.

This way, transition between phonemes are represented as a gradual change on the

predominant PPG probability instead of an abrupt change that could lead into

unnatural sounding transitions.
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After the transition from acoustic features to phonetic ones, the typical ASR schema

should implement a dictionary, to move from phonetic units to words, probably using

a language model. These models are intended to reduce the range of possible words

to look up for depending on the context. However, we are not going to focus on this

point as it has no relevance in the scope of this project.

3.2 Learning the Voice Model

This section shows how a DNN driven by the PPG is used to synthesize the acoustic

parameters of the target speaker. However, instead of the DB-SLTM RNN proposed

by Sun, the Neural Parametric Singing Synthesizer (NPSS) [39] was used in this

project.

3.2.1 A Neural Parametric Singing Synthesizer

NPSS consist in an neural network based system that generates probability distribu-

tions of the target features based on the past values and a phonetic control. These

features are specific for the target singer and the control phonemes, and they can

be combined with a melody (or FO) extracted from a real singing performance or

just created with a MIDI device in order to synthesize realistic singing.

This model is manly inspired on a class of fully-visible probabilistic autoregres-

sive generative models that use neural networks with similar architectures. This

architecture has been used to generate images (Pixel CNN) [40], audio waveforms

(WaveNet) [41] or text (ByteNet) [42]. In this case, instead of modeling the raw

waveform, the network is used to predict the input of a parametric vocoder, which

are Spectral Envelop (SP) and Aperiodicity (AP). While Wavenet’s output is unidi-

mensional, i.e., a mono audio signal, the target features are multidimensional. Mel

Frequency Spectral Coefficients (MFSC) are a 2D (time and frequency) representa-

tion of the SP with a lower dimensionality. Band Aperiodicity (BAP), a compact

version of AP, is also in the same 2D domain. Thus, the target of the network can

be a multivariate conditional distribution with diagonal covariance. However, as the

dimension belong to different domains, the use of 2D convolutions is not suitable.
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Thus, the coefficients are treated independently as 1D multichannel data.

Figure 5: NPSS architecture. PPG are used as control vector for each of the input
features.

The model is trained to maximize the likelihood of an observation given past obser-

vations in order to predict the conditional probability distributions of the features.

The synthesis is performed by sampling the distribution conditioned on past predic-

tions.

This system is very suitable for the current VC scenario, where the pitch can be

extracted from the source speaker’s utterances. The only important change is the

substitution of the categorical phonetic labels used as control for the phonetic pos-

teriors generated by the ASR model. On fig.5 the architecture of the modified NPSS

can be seen.

3.2.2 Target features

A separated instance of NPSS synthesizes each of the features required as input by

the World vocoder. This is, an harmonic part or spectral envelope (SP), an aperiodic

part or (AP) and F0.
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F0 could be directly taken from the analysis of the source signal without being

processed by the net. However, it has been seen that the synthesis quality is very

low in the regions where the voiced and unvoiced frames are not properly detected.

Thus, as the source and synthetic voiced/unvoiced regions do not have to match

exactly, an instance of the network estimates the voiced/unvoiced (VUV) frames as

a binary 1D vector.

CheapTrick [33] was used to estimate the spectral envelope. F0 is used to make a

period-synchronous power smoothing of the signal. After this, the signal is low-pass

filtered in the frequency domain with a square window. Finally, liftering is applied to

reduce the time domain dependency. In order to reduce the dimensionality of the SP

vector, it is transformed into Mel Frequency Spectral Coefficients (MFSC). This is

done by taking the FFT of the mel-cepstral analysis of the SP. Mel-cepstral analysis

is done following the SPTK approach [43]. This process reduces the dimensionality

of the features from 1025 to 60 coefficients.

World makes use of an aperiodicity parameter in order to improve the audio quality

of the synthesis. This parameter tries to model the characteristic stochastic compo-

nent of the voice that is independent of the pitch. D4C [44] was used to estimate

the aperiodicity in 6 frequency bands.

3.2.3 Synthesis

World [45] relies in the fundamental frequency (F0), spectral envelope (SP) and

aperiodicity (AP) features to synthesize high quality voice. The model uses F0 to

calculate the time positions of the excitation signal, a train of pulses representing

the osculation of the vocal chords. The timbre of the voice of the speaker is achieved

by convolving the excitation signal with the impulse response that can be obtained

from the SP. AP is used to improve the quality of the synthesis by controlling the

amount of aperiodic component added to the signal.

Two different F0 estimators have been tried. DIO [46] and spectral autocorrelation

(SAC) [47]. During the experiments it was found that the second one is more robust
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and leads to less octave errors. However this was not formally tested. A proper F0

estimation is crucial in this system as SP and AP also rely on it. For the synthesis,

the analysis F0 is interpolated along the unvoiced fragments and the resulting F0 is

then computed by removing the voiced frames according to the VUV vector.

In speech VC it is typical to adapt the pitch of the source to the range of the target.

This is sometimes easily achieved by fitting the pitch data to the target’s mean and

variance. However, as for singing voice the F0, or in other words, the melody, should

remain the same despite the singer, it is not desirable to change the fundamental

frequency of the converted voice. Only in the case of the cross-gender experiment,

octave pitch shifts are applied to fit the most suitable tessitura for the target singer.

AP and SP features are retrieved from the NPSS parameters explained in the pre-

vious sections. SP is retrieved from the MFSC by doing the inverse steps. This

is, inverse FFT followed by inverse mel-cepstral analysis. Optionally, inverse mel-

cepstral analysis can be approximated with splines for computational reasons. AP

is obtained from band aperiodicity by interpolation.
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Results

4.1 Models

Following the methodology proposed in the previous chapter, 5 models were built.

1. Phonetic Model: TIMIT corpus and FFT (spectrum) based MFCC for the

phonetic model.

Voice Model: trained with a male constrained singing database.

2. Phonetic Model: TIMIT corpus and spectral envelope based MFCC.

Voice Model: trained with a male constrained singing database.

3. Phonetic Model: TIMIT corpus and spectral envelope based MFCC.

Voice Model: trained with a female constrained singing database.

4. Phonetic Model: Zxx corpus and spectral envelope based MFCC.

Voice Model: trained with a male constrained singing database.

5. Phonetic Model: Zxx corpus and spectral envelope based MFCC.

Voice Model: was trained with a female constrained singing database.

26
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4.2 Scenarios

The models were evaluated in different scenarios. Thanks to the many-to-one prop-

erty of the system it was easy to perform the following conversions without any

previous information of the new speakers nor parallel data.

1. Same gender and same language voice conversion.

2. Cross gender and same language voice conversion.

3. Same language and cross-lingual voice conversion.

4. Cross-gender and cross-lingual voice conversion.

4.3 Subjective Evaluations

A parallel corpus is required to compute VC objective metrics. As this requirement

was not available on this project, evaluations were exclusively focused in subjec-

tive methods. Furthermore, it is known that traditional metrics, as mel cepstral

distortion, are not always correlated with the perception of quality in VC. Thus,

subjective evaluations are definitively a more valuable method.

A perceptual test was created in the form of a web survey1. This test was completed

by 28 people mainly coming from a technical or musical background.

The goal of the survey was to compare the behavior of the different models in all

the possible scenarios in order to find the best parameters. The testers are asked to

decide which system sounds the best in terms of intelligibility and closeness to the

target voice.

Every test item is composed by an input and a target sentences and A and B options.

The input sentence is the signal to convert. The target sentence is a sample of the

dataset used for the voice model training (or target speaker). A and B are the signal

1https://pabloentropia.github.io/voice-conversion.github.io/
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converted by two of the models described above. This information is supposed to be

enough to understand and evaluate the models. The possible answers are A, B or no

preference. In order to prevent a potential bias, A and B are presented randomly.

The answers were used to evaluate independently which acoustic features and which

training datasets produced the best results. Additionally cross-gender vs. same

gender conversion are evaluated. The results are available in fig.6.

(FFT / No Pref. / Envelope)

(TIMIT / No Pref. / Zxx)

(Same / No Pref. / Cross)

35% 50%15%

42% 22%36%

65% 19%16%

Figure 6: Preference, expressed in percentages, of different aspects of the conversion.

The following tables express the results of the test for each item. This results are

discussed in the last chapter of this thesis.

Scenario Model A % A % No Pref. % B Model B

M2M S TIMIT FFT 55.6% 25.9% 18.5% TIMIT SP

M2F S TIMIT FFT 7.4% 3.7% 88.9% TIMIT SP

Table 1: Test items related to feature preference sorted by scenario and models. In

the scenario description, M: Male, F: Female, S: Same language, C: Cross-lingual.
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Scenario Model A % A % No Pref. % B Model B

M2M S TIMIT SP 18.5% 33.3% 48.1% ZXX SP

M2F S TIMIT SP 70.4% 3.7% 25.9% ZXX SP

M2M C TIMIT SP 77.8% 14.8% 7.4% ZXX SP

M2F C TIMIT SP 29.6% 29.6% 40.7% ZXX SP

F2M S TIMIT SP 25.9% 48.1% 25.9% ZXX SP

F2F S TIMIT SP 37.0% 55.6% 7.4% ZXX SP

F2M C TIMIT SP 18.5% 66.7% 14.8% ZXX SP

F2F C TIMIT SP 25.9% 37.0% 37.0% ZXX SP

Table 2: Test items related to dataset preference sorted by scenario and models. In

the scenario description, M: Male, F: Female, S: Same language, C: Cross-lingual.

Scenario A Model A % A % No Pref. % B Model B Scenario B

M2M S TIMIT SP 55.6% 14.8% 29.6% TIMIT SP F2M S

F2F S TIMIT SP 74.1% 18.5% 7.4 % TIMIT SP M2F S

Table 3: Test items related to gender preference sorted by scenario and models. In

the scenario description, M: Male, F: Female, S: Same language, C: Cross-lingual.

Demonstrations of the most successful model, TIMIT corpus and spectral envelope

based MFCC, featuring all the contemplated scenarios are available in this website2.

2https://pabloentropia.github.io/voice-conversion-demo.github.io/
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Conclusions

5.1 Conclusions

All the goals proposed for this thesis have been completed. The PPG based voice

conversion system was implemented and 2 target speakers (a male and a female) were

modeled. 3 models were built for the male and 2 for the female singer, featuring

different parameter configurations.

Conversions with each of these models were performed in all the proposed scenarios.

These conversions were subjectively evaluated by 28 testers in order to understand

which models perform the best for each scenario. The conclusions extracted from

the results of the tests are presented now:

1. The first goal of the test was to find if the proposed SP based MFCC overcame

the default MFCC for in phonetic model. Most of the testers preferred the

default MFCC for the same gender experiment but the SP is clearly superior

(88.9% of the votes) for the male to female case. The reason found for this is

that the default MFCC are not pitch independent and the ASR gets confused

with high pitched singing, especially if such kind of data did not appeared dur-

ing the training. The use of MFCC computed on top of the pitch-synchronous

SP was found to alleviate this effect.

30
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2. One of the main reasons of phonetic recognition mismatch is known to be the

lack of similar speakers during the training stage. This is why training the

SI-ASR system with singing data was expected to be beneficial for the overall

behavior of the system. However, it was found that in most scenarios the use

of the speech dataset is preferred. The explanation of this phenomenon can be

probably in the architecture of the dataset. Despite the overall recorded time

of the dataset is smaller, TIMIT (speech) is formed by 630 speakers performing

10 utterances each one and considering the 8 major american accents. In the

other hand, Zxx (singing) is just composed by 11 singers with 577 utterances

per each and it is not particularly appropriated for the speech recognition task.

3. As expected, all the models showed a better behavior when the conversion was

performed within the same gender.

5.2 Future Lines

1. Explore new DNN architectures as a last step on the ASR stage. Following the

recent success of deep learning, it could be interesting to explore the behavior

of the ASR stage using different architectures.

2. Use a dataset with parallel recordings to build a new conversion model. Then,

it would be also possible to compute objective measures as the Mel Cepstral

Distance (MCD) and compare this result with other systems.

3. From the the experiments it was observed that training the ASR system with

the speech or the constrained singing corpus did not affect a lot the quality

perfection. In both cases the system had problems to retrieve the proper pho-

netic class at some points. However, these mistakes are produced in different

points. Thus, creating an hybrid (speech/singing) corpus could help to slightly

reduce the overall phonetic mismatch.

4. From the implementation of the project, it was observed that the global con-

version speed is about three times real time. This makes the system suitable

for a real-time implementation, however it was not developed yet.
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