152,023 research outputs found

    Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

    Get PDF
    SEU faults are a well-known problem in aerospace environment but recently their relevance grew up also at ground level in commodity applications coupled, in this frame, with strong economic constraints in terms of costs reduction. On the other hand, latest hardware description languages and synthesis tools allow reducing the boundary between software and hardware domains making the high-level descriptions of hardware components very similar to software programs. Moving from these considerations, the present paper analyses the possibility of reusing Software Implemented Hardware Fault Tolerance (SIHFT) techniques, typically exploited in micro-processor based systems, to design SEU tolerant architectures. The main characteristics of SIHFT techniques have been examined as well as how they have to be modified to be compatible with the synthesis flow. A complete environment is provided to automate the design instrumentation using the proposed techniques, and to perform fault injection experiments both at behavioural and gate level. Preliminary results presented in this paper show the effectiveness of the approach in terms of reliability improvement and reduced design effort

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing

    A Symbolic Execution Algorithm for Constraint-Based Testing of Database Programs

    Full text link
    In so-called constraint-based testing, symbolic execution is a common technique used as a part of the process to generate test data for imperative programs. Databases are ubiquitous in software and testing of programs manipulating databases is thus essential to enhance the reliability of software. This work proposes and evaluates experimentally a symbolic ex- ecution algorithm for constraint-based testing of database programs. First, we describe SimpleDB, a formal language which offers a minimal and well-defined syntax and seman- tics, to model common interaction scenarios between pro- grams and databases. Secondly, we detail the proposed al- gorithm for symbolic execution of SimpleDB models. This algorithm considers a SimpleDB program as a sequence of operations over a set of relational variables, modeling both the database tables and the program variables. By inte- grating this relational model of the program with classical static symbolic execution, the algorithm can generate a set of path constraints for any finite path to test in the control- flow graph of the program. Solutions of these constraints are test inputs for the program, including an initial content for the database. When the program is executed with respect to these inputs, it is guaranteed to follow the path with re- spect to which the constraints were generated. Finally, the algorithm is evaluated experimentally using representative SimpleDB models.Comment: 12 pages - preliminary wor

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Design methods for fault-tolerant navigation computers

    Get PDF
    Design methods for fault tolerant navigation computer

    Mutation testing on an object-oriented framework: An experience report

    Get PDF
    This is the preprint version of the article - Copyright @ 2011 ElsevierContext The increasing presence of Object-Oriented (OO) programs in industrial systems is progressively drawing the attention of mutation researchers toward this paradigm. However, while the number of research contributions in this topic is plentiful, the number of empirical results is still marginal and mostly provided by researchers rather than practitioners. Objective This article reports our experience using mutation testing to measure the effectiveness of an automated test data generator from a user perspective. Method In our study, we applied both traditional and class-level mutation operators to FaMa, an open source Java framework currently being used for research and commercial purposes. We also compared and contrasted our results with the data obtained from some motivating faults found in the literature and two real tools for the analysis of feature models, FaMa and SPLOT. Results Our results are summarized in a number of lessons learned supporting previous isolated results as well as new findings that hopefully will motivate further research in the field. Conclusion We conclude that mutation testing is an effective and affordable technique to measure the effectiveness of test mechanisms in OO systems. We found, however, several practical limitations in current tool support that should be addressed to facilitate the work of testers. We also missed specific techniques and tools to apply mutation testing at the system level.This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT Project SETI (TIN2009-07366) and the Andalusian Government Projects ISABEL (TIC-2533) and THEOS (TIC-5906)
    corecore