2,640 research outputs found

    Drawing cartoon faces - a functional imaging study of the cognitive neuroscience of drawing

    Full text link
    We report a functional imaging study of drawing cartoon faces. Normal, untrained participants were scanned while viewing simple black and white cartoon line-drawings of human faces, retaining them for a short memory interval, and then drawing them without vision of their hand or the paper. Specific encoding and retention of information about the faces was tested for by contrasting these two stages (with display of cartoon faces) against the exploration and retention of random dot stimuli. Drawing was contrasted between conditions in which only memory of a previously viewed face was available versus a condition in which both memory and simultaneous viewing of the cartoon was possible, and versus drawing of a new, previously unseen, face. We show that the encoding of cartoon faces powerfully activates the face sensitive areas of the lateral occipital cortex and the fusiform gyrus, but there is no significant activation in these areas during the retention interval. Activity in both areas was also high when drawing the displayed cartoons. Drawing from memory activates areas in posterior parietal cortex and frontal areas. This activity is consistent with the encoding and retention of the spatial information about the face to be drawn as a visuo-motor action plan, either representing a series of targets for ocular fixation or as spatial targets for the drawing actio

    Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    Get PDF
    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions

    Drawing cartoon faces - a functional imaging study of the cognitive neuroscience of drawing.

    Get PDF
    We report a functional imaging study of drawing cartoon faces. Normal, untrained participants were scanned while viewing simple black and white cartoon line-drawings of human faces, retaining them for a short memory interval, and then drawing them without vision of their hand or the paper. Specific encoding and retention of information about the faces was tested for by contrasting these two stages (with display of cartoon faces) against the exploration and retention of random dot stimuli. Drawing was contrasted between conditions in which only memory of a previously viewed face was available versus a condition in which both memory and simultaneous viewing of the cartoon was possible, and versus drawing of a new, previously unseen, face. We show that the encoding of cartoon faces powerfully activates the face sensitive areas of the lateral occipital cortex and the fusiform gyrus, but there is no significant activation in these areas during the retention interval. Activity in both areas was also high when drawing the displayed cartoons. Drawing from memory activates areas in posterior parietal cortex and frontal areas. This activity is consistent with the encoding and retention of the spatial information about the face to be drawn as a visuo-motor action plan, either representing a series of targets for ocular fixation or as spatial targets for the drawing action

    Number skills and knowledge in children with specific language impairment

    Get PDF
    The number skills of groups of 7 to 9 year old children with specific language impairment (SLI) attending mainstream or special schools are compared with an age and nonverbal reasoning matched group (AC), and a younger group matched on oral language comprehension. The SLI groups performed below the AC group on every skill. They also showed lower working memory functioning and had received lower levels of instruction. Nonverbal reasoning, working memory functioning, language comprehension, and instruction accounted for individual variation in number skills to differing extents depending on the skill. These factors did not explain the differences between SLI and AC groups on most skills

    Cognitive Outcomes and Relationships with Phenylalanine in Phenylketonuria: A Comparison between Italian and English Adult Samples

    Get PDF
    We aimed to assess if the same cognitive batteries can be used cross-nationally to monitor the effect of Phenylketonuria (PKU). We assessed whether a battery, previously used with English adults with PKU (AwPKU), was also sensitive to impairments in Italian AwPKU. From our original battery, we selected a number of tasks that comprehensively assessed visual attention, visuo-motor coordination, executive functions (particularly, reasoning, planning, and monitoring), sustained attention, and verbal and visual memory and learning. When verbal stimuli/or responses were involved, stimuli were closely matched between the two languages for psycholinguistic variables. We administered the tasks to 19 Italian AwPKU and 19 Italian matched controls and compared results from with 19 English AwPKU and 19 English matched controls selected from a previously tested cohort. Participant election was blind to cognitive performance and metabolic control, but participants were closely matched for age and education. The Italian AwPKU group had slightly worse metabolic control but showed levels of performance and patterns of impairment similar to the English AwPKU group. The Italian results also showed extensive correlations between adult cognitive measures and metabolic measures across the life span, both in terms of Phenylalanine (Phe) levels and Phe fluctuations, replicating previous results in English. These results suggest that batteries with the same and/or matched tasks can be used to assess cognitive outcomes across countries allowing results to be compared and accrued. Future studies should explore potential differences in metabolic control across countries to understand what variables make metabolic control easier to achieve

    The neural bases of event monitoring across domains: a simultaneous ERP-fMRI study.

    Get PDF
    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, these transient processes rely on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts
    • …
    corecore