565 research outputs found

    On The Multiparty Communication Complexity of Testing Triangle-Freeness

    Full text link
    In this paper we initiate the study of property testing in simultaneous and non-simultaneous multi-party communication complexity, focusing on testing triangle-freeness in graphs. We consider the coordinator\textit{coordinator} model, where we have kk players receiving private inputs, and a coordinator who receives no input; the coordinator can communicate with all the players, but the players cannot communicate with each other. In this model, we ask: if an input graph is divided between the players, with each player receiving some of the edges, how many bits do the players and the coordinator need to exchange to determine if the graph is triangle-free, or far\textit{far} from triangle-free? For general communication protocols, we show that O~(k(nd)1/4+k2)\tilde{O}(k(nd)^{1/4}+k^2) bits are sufficient to test triangle-freeness in graphs of size nn with average degree dd (the degree need not be known in advance). For simultaneous\textit{simultaneous} protocols, where there is only one communication round, we give a protocol that uses O~(kn)\tilde{O}(k \sqrt{n}) bits when d=O(n)d = O(\sqrt{n}) and O~(k(nd)1/3)\tilde{O}(k (nd)^{1/3}) when d=Ω(n)d = \Omega(\sqrt{n}); here, again, the average degree dd does not need to be known in advance. We show that for average degree d=O(1)d = O(1), our simultaneous protocol is asymptotically optimal up to logarithmic factors. For higher degrees, we are not able to give lower bounds on testing triangle-freeness, but we give evidence that the problem is hard by showing that finding an edge that participates in a triangle is hard, even when promised that at least a constant fraction of the edges must be removed in order to make the graph triangle-free.Comment: To Appear in PODC 201

    Testing Triangle-Freeness in General Graphs

    Full text link

    Edge correlations in random regular hypergraphs and applications to subgraph testing

    Get PDF
    Compared to the classical binomial random (hyper)graph model, the study of random regular hypergraphs is made more challenging due to correlations between the occurrence of different edges. We develop an edge-switching technique for hypergraphs which allows us to show that these correlations are limited for a large range of densities. This extends some previous results of Kim, Sudakov and Vu for graphs. From our results we deduce several corollaries on subgraph counts in random dd-regular hypergraphs. We also prove a conjecture of Dudek, Frieze, Ruci\'nski and \v{S}ileikis on the threshold for the existence of an \ell-overlapping Hamilton cycle in a random dd-regular rr-graph. Moreover, we apply our results to prove bounds on the query complexity of testing subgraph-freeness. The problem of testing subgraph-freeness in the general graphs model was first studied by Alon, Kaufman, Krivelevich and Ron, who obtained several bounds on the query complexity of testing triangle-freeness. We extend some of these previous results beyond the triangle setting and to the hypergraph setting.Comment: Final version. To appear in SIAM J. Discrete Mat

    Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model

    Full text link
    In this paper we present distributed testing algorithms of graph properties in the CONGEST-model [Censor-Hillel et al. 2016]. We present one-sided error testing algorithms in the general graph model. We first describe a general procedure for converting ϵ\epsilon-testers with a number of rounds f(D)f(D), where DD denotes the diameter of the graph, to O((logn)/ϵ)+f((logn)/ϵ)O((\log n)/\epsilon)+f((\log n)/\epsilon) rounds, where nn is the number of processors of the network. We then apply this procedure to obtain an optimal tester, in terms of nn, for testing bipartiteness, whose round complexity is O(ϵ1logn)O(\epsilon^{-1}\log n), which improves over the poly(ϵ1logn)poly(\epsilon^{-1} \log n)-round algorithm by Censor-Hillel et al. (DISC 2016). Moreover, for cycle-freeness, we obtain a \emph{corrector} of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. In the second part of the paper we design algorithms for testing whether the network is HH-free for any connected HH of size up to four with round complexity of O(ϵ1)O(\epsilon^{-1}). This improves over the O(ϵ2)O(\epsilon^{-2})-round algorithms for testing triangle freeness by Censor-Hillel et al. (DISC 2016) and for testing excluded graphs of size 44 by Fraigniaud et al. (DISC 2016). In the last part we generalize the global tester by Iwama and Yoshida (ITCS 2014) of testing kk-path freeness to testing the exclusion of any tree of order kk. We then show how to simulate this algorithm in the CONGEST-model in O(kk2+1ϵk)O(k^{k^2+1}\cdot\epsilon^{-k}) rounds

    Testing Triangle Freeness in the General Model in Graphs with Arboricity O(?n)

    Get PDF
    We study the problem of testing triangle freeness in the general graph model. This problem was first studied in the general graph model by Alon et al. (SIAM J. Discret. Math. 2008) who provided both lower bounds and upper bounds that depend on the number of vertices and the average degree of the graph. Their bounds are tight only when d_max = O(d) and ?{d} ? ?n or when ?{d} = ?(1), where d_max denotes the maximum degree and ?{d} denotes the average degree of the graph. In this paper we provide bounds that depend on the arboricity of the graph and the average degree. As in Alon et al., the parameters of our tester is the number of vertices, n, the number of edges, m, and the proximity parameter ? (the arboricity of the graph is not a parameter of the algorithm). The query complexity of our tester is O?(?/ ?{d} + ?)? poly(1/?) on expectation, where ? denotes the arboricity of the input graph (we use O?(?) to suppress O(log log n) factors). We show that for graphs with arboricity O(?n) this upper bound is tight in the following sense. For any ? ? [s] where s = ?(?n) there exists a family of graphs with arboricity ? and average degree ?{d} such that ?(?/ ?{d} + ?) queries are required for testing triangle freeness on this family of graphs. Moreover, this lower bound holds for any such ? and for a large range of feasible average degrees

    Finding Cycles and Trees in Sublinear Time

    Full text link
    We present sublinear-time (randomized) algorithms for finding simple cycles of length at least k3k\geq 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being CkC_k-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., Ω(1)\Omega(1)-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time \tildeO(\sqrt{N}), where NN denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of NN-vertex graphs can be tested with one-sided error within time complexity \tildeO(\poly(1/\e)\cdot\sqrt{N}). This matches the known Ω(N)\Omega(\sqrt{N}) query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter \e. For any constant k3k\geq3, we extend this result to testing whether the input graph has a simple cycle of length at least kk. On the other hand, for any fixed tree TT, we show that TT-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter \e. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in o(N)o(\sqrt{N}) complexity.Comment: Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided vs Two-Sided Error Probability Updated versio

    Distributed Testing of Excluded Subgraphs

    Get PDF
    We study property testing in the context of distributed computing, under the classical CONGEST model. It is known that testing whether a graph is triangle-free can be done in a constant number of rounds, where the constant depends on how far the input graph is from being triangle-free. We show that, for every connected 4-node graph H, testing whether a graph is H-free can be done in a constant number of rounds too. The constant also depends on how far the input graph is from being H-free, and the dependence is identical to the one in the case of testing triangles. Hence, in particular, testing whether a graph is K_4-free, and testing whether a graph is C_4-free can be done in a constant number of rounds (where K_k denotes the k-node clique, and C_k denotes the k-node cycle). On the other hand, we show that testing K_k-freeness and C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two natural types of generic algorithms for testing H-freeness, called DFS tester and BFS tester. The latter captures the previously known algorithm to test the presence of triangles, while the former captures our generic algorithm to test the presence of a 4-node graph pattern H. We prove that both DFS and BFS testers fail to test K_k-freeness and C_k-freeness in a constant number of rounds for k>4
    corecore