4,824 research outputs found

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Integrated process planning for a hybrid manufacturing system

    Get PDF
    A hybrid manufacturing system integrated CNC machining and laser-aided layered deposition and achieves the benefits of both processes. In this dissertation, an integrated process planning framework which aims to automate the hybrid manufacturing process is investigated. Critical components of the process planning, including 3D spatial decomposition of the CAD model, improvement of the toolpath generation pattern, repairing strategies using a hybrid manufacturing system, etc., are discussed --Abstract, page iv

    Combining Static and Dynamic Program Analysis Techniques for Checking Relational Properties

    Get PDF
    Die vorliegende Dissertation ist im Bereich der formalen Verifikation von Software angesiedelt. Sie behandelt die Überprüfung relationaler Eigenschaften von Computerprogrammen, d.h. solche Eigenschaften, die zwei oder mehr Programmausführungen betrachten. Die Dissertation konzentriert sich auf zwei spezifische relationale Eigenschaften: (1) Nichtinterferenz und (2) ob ein Programm ein Slice eines anderen Programms ist. Die Nichtinterferenz-Eigenschaft besagt, dass die Ausführung eines Programms mit den gleichen öffentlichen Eingaben die gleichen öffentlichen Ausgaben produziert und dies unabhängig von den geheimen Eingaben (z.B. eines Passworts) ist. Das bedeutet, dass die geheimen Eingaben die öffentlichen Ausgaben nicht beeinflussen. Programm-Slicing ist eine Technik zur Reduzierung eines Programms durch das Entfernen von Programmbefehlen, sodass ein spezifizierter Teil des Programmverhaltens erhalten bleibt, z.B. der Wert einer Variablen in einer Instruktion in dem Programm. Die Dissertation stellt Frameworks zur Verfügung, die es dem Nutzer ermöglichen, die obigen zwei Eigenschaften für ein gegebenes Programm zu analysieren. Die Dissertation erweitert den Stand der Technik in dem Bereich der Verifikation relationaler Eigenschaften, indem sie einerseits neue Ansätze zur Verfügung stellt und andererseits bereits existierende Ansätze miteinander kombiniert. Die Dissertation enthält jeweils einen Teil für die behandelten zwei relationalen Eigenschaften. Nichtinterferenz.\textbf{Nichtinterferenz.} Das Framework zur Überprüfung der Nichtinterferenz stellt neue Ansätze für die automatische Testgenerierung und für das Debuggen des Programms zur Verfügung und kombiniert diese mit Ansätzen, die auf deduktiver Verifikation und Programmabhängigkeitsgraphen basieren. Der erste neue Ansatz ermöglicht die automatische Generierung von Nichtinterferenz-Tests. Er ermöglicht dem Nutzer, nach Verletzungen der Nichtinterferenz-Eigenschaft im Programm zu suchen und stellt zudem ein für relationale Eigenschaften passendes Abdeckungskriterium für die generierten Test-Suites zur Verfügung. Der zweite neue Ansatz ist ein relationaler Debugger zur Analyse von Nichtinterferenz-Gegenbeispielen. Er verwendet bekannte Konzepte des Programm-Debuggens und erweitert diese für die Analyse relationaler Eigenschaften. Um den Nutzer beim Beweisen der Nichtinterferenz-Eigenschaft zu unterstützen, kombiniert das Framework einen auf Programmabhängigkeitsgraphen basierenden Ansatz mit einem auf Logik basierenden Ansatz, der einen Theorembeweiser verwendet. Auf Programmabhängigkeitsgraphen basierende Ansätze berechnen die Abhängigkeiten zwischen den unterschiedlichen Programmteilen und überprüfen, ob die öffentliche Ausgabe von der geheimen Eingabe abhängt. Im Vergleich zu logik-basierten Ansätzen skalieren programmabhängigkeitsgraphen-basierte Ansätze besser. Allerdings, können sie Fehlalarme melden, da sie die Programmabhängigkeiten überapproximieren. Somit bestehen zwei weitere Beiträge des Frameworks in Kombinationen von programmabhängigkeitsgraphen- und logik basierten Ansätzen: (1) der programmabhängigkeitsgraphen basierte Ansatz vereinfacht das Programm, das danach vom logik basierten Ansatz überprüft wird und (2) der logik basierte Ansatz beweist, dass einige vom Programmabhängigkeitsgraphen-basierten Ansatz berechnete Abhängigkeiten Überapproximationen sind und aus der Analyse entfernt werden können. Programm-Slicing.\textbf{Programm-Slicing.} Der zweite Teil der Dissertation behandelt ein Framework für das automatische Programm-Slicing. Während die meisten zum Stand der Technik gehörenden Slicing-Ansätze nur eine syntaktische Programmanalyse durchführen, betrachtet dieses Framework auch die Programmsemantik und kann dadurch mehr Programmbefehle entfernen. Der erste Beitrag des Frameworks besteht aus einem Ansatz zur relationalen Verifikation, der erweitert wurde, um die Korrektheit eines Programm-Slice nachzuweisen, d.h. dass es das spezifizierte Verhalten des Originalprogramms bewahrt. Der Vorteil der Benutzung relationaler Verifikation ist, dass sie auf zwei ähnlichen Programmen automatisch läuft -- was bei einem Slice-Kandidaten und Originalprogramm der Fall ist. Somit, anders als bei den wenigen zum Stand der Technik gehörenden Ansätzen, die die Programmsemantik betrachten, ist dieser Ansatz automatisch. Der zweite Beitrag des Frameworks besteht aus einer neuen Strategie zur Generierung von Slice-Kandidaten durch durch die Verfeinerung von dynamischen Slices (für eine Eingabe gültigen Slices) mithilfe von der relationalen Verifikation gelieferte Gegenbeispiele

    Modellbasiertes Regressionstesten von Varianten und Variantenversionen

    Get PDF
    The quality assurance of software product lines (SPL) achieved via testing is a crucial and challenging activity of SPL engineering. In general, the application of single-software testing techniques for SPL testing is not practical as it leads to the individual testing of a potentially vast number of variants. Testing each variant in isolation further results in redundant testing processes by means of redundant test-case executions due to the shared commonality. Existing techniques for SPL testing cope with those challenges, e.g., by identifying samples of variants to be tested. However, each variant is still tested separately without taking the explicit knowledge about the shared commonality and variability into account to reduce the overall testing effort. Furthermore, due to the increasing longevity of software systems, their development has to face software evolution. Hence, quality assurance has also to be ensured after SPL evolution by testing respective versions of variants. In this thesis, we tackle the challenges of testing redundancy as well as evolution by proposing a framework for model-based regression testing of evolving SPLs. The framework facilitates efficient incremental testing of variants and versions of variants by exploiting the commonality and reuse potential of test artifacts and test results. Our contribution is divided into three parts. First, we propose a test-modeling formalism capturing the variability and version information of evolving SPLs in an integrated fashion. The formalism builds the basis for automatic derivation of reusable test cases and for the application of change impact analysis to guide retest test selection. Second, we introduce two techniques for incremental change impact analysis to identify (1) changing execution dependencies to be retested between subsequently tested variants and versions of variants, and (2) the impact of an evolution step to the variant set in terms of modified, new and unchanged versions of variants. Third, we define a coverage-driven retest test selection based on a new retest coverage criterion that incorporates the results of the change impact analysis. The retest test selection facilitates the reduction of redundantly executed test cases during incremental testing of variants and versions of variants. The framework is prototypically implemented and evaluated by means of three evolving SPLs showing that it achieves a reduction of the overall effort for testing evolving SPLs.Testen ist ein wichtiger Bestandteil der Entwicklung von Softwareproduktlinien (SPL). Aufgrund der potentiell sehr großen Anzahl an Varianten einer SPL ist deren individueller Test im Allgemeinen nicht praktikabel und resultiert zudem in redundanten Testfallausführungen, die durch die Gemeinsamkeiten zwischen Varianten entstehen. Existierende SPL-Testansätze adressieren diese Herausforderungen z.B. durch die Reduktion der Anzahl an zu testenden Varianten. Jedoch wird weiterhin jede Variante unabhängig getestet, ohne dabei das Wissen über Gemeinsamkeiten und Variabilität auszunutzen, um den Testaufwand zu reduzieren. Des Weiteren muss sich die SPL-Entwicklung mit der Evolution von Software auseinandersetzen. Dies birgt weitere Herausforderungen für das SPL-Testen, da nicht nur für Varianten sondern auch für ihre Versionen die Qualität sichergestellt werden muss. In dieser Arbeit stellen wir ein Framework für das modellbasierte Regressionstesten von evolvierenden SPL vor, das die Herausforderungen des redundanten Testens und der Software-Evolution adressiert. Das Framework vereint Testmodellierung, Änderungsauswirkungsanalyse und automatische Testfallselektion, um einen inkrementellen Testprozess zu definieren, der Varianten und Variantenversionen unter Ausnutzung des Wissens über gemeinsame Funktionalität und dem Wiederverwendungspotential von Testartefakten und -resultaten effizient testet. Für die Testmodellierung entwickeln wir einen Ansatz, der Variabilitäts- sowie Versionsinformation von evolvierenden SPL gleichermaßen für die Modellierung einbezieht. Für die Änderungsauswirkungsanalyse definieren wir zwei Techniken, um zum einen Änderungen in Ausführungsabhängigkeiten zwischen zu testenden Varianten und ihren Versionen zu identifizieren und zum anderen die Auswirkungen eines Evolutionsschrittes auf die Variantenmenge zu bestimmen und zu klassifizieren. Für die Testfallselektion schlagen wir ein Abdeckungskriterium vor, das die Resultate der Auswirkungsanalyse einbezieht, um automatisierte Entscheidungen über einen Wiederholungstest von wiederverwendbaren Testfällen durchzuführen. Die abdeckungsgetriebene Testfallselektion ermöglicht somit die Reduktion der redundanten Testfallausführungen während des inkrementellen Testens von Varianten und Variantenversionen. Das Framework ist prototypisch implementiert und anhand von drei evolvierenden SPL evaluiert. Die Resultate zeigen, dass eine Aufwandsreduktion für das Testen evolvierender SPL erreicht wird
    corecore