778 research outputs found

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Global text mining and development of pharmacogenomic knowledge resource for precision medicine

    Get PDF
    Understanding patients' genomic variations and their effect in protecting or predisposing them to drug response phenotypes is important for providing personalized healthcare. Several studies have manually curated such genotype-phenotype relationships into organized databases from clinical trial data or published literature. However, there are no text mining tools available to extract high-accuracy information from such existing knowledge. In this work, we used a semiautomated text mining approach to retrieve a complete pharmacogenomic (PGx) resource integrating disease-drug-gene-polymorphism relationships to derive a global perspective for ease in therapeutic approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-related literature. We identified 1,753 disease types, and 666 drugs, associated with 4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated our approach by performance (precision = 0.806) with benchmark datasets like Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) (0.729). We validated our study by comparing our results with 362 commercially used the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved pharmacogenomic markers, indicating that our semiautomated text mining approach may reveal significant PGx information with markers for drug response prediction. In addition, it is a scalable and state-of-art approach in curation for PGx clinical utility

    Systematic identification of pharmacogenomics information from clinical trials

    Get PDF
    AbstractRecent progress in high-throughput genomic technologies has shifted pharmacogenomic research from candidate gene pharmacogenetics to clinical pharmacogenomics (PGx). Many clinical related questions may be asked such as ‘what drug should be prescribed for a patient with mutant alleles?’ Typically, answers to such questions can be found in publications mentioning the relationships of the gene–drug–disease of interest. In this work, we hypothesize that ClinicalTrials.gov is a comparable source rich in PGx related information. In this regard, we developed a systematic approach to automatically identify PGx relationships between genes, drugs and diseases from trial records in ClinicalTrials.gov. In our evaluation, we found that our extracted relationships overlap significantly with the curated factual knowledge through the literature in a PGx database and that most relationships appear on average 5years earlier in clinical trials than in their corresponding publications, suggesting that clinical trials may be valuable for both validating known and capturing new PGx related information in a more timely manner. Furthermore, two human reviewers judged a portion of computer-generated relationships and found an overall accuracy of 74% for our text-mining approach. This work has practical implications in enriching our existing knowledge on PGx gene–drug–disease relationships as well as suggesting crosslinks between ClinicalTrials.gov and other PGx knowledge bases

    AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature

    Get PDF
    The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained clinicians can spend hours looking for the right publication(s) supporting a single gene that best explains a patient’s disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly accelerates this process. AMELIE parses all 29 million PubMed abstracts and downloads and further parses hundreds of thousands of full-text articles in search of information supporting the causality and associated phenotypes of most published genetic variants. AMELIE then prioritizes patient candidate variants for their likelihood of explaining any patient’s given set of phenotypes. Diagnosis of singleton patients (without relatives’ exomes) is the most time-consuming scenario, and AMELIE ranked the causative gene at the very top for 66% of 215 diagnosed singleton Mendelian patients from the Deciphering Developmental Disorders project. Evaluating only the top 11 AMELIE-scored genes of 127 (median) candidate genes per patient resulted in a rapid diagnosis in more than 90% of cases. AMELIE-based evaluation of all cases was 3 to 19 times more efficient than hand-curated database–based approaches. We replicated these results on a retrospective cohort of clinical cases from Stanford Children’s Health and the Manton Center for Orphan Disease Research. An analysis web portal with our most recent update, programmatic interface, and code is available at AMELIE.stanford.edu

    Text Mining Of Variant-Genotype-Phenotype Associations From Biomedical Literature

    Get PDF
    In spite of the efforts in developing and maintaining accurate variant databases, a large number of disease-associated variants are still hidden in the biomedical literature. Curation of the biomedical literature in an effort to extract this information is a challenging task due to i) the complexity of natural language processing, ii) inconsistent use of standard recommendations for variant description, and iii) the lack of clarity and consistency in describing the variant-genotype-phenotype associations in the biomedical literature. In this article, we employ text mining and word cloud analysis techniques to address these challenges. The proposed framework extracts the variant-gene-disease associations from the full-length biomedical literature and designs an evidence-based variant-driven gene panel for a given condition. We validate the identified genes by showing their diagnostic abilities to predict the patients’ clinical outcomes on several independent validation cohorts. As representative examples, we present our results for acute myeloid leukemia (AML), breast cancer, and prostate cancer. We compare these panels with other variant-driven gene panels obtained from Clinvar, Mastermind, and others from literature, as well as with a panel identified with a classical differentially expressed genes (DEGs) approach. The results show that the panels obtained by the proposed framework yield better results than the other gene panels currently available in the literature

    Systematising and scaling literature curation for genetically determined developmental disorders

    Get PDF
    The widespread availability of genomic sequencing has transformed the diagnosis of genetically-determined developmental disorders (GDD). However, this type of test often generates a number of genetic variants, which have to be reviewed and related back to the clinical features (phenotype) of the individual being tested. This frequently entails a time-consuming review of the peer-reviewed literature to look for case reports describing variants in the gene(s) of interest. This is particularly true for newly described and/or very rare disorders not covered in phenotype databases. Therefore, there is a need for scalable, automated literature curation to increase the efficiency of this process. This should lead to improvements in the speed in which diagnosis is made, and an increase in the number of individuals who are diagnosed through genomic testing. Phenotypic data in case reports/case series is not usually recorded in a standardised, computationally-tractable format. Plain text descriptions of similar clinical features may be recorded in several different ways. For example, a technical term such as ‘hypertelorism’, may be recorded as its synonym ‘widely spaced eyes’. In addition, case reports are found across a wide range of journals, with different structures and file formats for each publication. The Human Phenotype Ontology (HPO) was developed to store phenotypic data in a computationally-accessible format. Several initiatives have been developed to link diseases to phenotype data, in the form of HPO terms. However, these rely on manual expert curation and therefore are not inherently scalable, and cannot be updated automatically. Methods of extracting phenotype data from text at scale developed to date have relied on abstracts or open access papers. At the time of writing, Europe PubMed Central (EPMC, https://europepmc.org/) contained approximately 39.5 million articles, of which only 3.8 million were open access. Therefore, there is likely a significant volume of phenotypic data which has not been used previously at scale, due to difficulties accessing non-open access manuscripts. In this thesis, I present a method for literature curation which can utilise all relevant published full text through a newly developed package which can download almost all manuscripts licenced by a university or other institution. This is scalable to the full spectrum of GDD. Using manuscripts identified through manual literature review, I use a full text download pipeline and NLP (natural language processing) based methods to generate disease models. These are comprised of HPO terms weighted according to their frequency in the literature. I demonstrate iterative refinement of these models, and use a custom annotated corpus of 50 papers to show the text mining process has high precision and recall. I demonstrate that these models clinically reflect true disease expressivity, as defined by manual comparison with expert literature reviews, for three well-characterised GDD. I compare these disease models to those in the most commonly used genetic disease phenotype databases. I show that the automated disease models have increased depth of phenotyping, i.e. there are more terms than those which are manually-generated. I show that, in comparison to ‘real life’ prospectively gathered phenotypic data, automated disease models outperform existing phenotype databases in predicting diagnosis, as defined by increased area under the curve (by 0.05 and 0.08 using different similarity measures) on ROC curve plots. I present a method for automated PubMed search at scale, to use as input for disease model generation. I annotated a corpus of 6500 abstracts. Using this corpus I show a high precision (up to 0.80) and recall (up to 1.00) for machine learning classifiers used to identify manuscripts relevant to GDD. These use hand-picked domain-specific features, for example utilising specific MeSH terms. This method can be used to scale automated literature curation to the full spectrum of GDD. I also present an analysis of the phenotypic terms used in one year of GDD-relevant papers in a prominent journal. This shows that use of supplemental data and parsing clinical report sections from manuscripts is likely to result in more patient-specific phenotype extraction in future. In summary, I present a method for automated curation of full text from the peer-reviewed literature in the context of GDD. I demonstrate that this method is robust, reflects clinical disease expressivity, outperforms existing manual literature curation, and is scalable. Applying this process to clinical testing in future should improve the efficiency and accuracy of diagnosis
    • …
    corecore