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Recent progress in high-throughput genomic technologies has shifted pharmacogenomic research from
candidate gene pharmacogenetics to clinical pharmacogenomics (PGx). Many clinical related questions
may be asked such as ‘what drug should be prescribed for a patient with mutant alleles?’ Typically,
answers to such questions can be found in publications mentioning the relationships of the gene–
drug–disease of interest. In this work, we hypothesize that ClinicalTrials.gov is a comparable source rich
in PGx related information. In this regard, we developed a systematic approach to automatically identify
PGx relationships between genes, drugs and diseases from trial records in ClinicalTrials.gov. In our eval-
uation, we found that our extracted relationships overlap significantly with the curated factual knowl-
edge through the literature in a PGx database and that most relationships appear on average 5 years
earlier in clinical trials than in their corresponding publications, suggesting that clinical trials may be
valuable for both validating known and capturing new PGx related information in a more timely manner.
Furthermore, two human reviewers judged a portion of computer-generated relationships and found an
overall accuracy of 74% for our text-mining approach. This work has practical implications in enriching
our existing knowledge on PGx gene–drug–disease relationships as well as suggesting crosslinks between
ClinicalTrials.gov and other PGx knowledge bases.

Published by Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

Clinical outcomes in response to drugs can be significantly dif-
ferent among individuals, in terms of treatment efficacy and drug
toxicity. Although many clinical variables of individuals (e.g., liver
function, disease severity, and drug interactions) potentially cause
the variability of drug effects, it is now recognized that genetic
polymorphisms can have an even greater influence on drug effi-
cacy and safety [1]. Pharmacogenomics (PGx) studies elucidate
the inherited nature of variability of drug effects in the context
of genomics. Recent progress in high-throughput genomic technol-
ogies has significantly enhanced the identification of genetic vari-
ations associated with drug absorption, distribution, metabolism,
excretion, and target action. The consequent explosion of data
has raised challenges in PGx data description, storage, and integra-
tion. Meanwhile, pharmacogenomics impacts at many stages along
the drug discovery and development pipeline, from target identifi-
cation in early-stage research to post-marketing surveillance in
phase IV clinical trials [2]. The consequent diversity of data types
has raised challenges to capture more attributes of genotype and
B, pharmacogenomics knowl-
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phenotype data as well as more complex relationships between
them.

PharmGKB [3], the pharmacogenomics knowledge base, is a
widely used resource in PGx studies. It collects PGx related geno-
type and phenotype data with manually annotated relationships
between genes, polymorphisms, drugs, and diseases, as well as
provides summarized information on important PGx genes and
drug pathways. Over the last decade, PharmGKB has collected
and annotated PGx data from a variety of different sources but
the scientific literature remains its major source [4]. PharmGKB
has developed structures to tag and describe relationships with
PGx categories: clinical outcome, pharmacodynamics and drug re-
sponses, pharmacokinetics, molecular and cellular functional as-
says, and genotype [5]. Recent PGx text mining efforts have
mainly focused on automatically extracting these relationships
from the scientific literature [4,6].

Meanwhile, PGx research has shifted from candidate gene phar-
macogenetics to clinical pharmacogenomics [4]. To investigate the
clinical applications of PGx studies clinical trials are designed and
conducted. In the context of drug development, clinical trials are
necessary steps to determine if a drug is safe and effective (see
Fig. 1). It usually takes many years for a new drug to pass through
Phase I, II, and III before it is approved by the national regulatory
authority (e.g., the Food and Drug Administration in the United
States). In each phase of clinical trials, studies are separately
conducted and approved. In the past, researchers have investigated
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Fig. 1. Clinical trial registration and publication along the drug development pipeline.

Fig. 2. Snapshot for a clinical trial record in ClinicalTrials.gov.
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the persistent gap between the number of trials conducted and the
number for which results are published. They found that up to 37%
of clinical trials never resulted in a scientific publication, and that
the published articles reporting trial outcomes may not be consis-
tent with protocols [7]. Therefore, in order to promote the trans-
parency of clinical trials, several policy recommendations and
regulations have been created for trial registration when a trial is
launched [8]. For instance, in the United States, the Food and Drug
Administration Modernization Act [9] requires all trials for drugs
for serious or life-threatening diseases and conditions be registered
in ClinicalTrials.gov [10], a clinical trial registry data bank devel-
oped and maintained by the National Library of Medicine (NLM),
part of the National Institutes of Health (NIH). As of August 2010,
ClinicalTrials.gov, the largest of its kind in the world, contains over
100,000 trials from over 170 countries and is used by approxi-
mately 65,000 visitors each day. In ClinicalTrials.gov, each regis-
tered record provides information about a trial’s purpose,
condition, intervention, detailed description, eligibility (who may
participate), location, status, etc. Most of the above information
is described in natural language. Fig. 2 shows an example of a clin-
ical trial record in ClinicalTrials.gov. Like other research databases
[11], ClinicalTrials.gov captures important scientific and clinical
investigations in biomedicine. As a result, the knowledge buried
in those trial records has shown to be valuable for researchers, cli-
nicians, and the pharmaceutical industry [12–14].

In this study, we hypothesize that ClinicalTrials.gov is a compa-
rably rich data source to the biomedical literature for PGx clinical
outcome related information (i.e., how genes affect drug responses
in patients with specific diseases). In this regard, we developed a
text-mining approach to systematically recognize PGx relevant
relationships between genes, drugs, and diseases from both trial
record metadata and descriptions (in free text). It should be noted
that many relationships mentioned in clinical trials may still be
under investigation (i.e., not yet concluded). Despite this fact, they
are not selected without cause or randomly. Rather, they are
carefully designed and conducted based on the accumulated
knowledge from preliminary studies [15,16]. Therefore, these rela-
tionships are reasonable candidates for potential inclusion in the
databases of PGx studies. In addition, the speculative relationships
themselves are valuable for pharmacosurveillance and pharmaco-
vigilance studies [17]. Moreover, mining PGx information from
clinical trials as opposed to the scientific literature has one major
advantage: detecting the important information in a more timely
manner. That is, a relationship mentioned in a trial may not appear
Fig. 3. Time lag between clinical trial and publication. (a) Time lag from trial start date
trial starts. (b) Time lag from trial completion date to publication date (data to the left o
Majority of the publications occur 2–3 years after the completion of their corresponding
in the literature until several years later. This is expected because it
takes time for a trial to be conducted, concluded, and published. To
investigate this time lag issue further, we analyzed 8588 PubMed�

citations that were manually linked to 7224 trials [18] in Clinical-
Trials.gov and computed the time lags between the trials and their
resulting publications. As shown in Fig. 3a, we found that the aver-
age time difference between a trial’s start date and publication
date is approximately 5 years. Once a trial is completed, majority
of them (�62%) have their results published within 2–3 years
(see Fig. 3b). For instance, to study how genetic polymorphisms
influence the efficacy and side effect profiles of Paroxetine and
Escitalopram for major depression treatments, a Phase IV clinical
trial entitled ‘Clinical pharmacogenomics of antidepressant re-
sponse’ was launched and registered in ClinicalTrials.gov in 2006
(See Fig. 2; NCT number = NCT00384020). The trial was completed
4 years later in 2010 and shortly thereafter, the trial was published
in a journal article entitled ‘Genetic polymorphisms of cytochrome
P450 enzymes influence metabolism of the antidepressant escita-
lopram and treatment response’ [19].

Note that in Fig. 3a there are articles that were published in the
same year as their trials started (i.e., zero year difference between
the trial start date and publication date). We looked into these
cases and found that some of these articles are actually describing
the study rationale and protocol rather than study results (e.g., arti-
cle ‘PMID = 19828019’ and its corresponding trial ‘NCT0086251’).
Also, some reported trial start dates in ClinicalTrials.gov are likely
to be errors. For example, the article (PMID = 18761748) published
in September 2008 is linked to a trial (NCT00147966) whose regis-
tered start date is June 2008, which is likely to be an error in this
case.

2. Related work

In this work, we propose a text-mining approach to identify PGx
relevant gene–drug–disease relationships from registered trial re-
cords. The related work includes manual curation of gene–drug–
disease relationships in PharmGKB, text mining techniques for
extracting PGx concepts and relationships, and other text-mining
applications to clinical trial records.

2.1. Curated gene–drug–disease relationships in PharmGKB

In PharmGKB, the gene–drug–disease relationships are identi-
fied based on human curation and further classified into one of
to publication date. On average, a publication occurs 5 years after its corresponding
f 0 years suggest that some publications occur before the completion of their trials).

trials.
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the five general PGx categories: clinical outcome (CO), pharmaco-
dynamics and drug responses (PD), pharmacokinetics (PK), molec-
ular and cellular functional assays (FA), and genotype (GN). The
data in the clinical outcome category demonstrates that the genet-
ic variability in the context of a drug effect significantly changes
medical outcomes. For example, the gene ‘TYMS’, drug ‘methotrex-
ate’, and disease ‘precursor cell lymphoblastic leukemia–lym-
phoma’ were identified for curation in PharmGKB based on a
relevant article ‘Polymorphism of the thymidylate synthase gene
and outcome of acute lymphoblastic leukaemia’ [20]. Subse-
quently, the above gene–drug–disease relationship was classified
into the clinical outcome category. As of August 2010, PharmGKB
covers 1621 such gene–drug–disease relationships categorized as
clinical outcome.
2.2. Text mining techniques for extracting PGx concepts and
relationships

Concept identification serves as a prerequisite for many subse-
quent tasks of biomedical text mining like relationship extraction
[21]. In PGx studies, the key concepts include gene, gene variant,
drug and disease. Text mining tools have been developed for iden-
tifying these concepts such as GAPSCORE for identifying genes
from PGx articles [22] and MutationFinder for identifying gene
variants [23]. The relationships between identified PGx concepts
can be nontyped (e.g., relationship between gene ‘TYMS’, drug
‘methotrexate’, and disease ‘precursor cell lymphoblastic leuke-
mia–lymphoma’ is discussed in article PMID = 11937185) or spe-
cific (e.g., gene ‘TYMS’ variants affect the clinical outcome of
‘precursor cell lymphoblastic leukemia–lymphoma’ patient treated
with ‘methotrexate’). Some attempts have been made for PGx rela-
tionship extraction. For example, Garten and Altman developed an
ontology-based tool, Pharmspresso, for extracting PGx information
from full text articles by identifying concepts (such as genes, drugs,
polymorphisms, and diseases) and relationships (such as action,
association and comparison) [24]. Ahlers et al. developed a rule-
based method for extracting specific PGx relationships such as
‘genetic etiology’ and ‘pharmacological effects’ from PubMed ab-
stracts [25]. Theobald et al. computed conditional probabilities of
PGx relationships between drugs, diseases, and genes by analyzing
their co-occurrences in PubMed abstracts [26]. Coulet et al. devel-
oped a method to identify PGx relationships using syntactic rules
and to organize these relationships in an ontology that maps di-
verse sentence structures and vocabularies to common semantics
[27].

Research on applying text mining techniques in PGx studies is
gaining attention and has achieved significant improvement in
the recent years. A review of text-mining progress in PGx informa-
tion extraction can be found in [6]. Recent workshops devoted to
this domain were held in the Pacific Symposium on Biocomputing,
where the 2010 and 2011 workshop themes were respectively
‘extraction of genotype–phenotype–drug relationships form texts:
from entity recognition to bioinformatics application’ [28] and
‘mining the pharmacogenomics literature’ [29].
2.3. Other text-mining applications to clinical trial records

Clinical trials provide valuable information about the efficacy/
toxicity of medical intervention. Text-mining techniques have
been applied to published randomized clinical trial literature for
extracting patient demographic information such as trial size and
disease/symptom descriptors [13]. To enable semantic representa-
tion and search for clinical research eligibility criteria, some text
mining studies have focused on extracting information from the
narrative descriptions of eligibility criteria in trial records [30,31].
At present, users can search for trials in ClinicalTrials.gov by
entering keywords in the search box. The lack of unambiguous
names for entities (e.g., intervention, condition, and gene) affects
the retrieval of all relevant trials that meet users’ specifications.
For example, more than 60% of the studies in ClinicalTrials.gov
about heart attacks do not contain the phrase ‘heart attack’ but
use a different term such as myocardial infarction [32]. To solve
this issue, the embedded search engine of ClinicalTrials.gov ex-
pands user queries using synonyms derived from the Unified Med-
ical Language System (UMLS) [33] and rank the retrieval results
based on a probabilistic model [34]. This query expansion feature
enables users to retrieve trials which use the term ‘myocardial
infarction’ in the condition description as ‘heart attack’ related
ones. However, it remains ‘myocardial infarction’ and ‘heart attack’
in the contexts of trial records not identified as the same disease
concept. This makes ClinicalTrials.gov difficult to link to other re-
lated resources (e.g., PharmGKB). An attempt to use a standardized
nomenclature for representing various clinical research eligibility
entities was reported by Luo et al. [35,36].
3. Methods

The goal of this study is to systematically identify clinical PGx
information from clinical trial records. Fig. 4 shows an overview
of our workflow. We collected 93,661 clinical trial records from
ClinicalTrials.gov as of August 2010. We first preprocessed these
records and identified sections of interest. Second, we used a dic-
tionary-based method to identify PGx concepts (i.e., diseases, drugs
and genes) from the preprocessed trial records. Our gene–drug–
disease relationship extraction is based on their co-occurrence in
one trial record. Finally, we indexed the trial records with the iden-
tified PGx concepts. Hence, given a target PGx gene, our approach
can return related diseases and drugs with corresponding trials.
Similarly, given a target pair of PGx gene and drug, our approach
can return trials in which the PGx pair is or was under
investigation.

3.1. Preprocessing clinical trial records

In ClinicalTrials.gov, each trial record is divided into sections,
and each section is described in free-style texts (see Fig. 2). The
condition section includes information on the disease, disorder,
syndrome, illness, or injury being studied in a trial. The interven-
tion section includes information on the drug, vaccine, procedure,
device, or other potential treatment being investigated in a trial.
The study description section describes the study hypothesis, de-
sign, and all the information on trial intended for the lay public.
These three sections were identified as important for this work
and extracted for further PGx concept identification. Specifically,
the condition section was used for disease identification, interven-
tion section for drug, and study description section for gene.

3.2. Extracting gene–drug–disease relationships

We used a dictionary-based method to identify genes, drugs,
and diseases from the preprocessed trial records. Three PharmGKB
dictionaries were collected in August 2010, containing 3197 dis-
eases, 2984 drugs, and 26,216 genes respectively. Each concept
and its synonyms in the dictionary are assigned an internal Phar-
mGKB identifier. For example, the drug concept ‘imatinib’ in Phar-
mGKB, together with its list of synonyms ‘Gleevec’, ‘Glivec’,
‘Imatinib Mesylate’, and ‘Imatinib Methansulfonate’ are assigned
a PharmGKB_Id = ‘PA10804’. Both name and synonyms were used
for identifying PGx entities in trial records. The PGx concept iden-
tification and normalization facilitate PGx information retrieval



Fig. 4. Workflow for mining clinical trial records.

1 For interpretation of color in Fig. 5, the reader is referred to the web version of
is article.
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from ClinicalTrials.gov. Furthermore, this makes the linking analy-
sis between ClinicalTrials.gov and PharmGKB feasible.

For gene–drug–disease relationship extraction, we used a co-
occurrence based method. We assume that there is a clinical out-
come association between gene, drug and disease (i.e., how gene
affects drug responses in patients with specific disease/condition)
if they co-occur in the same trial record in ClinicalTrials.gov.

3.3. Indexing clinical trials

We systematically compiled the extracted PGx concepts and
relationships with their identifiers linking to the corresponding
trial records (see Fig. 4). To facilitate the retrieval of PGx informa-
tion from clinical trials, we built an index for the PGx concepts and
trial records such that given a PGx gene, our approach first looks up
the gene dictionary for its identifier, and then readily retrieves all
the trials containing that gene identifier. Similarly, given a PGx
gene–drug pair, our approach first looks up the gene and drug dic-
tionary respectively for their identifiers, and then retrieves all the
trials in which both identifiers are present.

3.4. Hypothesis testing and method evaluation

To test our hypothesis that ClinicalTrials.gov is a comparable
source rich in PGx related information, we first compared our re-
sults (i.e., extracted PGx relationships between genes, drugs and
diseases) in trial records against the ones found in PharmGKB
and in PubMed, respectively.

Second, to assess the performance of our text-mining approach,
we manually reviewed a subset of automatically extracted rela-
tionships. Specifically, two human annotators (JL and ZL) were
asked to manually assign one of the following categories to 100 ex-
tracted gene–drug–disease relationships: the relationship was not
mentioned in the trial record (Category I); the relationship was
explicitly mentioned in the trial record with or without supporting
publications (Categories II and III). When computing accuracy for
our method, both Categories II and III were considered as correct
extractions.
4. Results

4.1. Comparative evaluation of ClinicalTrials.gov

For contrasting ClinicalTrials.gov with PharmGKB and PubMed,
we compared their coverage of 3-way gene–drug–disease PGx
relationships, which were obtained based on the input of 26 PGx
gene–drug pairs [37] from the PharmGKB website.

Given these 26 PGx gene–drug pairs, our approach was able to
identify 348 clinical trials and 240 3-way PGx relationships. By
querying the given PGx pairs in PubMed [38] while limiting the
publication type to be ‘Clinical Trial’ and MeSH [39] (Medical Sub-
ject Headings) terms to be ‘Genetic Variation’ or ‘Genotype’, 1162
3-way relationships were retrieved in 448 PubMed citations. Final-
ly, we found 261 such 3-way relationships curated in PharmGKB.

Fig. 5 shows a detailed comparison of the 3-way gene–drug–
disease relationships found in the clinical trials (blue1 circle), Pub-
Med abstracts (green circle) and PharmGKB (red circle). 124
(51.7%) and 68 (28.3%) of the relationships found in ClinicalTri-
als.gov were also present in PubMed and PharmGKB, respectively.
For the common 51 drug–gene–disease relationships which were
found in all three sources, approximately 75% of them occurred
earlier in trials than in PharmGKB or PubMed.

Our approach also identified 99 gene–drug–disease relation-
ships which are currently missing in both PharmGKB and PubMed.
Our further analysis shows that majority (65%) of them were found
from ongoing trials (e.g., recruiting or active but not recruiting). For
example, the ‘UGT1A1’–‘irinotecan’–‘Gastrointestinal Cancer’ rela-
tionship was extracted from a Phase I trial (NCT00654160) which
was launched in 2008 and expected to be completed in 2015. In
th



Fig. 5. Comparison of gene–drug–disease relationships identified from different
sources. A total of 240 relationships were found in ClinicalTrials.gov. 124 and 68
such relationships were found to be overlapping with 1162 results in PubMed and
261 results in PharmGKB, respectively. Fifty-one relationships were found in all
three sources.
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this trial, researchers proposed to study UGT1A1 genotype-based
dosing of irinotecan when given together with fluorouracil and leu-
covorin in treating patients with advanced gastrointestinal cancer.
As of August 2010, this ‘UGT1A1’–‘irinotecan’–‘Gastrointestinal
Cancer’ relationship is present in neither PharmGKB nor PubMed.
Table 1
Examples of correctly identified gene–drug–disease relationships currently absent in Phar

Gene Drug Disease Relevant clinical trial and study stateme

EGFR Gefitinib Head and Neck
Cancer

NCT00083057 (2004): Gefitinib, paclitaxe
treating patients with head and neck can
analysis of EGFR downstream signaling p

EGFR Gefitinib Ovarian Cancer NCT00049556 (2002): This phase II trial
gefitinib works in treating patients with
the biologic modulation of EGFR by this
toxic effects in these patients

EGFR Erlotinib Biliary Cancer NCT00356889 (2006): Determine the pre
in tumor tissue and correlate this with o

UGT1A1 Irinotecan Head and Neck
Cancer

NCT00040807 (2002): Correlate UGT1A1
effects of irinotecan and docetaxel in the

UGT1A1 Irinotecan Neuroblastoma NCT00093353 (2004): Correlate UGT1A1
occurrence of dose-limiting diarrhea in N
treated with irinotecan, temozolomide, a

UGT1A1 Irinotecan Lung Cancer NCT00045162 (2002): Determine the ass
polymorphisms and irinotecan-associate
patients with lung cancer

G6PD Chloroquine Malaria NCT00118794 (2004): Evaluate the exten
associated with the use of chlorproguani
without G6PD screening might outweigh
treatment

UGT1A1 Irinotecan Advanced
Gastric Cancer

NCT01136031 (2008): Study the accurate
(MTD) of the paclitaxel and irinotecan co
considering the UGT1A1 polymorphism

CYP2C9 Celecoxib Colorectal
Cancer

NCT00685568 (2002): Assess the influen
CYP2C9 on age of onset, phenotype or nu

DPYD Capecitabine Pancreatic
Cancer

NCT00303927 (2005): Explore the assoc
capecitabine exposure at steady-state, al
gene dihydropyrimidine dehydrogenase
patient population
4.2. Assessment of our automatic approach

For the 240 identified gene–drug–disease relationships by our
method, 100 of them were randomly selected for manual review
and classification. 74 were judged to be correct extractions: 30
in Category II and 44 in Category III (see category details in Section
3.4). Hence, our text-mining approach achieves an accuracy of
74%.

Table 1 shows 10 examples of correctly identified relationships,
as well as their supporting statements and corresponding publica-
tions (when available) in the trials. In our evaluation, the first
seven relationships were classified to be Category II and the other
3 Category III. Take the ‘UGT1A1’–‘irinotecan’–‘Lung Cancer’ rela-
tionship for example. Our method extracted this relationship from
a Phase III clinical trial (NCT00045162) which proposed to deter-
mine the association between UGT1A1 polymorphisms and
irinotecan-assoicated toxic effect in patients with lung cancer.
After 7 years in 2009, the pharmacogenomics results of this trial
were published (PMID = 19349543), reporting that UGT1A1 (G-
3156A)A/A (drug metabolism) was associated with IP (Irinotecan
plus cisplatin) related neutropenia. As of August 2010, these 10
relationships were missing in PharmGKB. Thus, we believe the
relationships identified by our approach are valuable for inclusion
to related PGx knowledge bases.
mGKB.

nt Corresponding trial results published in the
literature

l, and radiation therapy in
cer; molecular targets
athway

PMID: 19879702 (2010): Only 1 patient
demonstrated a reduction in phosphorylated EGFR,
decreased downstream signaling, and reduced
cellular proliferation after initiating GEF

is studying how well
ovarian cancer. Correlate
drug with outcome and

PMID: 17330838 (2007): The results from this
study demonstrated that efitinib inhibited the
phosphorylation of EGFR in EOC (epithelial ovarian
cancer) tumor cells, providing proof of target in a
clinical setting

sence of EGFR mutations
utcome

PMID: 20530271 (2010): Low repeats (<16) in EGFR
intron 1 polymorphism and G > G k-ras Q38
genotype (wild type) were associated with
improved outcomes

genotype with the toxic
se patients

PMID: 19634157 (2009) The authors explored the
association between polymorphisms in the UGT1A1
gene and race, neutropenia, diarrhea, and any
toxicity among 35 patients. There were no
statistically significant differences in the pattern of
worst degree toxicity, or in the grade intensity of
neutropenia, or diarrhea by TA repeat category

genotype with the
euroblastoma patients
nd cefixime

PMID: 19171709 (2009): No association was seen
between UGT1A1 genotype and toxicity in this
small study

ociation between UGT1A1
d toxic effects in the

PMID: 19349543 (2009): UGT1A1 (G-3156A)A/A
(drug metabolism) was associated with IP
(Irinotecan plus cisplatin)-related neutropenia.

t to which the risks
l-dapsone in settings
the benefits to malaria

PMID: 21666744 (2011) The authors found
evidence of an interaction of treatment group with
parasite density, suggesting that failure to rapidly
eliminate parasitaemia may have explained the
anaemia after chlorproguanil-dapsone in G6PD
normal subjects

maximum tolerated dose
mbination regimen after

of patients

None

ce of polymorphism
mber of colorectal polyps

None

iation between
lelic variants in candidate
and drug response in this

None
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5. Discussion

Our approach shows that ClinicalTrials.gov is rich in revealing
gene–drug–disease relationships for PGx studies. Absent from the
current PGx knowledge base (PharmGKB), many of the identified
PGx relationships are associated with potential clinical outcomes.
In this section, we will discuss the issues of coverage and time
lag, the practical implications of this research, and the limitations
of our approach, as well as future work.
5.1. Coverage

Although we observed a statistically significant overlap be-
tween our results and curated facts in PharmGKB (hypergeometric
p-value <0.05), some curated PGx relationships were not detected
from clinical trials. This is mainly due to the incompleteness of trial
registration, especially for the trials held outside of the United
States. For example, the relationship between gene ‘CYP2C9’, drug
‘tamoxifen’ and disease ‘breast cancer’ was studied in a clinical trial
in Turkey which was not registered in ClinicalTrials.gov. On the
other hand, the study results were already published in an article
entitled ‘Tamoxifen inhibits cytochrome P450 2C9 activity in
breast cancer patients’ (PMID = 17024799). As a result, the clinical
outcome investigation on the ‘CYP2C9’–‘tamoxifen’–‘breast cancer’
relationship was curated based on the publication but not found in
ClinicalTrials.gov by our approach. Good news is that ClinicalTri-
als.gov is now making efforts to collaborate with other countries
in creating a universal registration system [32]. This endeavor
would promote the accessibility of clinical trials in all countries
in the future.
5.2. Time lag

As mentioned in Section 4.1, approximately 75% of the 3-way
drug–gene–disease PGx relationships were identified earlier in tri-
als than in publications. For the remaining 25% of the relationships,
we found two main reasons why they were found otherwise (i.e.,
earlier in publications than in trials). First, it is due to the fact that
the earliest trial of an identified relationship is not registered in
ClinicalTrials.gov. For example, the relationship between gene
‘SULT1A1’, drug ‘tamoxifen’, and disease ‘breast cancer’ was cu-
rated in PharmGKB based on a supporting article (PMID =
15024382) published in 2004 but its corresponding trial is missing
in ClinicalTrials.gov. On the other hand, a different trial reporting
the same relationship was registered in ClinicalTrials.gov in 2008
(NCT00667121). Hence, the first appearance of the ‘SULT1A1’–
‘tamoxifen’–‘breast cancer’ relationship in trial records was dated
as 2008 by our method—4 year behind the earliest publication
year.

Second, it is due to the discrepancy between the nature of clin-
ical trials and curation scope of PharmGKB. A PGx related clinical
trial is designed to study the direct relationships between genes,
drugs and diseases, (i.e., how genes affect drug responses in pa-
tients with specific diseases/conditions). However, both direct
and indirect relationships are captured by PharmGKB [40]. For
example, in PharmGKB, the clinical outcome annotation for the
relationship between gene ‘CYP3A4’, drug ‘pantoprazole’, and dis-
ease ‘Gastroesophageal Reflux Disease (GERD)’ is curated based
on an article (PMID = 16961157) published in 2006. However, in
ClinicalTrials.gov the earliest trial for investigating this relation-
ship was not registered until 2009 (NCT00744419). Therefore, in
this case the ‘CYP3A4’–‘pantoprazole’–‘GERD’ relationship was de-
tected 3 years ahead in the literature than in ClinicalTrials.gov.
However, our further examination shows that the curated article
(PMID = 16961157) is a review rather an original research report.
In that review article, several genes (CYP2C19 and CYP3A4), drugs
(amoxicillin, esomeprazole, pantoprazole, etc.), and diseases (Gas-
troesophageal Reflux and Peptic Ulcer) were discussed but the ex-
act relationship between ‘CYP3A4’, ‘pantoprazole’, and ‘GERD’ was
not reported.

Note that in Fig. 3a we show that for each trial related article, its
publication date is always after its corresponding trial start date.
But with respect to PGx relationships, owning to the aforemen-
tioned reasons, some may be found earlier in publications than
in trials.

5.3. Practical implications of this research

As mentioned earlier, anyone using extracted relationships
from this research should be cautioned that some of those relation-
ships are still under investigation and thus not concluded. None-
theless, we believe these speculative relationships are still
valuable for inclusion to relevant knowledge bases (perhaps with
special remarks). Below, we use PharmGKB as a representative
PGx knowledge base and show two potential practical uses of
our research findings:

First, we recommend building cross-links between PharmGKB
and ClinicalTrials.gov. Doing so would allow PharmGKB users to
readily identify clinical trials in which relevant PGx genes are un-
der investigation for different conditions and interventions. On the
other hand, through linking to PharmGKB, ClinicalTrials.gov users
can be exposed to the most comprehensive knowledge of PGx con-
cepts such as gene variants and genetic tests.

Second, relationships found in ClinicalTrials.gov but currently
missing in PharmGKB may be considered for future curation. In
this regard, we have two specific recommendations for prioritizing
the list of candidate relationships: (a) based on our analysis, any
extracted relationships that are associated with multiple support-
ing trials should be of high priority; and (b) any relationships that
are associated with completed and published clinical trials should
be of high priority. For example, the relationship between gene
‘EGFR’, drug ‘gefitinib’, and disease ‘Head and Neck Cancer’ is asso-
ciated with four clinical trials (i.e., NCT00083057, NCT00088907,
NCT00820417 and NCT00169221). Moreover, the study status of
one trial (NCT00083057) is indicated as ‘completed’ and its results
are published. Thus, the ‘EGFR’–‘gefitinib’–‘Head and Neck Cancer’
relationship should be of high priority for curation consideration.

5.4. Limitations of our approach and future work

In this study, we used a dictionary-based method for gene, dis-
ease, and drug identification for directly associating with the Phar-
mGKB vocabulary. Like any other dictionary-based method, our
approach favored precision but failed to identify entity variants
not covered by the used dictionaries. Also, due to name ambiguity
between entity types, we may occasionally have identified false
positives in our results. For example, the PGx gene symbol ‘TPMT’
is also the abbreviation of drug ‘topiramate’. This ambiguity di-
rectly led to an error in gene identification from trial
(NCT00884884) in which TPMT is indicated as the short form of
the antiepileptic drug ‘topiramate’.

In relationship extraction, we used a co-occurrence based meth-
od for identifying relationships between genes, drugs, and diseases.
Although this method has been successfully applied in a number of
studies such as [41–43], it has certain limitations: (a) not all co-oc-
curred relationships are actually meaningful (accounting for 26% of
the errors in relationship extraction); and (b) we cannot character-
ize the types of relationships extracted.

In the future, we plan on (a) improving the methods for PGx
concept identification and relationship extraction using more
sophisticated NLP techniques such as dependency parsing [44];
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(b) designing a method for ranking extraction results by combining
features like relevant trial status and numbers; (c) developing a ro-
bust method for linking clinical trials to their corresponding publi-
cations when they are not manually supplied by the trial
investigators; (d) developing an automatic method to detect spe-
cific gene variants and allele changes which affect drug response
reported in trial results and further link them to a standardized
gene variation database such as dbSNP [45].
6. Conclusions

The clinical trial is at a critical juncture in the drug development
pipeline, connecting previous studies on molecular mechanism
with a final decision of approval. We successfully developed a sys-
tematic approach to automatically identify clinical PGx informa-
tion from registered clinical trials. In this study, we collected
93,661 clinical trial records from ClinicalTrials.gov and used a dic-
tionary-based method to identify and normalize PGx concepts (i.e.,
diseases, drugs and genes) in the texts of the collected trial records.
In relationship extraction, we used a co-occurrence based method
for identifying relationships between genes, drugs, and diseases. To
facilitate the retrieval of PGx information from clinical trials, we
built an index for the PGx concepts and the trials collected in our
study. Hence, given a pair of PGx gene–drug relationship, our ap-
proach can return trials in which the PGx pair is studied under dif-
ferent conditions and controls. In comparative evaluation, we show
that ClinicalTrials.gov is a rich source of PGx gene–drug–disease
relationships. Manual review shows that our automatic identifica-
tion method achieves an accuracy of 74%. By comparing our results
with the relationships identified from PubMed abstracts and in
PharmGKB, we found that our approach can potentially enrich cur-
rent resources and accelerate the dissemination of clinical outcome
information of pharmacogenomics.
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