View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Information

Systems School of Information Systems

3-2012

Scenario-Based and Value-Based Specification Mining: Better
Together

David LO
Singapore Management University, davidlo@smu.edu.sg

Shahar MAOZ
Aachen University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

LO, David and MAQZ, Shahar. Scenario-Based and Value-Based Specification Mining: Better Together.
(2012). Automated Software Engineering. 19, (4), 423-458. Research Collection School Of Information
Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/1558

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

https://core.ac.uk/display/13248143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1558&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Published in Automated Software Engineering, 2012, 19 (4), 423-458.
https://doi.org/10.1007/s10515-012-0103-x

Scenario-based and value-based specification mining:
better together

David Lo - Shahar Maoz

Abstract Specification mining takes execution traces as input and extracts likely pro-
gram invariants, which can be used for comprehension, verification, and evolution
related tasks. In this work we integrate scenario-based specification mining, which
uses a data-mining algorithm to suggest ordering constraints in the form of live se-
quence charts, an inter-object, visual, modal, scenario-based specification language,
with mining of value-based invariants, which detects likely invariants holding at spe-
cific program points. The key to the integration is a technique we call scenario-based
slicing, running on top of the mining algorithms to distinguish the scenario-specific
invariants from the general ones. The resulting suggested specifications are rich, con-
sisting of modal scenarios annotated with scenario-specific value-based invariants,
referring to event parameters and participating object properties.

We have implemented the mining algorithm and the visual presentation of the
mined scenarios within a standard development environment. An evaluation of our
work over a number of case studies shows promising results in extracting expressive
specifications from real programs, which could not be extracted previously. The more
expressive the mined specifications, the higher their potential to support program
comprehension and testing.

Keywords Specification mining - Dynamic analysis - Live sequence charts -
Value-based invariants

D. Lo (X))
School of Information Systems, Singapore Management University, Singapore, Singapore
e-mail: davidlo@smu.edu.sg

S. Maoz
Dept. of Computer Science 3, Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: maoz@se-rwth.de

mailto:davidlo@smu.edu.sg
mailto:maoz@se-rwth.de

1 Introduction

A specification typically imposes constraints both on sequencing of method calls or
statement executions (ordering constraints), and on values that method parameters or
some variables at a program point could have (value constraints). One takes a separate
viewpoint from the other, and each independently, although interesting, is unable to
present the full picture on the specification that a system should follow.

Motivated by the lack of documented specifications in real-world applications, re-
cently a number of studies have investigated mining of suggested specifications from
program executions, e.g., Ernst et al. (2001); Lo and Maoz (2008a); Lorenzoli et al.
(2008), and from source code, e.g., Li and Zhou (2005); Wasylkowski and Zeller
(2011). The mined specifications, whether value-based invariants, automata/finite
state machines, temporal rules, or scenario-based behavioral models, may be used
for tasks related to program comprehension, verification, and evolution.

One pioneering work, Daikon, mines for value-based invariants that hold at user-
specified program points (Ernst et al. 2001). Values of method parameters, object
properties etc. are collected at selected program points during execution, and are then
generalized in order to suggest invariants that hold at these points. Also, recently,
we have investigated mining an expressive visual sequence-diagram-like scenario-
based specification in the form of live sequence charts (LSC) (Damm and Harel 2001;
Harel and Maoz 2008), using a data-mining approach (Lo and Maoz 2008a, 2009; Lo
et al. 2007). However, these have only considered ordering constraints among method
calls.

In this paper, we merge the two specification mining approaches—the value-based
approach of Daikon and our scenario-based approach—resulting in one that mines
a combination of ordering and value-based invariants. The key to the merging is a
multi-step mining process and a novel dynamic slicing technique we call scenario-
based slicing, where the mined scenarios are used as a slicing criteria over the input
traces. Following the initial scenario-based mining, value-based invariants found over
the sliced traces are compared against value-based invariants found over the original
traces, so as to distinguish the ones unique to the scenarios context. Finally, the invari-
ants found are attached to the mined scenarios. Thus, the resulting approach strength-
ens the expressive power of the mined scenarios by enriching them with scenario-
specific value-based invariants.

To illustrate the advantages and challenges of mining scenarios with value-based
invariants consider the following example, taken from one of our case study appli-
cations, CrossFTP server, a commercial open-source FTP server. Using the scenario-
based specification mining technique presented in previous work (Lo et al. 2007),
we were able to mine the scenario shown in Fig. 1, presented as an LSC (we show
here a shortened version of this LSC, the complete mined LSC is shown in Fig. 11).
Roughly, this scenario specifies that “whenever a PASV command object calls the
method setPasvCommand(...) of the FtpDataConnector (DC), and the
DC calls the getSSL (. ..) method of an FtpDataConnectionConfig ob-
Jject (DCC), it must eventually call the createServerSocket of an SSL object
(SSL)”. However, the mined scenario does not provide information on the values of
parameters used and participating object properties whenever this scenario indeed
happens. Are there any value-based invariants related and unique to this scenario?

LSC Set PASV - Short /

PASV DC DCC SSL

setPastomn:land()

——————

Fig.1 Example LSC: SECURE PASV (shortened version, the complete mined LSC is shown in Fig. 11).
Roughly, the LSC specifies that “whenever a PASV command object calls the set PasvCommand method
of the FtpDataConnector (DC), and the DC calls the getSSL method of an FtpDataConnec-
tionConfig (DCC), it must eventually call the createServerSocket method of an SSL object
(ssL)”

Note that discovering general value-based invariants related to the methods that
appear in this scenario or to its participating objects may not be good enough. The
same method may be called with different parameters in different contexts and thus
the invariant we may extract from its calls would be too general—in essence, too
weak—not contributing to the understanding of the scenario at hand. Similarly, par-
ticipating object properties may hold different values in different contexts.

Scenario-based slicing is used to address this problem. Following the process of
scenario-based specification mining, we construct a sliced trace by selecting from
the original traces used for mining a concatenation of only the sub-traces represent-
ing instances—positive witnesses—of the mined scenario at hand. We then look for
value-based invariants twice—on the original trace and on the sliced trace—and com-
pare the results in order to identify the scenario-specific invariants, those value-based
invariants that are unique to the witnesses of the scenario.

Indeed, to continue the example just presented, we were able to find that whenever
this scenario happens, the property secure of a FtpDataConnection object
(DC) is true. This invariant does not hold in general in our traces and hence is
not suggested by Daikon when running on the original traces. However, it does hold
whenever the scenario we examine happens.

Thus, the combination of value-based specification mining and scenario-based
specification mining, through the use of scenario-based slicing, is able to produce ex-
pressive candidate specifications that each of the mining approaches alone is unable
to produce. As shown in previous work (Ammons et al. 2002; EI-Ramly et al. 2002;
Mariani et al. 2007; Safyallah and Sartipi 2006; Yang et al. 2006), the mined speci-
fications may be used for tasks related to program comprehension, testing, and ver-
ification. Naturally, the more expressive the specification mined, the better it may
support these tasks. Specifically, program comprehension is enhanced with stronger
candidate invariants, combining execution order and values. Tests that are induced by
these invariants are more accurate and hence more valuable.

We have implemented our ideas and evaluated them using four case study appli-
cations. The examples throughout the paper are taken from these case study applica-
tions: CrossFTP (mentioned above), Jeti, a feature-rich instant messaging application,

Columba, an email client, and Thingamablog, a blogging utility. The implementation
consists of two main parts: first, tracing and mining, and second, visualization.

Our choice of LSC as the target formalism is motivated by the popularity of the
sequence diagrams notation, the additional features of LSC which support may/must
modalities, and the availability of many tools that could further process the specifi-
cations that we mine. We discuss these and other advanced issues of our work, its
advantages and limitations, in Sect. 7.

It is important to note that scenario-based specification mining is not aimed at
finding a complete specification of the system under investigation. The scenario-
based approach to modeling, in general, is not aimed at providing complete systems
specifications. Rather, the strength of the scenario-based approach to modeling is
that it allows the specifier to break up the specification into ‘pieces of behavior’,
or ‘scenarios’, each of which cuts across multiple objects (see, e.g., Harel 2001;
Uchitel et al. 2001).

Specification mining in general, and combining mining of value-based invariants
with mining of ordering constraints in particular, has been recently considered and
implemented (see, e.g., Lorenzoli et al. 2008). These studies however, focus on min-
ing an automaton enriched with value-based invariants. In our present work, we ex-
tract scenarios, which express temporal invariants, enriched with value-based invari-
ants. We discuss these studies and other related work in Sect. 8.

Our earlier paper with the same title (Lo and Maoz 2010) has motivated the use
of a combination of scenario-based and value-based specification mining, introduced
our solution, and evaluated it on two case studies. This paper extends our previous
work by (1) including additional background material that makes the paper more
self-contained, (2) describing our solution in more detail, (3) presenting an end-to-
end implementation, from tracing to mining to visualizing the mined LSCs using a
new UML profile, together with their related value-based invariants, (4) reporting on
experiments conducted on additional case studies, and (5) providing a deeper discus-
sion of limitations and of comparison to related work.

The remainder of the paper is organized as follows. Section 2 covers important
background material on LSC, scenario-based specification mining, and value-based
specification mining. The syntax and semantics of scenarios with value-based invari-
ants, our target specification formalism, are presented in Sect. 3. Section 4 describes
the mining framework and algorithms. The visual presentation of the mining results
using a UML profile is discussed in Sect. 5. The results of the four case studies are
given in Sect. 6. Section 7 discusses some advanced issues of our work, its advantages
and its limitations, Sect. 8 discusses related work, and Sect. 9 concludes.

2 Background

In this section we provide background material on LSC, on scenario-based specifica-
tion mining, and on value-based invariants mining.

2.1 Live sequence charts

Live sequence charts (LSC) (Damm and Harel 2001; Harel and Maoz 2008) ex-
tend classical sequence diagrams mainly by adding a universal interpretation and

must/may modalities. They thus allow the specification of scenario-based temporal
invariants describing interactions between system objects. The LSC language has
been used in the context of execution, verification, testing, trace visualization, and
synthesis (see, e.g., Klose et al. 2006; Kugler and Segall 2009; Maoz and Harel 2006,
2011; Maoz et al. 2009, 2011). A translation of LSC into various temporal logics ap-
pears in Kugler et al. (2005). A trace-based semantics for a UML2-compliant variant
of LSC appears in Harel and Maoz (2008). We use here a subset of the language, with
total-ordered events.

An LSC is composed of two basic charts: a pre-chart and a main-chart. A basic
chart is a tuple C = (Cr, Cg, C~) where C is a set of lifelines representing system
objects, Cg is a set of inter-object events involving the objects represented by the
lifelines in Cr,, and C< is a total order on Cg. Thus, a chart can also be represented
as a chain of events (eq,...,e,). We denote an LSC by L(pre, full), where pre is
the pre-chart and full is the concatenation of the pre-chart and main-chart. We use +
and C to represent the concatenation of two sequences of events and the sub-sequence
relationship between two sequences of events respectively.

Syntactically, lifelines are drawn using vertical lines. Inter-object events are drawn
using horizontal arrows from caller to callee; pre-chart events use dashed blue lines
and main-chart events use solid red lines.

Semantically, an LSC specifies a temporal invariant: whenever the events in the
pre-chart occur in the specified order, eventually the events in the main-chart must
occur in the specified order. An LSC does not restrict events not appearing in it to
occur or not to occur during a run (even in between events that do appear in the
LSO).

Figure 1 shows an example LSC. Note how the difference between pre-chart and
main-chart methods is reflected in the semantics of the LSC.

2.2 Scenario-based specification mining

Scenario-based specification mining (Lo and Maoz 2008a, 2008b, 2009; Lo et al.
2007) is concerned with extracting statistically significant LSCs from inter-object
traces of a system under investigation.

Inter-object trace, event. A concrete inter-object trace is a sequence of inter-
object events. A concrete inter-object event ev is a tuple (el1, ely, m) representing an
object el (the caller) calling method m of object el (the callee).

We define the significance of an LSC based on its occurrences in the traces and
measure it using support and confidence, commonly used metrics in data mining (Han
and Kamber 2006). Below we recall the concepts of scenario instance, positive and
negative witnesses, support, and confidence, first defined in Lo et al. (2007).

Chart instance. Satisfaction of a chart follows the semantics of LSC. We refer to
a sub-trace (or a segment of consecutive events in the trace) satisfying the chart C as
an instance of C. A segment of a trace is said to be an instance of a chart C if it obeys
the ordering specified by C. Each event in the chart must map to a corresponding
event in the segment appearing in the specified order. Other events not specified by
the chart can occur in any order, unrestrictedly.

Fig. 2 Part of a sample trace
(PASV stands for the PASV
class, DC for
FtpDataController, DCC
for FtpDataConnection-
Config). Space separates
caller, callee, and (shortened)
method signature. The actual PASV DC setPasvCommand ()
trace includes the full qualified FW FRI getUserArgument ()

names of the classes and 10 DC DCC getSSL()
methods involved 11 DC SSL createServerSocket ()

12 FRI DC getDataSocket ()
13 PASV DC setPasvCommand ()

PASV DC setPasvCommand ()

DC DCC getSSL()

DC SSL createServerSocket()
FRI DC getDataSocket ()

PASV DC setPasvCommand ()

FW FRI getUserArgument()

DC DCC getSSLO)

OO0 ~NO O WN -

To describe an LSC chart instance, we use quantified regular expressions (QRE)
(Olender and Osterweil 1990). In our context, a quantified regular expression is sim-
ilar to the standard regular expression with ‘;’ as concatenation operator, ‘[—] as
exclusion operator (i.e., [—P,S] means any event except P and S‘), and ‘“*’ as the
standard Kleene-star. The formal definition of an instance of a chart is given in Defi-

nition 1:

Definition 1 (Instance of a Concrete Chart) Given a concrete chart C = (Cp, Cg, C.),
a trace segment SB = (sb;, sb;jy1,...,sbjym—1) is an instance of C if SB follows
the QRE expression

er; [—Glx;ep; ... 5 [—Glx; ey

where, Cg = {e1, e2,...,¢en}, Yo<i<n-€i <c €i+1,and G = Cg.

Figure 2 shows a short sample from a trace. The trace includes two instances of
the LSC shown in Fig. 1: I = (1, 2,3), I, = (8,9, 10, 11).

Witnesses. Based on the above definition of a chart instance, we define the notion
of positive and negative witnesses of an LSC. Recall that an LSC is composed of a
pre-chart and a main-chart. A positive witness of an LSC L = L(pre, full), is a trace
segment satisfying (i.e., is an instance of) the full chart—by extension the pre chart
as well, since pre is a prefix of full. A negative witness of L is a positive witness of
pre that can not be extended to a positive witness of L (or full). We say that a negative
witness is a weak negative witness if the positive witness of pre cannot be extended
due to end-of-trace being reached (see discussion in Lo et al. 2007). We denote the
set of all positive witnesses of an LSC L in a trace T by pos(L, T'). Similarly, we
denote the set of negative witnesses by neg(L, T).

Support and confidence. We use the above notions of witnesses to define the
statistical support and confidence metrics for LSC. Support and confidence are com-
monly used statistics in data mining (Han and Kamber 2006). We use them here to
identify significant LSCs, modulo an input trace 7. Given a trace T, the support of an
LSC L = L(pre, full), denoted by sup(L), is simply defined as the number of positive
witnesses of full found in T'. The confidence of an LSC L, denoted by conf (L), mea-
sures the likelihood of a sub-trace in T satisfying L’s pre-chart, to be extended such

IThe original notation is slightly modified for brevity.

that L’s main-chart is satisfied or the end of the trace is reached. Hence, confidence is
expressed as the ratio between the number of positive-witnesses and weak-negative-
witnesses of the LSC and the number of positive-witnesses of the LSC’s pre-chart:

|pos(full, T)| + |w_neg(full, T)|

conf(L, T) =gef posore. 7))

Notation-wise, when T is understood from the context, it can be omitted.

The support metric is used to limit the extraction to frequently observed inter-
actions. The confidence metric is used to restrict mining of such pre-charts that are
followed by particular main-charts with high likelihood. In scenario-based specifica-
tion mining we are interested in mining statistically significant LSCs: those which
occur frequently in the trace (have high support) and in which the pre- is followed
by the main-chart with high likelihood (have high confidence). An LSC is said to
be significant if it obeys minimum thresholds of support and confidence, denoted by
min_sup and min_conf respectively.

For the LSC shown in Fig. 1 and the trace shown in Fig. 2, sup(L) = 2, and
conf (L) =2/3.

A data mining algorithm to compute a statistically sound and complete set of
LSCs, given a trace (or a set of traces) and thresholds for minimal support and confi-
dence, were presented in Lo et al. (2007). This was extended in Lo and Maoz (2008b),
to handle symbolic scenario-based specifications (at the class level rather than the ob-
ject level); in Lo and Maoz (2008a), to handle the special case of trigger and effect
mining; and in Lo and Maoz (2009), to take advantage of architectural hierarchies.

2.3 Value-based invariants mining

Value-based dynamic detection of invariants is concerned with reporting likely pro-
gram invariants, which hold at a certain point or points in a program’s execution.
Basically, dynamic invariant detection runs a program, observes the values that the
program computes, and then reports properties that were true over the observed exe-
cutions.

A primary example of a dynamic invariants detector is Daikon (Ernst et al. 2001).
Other examples are described in, e.g., Boshernitsan et al. (2006); Pytlik et al. (2003).
As opposed to scenario-based specification mining, which, like, e.g., Ammons et al.
(2002); Yang et al. (2006); Lo and Khoo (2006), is concerned with detecting temporal
properties in the form of ordering constraints over program events, these tools aim
at detecting value-based invariants, e.g., in the form of argl == false or re-
turn != null for a certain method, this.field has only one value
for a certain object, etc.

In our present work we integrate temporal invariants with value-based invariants.
For value-based invariants detection we use Daikon (Ernst et al. 2001). Daikon can
mine various kinds of value-based invariants that relate program elements of interest
(e.g., global variables, parameter values, return value, fields, etc.) to constant values,
other program elements, or a particular property. These relationships include equality
(with regard to a constant, a null value, another program element, etc.), inequality,

containment, sortedness, etc. The invariants are reported as pre- and post-conditions
of various procedures and also as object (class) invariants.

Daikon provides a number of front ends that allow one to instrument programs
written in various programming languages. One front end that we are especially in-
terested in is Chicory. Chicory instruments Java programs and produces a trace file
that can later be fed to the invariant inference engine of Daikon. The invariant in-
ference engine produces candidate invariants based on a set of templates. Candidate
invariants are generated by a generate-and-check strategy. The checking process in-
vestigates whether a particular invariant of interest is observed in the input execution
traces acceptably (based on a certain threshold). The invariants are then further fil-
tered to remove redundant ones. Abstract types could also be used to remove invari-
ants that are semantically meaningless (Guo et al. 2006). Daikon also supports a wide
number of output formats to allow its output to be easily consumed by other down-
stream program analysis solutions. In the experiments, we use the default setting of
Daikon.

3 Scenarios with value-based invariants

We now describe our target formalism, namely scenario-based specifications with
value-based invariants.

We consider three types of value-based invariants inside LSCs: invpye, invpes, and
iNVglobal; Vpre and invy,g are attached to LSC events, and may refer to event param-
eters or properties of the objects (caller and callee) involved in the event; invgopal
invariants are attached to the LSC as a whole, and involve properties of objects par-
ticipating in the LSC.

More formally, a chart with value-based invariants is a tuple CA =
(CL,CEg,C<, A) where the events in Cg are tuples (ely, elp, m, invye, invpes) Tep-
resenting an object el (the caller) calling method m of object el, (the callee) with
invpr. holding immediately before the call, inv,,s holding right after the call, and A
is a set of global invariants, holding throughout the chart instance occurrence.

Semantically, an LSC L (pre, full) made of basic charts annotated with value-based
expressions specifies a temporal invariant: whenever the events in the pre-chart occur
in the specified order, their corresponding inv,,. and invy,s expressions hold, and the
pre-chart’s global invariants hold throughout its occurrence, eventually the events in
the main-chart must occur in the specified order, their corresponding invy and invyg
expressions must hold, and the main-chart’s global invariants must hold throughout
the occurrence of the main-chart. Naturally, an LSC does not restrict events not ap-
pearing in it to occur or not to occur during a run, and does not restrict the properties
appearing in its value-based invariants to take any value outside the LSC context.

In the visual syntax of the LSC, inv,,. and invp,y expressions may be drawn adja-
cent to the arrow representing their corresponding event, or in a table below the chart,
together with the invgjope expressions.

Figure 11 shows an example LSC annotated with a value-based invariant. The
invariant found, this.secure==true, is a global one, related to a property of
DC, one of the objects participating in the scenario. Additional examples are shown
in Sect. 6.

Note that the LSC language as described in Damm and Harel (2001); Harel
and Maoz (2008) includes conditions (also called state-invariants), which specify
hot/cold conditions that must/may hold during the occurrence of a scenario. Also,
the variant of LSC defined in Harel and Marelly (2003) includes forbidden condi-
tions, which may be used as invariants over the scope of the entire scenario. Our
target formalism is similar, with cold pre-chart conditions and hot main-chart condi-
tions. However, it is also somewhat different, tying conditions directly to events pre-
and post-occurrence, and specifying not what should never happen but what should
always happen throughout the occurrence of a chart.

4 Mining framework
4.1 Framework overview

Our mining solution integrates Daikon (Ernst et al. 2001), a value-based specifica-
tion miner, with our previous solution for mining scenario-based specifications in the
form of LSC (Lo et al. 2007; Lo and Maoz 2008a, 2009). As is shown in Fig. 3,
the framework involves a number of steps: trace generation and conversion, scenario-
based specification mining, scenario-based slicing, value-based invariant generation
via Daikon, and selection and integration of scenario-specific invariants.

We begin by instrumenting the program at hand using the Daikon front end. Run-
ning the instrumented program produces a trace file (Daikon Trace File (DT)), which
is converted to the format accepted by the scenario-based specification miner (LSC
Miner Trace File (LT)). Running the scenario miner produces a set of scenarios, all
of which may be further enriched with value-based invariants. For each of the sce-
narios, we take DT and transform it to a scenario-based sliced trace (SDT). Daikon
is then invoked on the sliced and original traces, i.e., DT and SDT. A comparison of
the invariants found on the sliced trace and the original trace allows us to identify
scenario-specific invariants, used to enrich and strengthen the suggested scenario-
based specifications. The steps are described in further detail below.

Fig.3 An overview of our) LSC
S Daikon -
mining framework (see Trace Miner
Sect. 4.1) 1. Instrument (DT) 2. Capture Trace 3. Scenario-
Program Using | Caller-Callee (LT)‘ Based
Daikon "| Relationship & | Specification
Chicory Object IDs Miner
Daikon Scenarios/
Trace(DT) LSCs
Invariants l 4
6. Invariant |, on DT | 5. Daikon |, 4. Scenario-
Comparator | Tnvariants " Sliced | Based Slicer
on SDT Daikon
Scenario Trace (SDT) Scenarios/
Specifi - LSC
lij:rcila;cts 7. Integrate Scenario- s
Specific Value-Based

A 4
A

Invariants into the LSCs

4.2 Trace generation and conversion

We use the Daikon tool’s front end to generate traces. Daikon provides a number of
front ends for Java, C, etc., all of which produce a common trace format for Daikon’s
input. The trace files of Daikon contain the list of records corresponding to method
entries and exits during the run. Each record contains information on method sig-
nature along with the values associated with different parameter values and global
variables when each of the methods was entered or exited. These traces are very
rich as compared to the typical traces collected by most specification mining tools
that mine for temporal ordering constraints/invariants. This is particularly needed by
Daikon, so as to be able to infer value-based invariants.

On the one hand, the scenario-based specification miner looks only for tempo-
ral relationships and does not need to know about parameters and global variables.
On the other hand, the scenario-based specification miner needs more information
pertaining to the caller and callee of method calls. Thus, we employ a converter to
extract caller-callee information based on the method entry and exit entries in Daikon
trace. For an application that uses much multi-threading, we use thread identifiers
to infer the caller and callee relations among method entries and exits. We modify
Daikon’s Java frontend (i.e., Chicory) to also output thread identifiers. The converter
also removes unneeded information for the scenario-based mining process including
values of global variables, parameters, etc. In sum, the converter is used to extract
caller-callee relationships and object information and abstract away value-based in-
formation from Daikon traces.

4.3 Scenario-based specification mining

Given the converted traces, we run a scenario-based specification mining algorithm.
We are interested in finding scenarios that appear more times than a specified user-
defined min_sup threshold. Each extracted scenario must also have its main-chart
appearing after each pre-chart with likelihood higher than a min_conf threshold.

The scenario-based specification mining algorithm works in three steps: mining
frequent charts, chart composition to LSC, and chart redundancy elimination and
post processing. These steps are shown in Fig. 4.

Frequent chart mining. The frequent chart mining algorithm is a variant of pat-
tern mining algorithms that model mining as a search space exploration. The latter in-
clude algorithms mining frequent subsets (Agrawal and Srikant 1994), frequent sub-

mining process: Mining
Frequent Charts, Chart
Composition to Scenarios, and
Redundancy Elimination and
Post Processing (see Sect. 4.3)

A 4

Chart Composition to Scenarios

Fig. 4 The three steps of the —
scenario-based specification Mining Frequent Charts

A

Redundancy Elimination and
Post Processing

Procedure MineFrequentCharts
Inputs:
T : Input trace
min_sup : Minimum support threshold
Output: All frequent charts
Method:
1: Let FEv = All frequent events in trace T
2: Foreachevin FEv
3: GrowChart(ev, T, FEv, min_sup)

Procedure GrowChart
Inputs:

P : Chart so far

T : Input trace

FEv : Frequent events

min_sup : Minimum support threshold
Output: All frequent charts in the form of P4+ evs
Method:
4: Let NxtPat = {P-+ elec FEv}
5: For each nxt in NxtPat

6: If sup(nxt) > min_sup
7: Output nxt
8: GrowChart (nxt, T, FEv, min_sup)

Fig. 5 Frequent chart mining algorithm

sequences (Agrawal and Srikant 1995), etc.? Different from a standard pattern mining
algorithm that is agnostic to semantics of program specifications, our specification
mining algorithm follows the semantics of LSC when identifying and counting the
chart/pattern occurrences in the traces. Also, since we consider scenario-based spec-
ifications in the form of sequence diagrams, the input events are not atomic symbols
but rather triplets of caller, callee, and method call signature. A simplified pseudo-
code is shown in Fig. 5.

The frequent chart mining process starts with chart of size 1 and then tries to
form longer patterns. Based on an anti-monotonicity property (see Lo et al. 2007),
the support or number of occurrences of a pattern P should be greater than or equal
to the support of pattern P4+ evs, where evs is one or more events. In this case, we
only need to consider patterns of length one with support greater than the min_sup
threshold (i.e., frequent ones) (Line 1).

Each of the frequent events is then grown to form longer frequent patterns
(Lines 2-3). The search space of all patterns is traversed in a depth first fashion by
appending one event at a time (Line 4). At each step one would compare the number
of occurrences of a pattern to the min_sup threshold (Lines 5-6). If the minimum
support threshold is not met, then based on the anti-monotonicity property, there is

ZpJease refer to the detailed description in Sect. 8.6.

CHART DEL-A J
DELE FC
onDeleteStart() LSC DEL /
; : DELE FC FSI
: : ionDeleteStart() |
U i ;
1 setDelete) o
CHART DEL-B onDeleteErd() é
DELE FC FSI l
i : =mi ?
| onDeleteStart() conf(LSC DEL) >= min_conf ?

setDejete() ! Yes

Cdd
onDelefEnd() @
L

Fig. 6 Composing two charts, DEL-A (pre) and DEL-B (pre-+post), to an LSC DEL
(L (pre, pre+post))

no need to grow the pattern further, as longer patterns would not be frequent. If the
threshold is met, the algorithm will output the pattern (Line 7) and continue to try to
grow the pattern further (Line 8). The algorithm will eventually terminate with the
set of all frequent charts.

Chart composition to LSC. An LSC consists of pre- and main- charts and has the
semantics that dictates that the pre-chart must be followed by the main-chart. Given
the set of frequent charts mined, one could form LSCs by composing these charts.
In particular one could pair two charts, one being a prefix of the other. Consider two
charts pre and pre-post, one could then form the LSC having pre as the pre-chart
and post as the main-chart. The process is illustrated in Fig. 6.

Note that due to the anti-monotonicity property, the support of the pre-chart is
greater than or equal to the support of the pre-chart concatenated with the main-chart.
Following the semantics of LSC, we are only interested in retrieving LSCs where the
pre- is followed by the main-chart. Since the trace could be incomplete, there could be
bugs in the system, and we are analyzing long running reactive systems, we provide
users with the ability to extract near perfect scenarios where the pre-chart is only
followed by the main-chart with likelihood less than 100%. We refer to this notion of
likelihood based on the observed traces as the confidence of the LSC. Hence, given a
composition of two frequent charts resulting in an LSC with confidence greater than
a minimum confidence threshold min_conf, we would output the LSC. Thus, the
output of this step is the set of significant LSCs, i.e., the ones obeying the min_sup
and min_conf thresholds.

Redundancy elimination and post processing. Often, there are too many signif-
icant LSCs. One potential root cause is that all sub-LSCs of a large and significant

Fig. 7 Redundancy elimination.
Significant LSCs are put into
buckets based on support and
confidence values. Each bucket

Bucketization
Based on Support
and Confidence

All Significant
Live Sequence

is processed independently. Charts Values
Only maximal LSCs in each
bucket would be kept |
v v v
Bucket Bucket Bucket
ooo
1 2 n

Redundancy Elimination
(One Bucket at a Time)

LSC are significant too. Thus there could be a combinatorial number of mined LSCs.
Thus, it would be better to mine a representative set of LSCs. To do this we only
extract maximal LSCs without any larger LSCs having the same significance val-
ues of support and confidence. To do this efficiently, we first bucketize the LSCs
into support and confidence value buckets. A one-to-all comparison to look for non-
redundant LSCs should only then be performed among LSCs in each bucket rather
than over all frequent and confident LSCs. The number of buckets depends on the
number of unique combinations of support of confidence values of the LSCs. The
more spread-out the distribution of support and confidence value pairs is, the more
effective the proposed process would be. The process is illustrated in Fig. 7.

4.4 Scenario-based slicing

After a set of scenarios is mined, each scenario (or selected ones) may be enriched
with value-based invariants. To do this, the parts of the traces that correspond to a
scenario under consideration are selected. We refer to this process as scenario-based
slicing. Consider a scenario L and a trace T, the slice of the trace T with respect to L
is the sequence of positive witnesses of L in the trace T. The scenario-based slicing
operation is defined as follows.

Definition 2 (Scenario-based slicing) Consider a trace T = (evy, ..., ev,) and an
LSC L. Slicing T with respect to L produces a sub-trace ST, such that ST is the
maximal sub-sequence of T composed of series of positive witnesses of L. Formally,
ST =8ST1++---++ST),, where ST C T and {ST1, ..., ST} =pos(L,T).

As an example, consider the following trace:

USER FTPWriter send()

FTPWriter FTPRequestImpl getUserArgument ()
USER FTPRequestImpl resetState()

PWD FTPRequestImpl getSystemFileView/()

PWD FTPWriter send()

USER FTPWriter send()

FTPWriter FTPRequestImpl getUserArgument ()

N oy ok W

LSC - Send-Simple /

USER| |FTPWriter| | FTPRequestimpl

send() |

' getUserArgument()
_—>

resé:tState() \i

rgl

TTUTTTTTTUH

Fig. 8 LSC: Send Simple. Roughly, the LSC specifies that “whenever a USER object calls the send
method of an FTPWriter object, eventually the FTPWriter object must call the getUserArgument
method of an FTPRequestImpl object, and the USER object must call the resetState method of the
FTPRequestImpl object”

8: PWD FTPWriter send()
9: USER FTPRequestImpl resetState()
Slicing the above trace with the LSC shown in Fig. 8 results in the following sliced

trace:
1: USER FTPWriter send()

FTPWriter FTPRequestImpl getUserArgument ()

USER FTPRequestImpl resetState()

USER FTPWriter send()

FTPWriter FTPRequestImpl getUserArgument ()

USER FTPRequestImpl resetState()
Note that the 4th, 5th, and 8th events in the original trace are removed. The
above shows the simplified representation used for scenario-based mining. The sys-
tem maintains a one-to-one correspondence between the events in the LSC mining
trace and the events in the Daikon trace. Converting the events in the sliced traces
back to Daikon events produces a sliced Daikon trace. With the original Daikon trace
and the sliced Daikon trace, we are ready for the next step.

W J o W

4.5 Scenario-specific invariants

Running Daikon on the original trace produces invariants for entry and exit points
of each of the instrumented methods. These invariants hold for every invocation of
the respective method in the traces. While these are useful, they are too general, or
generic, and not scenario-specific. Thus, they are not good enough for our purpose.

On the other hand, running Daikon on the sliced trace produces invariants that
hold at entry and exit points of each of the instrumented methods only when these
methods participate in the witnesses of the scenario at hand. This is because method
invocations that do not participate in the scenario are not included in the sliced trace
and hence are not considered for the computation of the invariants. Based on the
invariants mined on the original and sliced traces, we define the concept of scenario-
specific invariants as follows.

Definition 3 (Scenario-specific invariants) Let inv,,;; and invgic.q be the set of invari-
ants mined by Daikon on the original trace and sliced trace respectively. As the sliced

trace is a sub-trace of the original trace, the invariants found on the former are equal
to or stronger than the ones found on the latter. We distinguish the strictly stronger in-
variants using a comparison of the two sets. We call these invariants scenario-specific.
This is the set invgjiced \ iVorig-

For example, for the PASV scenario shown in Fig. 11, Daikon has not found an
invariant related to the Boolean property this. secure for DC in the original trace
(because in the original trace, this property was sometimes true and sometimes false).
However, Daikon did find the invariant this.secure==true in the sliced trace,
which included only the sub-traces representing witnesses of the PASV scenario.

Note that a syntactic comparison of the two sets is typically good enough for
our purposes, based on the assumption that Daikon outputs semantically equivalent
invariants using syntactically identical representations. We discuss this assumption
and its consequences in Sect. 7.

At the end of the process, we have collected a (potentially empty) set of scenario-
specific invariants including: invy., invpes for each method, and invgjepa for the pre-
chart and the main-chart. Finally, we output the mined scenarios annotated with these
invariants.

5 Presenting the mined specifications

The end result of any specification mining approach consists of candidate mined spec-
ifications. For the usefulness of the approach, it is best if the presentation of these
specifications to the engineer is done in a way that is intuitive, clear, and accessible
on the one hand, yet formal and amenable to automated manipulation on the other
hand. In this section we describe our solution for the presentation of the results of our
mining work.

The output of our mining work consists of a set of scenarios with value-based
invariants. For their formal presentation we use the UML2-compliant variant of LSC
defined by Harel and Maoz (2008), extended with a new UML profile. A UML profile
is the standard way of extending the abstract and concrete syntax of UML diagrams.
We now describe the new profile we have defined.

At the abstract syntax level, our profile consists of two parts. First, it includes
the temperature property defined by Harel and Maoz (2008): each message has a
Temperature, which can be either cold or hot, corresponding to pre-chart and
main-chart messages respectively. Second, it extends this basic LSC profile with five
additional (optional) properties: Support and Confidence properties for each
LSC, an Invariant property for each lifeline, and a Pre Condition property
and a Post Condition property for each message.

At the concrete (visual) syntax level, the new profile’s properties are manifested as
follows. The temperature of every message affects its color and style: hot messages
use a solid red line while cold messages use a dashed blue line. The support and con-
fidence values of a mined LSC appear in parenthesis at the top left corner of the chart,
near its name. A lifeline invariant, if any, is marked using a diamond, attached to the
lifeline’s head. Pre and post conditions, if any, are marked using similar diamonds,
located at the beginning and end of the relevant message arrow.

File Edit Diagram Mavigate Search Project LSCEditor Run Window Help

[Package Explorer 52 .. Navigator| — O |['§f MinedLSCsModelSendPWD.umiseq £3 =]
= - Mined LSC Send PWD [supp: 28 conf: 1.0] ~lall o=
“—} IscCreator
£ src
B JRE System Library [JavaSE-1.6]
=, Referenced Libraries
(= config
& lib
(= mined medels
#] MinedLSCsModelSendPWD.uml resetState()
'8¢ MinedLSCsModelSendPWD.umlseq || =eeeeceeeeeeeeeeeee -—
(= model
(= resources

pwd fri fu

getFileSystemView()
T e

~ send()
v
*
getlanguage()
_— ST
»
1 Properties &2 a0
8 Message
e Property Value
Lsc Message
= Acticn On Property % None
Ppeaance . Changed Property =
Execution = Execute
Post Cendition 'S subld.toString() == "PWD"
Pre Condition = code == 257, subld.toString() == "PWD"
Temperature "% Hot

7 m s < m »

Fig. 9 Screen capture from PlayGo, showing a mined LSC. Note the support and confidence values for
this mined LSC, shown at the top part of the chart, and the two black diamonds at the beginning and end of
the method send (. . .), marking the pre and post conditions for this method; the details of the conditions
(the expressions) are shown in the message’s LSC properties, displayed in the table at the lower pane of
the screen. Also note the Temperature property of this message: the temperature is Hot because it is
part of this LSC’s main-chart

Finally, we have implemented the presentation of our results, using the new profile,
in Eclipse, on top of components from PlayGo (Harel et al. 2010). The components
we used provide a mechanism for extending UML2-compliant LSCs with profiles,
an API to programmatically ‘draw’ LSCs, and means to edit and manipulate these
LSCs. Figure 9 shows a screen capture from our tool, presenting one of the mined
LSCs together with some of its profile properties. Note the support and confidence
values for this mined LSC, shown at the top part of the chart, and the two black
diamonds at the beginning and end of the method send (. . .), marking the pre and
post conditions for this method; the details of the conditions (the expressions) are
shown in the message’s LSC properties, displayed in the table at the lower pane of
the screen. Also note the Temperature property of this message: the temperature
is Hot because it is part of this LSC’s main-chart.

The use of the components from PlayGo enables us to present the mining re-
sults visually and formally, within a standard setting (PlayGo is a UML2-compliant

Eclipse-based tool). It allows the engineer to browse the mined LSCs, to edit them,
to print them etc. Finally, in the future it may provide support for automatic manip-
ulation of the mined scenarios, e.g., for test-code generation, as PlayGo back-end
includes the S2A compiler described in Maoz and Harel (2006); Harel et al. (2007);
Maoz et al. (2011).

6 Experiments and evaluation

We have implemented our ideas and evaluated them on four case study applica-
tions: CrossFTP server, Jeti instant messaging application, Columba email client, and
Thingamablog blogging utility.> CrossFTP is a commercial open-source FTP server
built on top of Apache FTP server. It consists of about 19 K LOC, 15 packages, 165
classes, and 1148 methods. Jeti is a popular open-source instant messaging applica-
tion. Its core contains about 49 K LOC, 62 packages, 511 classes, and 3400 methods.
Columba is an open-source email client. Its core contains 1432 LOC, 27 packages,
93 classes, and 564 methods. Thingamablog is an open-source desktop blogging plat-
form. Its core contains about 28 K LOC, 12 packages, 352 classes, and 2096 methods.

We report here on the results of our experiments (running on an Intel Core Duo
2.4 GHz, 3.24 GB RAM Windows XP Tablet PC). The algorithms are implemented
in C#.Net compiled using VS.Net 2005. We used Daikon Chicory to generate traces
from CrossFTP, running it on usage scenarios involving start up, file transfers, admin-
istrator login and query, server maintenance, etc. Similarly, we used Daikon Chicory
to generate traces from Jeti, running it to chat or communicate with a remote client.
Also, we used Daikon Chicory to generate traces from Columba, running it to store
an appointment, manage a contact, and prepare and send an email. Finally, we used
Daikon Chicory to generate traces from Thingamablog, running it to manage (e.g.,
create, edit, delete, search) blogs and feeds. Various details of the experiments in-
cluding trace lengths, running times etc., are shown in Table 1.

We collected traces with a total length of 12,187 events from CrossFTP, 3,182
events from Jeti, 13,015 events from Columba, and 19,511 events from Thingam-
ablog. We ran the mining algorithms implementation with minimum support and
confidence set at 25 and 100% respectively. For the first step of mining for scenarios,
mining completed within 53 sec for CrossFTP, 2 sec for Jeti, 2 sec for Columba, and
6 sec for Thingamablog. For every selected scenario, aside from Daikon operations,
of the 22 cases reported in this paper and accompanying website, slicing typically
only took a few seconds with a few cases going closer to one minute (average was
11 sec, 3 sec, 1 sec, and 20 sec for CrossFTP, Jeti, Columba, and Thingamablog re-
spectively). Running Daikon on the original traces took about 132 sec, 54 sec, 11 sec,
and 1,038 sec for CrossFTP, Jeti, Columba, and Thingamablog respectively. Daikon
took a long time to process the traces of Thingamablog as the Daikon traces con-
tain much information—the time for it to load the traces alone is about 14 minutes.

3CrossFTP server is available from http://sourceforge.net/projects/crossftpserver/, Jeti is available
from http://jeti.sourceforge.net/, Columba is available from http://sourceforge.net/projects/columba/, and
Thingamablog is available from http://www.thingamablog.com/.

http://sourceforge.net/projects/crossftpserver/
http://jeti.sourceforge.net/
http://sourceforge.net/projects/columba/
http://www.thingamablog.com/

Table 1 Experiment details: Program, Trace Length, Scenario Mining Time, Daikon Time, Trace Slicing
Time, and Daikon Mining on Sliced Traces Time

Program CrossFTP Jeti Columba Thingamablog
Trace Length (events) 12,217 3,182 13,015 19,511
Scenario Mining (sec) 53 2 2 6

Daikon (All) (sec) 132 54 11 1,038

Avg. Slicing Time (sec) 11 3 1 20

Avg. Daikon (Sliced) (sec) 31 23 5 138

Table 2 Experiment details: statistics of mined scenarios

Program CrossFTP Jeti Columba Thingamablog
Number of Mined LSCs 272 61 25 45
Min Length 2 2 2 2
Max Length 14 9 10 11
Average Length 6.5 4.9 4.6 5.7
Min Pre-Chart Length 1 1 1 1
Max Pre-Chart Length 13 8 8 8
Avg Pre-Chart Length 3.83 2.7 2.24 2.8
Min Main-Chart Length 1 1 1 1
Max Main-Chart Length 10 6 7 8
Avg Main-Chart Length 2.7 2.18 2.36 29
Min Lifelines 2 2 3 2
Max Lifelines 7 7 6 7
Average Lifelines 4.0 3.8 4.1 4

Running Daikon on the sliced traces took between 2 to 107 sec, with an average of
31 sec, 23 sec, 5 sec, and 138 sec for CrossFTP, Jeti, Columba, and Thingamablog
respectively. Some statistics of the mined LSCs are provided in Table 2.

6.1 Example mined LSCs
We now describe some of the mined scenarios from the four case study applications.
6.1.1 CrossFTP

Retrieving connection information. Figure 10 shows a scenario from CrossFTP,
specifying how the server retrieves information about the connection it is serving;
specifically, whenever the first two methods occur, eventually the last two meth-
ods occur. In the figure, the CTM (FTPConnectionTableManager) retrieves the
name and login time of the connecting user. The table at the bottom of the LSC shows
the scenario-specific value-based invariants found: The col argument of method
getValueAt (.. .) isalways set to 1 when the scenario occurs. This is not a gen-
eral invariant for this method of CTM, but rather a scenario-specific invariant related to

Fig. 10 Mined LSC: Retrieve
Connection Info. The LSC LSC Retrieve Connection Info /
shows a scenario from

CrossFTP, specifying how the

server retrieves information CT™M ENV BUser FRI
about the connection it is

serving; specifically, whenever i getNa:me(...) i

the first two methods occur, —_—_———— = —————):

getValugAt(...)

eventually the last two methods | le_ 272 -

occur. See Sect. 6.1.1

1
1
5!

getUser(...)

N]

! getLoginTime(...)

Method Value-Invariant Pre Value-Invariant Post
getValueAt() {col==1} {

the context of this scenario. Different values of col argument are found in the traces.
Additional scenarios involving other values of col are available in Accompanying
Website & Technical Report (2011).

We note that there are other invariants reported aside from the col argument. They
are there because Daikon reports a different invariant format representing the same
invariant in the original and sliced trace (see our discussion of semantically equivalent
invariants in Sect. 7).

PASV FTP command. Figure 11 shows another mined scenario from CrossFTP,
which holds when the PASV command is set. An FTP has two modes of operation,
namely PORT and PASYV, in addition to secure (using TLS or SSL) or regular. The
scenario captures the case when PASV command is set together with SSL. We high-
lighted the most relevant scenario-specific invariant namely isSecure==true.
isSecure is a property of the class DC (FtpDataConnection).

Sending data—several commands. Figures 12 and 13 show two different sce-
narios for CrossFTP, where data packets corresponding to FTP commands USER
and PWD are issued. Two particularly interesting scenario-specific value-based in-
variants related to the parameters code and subId of the method send (.. .) are
found. Each of the two scenarios has unique scenario-specific value-based invariants
for these two parameters. Additional examples are available in Accompanying Web-
site & Technical Report (2011).

Command-line startup. Figure 14 shows one of the scenarios when the Cross-
FTP server starts using the command-line option. It shows the default case when
the server is started up with no parameters. It is also possible to start the server by
passing an XML file. Note that for this scenario, we capture the scenario-specific
invariants about the method getConfiguration(...): the size of the input
args[] array must be empty, and the type of the returned object must be equal
to PropertiesConfiguration. Another variant involving start-up using XML
file was also mined (see Accompanying Website & Technical Report 2011).

LSC Set PASV Command - SSL /

PASV DC DCC SSL FRI FW

S 5162613189(;-15__,___,:,____ |
- i getFtpDataCohnection(...) _ 1. -

e b e e e !
E setPastomni\and(...) E E E E
= ———— 1 1 1 1
| LgetPasto}.i.) i i i
i 1getPasvAddr(.i.) i i i
1 | 1 1 1 1
| LogtSSLL.L 5! i i |
i i createServerSocket(...) i i i
1 getinetAddr(...§ H 2 ! '
igetPort(...) i g i i |
: + send(..) ! : i o
1) T T T T)
i : reIeasePaIIssivePort(...) i i E
Object Global Value-Invariant
DC {this.secure == true,...}

Fig. 11 Mined LSC: PASV Command—Secure. The LSC shows a scenario from CrossFTP, specifying
how the PASV command is set; specifically, whenever the first six methods occur, eventually the last five
methods occur. See Sect. 6.1.1

Fig. 12 Mined LSC: Send

Data—USER, Port. The LSC LSC Send - USER /
shows a scenario from

CrossFTP, specifying the

sending of data related to the USER FRI FW

USER command; specifically, : :

whenever the first method occur, Lg_etérgulmint(:..)

eventually the last seven 1 i

1 getUser(...)
methods occur. See Sect. 6.1.1 = (
1 isLoggedin(...)

setUserArgngnt(.)

sendy...) S

1getUserArgumenty(...)
;EUTFSEncodfng(.)

resetState(.) !

Method Value-Invariant Pre Value-Invariant Post
send() {code==331, {subld.toString ==
subld.toString == “USER’,...}
“USER”,...}

Fig. 13 Mined LSC: Send

Data—PWD, Port. The LSC LSC Send - PWD /
shows a scenario from
CrossFTP, specifying the
sending of data related to the PWD FRI FW
PWD command; specifically,
whenever the first method occur,
eventually the last three methods
occur. See Sect. 6.1.1

resetState(..)
=

getFiIeSystemlk/iew(. ..)

E send(...)

T >
getLanguage...)
<

Method Value-Invariant Pre Value-Invariant Post
send(...) {code==257, {subld.toString == “PWD”,
subld.toString == .}
“PWD”, ...}
Fig. 14 Mined LSC: Command
Line Startup Normal. The LSC LSC Command Line Start Up:
shows a scenario from Default

CrossFTP, specifying the startup
of the server from a

command-line; specifically, ENV cL SF
whenever the first method occur,
eventually the last method occur.

T]
1 1
See Sect. 6.1.1 F gl ; ;
i i . i
i E getFileFTPD(s..)
i i i
: : :
Method Value-Invariant Pre Value-Invariant Post
getConfiguration(...) | {args[].toString == | { args[].toString == [],
0 ...} return.getClass() ==
org.apache.ftpserver.config.
PropertiesConfiguration.cla
ss, ...}
6.1.2 Jeti

Start chat window. Figure 15 shows one of the scenarios when Jeti is used to com-
municate with a remote client. It specifies the scenario where a message comes, the
system beeps, and a window is popped up by the Jeti client. Eventually the chat
window is set up and the system is ready to accept reply messages from the user.
This scenario involves JH (JabberHandler), Jabber, CWS (ChatWindows) and
CW (ChatWindow). Note that for this scenario we capture scenario-specific in-
variants about the method receivePackets (.. .). The method accepts many
different types of packets involving presence updates (e.g., Busy, Away, Extended
Away, etc.), error messages, etc. However, in the context of this scenario, there should
be only one type of packet being received by method receivePackets(...),
namely Message. Also, we capture the scenario-specific invariants involving the
return type of method getChatwindow (.. .), which, in this scenario, is al-

Fig. 15 Mined LSC: Create

Chat Window. The LSC shows a LSC Create Chat Window /
scenario from Jeti, specifying
how a new chat window is
created; specifically, whenever
the first five methods occur,
eventually the last four methods
occur. See Sect. 6.1.2

JH Jabber CwWs

receivePadkets(...) |
! message ..:,)

i€ -

i€ _I getChatwindow(...)

I beep(...)

- startChaty(...)

R ERRECTTCEEEEEEEEE L E P LR

i
i
i
i
: €<=
H H <<create>> N
H i i
; ; setCWPosition(...) | CW
i i appendMessage(...) 1
i requestCoriposing(...) -
—_—> !
Method Value-Invariant Pre Value-Invariant Post

receivePackets(...) | {arg0.getClass() == &
nu.fw.jeti.jabber.elements.
Message.class}

getChatwindow(...) | { {return == null}

ways null: a chat window creation occurs (the <<create>> event), which only
happens if two parties have not communicated before, causing the call to method
getChatwindow (.. .) toreturn a null value.

Add incoming new picture. Figure 16 shows a scenario where Jeti received a new
picture creation message from another client: the packet is received,
newMessage (. . .) arrival message is passed, the history is updated, a Creation
object is created, appropriate new picture creation methods are executed, and finally
the updated window is shown. The scenario involves JH (JabberHandler), Jab-
ber, PC (Picture-Chat), PC$1 (a nameless internal class of PictureChat),
PH (PictureHistory), C (Creation) and HP (HistoryPanel). Note the
scenario-specific invariant found for method addIncomingMessage (.. .). The
method accepts many different types of messages involving picture updates (e.g., cre-
ation, display, deletion, change in background setting, etc.) as the first argument (i.e.,
arg(0). However, for this scenario, there is only one type of message being received
by the method, namely CreationMessage.

6.1.3 Columba

Editing a contact. Figure 17 shows a scenario from Columba, when a user ed-
its a contact: information on appropriate folder/group containing the contact is ob-
tained, a ContactEditorDialog object captures the edit made and the user’s
confirmation if he/she would like to proceed with the edit, the appropriate folder is
modified, and finally the AddressbookFrameController is updated. The sce-
nario involves EA (EditPropertiesAction), TC (TreeController), LF
(LocalFolder), CD (ContactEditorDialog), and AC (Addressbook-
FrameController). Note the scenario-specific invariant found for method

LSC Add Incoming New Picture /

JH Jabber PC PC$1 PH HP

receivePapkets(...) E
! nfvll\/lei age(...) '

addlpcomingM%sage(. .)

<<preate>3| ¢

! addAction (\..)

e e L EE LR

i | _execute(..1)
| execute(..J)! i
ishowWindow(...) ! ' !
Method Value-Invariant Pre Value-Invariant Post

addIincomingMessage(...) | {arg0.getClass() == nu.fw.jeti. {.}
plugins.drawing.elements.Creati
onMessage.class, ...}

Fig. 16 Mined LSC: Add Incoming Picture. The LSC shows a scenario from Jeti, specifying how an
incoming picture is handled; specifically, whenever the first five methods occur, eventually the last three
methods occur. See Sect. 6.1.2

getResult (...) and object of class ContactEditorDialog; both spec-
ify that the instance variable result must be true. This happens when a user
confirms a contact’s edit. Note also the scenario-specific invariant found for
method getSelectedFolder(...). The method returns an object of type
AbstractFolder, which is an abstract class. The scenario-specific value invari-
ant highlights that the object must be of type AddressbookFolder, which is a
sub-class of AbstractFolder.

Adding an appointment. Figure 18 shows a scenario for Columba when a
user adds an appointment: an EditEventDialog stores the content of the
new appointment and captures the user’s confirmation to store the new appoint-
ment, information on calendar is obtained, and finally addOp (.. .) message of
CommandProcessor is invoked to instruct the CommandProcessor to add
the appointment. The scenario involves NA (NewAppointmentAction), ED
(EditEventDialog), CSF (CalendarStoreFactory), and CP
(CommandProcessor). Note the scenario-specific invariant found for method
success and object of class EditEventDialog; both specify that the instance
variable success must be true. This happens when a user confirms the cre-
ation of a new appointment. Note the scenario-specific invariant found for method
addop (. . .). The method can take a parameter of type Command, however, for
this scenario the parameter need to be of type AddEventCommand which is a sub-
class of Command. Note also the object invariant for CommandProcessor; the
invariant specifies that Singleton design pattern is likely to be used here (which is
indeed the case).

LSC Edit a Contact /

EA TC LF CD AC
| getSelectegiFolder(...) 1 i i
b= 4] 1
i 1oget(... i i :
- Sy | i
: : getiResult(...) i E
i i i getDestModel (...) _!
i st === Te===>
i i i] i
! ! ! valueChanged(...) _1
: i i y gl

Object Global Value-Invariant
ContactEditorDialog {this.result == true,...}

Method Value-Invariant Pre Value-Invariant Post
getResuli(...) { {return == true}
getSelectedFolder...) | {} {return.getClass() ==

org.columba.addressbook.folder.Addres
sbookFolder.class}

Fig. 17 Mined LSC: Edit a Contact. The LSC shows a scenario from Columba, specifying how a contact
is edited; specifically, whenever the first four methods occur, eventually the last two methods occur. See
Sect. 6.1.3

6.1.4 Thingamablog

Adding and updating a blog entry. Figures 19 and 20 show two related scenar-
ios on adding and updating a blog entry in Thingamablog. The scenarios are al-
most the same—they mainly specify the series of events corresponding to extraction
of information about the blog, followed by the actual add or update commands,
and finally ending with user interface updates. The differences between the two
LSCs are the methods addEntry (...) and updateEntry(...). The sce-
nario involves PL (PostListener), EE (EntryEditor), WL (Weblog), DB
(HSQLDatabaseBackend), WTM (WeblogTableModel), and TF
(ThingamablogFrame). Note the scenario-specific invariant found for method
getMode (. ..) and object of class EntryEditor: each specifies the appropriate
mode when a blog entry is added (i.e., NEW_ENTRY_MODE) and when a blog entry
is updated (i.e., UPDATE_ENTRY_MODE).

6.2 Number of scenario-specific invariants

For the scenario shown in Fig. 10, a total of 37 scenario-specific invariants are re-
ported. This is much less than the set of value-based invariants reported by Daikon

LSC Add an Appointment ,///J
NA ED CSF CcP
1 success(..1) i :
i getlLocalStore(...) _i |
! ! addOp(i
N T >i
! ' addOp(Command) o
1 1 1 [t .
! ! i addOp(Command,int)
Object Global Value-Invariant
EditEventDialog {this.success == true}
CommandProcessor this.timeStamp ==
org.columba.core.command.Comm
andProcessor.instance.timeStamp
Method Value-Invariant Pre Value-Invariant Post
success(...) { {return == true}
addOp(Command) {arg0.getClass() == {
org.columba.calendar.comma
nd.AddEventCommand.class}

Fig. 18 Mined LSC: Adding an Appointment. The LSC shows a scenario from Columba, specifying
how an appointment is added; specifically, whenever the first three methods occur, eventually the last two
methods occur. See Sect. 6.1.

on the original trace, which consists of 5910 invariants. For the scenario shown in
Fig. 15, a total of 2 scenario-specific invariants are reported. This again is much less
than the set of value-based invariants reported on the original trace, which consists of
387 invariants. Indeed, out of the 22 cases described in this section and in the accom-
panying website, the number of invariants on the sliced traces is only 0.10%—4.86%
of that found in the original traces. Thus, this demonstrates an additional benefit of
scenario-specific invariants: limiting the number of value-based invariants presented,

3

focusing particularly on a scenario context under investigation.

7 Discussion

We now discuss some important design choices, limitations, and future work di-
rections to consider in specification mining in general and in the combination of

scenario-based specification mining and value-based invariants in particular.

LSC Add a Blog Entry /
PL EE WL DB WTM TF
! getEntry;i) i i i i
i getMode(_ . l E i i
oeModelt) : : : !
i hasUserg!ckedPublishlt) ! ! !
i getSeIect)ei{dWebIog 0 : ; i
! addEntry()} i i l i
;————ry—(), === : ; |
i ; i addEntry() ! 5 :
i i setData(...) ; i i
! i ! ! > :
i i bIdgTreeSeIectéd(...) ! o
1 1 1 \ H s
E i i i ! _setBlogEnfries(...)
! i i ; i setTalleView (...)
i i setBIogE':ntries(...) i R i
i i 1 : 3 i
Object Global Value-Invariant
EntryEditor {net.sf.thingamablog.gui.editor.EntryEdit
or.NEW_ENTRY_MODE == this.mode}
Method Value-Invariant Pre Value-Invariant Post
getMode(...) {3 {net.sf.thingamablog.gui.editor.EntryEdi
tor.NEW_ENTRY_MODE == return, ...}

Fig. 19 Mined LSC: Add a Blog Entry. The LSC shows a scenario from Thingamablog, specifying how
a blog entry is added; specifically, whenever the first five methods occur, eventually the last six methods
occur. See Sect. 6.1.4

7.1 Choice of the target formalism

The popularity and intuitive visual nature of sequence diagrams as a specification
language in general, their support in the UML standard, together with the additional
unique features of LSC—in particular, the universal interpretation and its expressive
power, motivate our choice for the target formalism of our mining work. Moreover,
the choice is supported by previous work on LSC (see, e.g., Klose et al. 2006; Lettrari
and Klose 2001; Maoz and Harel 2006; Maoz et al. 2011), which can potentially be
used to visualize, analyze, manipulate, test, and verify the specifications we mine
(see Lo et al. 2007).

Still, one may consider the use of scenario-based formalisms with different se-
mantics as targets for mining (e.g., the branching time semantics of the existential
scenarios described by Sibay et al. 2008), or, more generally, the mining of other,

LSC Update a Blog Entry/

PL EE WL DB WTM TF

LhasUserCIickedPuinshlt)

.4

uEdateEnE;}a()

i i setData(...) i
L L ~
i i H ! “
i i blagTreeSelected(...) <
1 1 1 : rdl
i i E i setBlogEnfries(...)
: i i i setTatlleView (...)
' ! setBlogBEntries(...) - i
1 1 1 ! [!
Object Global Value-Invariant
EntryEditor {net.sf.thingamablog.gui.editor.EntryEditor.
UPDATE_ENTRY_MODE == this.mode}
Method Value-Invariant Pre Value-Invariant Post
getMode(...) { {net.sf.thingamablog.gui.editor.EntryEditor. UPDA

TE_ENTRY_MODE == return, ...}

Fig. 20 Mined LSC: Update a Blog Entry. The LSC shows a scenario from Thingamablog, specifying
how a blog entry is updated; specifically, whenever the first five methods occur, eventually the last six
methods occur. See Sect. 6.1.4

common useful behavioral patterns (e.g., as described by Dwyer et al. 1999). These
alternatives require further investigation.

7.2 Soundness and completeness

In frequent pattern mining algorithms (e.g., Li et al. 2006), soundness (or correctness)
is defined as the ability to mine for only significant patterns or rules. Completeness
is defined as the ability to mine all significant patterns or rules. We follow these
definitions. Similar to other dynamic analysis techniques, we can only be as sound
and as complete as the input traces are. There are other studies that investigate ways
to generate test cases of good coverage, e.g., by Xu et al. (2010) and by Santelices et
al. (2008), which is beyond the scope of our present work.

Our previous work on scenario-based specification mining (Lo et al. 2007) was
(statistically) sound and complete; all mined scenarios met the minimum support
and confidence thresholds (soundness), and all the scenarios meeting these thresh-

Table 3 An example trace to illustrate the incompleteness of our current approach

Caller’s Class Callee’s Class Method Parameter value
X A a(int mode) mode = 1
X B b(int mode) mode = 1
X A a(int mode) mode = 1
X B b(int mode) mode =1
X A a(int mode) mode =2
X C c(int mode) mode =2
X A a(int mode) mode =2

olds were mined (completeness). Hence it is important to note that our present work
on adding value-based invariants to the scenarios preserves soundness but gives up
completeness. We explain why and give an example below.

Since scenario-based mining is done first, independently of value-based mining,
our current method might miss scenarios whose confidence statistics depends on their
restriction with value-based invariants: when a scenario is restricted, its actual con-
fidence may be higher than the one we computed without the restriction. Thus, our
current method is incomplete. Still, our current method is sound: all mined scenarios
with their value-based invariants indeed meet the minimum support and confidence
thresholds.

The following example illustrates the incompleteness of our current approach.
Consider the trace shown in Table 3, the thresholds min_sup and min_conf set at 2 and
100% respectively, and the LSC L1 specifying that whenever X calls A.a (1), even-
tually X must call B.b (1) . Unfortunately, although L1 meets the minimum support
and confidence thresholds, it will not be included in our results. This is the case be-
cause without the value-based invariant (i.e., by omitting the condition mode = 1), the
confidence of L1 is less than 100%: it is not true that whenever X callsA.a (.. .),
eventually X must call B.b (. . .) —when mode = 2, there is a case where X call to
A.a(...) isnot followed by a call fromXtoB.b(...).

Developing a sound and complete method to mining scenario-based specifications
with value-based invariants is left for future work.

7.3 Identifying scenario-specific invariants

A rather simple syntactic comparison of the invariants found on the original trace and
on the sliced trace suffices to identify the scenario-specific invariants we are looking
for. Comparison correctness relies on the fixed and simple default syntax of Daikon’s
output textual representation of these invariants.

However, in some cases, a simple syntactic comparison may not be good enough
because two semantically equivalent invariants may be represented syntactically
different. This indeed happened in one of our experiments, where Daikon re-
ported this.language == orig(this.language) for the original trace,
and this.userArgument == this.language; this.userArgument
== orig(this.language) for the sliced trace (see Fig. 12, just after the return

of getArgument ()). To handle such cases in general, a constraint solver should
be used to identify semantic differences, regardless of the syntactic representation of
the invariants. We leave this for future work.

7.4 Additional limitations

A number of additional limitations of our work deserve further discussion.

First, in some cases, the number of mined scenarios and value-based invariants
could be too high to be effectively presented to the engineer. To partly address this
issue, in Lo and Maoz (2011) we have proposed a number of strategies to summa-
rize mined scenario-based specifications (It is important to note that setting higher
support and confidence thresholds may have the effect of reducing the number of
significant LSCs mined. However, this would have removed some informative LSCs
while keeping others whose contribution to the complete specification mined is mi-
nor. Thus, summarization methods such as the ones we introduce in Lo and Maoz
(2011) are indeed necessary). Moreover, Daikon allows one to “turn-off” some of
the invariant templates and thus reduce the number of reported invariants (Ernst et
al. 2007). Employing these summarization techniques to the integrated solution of
scenarios with value-based invariants is left for future work.

Second, in some cases there may be no scenario-specific invariants found; this
happens in applications where most methods are only used in a single context. Thus, it
is not always the case that scenario-based mining and value-based mining are ‘better
together’. It is recommended that the engineer would also examine the value-based
invariants found by Daikon independently of the scenarios.

Third, just like all other dynamic analysis approaches, the quality of our analysis
results depends on the quality of the input traces. We believe this limitation could be
addressed by employing the many studies that investigate ways to augment test suites
to generate a reasonable code coverage (Xu et al. 2010; Santelices et al. 2008).

Fourth, our current method only handles fully ordered scenarios and cannot handle
partial orders. Extending our approach to handle partial orders is left for future work.

Fifth, similar to other frequent pattern mining algorithm, (e.g., Agrawal and
Srikant 1994, 1995; Wang and Han 2004), it is often not easy to decide the exact
thresholds of minimum support and confidence for a pattern (in our case LSC) to
be considered significant. In practice, one could first try a relatively high minimum
support threshold and gradually decrease this threshold until a reasonable number of
LSCs are mined. If a user would like to increase or reduce the number of LSCs mined,
he could simply increase or reduce the minimum support and confidence thresholds
respectively.

Finally, in a multi-threaded environment one may be interested in mining thread-
specific specifications; however, our present work is agnostic to threads. We leave
this too as a challenge for future work.

7.5 Integration with other studies

It is important to note that our method of adding value-based invariants to scenario-
based specification mining is applicable to the various variants of the latter, that is, to

the mining of scenario-based triggers and effects presented in Lo and Maoz (2008a)
and to the mining of hierarchical scenario-based specifications presented in Lo and
Maoz (2009). Also, in the present work, object IDs are abstracted away from the in-
put traces. As discussed in our previous work (Lo and Maoz 2008b), this cannot be
done in the general case; thus, we implicitly assume no overlapping LSCs. Relax-
ing this restriction requires further work, see Lo and Maoz (2008b). We leave the
implementation of these integrations and their evaluation for future work.

There have been a number of studies that could verify either statically or during
runtime the satisfaction of a particular LSC (Klose et al. 2006; Maoz et al. 2011). By
integrating the approaches together, potentially we could flag bugs or even security
violations (see, e.g., the work by Milea et al. 2011). We leave the integration of our
work with these other studies for future work.

8 Related work

We now discuss related studies in the areas of reverse engineering sequence diagrams,
automata-based specification mining, mining of automata with value-based invari-
ants, mining of temporal rules with equality constraints, static specification mining,
and frequent pattern mining.

8.1 Reverse engineering of sequence diagrams

Many studies present various variants of reverse engineering of objects’ interac-
tions from program traces and their visualization using sequence diagrams (see, e.g.,
EclipseTPTP 2011 (Eclipse TPTP) and the work of Jerding et al. 1997). These may
seem similar to our current work. Unlike our work, however, all consider and handle
only concrete, continuous, non-interleaving, and complete object-level interactions
and are not using aggregations and statistical methods to look for higher level recur-
ring scenarios. These reverse engineered sequences are used as a means to describe
single, concrete, and relatively short (sub) traces in full (and thus may be viewed not
only as concrete but also as ‘existential’). In contrast, we look for universal (modal)
sequence diagrams, which aim to abstract away from the concrete trace and reveal
significant, recurring, potentially universal scenario-based specifications, ultimately
suggesting scenario-based system requirements.

8.2 Automata-based specification mining

Most specification miners, dynamic and static (see below), produce an automaton
(e.g., Ammons et al. 2002; Acharya et al. 2007; Dallmeier et al. 2006; Lorenzoli et
al. 2008), and have been used for various purposes from program comprehension to
verification. Unlike these, we mine a set of LSCs from traces of program executions.
We believe sequence diagrams in general and LSCs in particular, are suitable for the
specification of inter-object behavior, as they make the different role of each partic-
ipating object and the communications between the different objects explicit. Thus,
our work is not aimed at discovering the complete behavior or APIs of certain com-
ponents, but, rather, to capture the way components cooperate to implement certain

system features. Indeed, inter-object scenarios are popular means to specify require-
ments (see, e.g., Harel 2001; Klein and Giese 2007; Kriiger 2003; Sibay et al. 2008;
Sun and Dong 2005). The addition of value-based invariants strengthens the expres-
sive power of the mined scenarios.

8.3 Mining of automata with value-based invariants

Most existing studies on specification mining that extract automata do not capture
value-based invariants. Some recent works do. We briefly discuss these below.

Mariani and Pezze (2005) report both value-based invariants and automata to help
component integration. The value-based invariants are mined using Daikon, while
the automata are mined using an automata learner. In contrast, we do not mine gen-
eral invariants; rather, we merge value-based invariants and sequencing constraints
to form scenario-specific specifications. Also, while an automaton describes the en-
tire behavior of a system, a scenario describes only a certain aspect of it. Different
from the model mined by Mariani and Pezze (2005), our mined scenarios also cap-
ture caller and callee relationships and present them in the intuitive visual syntax of
sequence diagrams.

Lorenzoli et al. (2008) integrate Daikon invariants with an automaton using a four
steps approach: (1) merging all traces with the same sequence of methods invoked
with different values of the parameter, (2) inferring Daikon invariants from each of
the merged traces, (3) creating an initial automaton, and (4) merging locally equiv-
alent states (based on the next k-steps) to obtain the final automaton. Our work is
substantially different and we believe the two studies enrich each other. First, the au-
tomaton mined by Lorenzoli et al. (2008) combines all scenarios together into one
representation, which could result in a complicated structure. In our work, we report
each significant scenario one-by-one. Second, we mine scenarios in the form of LSC,
which express universal properties in the form of “Whenever the pre-chart occurs, the
main chart must eventually occur”. The automaton mined in Lorenzoli et al. (2008)
expresses a global/existential property, modeling all executions that are allowed in the
traces. Due to this difference, the mining algorithms are very different (see Xie et al.
2009). Third, the work of Lorenzoli et al. (2008) may ‘mix’ between different behav-
iors, as it merges similar methods into one. The different context of each invocation
is lost in the merging. In contrast, our use of scenario-based slicing and differencing
ensures the mining of scenario-specific invariants, where the context information is
preserved and highlighted.

8.4 Mining of temporal rules with equality constraints

Lo et al. (2009) mine length-2 quantified temporal rules in the form “For all x, when-
ever method A is called with the nth parameter equals to x, method C would eventu-
ally be called with the mth parameter equals to x”. Lo et al. (2009) permits equality
constraints. In our present work, we mine for scenarios in the form of LSCs, not
limited to length two. LSCs capture caller and callee relationships not considered by
Lo et al. (2009). While the approach in Lo et al. (2009) is shown to work only on
equality constraints, we support a wider subset of Daikon invariants. We introduce

the concept of scenario-specific invariants and realize it by scenario-based mining,
slicing, and differencing. However, Lo et al. (2009) capture quantified variables, not
supported in our present work. Adding quantification to our approach is left for future
research.

8.5 Static specification mining

The above mentioned related studies all mine program specifications in various for-
mats from execution traces. There are also a number of studies that mine from source
code (or byte code), i.e., by performing static analysis. We highlight some of them
below.

Acharya et al. use a model checker to generate static traces that are later used
to infer an automaton given a particular trigger automaton (Acharya et al. 2006).
In Acharya et al. (2007), the authors also use a model checker to generate static
traces and infer an automaton by means of a partial order mining algorithm. Quante
and Koschke (2007) develop a static analysis approach that extracts multiple object-
process graphs that are a projection of a control-flow graph on a single object. These
object-process graphs are then converted to a finite-state machine by some transfor-
mation operations.

Li and Zhou (2005) propose PR-Miner, which mines for rules from program code
by utilizing association rule mining algorithm. The association rule mining algo-
rithm is agnostic to the order in which various program elements appear. Weimer
and Necula (2005) extract temporal rules by statically analyzing program code and
contrasting two sets of statically generated traces (error vs. normal traces). Goues
and Weimer (2009) propose an approach to eliminate false positives in the mined
specifications. Gabel and Su (2008) propose a symbolic algorithm based upon Bi-
nary Decision Diagram (BDD) to mine specifications. Shoham et al. (2007) propose
a two-phase inter-procedural static analysis approach, which performs abstract trace
collection and summarization, to mine specifications. Ramanathan et al. (2007a) per-
form an inter-procedural path-sensitive static analysis to infer function precedence
protocols, i.e., relationships among function calls. They later extend their approach
to infer data-flow and control-flow pre-conditions that must be satisfied before a func-
tion is entered, by performing an inter-procedural path-sensitive static analysis (Ra-
manathan et al. 2007b).

Wasylkowski and Zeller (2009, 2011) mine temporal rules as Computational Tree
Logic (CTL) properties by leveraging a model checking algorithm and using concept
analysis. Livshits et al. (2009) infer information flow specifications by classifying
nodes in an interprocedural explicit information flow graph into sources, sinks, and
sanitizers.

8.6 Frequent pattern mining

In the data mining community, frequent pattern mining is a research topic that has
caught much interest (Agrawal and Srikant 1994, 1995; Wang et al. 2003; Han and
Pei 2000; Wang and Han 2004). We highlight some well-known studies.
Association rule mining proposed by Agrawal and Srikant (1994) is the pioneer
in this research topic. Given a multi-set of transactions, where each transaction is

simply a set of items, association rule mining finds rules that state: “If a transaction
contains a set of items X, then it will also contain the set of items Y. Association
rule mining first finds sets of items that appear in many transactions (aka. frequent
itemsets); these itemsets are then composed to form association rules. The concepts of
support and confidence are used to remove insignificant rules based on user defined
thresholds. There have been various studies that improve the efficiency of the first
algorithm proposed by Agrawal and Srikant (1994), e.g., by Wang et al. (2003) and
by Han and Pei (2000).

Sequential pattern mining, also proposed by Agrawal and Srikant, extends associ-
ation rule mining to mine for frequent patterns in sequences of transactions (Agrawal
and Srikant 1995). Given a multi-set of sequences of transactions (aka. sequence
database), sequential pattern mining finds patterns that are sub-sequences of many
sequences in the sequence database. The concept of support is used to remove in-
frequent patterns based on a user defined threshold. There have been various studies
that improve the efficiency of the original sequential pattern mining algorithm, e.g.,
by Wang and Han (2004) and by Lo et al. (2008).

Different from association rule mining and sequential pattern mining, in our
present work we mine a different form of patterns/rules; we recover modal sequence
diagrams decorated with value-based invariants. To mine these modal sequence dia-
grams, we analyze sequences of events, where each event is a triple containing caller,
callee, and method signature information. Furthermore, our notion of chart instance,
support, and confidence is based on the formal semantics of LSCs (Damm and Harel
2001; Harel and Maoz 2008). Association rule mining and sequential pattern mining
make use of subset and sub-sequence relations to count the support and confidence
of the patterns and rules. In our work, we use the semantics of LSCs to decide trace
segments that are instances of a given LSC.

9 Conclusion and future work

We have presented scenario-based mining with value-based invariants, as an expres-
sive extension of scenario-based specification mining. The key to the extension is a
new technique we call scenario-based slicing, to distinguish scenario-specific invari-
ants from general ones. The resulting suggested specifications are rich, consisting of
modal scenarios annotated with scenario-specific value-based invariants, referring to
event parameters and participating object properties. The candidate specifications are
presented to the engineer in a visual, accessible, standard way, using a UML profile.

An evaluation over four case studies shows promising results in extracting expres-
sive specifications from real programs, which could not be extracted previously. The
more expressive the mined specifications, the higher their potential to support pro-
gram comprehension, testing, and verification tasks. The work is part of the larger
framework of specification mining, integrating behavioral models mining with value-
based invariants mining to improve the state-of-the-art support for property discover-
ing tasks.

Future work directions include addressing the challenges and opportunities dis-
cussed in Sect. 7. These include, among others, the development of a complete (rather

than only sound) solution, handling of partial orders, and integration with previous
work, e.g., enhancing triggers and effects mining (Lo and Maoz 2008a) with value-
based invariants. It would also be interesting to perform a user study to further eval-
uate the utility of mined specifications for program understanding.

Acknowledgements We would like to thank Smadar Szekely for her advice and assistance in using
components from PlayGo for the profile definition and the presentation of the mined scenarios.

References

Accompanying Website & Technical Report: LSC mining with value-based invariants. Supplementary
material (2011). http://www.mysmu.edu/faculty/davidlo/inv/invariants.html

Acharya, M., Xie, T., Xu, J.: Mining interface specifications for generating checkable robustness proper-
ties. In: Proc. of International Symposium on Software Reliability Engineering (ISSRE), pp. 311-320
(2006)

Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code: from usage
scenarios to specifications. In: Proc. of Joint Symposium on the Foundations of Software Engineering
and European Software Engineering Conference (ESEC/SIGSOFT FSE), pp. 25-34 (2007)

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. of
International Conference on Very Large Data Bases (VLDB), pp. 487-499 (1994)

Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of International Conference on Data Engi-
neering (ICDE), pp. 3-14 (1995)

Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: Proc. of Symposium on Principles of Pro-
gramming Languages (POPL), pp. 4-16 (2002)

Boshernitsan, M., Doong, R.K., Savoia, A.: From Daikon to Agitator: Lessons and challenges in building
a commercial tool for developer testing. In: Proc. of International Symposium on Software Testing
and Analysis (ISSTA), pp. 169-180 (2006)

Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with ADABU. In: Proc. of
International Workshop on Dynamic Analysis (WODA), pp. 17-24 (2006)

Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Form. Methods Syst. Des. 19(1),
45-80 (2001)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification.
In: Proc. of International Conference on Software Engineering (ICSE), pp. 411-420 (1999)

EclipseTPTP: Eclipse test and performance tools platform (2011). http://www.eclipse.org/tptp/

El-Ramly, M., Stroulia, E., Sorenson, P.G.: From run-time behavior to usage scenarios: an interaction-
pattern mining approach. In: Proc. of International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 315-324 (2002)

Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely program invariants to
support program evolution. IEEE Trans. Softw. Eng. 27(2), 99-123 (2001)

Ernst, M.D., Perkins, J.H., Guo, PJ., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon
system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1-3), 3545 (2007)

Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: Proc. of International Conference on
Software Engineering (ICSE), pp. 51-60 (2008)

Goues, C.L., Weimer, W.: Specification mining with few false positives. In: Proc. of International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 292-306
(2009)

Guo, PJ., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of abstract types. In: Proc. of
International Symposium on Software Testing and Analysis (ISSTA), pp. 255-265 (2006)

Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Mateo (2006)

Han, J., Pei, J.: Mining frequent patterns by pattern-growth: methodology and implications. ACM
SIGKDD Explor. 2(2), 14-20 (2000)

Harel, D.: From play-in scenarios to code: an achievable dream. Computer 34(1), 53-60 (2001)

Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML sequence diagrams. Softw.
Syst. Model. 7(2), 237-252 (2008)

Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer, Berlin (2003)

http://www.mysmu.edu/faculty/davidlo/inv/invariants.html
http://www.eclipse.org/tptp/

Harel, D., Kleinbort, A., Maoz, S.: S2A: A compiler for multi-modal UML sequence diagrams. In: Proc. of
International Conference on Fundamental Approaches to Software Engineering (FASE), pp. 121-124
(2007)

Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool for scenario based
programming. In: Proc. of International Conference on Automated Software Engineering (ASE),
pp- 359-360 (2010)

Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program executions. In: Proc. of Interna-
tional Conference on Software Engineering (ICSE), pp. 360-370 (1997)

Klein, F., Giese, H.: Joint structural and temporal property specification using timed story scenario dia-
grams. In: Proc. of International Conference on Fundamental Approaches to Software Engineering
(FASE), pp. 185-199 (2007)

Klose, J., Toben, T., Westphal, B., Wittke, H.: Check it out: on the efficient formal verification of live se-
quence charts. In: Proc. of International Conference on Computer Aided Verification (CAV), pp. 219—
233 (2006)

Kriiger, I.: Capturing overlapping, triggered, and preemptive collaborations using MSCs. In: Proc. of In-
ternational Conference on Fundamental Approaches to Software Engineering (FASE), pp. 387-402
(2003)

Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live sequence chart specifications.
In: Proc. of International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 77-91 (2009)

Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-based specifications.
In: Proc. of International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 445-460 (2005)

Lettrari, M., Klose, J.: Scenario-based monitoring and testing of real-time UML models. In: Proc. of In-
ternational Conference on the Unified Modeling Language (UML), pp. 317-328 (2001)

Li, J., Li, H., Wong, L., Pei, J., Dong, G.: Minimum description length principle: generators are preferable
to closed patterns. In: Proc. of Conference on Artificial Intelligence (AAAI) (2006)

Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and detecting violations
in large software code. In: Proc. of Joint Symposium on the Foundations of Software Engineering
and European Software Engineering Conference (ESEC/SIGSOFT FSE), pp. 306-315 (2005)

Livshits, V.B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: specification inference for explicit infor-
mation flow problems. In: Proc. of Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 75-86 (2009)

Lo, D., Khoo, S.C.: SMATTIC: towards building an accurate, robust and scalable specification miner. In:
Proc. of Symposium on the Foundations of Software Engineering (SIGSOFT FSE), pp. 265-275
(2006)

Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In: Proc. of International Conference on
Automated Software Engineering (ASE), pp. 109-118 (2008a)

Lo, D., Maoz, S.: Specification mining of symbolic scenario-based models. In: Proc. of Workshop on
Program Analysis For Software Tools and Engineering (PASTE), pp. 29-35 (2008b)

Lo, D., Maoz, S.: Mining hierarchical scenario-based specifications. In: Proc. of International Conference
on Automated Software Engineering (ASE), pp. 359-370 (2009)

Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better together. In: Proc. of Inter-
national Conference on Automated Software Engineering (ASE), pp. 387-396 (2010)

Lo, D., Maoz, S.: Towards succinctness in mining scenario-based specifications. In: Proc. of International
Conference on Engineering of Complex Computer Systems (ICECCS), pp. 231-240 (2011)

Lo, D.,Maoz, S., Khoo, S.C.: Mining modal scenario-based specifications from execution traces of reactive
systems. In: Proc. of International Conference on Automated Software Engineering (ASE), pp. 465—
468 (2007)

Lo, D., Khoo, S.C., Li, J.: Mining and ranking generators of sequential patterns. In: Proc. of SIAM Inter-
national Conference on Data Mining (SDM), pp. 553-564 (2008)

Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules: formalism, algo-
rithms, and evaluation. In: Proc. of Working Conference on Reverse Engineering (WCRE), pp. 62-71
(2009)

Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behavioral models. In: Proc. of
International Conference on Software Engineering (ICSE), pp. 501-510 (2008)

Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling LSCs into Aspect]. In: Proc. of
Symposium on the Foundations of Software Engineering (SIGSOFT FSE), pp. 219-230 (2006)

Maoz, S., Harel, D.: On tracing reactive systems. Softw. Syst. Model. 10(4), 447-468 (2011)

Maoz, S., Metsi, J., Katara, M.: Model-based testing using LSCs and S2A. In: Proc. of International
Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 301-306 (2009)

Maoz, S., Harel, D., Kleinbort, A.: A compiler for multimodal scenarios: transforming LSCs into Aspect].
ACM Trans. Softw. Eng. Methodol. 20(4), 18 (2011)

Mariani, L., Pezze, M.: Behavior capture and test: automated analysis of component integration. In: Proc.
of International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 292-301
(2005)

Mariani, L., Papagiannakis, S., Pezze, M.: Compatibility and regression testing of COTS-component-based
software. In: Proc. of International Conference on Software Engineering (ICSE), pp. 85-95 (2007)

Milea, N., Khoo, S.C., Lo, D., Pop, C.: Nort: Runtime anomaly-based monitoring of malicious behavior
for windows. In: Proc. of International Conference on Runtime Verification (RV) (2011)

Olender, K., Osterweil, L.: Cecil: a sequencing constraint language for automatic static analysis generation.
IEEE Trans. Softw. Eng. 16, 268—280 (1990)

Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.P.: Automated fault localization using potential invari-
ants. CoRR ¢s.SE/0310040 (2003)

Quante, J., Koschke, R.: Dynamic protocol recovery. In: Proc. of Working Conference on Reverse Engi-
neering (WCRE), pp. 219-228 (2007)

Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function precedence protocols.
In: Proc. of International Conference on Software Engineering (ICSE), pp. 240-250 (2007a)

Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predicate mining. In:
Proc. of Conference on Programming Language Design and Implementation (PLDI), pp. 123-134
(2007b)

Safyallah, H., Sartipi, K.: Dynamic analysis of software systems using execution pattern mining. In: Proc.
of International Conference on Program Comprehension (ICPC), pp. 84-88 (2006)

Santelices, RA, Chittimalli, PK., Apiwattanapong, T., Orso, A., Harrold, M.J.: Test-suite augmentation for
evolving software. In: Proc. of International Conference on Automated Software Engineering (ASE),
pp. 218-227 (2008)

Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based abstractions.
In: Proc. of International Symposium on Software Testing and Analysis (ISSTA), pp. 174—184 (2007)

Sibay, G., Uchitel, S., Braberman, VA: Existential live sequence charts revisited. In: Proc. of International
Conference on Software Engineering (ICSE), pp. 41-50 (2008)

Sun, J., Dong, J.S.: Synthesis of distributed processes from scenario-based specifications. In: Proc. of
International Symposium on Formal Methods (FM), pp. 415-431 (2005)

Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence chart specifications.
In: Proc. of Symposium on the Foundations of Software Engineering (SIGSOFT FSE), pp. 74-82
(2001)

Wang, J., Han, J.: BIDE: efficient mining of frequent closed sequences. In: Proc. of International Confer-
ence on Data Engineering (ICDE), pp. 79-90 (2004)

Wang, J., Han, J., Pei, J.: Closet+: searching for the best strategies for mining frequent closed itemsets. In:
Proc. of International Conference on Knowledge Discovery and Data Mining (KDD), pp. 236-245
(2003)

Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. In: Proc. of International
Conference on Automated Software Engineering (ASE), pp. 295-306 (2009)

Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom. Softw. Eng. 18(3—
4),263-292 (2011)

Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In: Proc. of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 461-476 (2005)

Xie, T., Thummalapenta, S., Lo, D., Liu, C.: Data mining for software engineering. Computer 42(8), 35-42
(2009)

Xu, Z., Cohen, M.B., Rothermel, G.: Factors affecting the use of genetic algorithms in test suite augmen-
tation. In: Proc. of Annual Genetic and Evolutionary Computation Conference (GECCO), pp. 1365—
1372 (2010)

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules from imperfect
traces. In: Proc. of International Conference on Software Engineering (ICSE), pp. 282-291 (2006)

	Scenario-Based and Value-Based Specification Mining: Better Together
	Citation

	Scenario-based and value-based specification mining: better together
	Abstract
	Introduction
	Background
	Live sequence charts
	Scenario-based specification mining
	Value-based invariants mining

	Scenarios with value-based invariants
	Mining framework
	Framework overview
	Trace generation and conversion
	Scenario-based specification mining
	Scenario-based slicing
	Scenario-specific invariants

	Presenting the mined specifications
	Experiments and evaluation
	Example mined LSCs
	CrossFTP
	Jeti
	Columba
	Thingamablog

	Number of scenario-specific invariants

	Discussion
	Choice of the target formalism
	Soundness and completeness
	Identifying scenario-specific invariants
	Additional limitations
	Integration with other studies

	Related work
	Reverse engineering of sequence diagrams
	Automata-based specification mining
	Mining of automata with value-based invariants
	Mining of temporal rules with equality constraints
	Static specification mining
	Frequent pattern mining

	Conclusion and future work
	Acknowledgements
	References

