16,119 research outputs found

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    Sparse multivariate polynomial interpolation in the basis of Schubert polynomials

    Full text link
    Schubert polynomials were discovered by A. Lascoux and M. Sch\"utzenberger in the study of cohomology rings of flag manifolds in 1980's. These polynomials generalize Schur polynomials, and form a linear basis of multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schubert polynomials, which generalize skew Schur polynomials, and expand in the Schubert basis with the generalized Littlewood-Richardson coefficients. In this paper we initiate the study of these two families of polynomials from the perspective of computational complexity theory. We first observe that skew Schubert polynomials, and therefore Schubert polynomials, are in \CountP (when evaluating on non-negative integral inputs) and \VNP. Our main result is a deterministic algorithm that computes the expansion of a polynomial ff of degree dd in Z[x1,,xn]\Z[x_1, \dots, x_n] in the basis of Schubert polynomials, assuming an oracle computing Schubert polynomials. This algorithm runs in time polynomial in nn, dd, and the bit size of the expansion. This generalizes, and derandomizes, the sparse interpolation algorithm of symmetric polynomials in the Schur basis by Barvinok and Fomin (Advances in Applied Mathematics, 18(3):271--285). In fact, our interpolation algorithm is general enough to accommodate any linear basis satisfying certain natural properties. Applications of the above results include a new algorithm that computes the generalized Littlewood-Richardson coefficients.Comment: 20 pages; some typos correcte

    Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

    Full text link
    Reed-Muller codes are some of the oldest and most widely studied error-correcting codes, of interest for both their algebraic structure as well as their many algorithmic properties. A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length nn and distance d=O(1)d = O(1), one can correct polylog(n)\operatorname{polylog}(n) random errors in poly(n)\operatorname{poly}(n) time (which is well beyond the worst-case error tolerance of O(1)O(1)). In this paper, we consider the problem of `syndrome decoding' Reed-Muller codes from random errors. More specifically, given the polylog(n)\operatorname{polylog}(n)-bit long syndrome vector of a codeword corrupted in polylog(n)\operatorname{polylog}(n) random coordinates, we would like to compute the locations of the codeword corruptions. This problem turns out to be equivalent to a basic question about computing tensor decomposition of random low-rank tensors over finite fields. Our main result is that syndrome decoding of Reed-Muller codes (and the equivalent tensor decomposition problem) can be solved efficiently, i.e., in polylog(n)\operatorname{polylog}(n) time. We give two algorithms for this problem: 1. The first algorithm is a finite field variant of a classical algorithm for tensor decomposition over real numbers due to Jennrich. This also gives an alternate proof for the main result of Saptharishi et al. 2. The second algorithm is obtained by implementing the steps of the Berlekamp-Welch-style decoding algorithm of Saptharishi et al. in sublinear-time. The main new ingredient is an algorithm for solving certain kinds of systems of polynomial equations.Comment: 24 page

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur
    corecore