791 research outputs found

    Complexity adaptation in video encoders for power limited platforms

    Get PDF
    With the emergence of video services on power limited platforms, it is necessary to consider both performance-centric and constraint-centric signal processing techniques. Traditionally, video applications have a bandwidth or computational resources constraint or both. The recent H.264/AVC video compression standard offers significantly improved efficiency and flexibility compared to previous standards, which leads to less emphasis on bandwidth. However, its high computational complexity is a problem for codecs running on power limited plat- forms. Therefore, a technique that integrates both complexity and bandwidth issues in a single framework should be considered. In this thesis we investigate complexity adaptation of a video coder which focuses on managing computational complexity and provides significant complexity savings when applied to recent standards. It consists of three sub functions specially designed for reducing complexity and a framework for using these sub functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip macroblock detection, and complexity adaptation framework. Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Transform (WHT) is presented. The key idea is to segment regions of an image as edges or flat regions based on the fact that prediction errors are mainly affected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh Boundary Search (FWBS) is presented on the VBS partitioned images. Its results outperform other commonly used fast algorithms. Thirdly, a skip macroblock detection algorithm is proposed for use prior to motion estimation by estimating the Discrete Cosine Transform (DCT) coefficients after quantisation. A new orthogonal transform called the S-transform is presented for predicting Integer DCT coefficients from Walsh Hadamard Transform coefficients. Complexity saving is achieved by deciding which macroblocks need to be processed and which can be skipped without processing. Simulation results show that the proposed algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. Finally, a complexity adaptation framework which combines all three techniques mentioned above is proposed for maximizing the perceptual quality of coded video on a complexity constrained platform

    Depth-first search embedded wavelet algorithm for hardware implementation

    Get PDF
    The emerging technology of image communication over wireless transmission channels requires several new challenges to be simultaneously met at the algorithm and architecture levels. At the algorithm level, desirable features include high coding performance, bit stream scalability, robustness to transmission errors and suitability for content-based coding schemes. At the architecture level, we require efficient architectures for construction of portable devices with small size and low power consumption. An important question is to ask if a single coding algorithm can be designed to meet the diverse requirements. Recently, researchers working on improving different features have converged on a set of coding schemes commonly known as embedded wavelet algorithms. Currently, these algorithms enjoy the highest coding performances reported in the literature. In addition, embedded wavelet algorithms have the natural feature of being able to meet a target bit rate precisely. Furthermore work on improving the algorithm robustness has shown much promise. The potential of embedded wavelet techniques has been acknowledged by its inclusion in the new JPEG2000 and MPEG-4 image and video coding standards

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Acta Cybernetica : Volume 21. Number 1.

    Get PDF

    Prediction of Quality of Experience for Video Streaming Using Raw QoS Parameters

    Get PDF
    Along with the rapid growth in consumer adoption of modern portable devices, video streaming is expected to dominate a large share of the global Internet traffic in the near future. Today user experience is becoming a reliable indicator for video service providers and telecommunication operators to convey overall end-to-end system functioning. Towards this, there is a profound need for an efficient Quality of Experience (QoE) monitoring and prediction. QoE is a subjective metric, which deals with user perception and can vary due to the user expectation and context. However, available QoE measurement techniques that adopt a full reference method are impractical in real-time transmission since they require the original video sequence to be available at the receiver’s end. QoE prediction, however, requires a firm understanding of those Quality of Service (QoS) factors that are the most influential on QoE. The main aim of this thesis work is the development of novel and efficient models for video quality prediction in a non-intrusive way and to demonstrate their application in QoE-enabled optimisation schemes for video delivery. In this thesis, the correlation between QoS and QoE is utilized to objectively estimate the QoE. For this, both objective and subjective methods were used to create datasets that represent the correlation between QoS parameters and measured QoE. Firstly, the impact of selected QoS parameters from both encoding and network levels on video QoE is investigated. The obtained QoS/QoE correlation is backed by thorough statistical analysis. Secondly, the development of two novel hybrid non-reference models for predicting video quality using fuzzy logic inference systems (FIS) as a learning-based technique. Finally, attention was move onto demonstrating two applications of the developed FIS prediction model to show how QoE is used to optimise video delivery
    corecore