3,319 research outputs found

    Real-time HSPA emulator for end-to-edge QoS evaluation in all-IP beyond 3G heterogeneous wireless networks

    Get PDF
    This paper is aimed at presenting the real-time High Speed Packet Access (HSPA) emulator that has been developed in the framework of the AROMA project. Real-time emula- tors allow reproducing realistic scenarios to test algorithms, strategies, protocols and applications under realistic condi- tions. Therefore, real-time emulators constitute a powerful tool to evaluate the end-user's Quality of Experience (QoE), which could not be achieved by means of o -line simulations. The presented emulator is integrated in the AROMA real- time testbed, which has been developed to provide a frame- work for demonstrating the bene ts of the common radio re- source management algorithms as well as the proposed end- to-edge Quality of Service (QoS) management techniques developed for all-IP beyond 3G heterogeneous wireless net- works in the context of the AROMA project. This paper presents a qualitative description of the developed tool, em- phasizing some interesting implementation details that may result helpful in the development of similar emulation plat- forms. Some illustrative results, showing the capabilities of the developed tool, are also presented and analyzed.Postprint (published version

    Jet Deflection via Cross winds: Laboratory Astrophysical Studies

    Full text link
    We present new data from High Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma code simulations of the experiments are able to recover the deflection behaviour seen in the experiments. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. Fitting the observed jet deflections to quadratic trajectories predicted by these models allows us to recover a set of plasma parameters consistent with the data. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd

    A distributed combustion solver for engine simulations on grids

    Get PDF
    AbstractMulti-dimensional models for predictive simulations of modern engines are an example of multi-physics and multi-scale mathematical models, since lots of thermofluiddynamic processes in complex geometrical configurations have to be considered. Typical models involve different submodels, including turbulence, spray and combustion models, with different characteristic time scales. The predictive capability of the complete models depends on the accuracy of the submodels as well as on the reliability of the numerical solution algorithms. In this work we propose a multi-solver approach for reliable and efficient solution of the stiff Ordinary Differential Equation (ODE) systems arising from detailed chemical reaction mechanisms for combustion modeling. Main aim was to obtain high-performance parallel solution of combustion submodels in the overall procedure for simulation of engines on distributed heterogeneous computing platforms. To this aim we interfaced our solver with the CHEMKIN-II package and the KIVA3V-II code and carried out multi-computer simulations of realistic engines. Numerical experiments devoted to test reliability of the simulation results and efficiency of the distributed combustion solver are presented and discussed

    Research Brief

    Get PDF
    Approved for public release; distribution is unlimited

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    Probabilistic grid scheduling based on job statistics and monitoring information

    Get PDF
    This transfer thesis presents a novel, probabilistic approach to scheduling applications on computational Grids based on their historical behaviour, current state of the Grid and predictions of the future execution times and resource utilisation of such applications. The work lays a foundation for enabling a more intuitive, user-friendly and effective scheduling technique termed deadline scheduling. Initial work has established motivation and requirements for a more efficient Grid scheduler, able to adaptively handle dynamic nature of the Grid resources and submitted workload. Preliminary scheduler research identified the need for a detailed monitoring of Grid resources on the process level, and for a tool to simulate non-deterministic behaviour and statistical properties of Grid applications. A simulation tool, GridLoader, has been developed to enable modelling of application loads similar to a number of typical Grid applications. GridLoader is able to simulate CPU utilisation, memory allocation and network transfers according to limits set through command line parameters or a configuration file. Its specific strength is in achieving set resource utilisation targets in a probabilistic manner, thus creating a dynamic environment, suitable for testing the scheduler’s adaptability and its prediction algorithm. To enable highly granular monitoring of Grid applications, a monitoring framework based on the Ganglia Toolkit was developed and tested. The suite is able to collect resource usage information of individual Grid applications, integrate it into standard XML based information flow, provide visualisation through a Web portal, and export data into a format suitable for off-line analysis. The thesis also presents initial investigation of the utilisation of University College London Central Computing Cluster facility running Sun Grid Engine middleware. Feasibility of basic prediction concepts based on the historical information and process meta-data have been successfully established and possible scheduling improvements using such predictions identified. The thesis is structured as follows: Section 1 introduces Grid computing and its major concepts; Section 2 presents open research issues and specific focus of the author’s research; Section 3 gives a survey of the related literature, schedulers, monitoring tools and simulation packages; Section 4 presents the platform for author’s work – the Self-Organising Grid Resource management project; Sections 5 and 6 give detailed accounts of the monitoring framework and simulation tool developed; Section 7 presents the initial data analysis while Section 8.4 concludes the thesis with appendices and references
    • …
    corecore