
Volume 21 Number 1

A C T A
C Y B E R N E T I C A

Editor-in-Chief. János Csirik (Hungary)

Managing Editor. Csanád Imreh (Hungary)

Assistant to the Managing Editor. Attila Tanács (Hungary)

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Hans L. Bodlaender (The Netherlands)
Horst Bunke (Switzerland)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)
Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)

Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Zoltán Kato (Hungary)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged , 2013

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the time
it takes to locate qualified reviewers. Usually, a review process takes 6 months to be
completed. There are no page charges. An electronic version of the puplished paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in L5TEX format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: actaOinf.u-szeged.hu

Web access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http://www.inf.u-szeged.hu/actacybernetica/ .

http://www.inf.u-szeged.hu/actacybernetica/

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg® inf. u-szeged. h u

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyimothy@inf.u-szeged.hu

Helmut Jiirgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@i nf. u-szeged. h u

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:gruska@savba.sk
mailto:gyimothy@inf.u-szeged.hu
mailto:helmut@csd.uwo.ca
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:Heiko.Vogler@tu-dresden.de
mailto:gwoegi@win.tue.nl

EDITORIAL B O A R D

Editor-in-Chief: Jänos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csi ri k@i nf. u-szeged. h u

Managing Editor: Csanád Imreh
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
cimreh@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanäcs
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes® i n f. u-szeged. h u

János D e m e t r o v i c s
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@i nf. u-szeged. h u

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

mailto:cimreh@inf.u-szeged.hu
mailto:tanacs@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:hansb@cs.uu.nl
mailto:bunke@iam.unibe.ch
mailto:demetrovics@sztaki.hu
mailto:fulop@inf.u-szeged.hu

CONFERENCE OF
P H D STUDENTS IN

COMPUTER SCIENCE

Guest Editor:

Kálmán Palágyi

Department of Image Processing and Computer Graphics
University of Szeged

Szeged, Hungary
pa lagyi@i nf. u-szeged. h u

The conference and this special issue are supported by the European Union and
co-funded by the European Social Fund. Project title: "Broadening the knowl-
edge base and supporting the long term professional sustainability of the Research
University Centre of Excellence at the University of Szeged by ensuring the rising
generation of excellent scientists". Project number: TAMOP-4.2.2/B-10/1-2010-
0012.

i m The project is supported by
the European Union and co-financed
by the European Social Fund.

SZÉCHÉNYI PLAN

Preface

The eighth Conference for PhD Students in Computer Science (CSCS) was
organized by the Department of Computer Science of the University of Szeged
(SZTE) and held in Szeged, Hungary from June 28 to 30, 2012. The members of
the Scientific Committee were the following representants of the Hungarian doctoral
schools in computer science: András Benczúr (ELTE), Hasszan Charaf (BME),
Tibor Csendes (SZTE), László Cser (BCE), János Csirik (Chair, SZTE), János
Demetrovics (ELTE), József Dombi (SZTE), Zoltán Fülöp (SZTE), Aurél Galántai
(ÓE), Tibor Gyimóthy (SZTE), Zoltán Horváth (ELTE), Csanád Imreh (SZTE),
Zoltán Kató (SZTE), Zoltán Kása (Sapientia EMTE), László Keviczky (SZIE),
János Kormos (DE), László Kozma (ELTE), János Levendovszky (BME), Eörs
Máté (SZTE), Attila Pethő (DE), András Recski (BME), Lajos Rónyai (SZTAKI),
Endre Selényi (BME), Tamás Szirányi (SZTAKI), Péter Szolgay (PPKE), and Tibor
Tóth (ME). The members of the Organizing Committee were Balázs Bánhelyi,
Rudolf Ferenc, Tamás Gergely, Zoltán Kincses, and Kálmán Palágyi.

There were more than 60 participants and 46 talks in several fields of computer
science and its applications. The talks were going in sections in computer graphics,
computer networks, database theory, discrete mathematics, distributed computing,
image and signal processing, numerical analysis, optimization, software engineer-
ing, and stochastic processes. The talks of the students were completed by two
plenary talks of leading scientists: András Kornai (Department of Computer Sci-
ence, Boston University) and Horst R. Thieme (Department of Mathematics and
Statistics, Arizona State University).

The scientific journal Acta Cybernetica offered students to publish the pa-
per version of their presentations after a selection and review process. Eightteen
manuscripts were submitted for publication. The present special issue of Acta
Cybernetica contains 13 such papers.

The full program of the conference, the collection of the abstracts and further
information can be found at http: / /www.inf .u-szeged.hu/~cscs.

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too. According to the present plans, the next meeting will be
held in the end of June 2014 in Szeged.

Kálmán Palágyi
Guest Editor

3

http://www.inf.u-szeged.hu/~cscs

Acta Cybernetica 21 (2013) 5-20.

Low Level Conditional Move Optimization*

Artyom Antyipinj Attila Góbij and Tamás Kozsik*

Abstract

The high level optimizations are becoming more and more sophisticated,
the importance of low level optimizations should not be underestimated. Due
to the changes in the inner architecture of modern processors, some optimiza-
tion techniques may become more or less effective. Existing techniques need,
from time to time, to be reconsidered, and new techniques, targeting these
modern architectures, may emerge.

Due to the growing instruction pipeline of modern processors, recovering
after branch mis-predictions is becoming more expensive, and so avoiding
that is becoming more critical. In this paper we introduce a novel approach
to branch elimination using conditional move operations, namely the CMOVcc
instruction group. The inappropriate use of these instructions may result
in sensible performance regression, but in many cases they outperform the
sequence of a conditional jump and an unconditional move instruction.

Our goal is to analyze the usage of CMOVcc in different contexts on modern
processors, and based on these results, propose a technique to automatically
decide whether the conditional move or the sequence of a conditional jump
and an unconditional move should be performed in a given situation.

Keywords: assembly, low level optimization, compilers

1 Introduction
Low level optimization has always been an important part of code generation. Sen-
sible performance improvements can be achieved simply by reordering instructions
or using an alternative, but equivalent, instruction sequence. Modern compilers
support numerous optimization techniques applied to the generated code. Up-
coming microprocessors are usually designed to run existing code faster without
any adaptation. To achieve this, instruction processing is split into several stages,
forming the so-called instruction pipeline. Each stage of the pipeline depends on
the output of its predecessor, hence the processor starts to process the instruction
several clock cycles prior to the actual execution. In order to keep the processor

'Supported by the European Union and co-financed by the European Social Fund (grant agree-
ment no. T A M O P 4.2 .1 . /B-09 /1 /KMR-2010-0003) .

tDept. Programming Languages and Compilers, Eötvös Loránd University, Budapest, Hun-
gary, E-mail: {artyom.gobi ,ktol@elte.hu

mailto:ktol@elte.hu

6 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

running, it is essential to keep the pipeline full. However, if the code being processed
contains conditional branches, the processor has to choose one execution path. If
there is a mis-prediction, the processor abandons the fetched instructions, which
leads to several lost cycles, while the first instruction of the mis-predicted branch
reaches the execution stage. During these cycles the executing engine is likely to
be idle which, beside wasting time, also increases power leakage of the processor.
The power gating technique has been proposed to address this issue but has not
yet been adopted by any modern microprocessor [11].

Although modern processors use sophisticated branch prediction algorithms,
prediction is practically impossible when the branch condition depends on random
data. This makes Worst-Case Execution Time (WCET) estimation of the code
containing such branches very hard, as the exact value of mis-prediction penalty
does not depend solely on the pipeline length [10]. Therefore, a decrease in the
number of conditional branches in the code may results in improvements in WCET
estimations, and in making better use of the instruction pipeline. These ideas
motivated us to look for possible approaches to branch elimination.

The paper is organized as follows. The next section gives an overview of the
examined processor architectures and the instructions related to our approach. In
Section 3, a first optimization attempt is detailed. The idea is to replace two
possibly mis-predicted conditional jumps with a single, but unpredictable indirect
jump. This method and its impact on the execution time is detailed there. Section 4
introduces the better approach of ours - total branch elimination in code generated
for i f / e l s e constructions by manipulating operations performed within branches.
Section 5 discusses related work. Finally, Section 6 concludes with pointing out
future directions of work.

2 Preliminaries

The rest of the paper assumes that the reader has working knowledge on how
processors work. Hence, in this section a short introduction is presented to the
examined architectures (Section 2.1), the relevant (i.e. conditional) instructions
(Section 2.2), with the conditional move detailed (Section 2.3). Section 2.4 demon-
strates a trivial optimization, which can also be found in a recent version of the
GNU Compiler Collection and the clang compiler.

2.1 Processor architecture overview

The microprocessor architecture overview provided in this section is rather sim-
plified. Its intention is to provide enough information to understand motivation
behind our attempts, while keeping information not related to this paper uncov-
ered. Complete technical documentation is available publicly at the websites of the
corresponding vendors [12, 3].

Low Level Conditional Move Optimization 7

32K LI Instruction Cache H Pre-decode

Branch Predictor

^
• Instr Queue I leu^I Decoders

-

Load Store Reorder
Buffers Buffers Buffers

I 1.5K ßOP Cache

l a h
Allocate/Rename/Retire | «<

In-order

Out-of-order

Scheduler

Port 0 | 1 Port 1 I 1 Port 5 I |Port 2| jPort 3| ¡Port 4

ALU

V-Mul

V-Shuffle

Fdiv

256-FP Mul

ALU

V-Add

V-Shuffle

256-FP Blend

256-FP Add
I~

ALU

JMP

Load

StAddr

256-FP Shuf

256-FP Bool

256-FP Blend
X £

Load I STP|

StAddr

Memory Control

256K L2 Cache (Unified)
Line Fill Buffers

48 bytes/cycle Ü ,
32K LI Data Cache |

Figure 1: Intel microarchitecture with code name Sandy Bridge: Pipeline Func-
tionality from [12]

2.1.1 Intel Sandy Bridge

Figure 1 depicts the pipeline and the major components of a processor core that is
based on the Intel microarchitecture with code name Sandy Bridge. The pipeline
consists of the following parts:

• In-order issue front-end, which includes

— the branch prediction unit,
— the instruction cache (Lli or ICache),
— the instruction pre-decoder (4 units capable of micro and macro fusion),
— the decoded ICache and
— the micro-op queue, which decouples the front end and the out-of-order

engine.

Out-of-order execution engine which comprises of

8 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

— the renamer,
— the scheduler and
— the execution core.

Branch mis-predictions affect both the front-end (directly) and the execution
engine (indirectly). According to the technical manual [12] "mis-predicted branches
can disrupt streams of pops, or cause the execution engine to waste execution
resources on executing streams of pops in the non-architected code path", i.e. the
micro-op queue of the front-end is emptied, and either instructions from the mis-
predicted execution path are decoded, or, if these instructions were already decoded
and cached within the decoded ICache, the queue is re-filled using the cached micro-
ops. In both cases the execution engine is suspended until the first micro-op is
queued.

2.1.2 A M D K10 and K12

The structure of the AMD Family lOh and 12h (also called K10 and K12 respec-
tively) based microprocessors is similar in many ways to that of Sandy Bridge
described above. Instruction processing is split into several phases:

• The Branch Prediction Unit decides which instructions are to be fetched from
the LI instruction cache.

• Instructions are fetched and decoded into macro-ops by the Fetch-Decode
Unit.

• The macro-ops then are passed to the ICU (i.e. Instruction Control Unit)
which is responsible for

— macro-op dispatch,
— macro-op retirement,
— register and flag dependency resolution and renaming,
— execution resource management,
— interrupts and exceptions and
— branch mis-prediction handling.

• Macro-ops are dispatched either to Integer Unit or Floating-Point Unit. Both
of them consist of a scheduler and an execution unit. The execution unit in
both cases contains three execution pipes capable of executing instructions of
the appropriate type.

No mechanism of branch mis-prediction handling is described by the documen-
tations [3], but the mis-prediction penalty is said to be at least 10 cycles.

The functionality of the AMD Family lOh and 12h microprocessors seems to be
less complex than that of the microprocessors based on the Intel architecture with

Low Level Conditional Move Optimization 9

code name Sandy Bridge. As a consequence, the use of the code generation methods
introduced in this paper produces less sensible, but still measurable, impact on the
execution time on AMD Family lOh and 12h microprocessors.

2.2 Conditional instructions overview

Before introducing conditional instructions, the corresponding functionality of mi-
croprocessors based on the x86 architecture must be clarified. Among other reg-
isters, the x86 architecture includes the probably most frequently used special-
purpose register - the so-called FLAGS register. (The name FLAGS refers to the
16-bit register of the basic x86 architecture. The 32-bit and 64-bit extensions of
the architecture also affect this register. The 32-bit and 64-bit extensions of the
FLAGS register are called EFLAGS and RFLAGS, respectively). FLAGS represents the
state of the processor. Its bits are called flags, and each of them has a different
purpose. Generally, these flags can be split into two separate groups - the ones rep-
resenting the state of the processor after executing a particular instruction (called
status flags), and the ones that can be modified in order to change the state of the
microprocessor. Whether the operation described by a conditional instruction is
performed, depends on the state of the status flags, as explained below.

In assembly language, conditional instructions are usually written in the form
OPCODEcc, where OPCODE is a conditional instruction itself, and cc (called condi-
tion code) is one of the predefined conditions over the state of the status flags. If
the actual state of the status flags satisfies this predefined condition, the operation
described by the conditional instruction is performed, otherwise no action is taken.
As a consequence, in order to take advantage of using a particular conditional in-
struction, the status flags should be adjusted prior the execution of the instruction.
Modification of the status flags is possible in the following ways.

• Some of the flags (CF,DF,IF) can be adjusted explicitly with an appropriate
instruction.

• The value of the lower byte of FLAGS can be transferred into AH, modified,
and transferred back to FLAGS.

• The whole value of FLAGS, EFLAGS or RFLAGS (depending on the current pro-
cessor mode) can be transferred into stack, adjusted, and then transferred
back.

• Status flags are also adjusted implicitly, when a particular instruction is ex-
ecuted. Generally, most of the arithmetic, logic and bit shifting instructions
implicitly adjust these flags. Furthermore, the x86 architecture provides two
special instructions - TEST and CMP - which perform the same operation as
AND and SUB, respectively, but their result is not stored, but only flags are
adjusted. This latter facility is used to explicitly compare values.

10 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

2.3 Conditioned move instruction
The CMOVcc instruction was introduced in the P6 processor family (Intel Pentium
II) and usually described using the syntax below. It should be noted that in this
paper the AT&T assembly syntax is used. See [9] for details about differences
between the AT&T and the Intel syntax.

CMOVcc source, destination

Here, source can be either a general-purpose register or an in-memory vari-
able; destination is a general-purpose register, and cc is the condition code (see
Section 2.2). The operation performed by CMOVcc is detailed below.

temp source
IF condition TRUE

THEN
destination <— temp;

FI;

The operation can be split into three sub-operations - namely loading the value
of the source operand, evaluation of the condition, and storing the loaded value
into the destination operand. Note that the load sub-operation is performed un-
conditionally, i.e. even if the condition is not satisfied. As a consequence, if an
in-memory variable is used as a source operand, it is loaded to cache - which is
likely to be unnecessary if the condition is not satisfied and the variable is not
used by other instructions. Furthermore, is this case the address of the variable
must be valid (i.e. point to memory accessible by the program) or else processor
exception will be raised, even if no move operation is to be performed. So CMOVcc
with an in-memory variable would rather be used only when the variable is also
used by other unconditional instructions. This restriction makes CMOVcc useless for
optimization in several cases, as loading the variable into a register and using that
register instead always results in better performance. Despite this, in our research
we investigated ways to achieve better performance by using CMOVcc instructions
with both registers and in-memory variables as the first operand.

2.4 A trivial case
Consider the C code fragment 1. It contains a single conditional branch that
depends on a single condition, and has a single assignment operation within its
body. Without any optimization, this code may be compiled to the assembly code
shown in code fragment 2. Two variables are compared using the CMP instruction
(2), which adjusts the status flags as if y was subtracted from x. If x was less
than y, i.e. arithmetic borrow has been generated out of the most significant bit
position, then the CF flag was set, otherwise the CF flag was reset. If CF was not set,
the conditional should be skipped (3), i.e. the conditional jump to the end of the
body of the branch (5) should be performed. If CF was set (i.e. x was less than y),

Low Level Conditional Move Optimization 11

Code fragment 1 Trivial case (C / C + +)

1 unsigned int x, y;
2 i f (x < y)
3 {
4 x = y;
5 >

Code fragment 2 Trivial case (conditional jump + unconditional move)

1 # assume x = '/.rex, y = °/,rdx
2 cmpq $rdx, "/.rex
3 jnc If
4 movq y.rdx, rex
5 1:

the jump operation is not performed, and line (4), namely the body of the branch,
is executed.

The code, produced by a compiler without optimization, provides the expected
functionality, but the conditional jump has a good chance of causing branch mis-
prediction, and of wasting 14 cycles1 each time the code is executed. Due to
macro-fusion and out-of-order execution, the net execution time of the instructions
in the code above is either 1, 2 or 3 cycles, depending on the position of the code
in memory and the preceding instructions. However, together with the branch
mis-prediction penalty, the execution of the code is expected to take 15-18 cycles.

Note that with random input the prediction is likely to fail. Fortunately, the
code fragment 1 can be easily optimized using an if-conversion [17]. With a minimal
effort, the code generator notices that a CMOVcc instruction can be used, as the
expected functionality matches perfectly the definition of CMOVcc, as described in
section 2.3. In this case the code generator can generate the code shown in code
fragment 3: the comparison operation is kept unchanged, and the sequence of the
conditional jump and the unconditional move is replaced with a single conditional
instruction. This code has exactly the same functionality, and has no branches - i.e.
no branch mis-prediction can ever happen. As a consequence, the execution of this
code will take constantly 2 cycles. Using this single optimization in algorithms with
constructions similar to the one shown in code fragment 1 can dramatically increase
performance of the generated code. A good example is the maximum algorithm:
improvements of using this optimization are shown in figure 2.

This case is trivial to optimize, because the used high-level construct perfectly

1 There is no official information about the mis-prediction penalty, but different internet
sources [2, 4] agree on the same value of at least 14 cycles on microprocessors with Sandy Bridge
architecture. On processors with A M D K10 and K12 architecture this penalty is defined to be at
least 10 cycles [3].

12 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

Code fragment 3 Trivial case (conditional move)

1 # assume x = %rcx, y = %rdx
2 cmpq $rdx, %rcx
3 cmovb %rdx, %rcx

n

Figure 2: Maximum algorithm

fits the definition of CMOVcc. Popular compilers, like gcc [18] and clang [16], already
support this optimization. It is worth mentioning that, probably because of prob-
lems discussed in Section 2.3, all optimizations involving the use of CMOVcc were
disabled by default in older version of gcc. Newer versions (such as those above
4.5) of gcc have this optimization enabled —it is hard to tell exactly which versions,
since no official announcement about this have ever been made.

In all tests included in this paper, the performance of our solutions was compared
to the performance of the code generated by gcc with optimization enabled (-02).
Furthermore, we experienced no significant differences between code generated by
gcc and clang for our test cases, and thus we assumed that the code generated by
clang performs similarly to the one generated by gcc

3 Our first attempt
Consider the C + + function in code fragment 4. This function is given a pointer to
some data, the length of the data and some threshold number x. It returns a tuple,
containing the sum of the data items which are less than, greater than or equal
to x, respectively. When the function is called, the body of the loop is executed

Low Level Conditional Move Optimization 13

length times. When generating code for the body of the loop, popular compilers do
recognize that a single compare operation is sufficient in this case, thus assembly
code similar to code fragment 5 is generated. This code contains two conditional
jump instructions, and if neither is taken, the third branch is executed. The main
problem here is that the result of the comparison depends on potentially random
data, and thus branch prediction is hardly possible in this case. As a consequence,
this code contains two possibly mis-predicted jumps, which can be very costly,
especially when executed within the loop.

Code fragment 4 Conditional sum (C++)

1 std : : tuple<int , int , int> sumfint *ptr, int length, int x)
2 {
3 int eq = 0, I t = 0, gt = 0;
4 while (int i = 0; i < length; ++i)
5 {
6 i f (p t r [i] < x)
7 It += ptr [i] ;
8 else i f (ptr [i] > x)
9 gt += ptr [i] ;

10 else
11 eq += ptr [i] ;
12 >
13 return std::make_tuple(lt , eq, g t) ;
14 >

Code fragment 5 Three-way branch, generated code

1 # assume °/,rdi = i , %rsi = ptr , '/.ecx = x
2 # °/.r8d = eq, °/.r9d = I t , e/.rl0d = gt
3 movl C/,rsi,%rdi,4) , °/,edx
4 cmpl %ecx, 4/,edx
5 jg do_gt
6 j e do_eq
7 do_lt :
8 addl %edx, %r9d
9 jmp done

10 do_gt:
11 addl %edx, %rl0d
12 jmp done
13 do_eq:
14 addl y.edx, %r8d
15 done:

14 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

The main problem of the code generated for the body of the loop is the presence
of two possibly mis-predicted conditional jumps. So our first intention was to
decrease the number of the conditional jumps. Our main idea can be described
as follows. Instead of performing a conditional jump, the pointer to the branch
that should be taken is calculated using conditional move operations, and then an
unconditional jump to this pointer is taken. This gives us the code shown in code
fragment 6.

Code fragment 6 Three-way branch, single jump

1 # assume °/0rdi = i , y.rsi = ptr, y.ecx = x
2 # %r8d = eq, %r9d = I t , '/.rlOd = gt
3 movl (%rsi / / ,rdi ,4) , %edx
4 leaq do_gt(°/.rip), ' / .ni
5 leaq do_eq(%rip), '/«rl2
6 leaq do_lt (%rip) , •/.rl3
7 cmpl %ecx, y.edx
8 cmovg %rll , 0/,rl3
9 cmove %rl2, %rl3

10 jmp *°/.rl3
11 do_lt :
12 addl °/.edx, %r9d
13 jmp done
14 do_gt:
15 addl °/,edx, %rl0d
16 jmp done
17 do_eq:
18 addl y.edx, %r8d
19 done:

Unfortunately, the branch prediction unit of the examined processors cannot
predict the single jump (in line 10), and hence this code constantly suffers from
a single branch mis-prediction penalty. As a consequence, execution time of this
code, opposed to the code shown in code fragment 5, depends neither on the input
data nor on the inner state of the branch prediction unit.

After performing a series of tests, we came to the conclusion that the execution
time of the code created using this method either equals to, or differs insignificantly
from, the execution time of the code generated by gcc. As our attempt to minimize
the number of branches did not lead to significant performance improvement, our
goal changed to complete branch elimination, which led us to the approach we are
to introduce.

Low Level Conditional Move Optimization 15

4 Our approach
As we mentioned before, the main problem with the code generated by gee for the
function shown in code fragment 4 is the presence of two conditional jumps, and our
goal is to completely eliminate branching, so that branch mis-prediction can never
happen. Our idea is to rearrange the code in the following way. All the branches are
executed unconditionally, and all the parameters used in the branches are assigned
conditionally, i.e. depending on the condition, either set to the original value or to
some neutral value determined by the operation (see code fragment 7). The new
code provides the same functionality, and does not contain a single branch. It is
worth to note that although this code performs poorly in the cases where branches
can be predicted (e.g. if the function discussed in this section is used on sorted
data), the execution time is halved in the general case.

Code fragment 7 Three-way branch, our approach

1 # assume °/,rdi = i , %rsi = ptr , '/.ecx = x
2 # °/.r8d = eq, °/.r9d = It, y.rlOd = gt
3 xorl y.rlld, 0/„rlld
4 xorl %rl2d, °/.rl2d
5 xorl y„rl3d, °/.rl3d
6 movl C/.rsi, '/.rdi, 4) , y.edx
7 cmpl y.ecx, yoedx
8 cmove y.edx, °/»rlld
9 cmovl y.edx, °/,rl2d

10 cmovg y.edx, °/,rl3d
11 addl y.rlld, %r8d
12 addl y.rl2d, °/.r9d
13 addl '/.rl3d, °/.rl0d

In general, any i f / e l s e i f / e l s e construction that satisfies the restrictions
listed below will perform better, if optimised according to our approach.

• All the conditions must use the result of a single assembly comparison opera-
tion, or at least two conditions must use the result of an assembly comparison
operation.

• Overall cycles needed to execute all the operations of all the branches must
be less than the overall possible branch mis-prediction penalty.

• All the operations of all the branches must have neutral values.
Note that our approach sets no restrictions on the exact number of parameters

of the operations within the branches. Although the number of general-purpose
registers is restricted, in-memory variables can also be used, as the penalty of
the memory access is insignificant when compared to the penalty of a single mis-
prediction.

16 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

le+06
900000
800000

gcc -02 i—I—i
'our approach ; • x •:

3 700000
I 600000
a 500000
•| 400000
I 300000
" 200000

100000

0
0 50000 100000 150000 200000 250000

input size

Figure 3: Execution time of the function specified in code fragment 4

Figure 3 shows results on the execution time of 1000 iterations of the code
optimized by our approach and the one generated by gcc. The results are measured
on an Intel Core i7-2620M processor, and a vector filled with pseudo-random data
was used as an input. Table 1 contains further results on measuring the execution
time of the function, including also the sorted input case, and the results taken on
an AMD K10 processor as well.

For the measurements sorted and random input vectors of different sizes were
used. Input sizes range through the rows of Table 1, while measurements on sorted
and random input are depicted on the left and on the right, respectively. For every
input size, experiments were carried out with gcc and with our hand-optimized
code ("cmovcc"). The columns tagged "ratio" displays the execution time of our
optimized code divided by the execution time of the one generated by gcc.

For each case the execution time was measured 12 times. In each experiment
the first measurement was systematically larger than the others (probably because
of cashing effects), therefore it was dropped. The remaining 11 measurements were
averaged, and the variance was calculated. The variances were usually less than
1%, and never exceeded 5%, and thus they can hardly be observed on Figure 3.
Assuming that the results are linear to the size of the input, we fitted a line on
the measured data using the least squares method. In the case of input containing
random data, the ratio in the slope of the lines are 2.619 ± 0.008. This allows us to
conclude that our optimization yields 2.6 asymptotic speedup for the general case.

Our measurements are in accordance with the analysis presented in Section 2.4
on page 10. One can easily see that the code generated by gcc - i.e. the code
using conditional jumps - performs very well when executed on sorted data (due
to successful branch prediction) but shows dramatic performance decrease when

Low Level Conditional Move Optimization 17

Table 1: Execution time of 1000 iterations (ps)
i7-2620M (based on microarchitecture code name Sandy Brigde)

Input size Sorted input Random input
Input size

gcc emovee ratio gcc emovee ratio
20480 12557 28969 230.70% 65543 28509 56.50%
69632 43238 99127 229.26% 250939 98447 60.77%
118784 72571 169463 233.51% 428812 164987 61.52%
167936 115746 239143 206.61% 614162 237441 61.34%
217088 160287 309680 193.20% 795009 307895 61.27%
249856 193510 356918 184.44% 918140 353916 61.45%

Phenom II X4 945 (AMD K10)

Input size Sorted input Random input Input size
gcc emovee ratio gcc emovee ratio

20480 27420 32067 116.95% 79913 32073 59.87%
69632 93890 109755 116.90% 270162 109155 59.60%
118784 167020 193562 115.89% 461258 187265 59.40%
167936 226755 275454 121.48% 660903 273295 58.65%
217088 282321 357646 126.68% 853350 358102 58.04%
249856 323537 414665 128.17% 984064 414703 57.86%

random data is supplied. In contrast, the code created with our approach using
CMOVcc shows no significant difference between the cases with sorted input and
random input.

On random input the code optimized with CMOVcc was more than twice as
fast as the one generated by gcc, both on the Intel and the AMD machines. On
sorted input, gee code performed twice as good as ours on Intel, and about 20%
better on AMD.

5 Related work
To our best knowledge, all researches related to the usage of CMOVcc target only
microprocessors with architecture different from x86, namely IA32, IA64 and Al-
pha [6, 19, 14, 17] and thus the technical documentations [3, 12, 13] provided by
the vendors of the particular microprocessors remain the main source for the opti-
mization techniques.

A study has been made in [5] on well-known optimization techniques including
the one discussed in Section 2.4, but only the techniques already implemented and
used by the particular compilers were considered. Furthermore, CMOVcc was used
to optimize a HMMer search algorithm [15], and to mitigate timing-based side-

18 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

channel attacks by eliminating control flow dependencies [8]. In both papers the
instruction was used within very specific cases, and no optimization technique has
been proposed.

Another source of possible optimization techniques is the documentation of the
popular compilers, but they are usually based on the mentioned technical docu-
mentations provided by the vendors of the microprocessors. Furthermore, in many
cases implementation differs from the documentation as it contains modifications
based on the feedbacks and proposals of the end-users.

6 Conclusions and Future work
In this paper we have studied branch elimination techniques based on replacing
conditional jumps with conditional move operations. We have discussed the meth-
ods of branch number reduction and total branch elimination in code generated for
the higher-level i f / e l s e constructions. The former one has proved to achieve only
insignificant impact on the execution time of the produced code. The code created
by using the latter method never suffers branch mis-prediction penalty, and hence
outperforms the code generated by the popular compilers in the general case. Still,
because of the increased complexity of the code, it performs poorly in some special
cases, i.e. when no branch mis-prediction is caused by the compiler-generated code.

Although performance is not improved in the case of sorted input, the execution
time of the code no longer depends on branch predictions. This has positive impact
on WCET analysis, and makes its estimation more straightforward. This property
can be extremely important in real-time systems [7].

In the future we will define the exact set of cases when our method could be used.
Afterwards we plan to integrate our method into the popular compilers (e.g. gcc
and clang/llvm) by providing appropriate plug-ins. This can serve as a convenient
test-bed, and can speed up further research in this area.

References
[1] Зубков, С.В. Ассемблер для DOS, Windows и UNIX. Для программистов.

ДМК Пресс, 2004.

[2] 7-Zip LZMA Benchmark, Intel Sandy Brigde. http://www.7-cpu.com/cpu/
SandyBridge.html.

[3] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Family
lOh and 12h Processors, February 2011. Publication Number: 40546.

[4] Anandtech - the bulldozer aftermath: Delving even deeper. http://www.
anandtech. com/ show/5057/the-bulldozer-aftermath- delving-even- deeper/2.

[5] Bik, A.J.C., Kreitzer, D.L., and Tian, X. A case study on compiler opti-
mizations for the Intel® Core TM 2 Duo Processor. International Journal of
Parallel Programming, 36(6):571-591, 2008.

http://www.7-cpu.com/cpu/
http://www

Low Level Conditional Move Optimization 19

[6] Chuang, W. and Calder, B. Predicate prediction for efficient out-of-order
execution. In Proceedings of the 17th Annual International Conference on
Supercomputing, pages 183-192. ACM, 2003.

[7] Colin, A. and Puaut, I. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, 18(2):249-274, 2000.

[8] Coppens, B., Verbauwhede, I., De Bosschere, K., and De Sutter, B. Practical
mitigations for timing-based side-channel attacks on modern x86 processors.
In 30th IEEE Symposium on Security and Privacy, pages 45-60. IEEE, 2009.

[9] Dean Eisner, Jay Fenlason & friends. Using the GNU Assembler for the
family, http://www.cs.Utah.edu/dept/old/texinfo/as/as.html#SEC150,
March 1993.

[10] Eyermau, S., Smith, J.E., and Eeckhout, L. Characterizing the branch mispre-
diction penalty. In IEEE International Symposium on Performance Analysis
of Systems and Software, pages 48-58. IEEE, 2006.

[11] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., and
Bose, P. Microarchitectural techniques for power gating of execution units.
In Proceedings of the 2004 international symposium on Low power electronics
and design, pages 32-37. ACM, 2004.

[12] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual, June 2011. Order Number: 248966-025.

[13] Intel Corporation. Intel® 64 and IA-32 Architectures Software Deueloper's
Manual, March 2012. Order Number: 325462-042US.

[14] Klauser, A., Austin, T., Grunwald, D., and Calder, B. Dynamic hammock
predication for non-predicated instruction set architectures. In International
Conference on Parallel Architectures and Compilation Techniques, Proceed-
ings, pages 278-285. IEEE, 1998.

[15] Landman, J., Ray, J., and Walters, JP. Accelerating HMMer searches on
Opteron processors with minimally invasive recoding. In 20th International
Conference on Advanced Information Networking and Applications, volume 2.
IEEE, 2006.

[16] Lattner, C. LLVM and Clang: Next generation compiler technology. In The
BSD Conference, 2008.

[17] Mahlke, S.A., Hank, R.E., McCormick, J.E., August, D.I., and Hwu, W.M.W.
A comparison of full and partial predicated execution support for ILP proces-
sors. In Proceedings of 22nd Annual International Symposium on Computer
Architecture, pages 138-149. IEEE, 1995.

[18] Mitchell, Mark and Samuel, Alexander. Gcc 3.0 state of the source. In 4th
Annual Linux Showcase and Conference, 2000.

http://www.cs.Utah.edu/dept/old/texinfo/as/as.html%23SEC150

20 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

[19] Wang, P.H., Wang, H., Kling, R.M., Ramakrishnan, K., and Shen, J.P. Reg-
ister renaming and scheduling for dynamic execution of predicated code. In
The Seventh International Symposium on High-Performance Computer Archi-
tecture,, pages 15-25. IEEE, 2001.

Acta Cybernetica 21 (2013) 21-35.

Barcode Detection Using Local Analysis,
Mathematical Morphology, and Clustering*

Péter Bodnár1' and László G. Nyúl1

Abstract

Barcode detection is required in a wide range of real-life applications.
Imaging conditions and techniques vary considerably and each application
has its own requirements for detection speed and accuracy. In our earlier
works we built barcode detectors using morphological operations and uni-
form partitioning with several approaches and showed their behaviour on a
set of test images. In this work, those ideas have been extended with clus-
tering, contrast measuring, distance transformation and probabilistic Hough
transformation. Using more than one feature for localization leads to better
accuracy, which makes detectors based on simple features, a competitive solu-
tion for commercial softwares and helps to fulfill the requirements of industrial
applications even more.

Keywords: barcode detection, computer vision, clustering, feature extrac-
tion, morphological filters, distance transformation, Hough transformation

1 Introduction
Barcodes are ID codes that consist of a well-defined group of parallel lines aiming
easy automatic identification of carried data with endpoint devices such as PoS
terminals, smartphones, or computers. Barcode decoding is fast and most barcode
standards provide redundant information for error correction purposes. 2D codes
are also referred to as barcodes, but in this paper, only codes in Fig. 1 are discussed.

Barcode localization methods have two main objectives, speed and accuracy. On
smartphones, fast detection of barcodes is desirable, but accuracy is not so critical
since the user can easily reposition the camera and repeat the scan. Accuracy is
critical for industrial environment (e.g. postal services), where false negatives cause
loss of profit. Speed is also a secondary desired property in those applications.

*This work was supported by the European Union and co-financed by the European Regional
Development Fund within the project TAMOP-4 .2 .1 /B-09 /1 /KONV-2010-0005 .

t Department of Image Processing and Computer Graphics, University of Szeged, E-mail:
{bodnaar,nyul}8inf.u-szeged.hu

22 Péter Bodnár and László G. Nyúl

(a) Code 128 (b) EAN-13 (c) UPC (d) UPC-A

Figure 1: Barcode patterns

This is an important problem because the localization step is probably the
most difficult part of general barcode detection and once localization is completed,
decoding the barcode is relatively straightforward.

For ID barcodes, the basic approach for localization is scanning only one, or
just a couple of lines of the whole image. This is common for hand-held PoS laser
scanners or smartphone applications. Scanned lines form an ID intensity profile,
and barcode-detector algorithms [1,11,16] work on those profiles to find an ideal
binary function that represents the original encoded data. The main idea is to find
peak locations in blurry barcode models, then thresholding the intensity profile
adaptively to produce binary values.

Valley tracing (or bar tracing) [16] is a method for finding barcodes in blurry,
low resolution images, mostly on live smartphone camera frames. It consists of
three steps. At first, starting points have to be found on the picture, then "valleys"
are followed, and finally, ends of the valleys (bars) are reached.

Algorithms with morphology [3,4,9,13,14] use the combination of basic mor-
phological operation like erosion and dilation. White blobs on those images (Fig. 3)
show the possible barcode locations. Further processing, like segmentation and fil-
tering of small blobs are required on those difference images. It can be used on
both ID and 2D barcodes. Our work also involves morphology for efficient barcode
localization.

Methods based on wavelet transformation [15] look at images for barcode-like
appearance by a cascaded set of weak classifiers. Each classifier working in the
wavelet domain narrows down the possible set of barcodes, decreasing the number
of false positives while trying to keep the highest possible accuracy.

Variants of Hough transformation [2] detect barcodes by working on the edge
map of the image. The two most common methods are standard and probabilis-
tic Hough transformation. Both transform edge points into Hough space first,
and make decisions of line locations. We are also experimenting with the idea of
probabilistic Hough transformation extended with decisions about the features by
projections of the Hough-space.

In the following section, simple features are presented to track for barcode lo-
calization. They are based on Hough-transformation, morphological operations,
and uniform partitioning with distance transformation, contrast measuring and
clustering.

Barcode Detection Using Local Analysis, ... 23

2 Proposed Barcode Localization Approaches
In this section several different approaches are introduced for barcode localization.
In most cases, image is examined in small, disjoint tiles (see Fig. 5 for optimal tile
size), and local measurements are made. In this paper distance transformation [8]
and contrast variance is used for these measurements. Code parts, like other tex-
tures, have well-traceable features. One of them is neighbor similarity, which means
code parts in close proximity share similar local statistics with a well-chosen tile
size. Thanks to the repeating patterns in the codes codes can be localized by ob-
serving how many code-like image parts (tiles) can be found. Finally, compactness
of code parts is also important, which influences the final decision about code lo-
calization. Contrast information of the tiles and the number of clusters at pixel
level are also examined.

With probabilistic Hough transformation, single lines of barcode can be detected
for further processing. Clustering those lines helps to decide if a line is part of a
barcode.

The way of clustering can also be applied at pixel level. A measure can be
introduced with the help of the number and shape of pixel clusters.

Lastly, with morphological operations, processing also leads to high accuracy.
Features extracted with basic morphological operations, form a considerable base
of more complex barcode localization algorithms.

2.1 Preprocessing
Digital images acquired from a camera often need preprocessing because of device
flaws or environmental difficulties. In images having low contrast, intensity levels
should be normalized. Unsharp masking is used in this paper, which is the weighted
addition of the original image pixel intensities to the inverted pixel values of the
gaussian-blurred version of the image. The blurring Gaussian filter is adjusted to
not to destroy the narrowest line of the barcode, which parameter can be estimated
by the specific endpoint application. Since some features need to be extracted from
binary images, thresholding is necessary. A simple threshold is sufficient on images
with uniform lighting, otherwise adaptive threshold [17] is required.

Image resolution does not have to be high, barcodes having the narrowest line of
two pixels (px is used for pixels later in this work) is sufficient (3 x 3 px median filters
can be applied to eliminate salt-and-pepper noise). Higher resolution yields better
results, but also increases computation time. The least time-consuming solution
for downsampling such images is the nearest neighbor interpolation, which is also
a good choice because it preserves strong edges. However, at least 3 px minimum
line width is desired for accurate code detection.

Color information could also be taken into account, however, most visual codes
maximize the contrast by using only black (or dark blue) and white colors. Fur-
thermore, industry hardware are often set to operate and record only in specific
frequency ranges. According to these, only intensity values are processed and color
information is dropped.

24 Péter Bodnár and László G. Nyúl

(a) original image (b) feature image (c) overlay

Figure 2: Canny edge detector with Probabilistic Hough transform. In (b), detected
lines that are part of a barcode-like cluster are shown in red while the other detected
lines are shown in blue

2.2 The Canny + Hough Method
This method applies general image processing methods like Canny [6] edge detection
and Probabilistic Hough transform [12], as barcodes consist of roughly equally long,
parallel lines in a small area. With the help of the edge points, it gives a probabilistic
estimation for line segments in the image, thus outperforming the standard Hough
[18] transform, which only gives a set of lines as result. For preprocessing, a blur
filter is recommended, since smooth images are desired for Canny edge detector.
Since all barcodes in the test suite (see Subsection 3.1) have at least 50 px bar
height, we set the minimum line length to 40 in the Hough transformation.

After a list of lines with their center point is obtained, length, and orientation,
we can group them to decide whether they constitue a barcode or not. The mini-
mum number of lines, the proximity needed for the lines to be in the same group,
and the tolerance for length and orientation from the means inside the group vary
for the final application. Since our barcodes consist of at least 25 parallel lines, we
defined the minimum number of lines as 20. In the final step, group centers are
returned, and the image can be cropped for decoding with known barcode decoding
implementations (Fig. 2).

2.3 M I N - M A X
There are several works in the state of the art that use binary or grayscale morphol-
ogy, see e. g. [10]. The two basic operations, erosion and dilation, and more complex
operators such as bottom-hat are sufficiently robust and show good accuracy for
barcode-like feature extraction.

The approach labeled as MIN-MAX treats the image as a whole, and therefore
requires a fair amount of RAM and computation time. Supposed that intensity lev-
els have already been normalized, no other preprocessing operations are required
since this method manages well noisy, blurry or distorted images. Knowing the
maximum bar width of a barcode, the morphologic gradient (dilateQ — erodeQ)

Barcode Detection Using Local Analysis, ... 25

(a) original image (b) morphologic gradient (c) its thresholded version
image

(d) opening of image (e) contour image (f) contours overlaid

Figure 3: Stages of MIN-MAX method

operator is applied on the image with a box kernel of size 2 x |max_barwidth/2j +1
(Fig. 3b). The next step is removing components that consist pixels with low in-
tensity or being small. For component removal by intensity, the simplest way is
thresholding (Fig. 3c). A good threshold can be at 75% of the full intensity scale
(e.g. 192 for 8-bit grayscale images), since barcodes produce areas close to the max-
imum intensity. After that, morphologic opening operation (d i la te (erode ())) is
performed on the feature image (Fig. 3d), with the previously defined kernel. This
ensures filtering out components that are too small or thin. Contours are extracted
to the final step, which is to give a bounding box for image parts that might contain
barcode (Fig. 3e).

Filtering of small areas can also be performed by connected component analysis.
Each component size is measured and ones having smaller area than the defined
minimum, are dropped. Experiments showed that setting the minimum component
area to 0.75wh or smaller is satisfactory (where w and h are barcode width and
height respectively).

2.4 Uniform Partitioning with Distance Transformation

Most barcodes, like regular textures, can be easily identified by observing only
small parts of them. Those barcode parts together form the desired barcode region
with known height and width. The first part of the method is partitioning the
image to square tiles and look at each tile for barcode-like appearance. Each tile is

26 Péter Bodnár and László G. Nyúl

(a) original image (b) edge map (c) distance map

Figure 4: Canny edge map (b) and distance map (c) of a reed-life example image
(a). Barcodes have compact dark areas. Note: the values in the distance map are
scaled for visualization.

assigned a value that indicates the grade of the presence of this feature. Globally,
a matrix is formed from those values. Texture parts have similar local statistics in
their neighborhood, so searching this matrix for compact areas defines image ROIs
representing a barcode with high likelihood.

The assigned value showing barcode-like appearance is based on distance trans-
formation of the edge map (Fig. 4). Canny edge detector is applied for providing
the point set to the transformation. For each tile of the distance map, means and
standard deviations are calculated. For ID codes, distance values spread between
half of the minimum and half of the maximum line width.

After evaluating all tiles locally, clusters are looked up in the feature matrix.
Experiments show that the mean of distance values spread around half of the av-
erage line width. Thresholding is performed for the values to classify whether or
not an area contains a barcode segment. Letting 25% tolerance for these idealis-
tic values, detection accuracy becomes satisfactory. For end-user applications we
have to take noise, scratches and reflections into consideration. For images con-
taining heavy noise, distance means drop. Barcodes suffering from scratches, dust,
handwriting or reflections, change the distance means significantly according to the
dark or bright intensity values of the flaw. Tolerance should be set according to
amounts of these distracting properties and exact values can also be measured via
trial and error. Tolerance value is a compromise between accuracy and the rate of
false positive detections, so it should be set with respect to the final application.

The resulting binary matrix can be further analized via connected component
labelling [7]. Finally, small components are dropped, and momentums of the re-
maining components are returned. A component is considered small if it contains
less than N tiles (Eq. (1)), where h is barcode height, w is barcode width and s is
the tile size, respectively.

»• (. \h - s\ x \w - s|\
N = max (4, L_J 1 (!)

Since the smallest barcode in the test suite (see Subsection 3.1) has a 60 px

Barcode Detection Using Local Analysis, ... 27

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 5: Detection accuracy with respect to the tile size. X-axis: proportion of tile
size and barcode height; Y-axis: detection accuracy (both expressed in percent).

height, 30 x 30 px or greater tile sizes have poor recognition capability. However,
very small tile sizes also lead to larger error for computing the center of the codes,
because of the characters appearing below the code with code pieces nearby also
have a barcode-like property (plain text is not affected). Also, choosing the tile
size below two times the width of the widest barcode line leads to poor accuracy,
since only two clusters can be detected on the tile, and that does not characterize
a barcode part well. The best tiling size appears to be about 1/3 of the barcode
height (Fig. 5). Since all examined codes consist of the same pattern (parallel lines),
we looked in this paper for the optimal tile size for all types of codes together.

It is possible to run this method with disjunct or overlapping tiles, but over-
lapping does not improve the method's accuracy, only increases computation time.
Offsetting the tiles has no significant effect, since it just produces some blocks to
be more and others to be less "barcode-like" at the barcode's opposite sides.

This method gives a moderate rate of false positives (Fig. 6). Text with a com-
parable font size to barcode line thickness reacts similar to distance transformation,
and distance values have similar mean and standard deviance in both cases. How-
ever, distance transformation can be used as a weak "classifier" of image areas, and
its output is a good starting point for more accurate methods. The protocol to
test optimal parameters is highly experimental, however, in end-user applications,
expected element size or bar width of the barcode can be expected within a certain
range. In case if the approximate distance between the camera and its observed
plane of interest, object type (letter, box having dimensions in a limited range), and
code dimensions are known, code size can be estimated in the acquired image. The
intensity and characteristics of illumination is also limited in most cases, especially
in industrial environment.

2.5 Contrast Measuring with Uniform Partitioning
Using the approach of image tiling, contrast information is examined for each tile.
One-dimensional barcodes usually have high variance in contrast at one specific
direction, while having low variance perpencidularly to that. The discussed rules

28 Péter Bodnár and László G. Nyúl

(a) original image (b) distance map (c) detected rectangular ROIs

Figure 6: Real-life example of a bar-coded product case with non-uniform illumina-
tion. Original image (a), distance transformation (b), and the detected rectangular
ROIs based on the distance map (c)

Figure 7: Two pairs of scanlines sweep through the image. One gives significant
difference in contrast variance between perpendicular directions. The first pair of
scanlines shows well barcode-like property of image tile, while the other one does
not.

of tiling and forming the final decision also apply to the approach of contrast
measurement, only the value of each tile is assigned differently.

Each tile is checked locally for barcode-like appearance with a modified version
of the scan-line analisys. Two pairs of perpendicular scanlines are used, one pair
at 0° and 90° and the other at 45° and 135° (Fig. 7). A measure is derived from
contrast variance along the scanlines (Eq. (2)), i.e., a horizontally aligned barcode
has a lot of contrast changes when scanned with a horizontal scanline, but has few
or none in case of a vertical scan (Fig. 7). With the 2 pairs of scanlines, barcode
pieces of any orientation can be safely recognized. The final measure assigned to
a tile is the maximum of the two values. This measure gives 1 if parallel lines are
present on an image tile, and 0 if a tile contains homogeneous area or noise.

= |Vq-V a | (2)

max(Vii) Vi2) V '

Barcode Detection Using Local Analysis, ... 29

(a) Original image (b) feature image with bound- (c) overlay
ing box

Figure 8: Contrast measuring on a real-life example.

Figure 9: The idea of Local clustering. Here d is the maximum distance from the
cluster center, i.e. the half of the cluster diameter

where Vjj is the contrast variance along a scanline j in a scanline pair i.
The rest of the method is the same as it is presented at Section 2.4.

2.6 Local Clustering
The main idea of local clustering is that an image region that contains a barcode
segment has many similar stretched pixel clusters (Fig. 9). The minimum count
of expected clusters can be derived from the widest bar of the barcode. Degree
of stretch can be measured with the diameter of the cluster (defined as twice the
distance of the furthest cluster point from the cluster center). For exactly horizontal
or vertical lines, the largest cluster diameter is the tile size, in oblique situations, the
largest cluster diameter is expected to be longer than that. Furthermore, stretched
separate clusters need to be aligned approximately in the same direction, otherwise
one cluster would touch another, thereby decreasing the number of separate clusters
in a tile below our threshold. On real-life images that have low contrast at barcode
areas, adaptive thresholding is necessary.

30 Péter Bodnár and László G. Nyúl

(a) original image (b) feature matrix visualized
as gray values. Red squares
are above threshold.

(c) code center and bounding
box

Figure 10: Stages of Local clustering

Another important property is the minimum cluster size measured in pixels.
This can be easily computed from min_barwidth x t i le_s ize .

After assigning the value to each tile, the same rule as in Section 2.4, applies
for making the final decision, like dropping small groups of tiles and analyzing
connected components.

Bounding boxes in our examples do not enclose the whole barcode in every
case. This is because only the lower and upper bounds for the clusters in the
feature matrix are calculated, and barcode corner pieces are too weak to signify a
feature. The bounding boxes can be simply improved by finding aligned rectangles
instead.

Running the method on the same scenario with different offsets yield different
detection accuracy, which shows that this approach is sensitive to the choice of
tiling. Further investigations are currently in progress on how to select the best
tiling offset, as well as possible setups with overlapping tiles (which obviously in-
creases computational requirements). This 2-phase approach works as follows. In
the 1st phase, Local clustering is performed with zero-offset tiling, and in a 2nd
phase the same step is done using an offset of half the tile size in both directions.
The code centers detected by the 2 phases are pooled together with an extra filter-
ing wherein those code centers that are detected in both phases and are close to
each other are merged into one (the larger cluster is kept), because they are likely
to correspond to the same code.

3 Evaluation

The discussed methods were tested on 100 images and accuracy has been compared
to known barcode detection techniques, like the one based on bottom-hat filter [9],
and another using morphological gradient [16].

Barcode Detection Using Local Analysis, ... 31

Figure 11: A qualitative test of barcode detectors from the state of the art and
the market. From left to right: original image, Tuinstra et al. [16], Juett et al. [9],
DataSymbol software, DTK barcode reader, BC tester. Each row represents a dif-
ferent test image. Results show that Datasymbol has the most robust localization
approach, while BCTester had very poor accuracy even with clean and sharp im-
ages. The Tuinstra et al. and Juett et al. algorithms worked reasonably well, both
has performed at least on the level of commercial softwares.

3.1 Test Suite
Since we have not found many official barcode detection test image databases, about
100 images of grocery product barcodes are made, with a Nokia N95 smartphone
camera. Images has been downsampled to 640x480px with bilinear interpolation.
Minor reflections, blur, scratches and distortions were present in these images. We
also found one barcode image database for comparative assessment, which was
created by Tekin and Coughlan1. Ground truth to those images had been made
manually, without marking the "quiet" zones and the digits that belong to the
code.

There are several barcode detection software and frameworks on the market,
like the DTK Barcode Reader SDK2, BC Tester3 and Barcode Recognition SDK of
DataSymbol4. They do not indicate the applied algorithm behind their detection
mechanism, however, a brief qualitative comparison has been made and results are
shown in Fig. 11, and our results are shown in Fig. 12.

3.2 Implementation and Test Environment
The core of the proposed method has been implemented in C++, with the help
of the OpenCV library. C++ provides convenient object oriented approach and fast
code execution, while OpenCV has all the functions needed for image preprocessing

1 http://www.ski.org/Rehab/CoughlanJab/Barcode
2http:/ /www.dtksoft.com/
3http://www.bctester.de/
4http:/ /www.datasymbol.com/

http://www.ski.org/Rehab/CoughlanJab/Barcode
http://www.dtksoft.com/
http://www.bctester.de/
http://www.datasymbol.com/

32 Péter Bodnár and László G. Nyúl

Figure 12: A qualitative test of barcode detectors based on our features. Con-
tours of the possible barcodes are shown in red. From left to right: original image,
Hough-transformation, distance transformation, local clustering, MIN-MAX, con-
trast measuring. Each row represents a different test image. Hough transformation
is more tolerant to blur than noise, while MIN-MAX seemed to be the most ro-
bust approach. Distance transformation and local clustering also performed well,
however, they showed a moderate amount of false-positives.

and manipulation. Evaluation is performed on a computer with Intel Core 2 Duo
3.00GHz CPU.

3.3 Accuracy and Detection Speed
For comparing the effectiveness of the proposed method, the most common mea-
sures like precision, recall, accuracy and F-measure (Eq. (3)) are used. The values
are based on the Jaccard index (Eq. (4))

„ „ precision • recall
F = 2 • - — — T7 3)

precision + recall

_ £ « „ № , >) A (!?(», y))
(" £ , . „ № , ») v (D(x ,y)) (4)

where G and D give binary 0-1 values based on the pixel intensity of the ground
truth and the detector output images (both are binary).

The average performance indicators of the detectors are shown in Table 1. En-
semble efficiency of these features are presented in [5].

Distance transformation is better to be used as a weak "classifier" instead of on
its own. It produces the highest amount of false positives, however, it comes with
high recall. It is more like an exclusion filter for image parts than a detector.

The Probabilistic Hough method is a robust choice to localize barcodes, because
it can be parametrized to minimum line length and maximum gap between line

Barcode Detection Using Local Analysis, . . . 33

Table 1: Average detection performance of the proposed method

Algorithm Precision Recall Accuracy F-measure Runtime
Tuinstra et al. [16] 57.08% 85.29% 84.19% 48.39% 160 ms
Juett et al. [9] 34.26% 94.08% 72.76% 36.13% 230 ms
Hough trans. 64.83% 85.07% 84.22 % 58.76% 230 ms
Distance trans. 20.00% 95.85% 54.52 % 23.54% 190 ms
Local clustering 81.68% 72.34% 89.22 % 62.12% 120 ms
MIN-MAX 43.36% 85.38% 77.47% 36.82 % 360 ms
Contrast measuring 51.17% 88.02% 82.58% 49.07% 140 ms

segments. It also handles noise well to a certain level, but it is quite sensitive to
distortions.

Thanks to the nature of the Distance Transformation and Local Clustering
methods, they are reliable on images with minor distortions, unlike the Hough
transformation, which detects barcodes based on line angles.

The least sensitive method is MIN-MAX. Because of the morphological ap-
proach, it handles well noise, blur and distortions up to a relatively high level.
However, the convolutions used in the steps of the algorithm make it realtively
slow.

Partitioning the image, assigning a measure to each partition, and looking for
homogenous areas in the feature image is a general approach to detect patterns.
With different features, like contrast variance, histogram information or distance
information, it can be used well as a barcode locator method.

4 Concluding Remarks
Several features have been presented for barcode localization in raster images using
various features. We studied their behavior on a set of images showing different
barcode types.

In industrial setups, processing of the image tiles and parallel execution of dif-
ferent methods may also be possible for further improve detection speed. Further-
more, intermediate feature data, like edge map can be used as input for other, more
accurate classifiers discussed in the first section.

An ensemble of detectors specially devised for certain code types can signifi-
cantly improve the overall accuracy.

References
[1] Adelmann, Robert. Toolkit for bar code recognition and resolving on cam-

era. In Phones - Jump Starting the Internet of Things. In: Informatik 2006
workshop on Mobile and Embedded Interactive Systems, 2006.

34 Péter Bodnár and László G. Nyúl

[2] Ballard, D.H. Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition, 13(2):111-122, 1981.

[3] Bodnár, Péter and Nyúl, László G. Barcode detection with uniform partition-
ing and morphological operations. In Conference of PhD Students in Computer
Science, Proceedings of Conference, pages 4-5, 2012.

[4] Bodnár, Péter and Nyúl, László G. Efficient barcode detection with texture
analysis. In Signal Processing, Pattern Recognition, and Applications, Proceed-
ings of the Ninth IASTED International Conference on, pages 51-57, 2012.

[5] Bodnár, Péter and Nyúl, László G. Improving barcode detection with com-
bination of simple detectors. In The 8th International Conference on Signal
Image Technology (SITIS 2012), 2012.

[6] Canny, John. A computational approach to edge detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679-698, nov.
1986.

[7] Dillencourt, Michael В., Samet, Hannan, and Tamminen, Markku. A general
approach to connected-component labeling for arbitrary image representations.
J. ACM, 39:253-280, April 1992.

[8] Felzenszwalb, Pedro F. and Huttenlocher, Daniel P. Distance transforms of
sampled functions. Technical report, Cornell Computing and Information Sci-
ence, 2004.

[9] James Juett, Xiaojun Qi. Barcode localization using bottom-hat filter. NSF
Research Experience for Undergraduates, 2005.

[10] Jean Paul Serra, Pierre Soille, editor. Mathematical morphology and its appli-
cations to image processing. Kluwer Academic, 1994.

[11] Joseph, Eugene and Pavlidis, Theo. Bar code waveform recognition using peak
locations. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
16(6):630-640, 1994.

[12] Kiryati, Nahum, Eldar, Yuval, and Bruckstein, Alfred M. A probabilistic
hough transform. Pattern Recognition, 24(4):303-316, 1991.

[13] Lin, Daw-Tung and Lin, Chin-Lin. Multi-symbology and multiple ld/2d bar-
codes extraction framework. In Lee, Kuo-Tien, Tsai, Wen-Hsiang, Liao, Hong-
Yuan, Chen, Tsuhan, Hsieh, Jun-Wei, and Tseng, Chien-Cheng, editors, Ad-
vances in Multimedia Modeling, volume 6524 of Lecture Notes in Computer
Science, pages 401-410. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-
642-17829-0-38.

[14] Lin, Daw-Tung, Lin, Min-Chueh, and Huang, Kai-Yung. Real-time automatic
recognition of omnidirectional multiple barcodes and dsp implementation. Ma-
chine Vision and Applications, 22:409-419, 2011. 10.1007/s00138-010-0299-3.

Barcode Detection Using Local Analysis, ... 35

[15] Oktem, R. Bar code localization in wavelet domain by using binary morphol-
ogy. In Signal Processing and Communications Applications Conference, 2004-
Proceedings of the IEEE 12th, pages 499-501, april 2004.

[16] Tuinstra, Timothy R. Reading Barcodes from Digital Imagery. PhD thesis,
Cedarville University, 2006.

[17] Wu, Sue and Amin, Adnan. Automatic thresholding of gray-level using mul-
tistage approach. In Document Analysis and Recognition, 2003. Proceedings.
Seventh International Conference on, pages 493-497 vol.1, 2003.

[18] Youssef, Sherin M. and Salem, Rana M. Automated barcode recognition for
smart identification and inspection automation. Expert Systems with Applica-
tions, 33(4):968-977, 2007.

Acta Cybernetica 21 (2013) 37-51.

Approximations of the Generalized Cascade Model

András Bóta* Miklós Krész1 and András Pluhár*

Abstract

The study of infection processes is an important field of science both from
the theoretical and the practical point of view, and has many applications.
In this paper we focus on the popular Independent Cascade model and its
generalization. Unfortunately the exact computation of infection probabilities
is a #P-complete problem [8], so one cannot expect fast exact algorithms.
We propose several methods to efficiently compute infection patterns with
acceptable accuracy. We will also examine the possibility of substituting the
Independent Cascade model with a computationally more tractable model.

Keywords: computer science, infection process, heuristics

1 Introduction
The study of infection processes has many roots in various fields of research. The
idea comes from the medical science for the purpose of modeling the spread of epi-
demics [13]. Boguna et al. [2] combined the infection processes with the emerging
theory of Small World graphs, and gained new insights considering the survival of
virulent diseases. Similar infection models can describe the spread of a behavior
in social networks. One of the earliest models in sociometry, Granovetter's Linear
Threshold model has proven to be an accurate description of information diffu-
sion, see [15]. An important model in economics was developed by Domingos and
Richardson [12] for the purpose of viral marketing. A form of the Independent
Cascade model was later turned out to be an equivalent form of Granovetter's
Linear Threshold model, see Kempe et al. [16, 17]. The exact computation of
the vertex infection probabilities is a #P-complete problem [8], so applications are
mainly using heuristics. Nevertheless, the IC model was also adopted to many other
applications including costumer churn and the spread of credit default, [11, 4].

In later applications generalized IC models were used, in which the vertices
become infected according to a general a priori probability distribution, before
infecting their neighbors. Moreover, in these models an "infection" does not nec-
essarily mean infection in the original sense, e.g. a bankruptcy of a company may

'University of Szeged, E-mail: bandrasSinf.u-szeged.hu
tUniversity of Szeged, E-mail: kreszSjgypk.u-szeged.hu
tUniversity of Szeged, E-mail: pluharSinf.u-szeged.hu

38 András Bóta, Miklós Krész, and András Pluhár

be caused by the poor economic state of its partners, but one cannot pinpoint the
most responsible infector [19].

The initial problem described by Domingos and Richardson was influence maxi-
mization, that is to find a specific set of k individuals for a given k € N yielding the
largest expected infection. Kempe et al. [16] proved that the exact solution is an
NP-hard problem, but a greedy algorithm results in a k element set with expected
influence at least (1 — 1 /e)Optk where Optk is the maximum influence for all set of
size k. Still, a considerable amount of effort was spent to improve both the quality
of the solution and the speed of the heuristics, [7, 8].

The computation of the infection process requires an input graph with edge
weights corresponding to infection probabilities. However, in most practical appli-
cations the edge weights are unknown a priori, thus they are randomly generated
or guessed. A more systematic approach appeared in the paper by Bota et al.
[5], in which the authors have proposed the inverse infection problem. That is,
given the set of initial infectors (or a priori infection probability distribution in the
general case), the output of the infection model (a posteriori infection probability
distribution) and a graph structure, can we compute the infection probabilities? A
different approach for the Linear Threshold model was developed by Cao et al. [6].

Both the infection maximization and inverse infection algorithms are based on
the repeated computation of the IC model. Thus, the fast computation of this
model is a requirement for any algorithm that tries to solve the above mentioned
problems.

There are several existing algorithms for this purpose, each focusing on a differ-
ent aspect of the model. We propose new methods, motivated by our observations
on real economical data [11, 4]. These networks function fundamentally differently
than social or interaction networks. More precisely, the spreading of credit defaults
is quite different compared to the behavior of influenza or information diffusion.
In general, a single defaulted company has little effect on its neighbors, since most
companies have a wide array of dependencies both on business partners, customers
and subcontractors. However, if a large number of companies go default at the
same time, the effect on other companies becomes gradually greater. According to
this, on the examined networks the edge infection probabilities axe low, typically
below 0.2, or even smaller.

In this paper we are going to describe three methods exploiting the above aspect
of the problem.

• The Edge Simulation method is a combination of both simulation and ex-
act computations that decreases the standard deviation appearing in other
simulations.

• If the infection probabilities are small, then the infections typically do not
travel far from the source of infection. Neighborhood Bound Heuristics ex-
ploits this property.

• The Independent Cascade model itself can be substituted for a similar, but a
computationally more tractable model.

Approximations of the Generalized Cascade Model 39

The rest of this paper is organized as follows. First we define the original IC
model and generalize it to suit complex models. We will also give a short description
of the inverse infection problem. Then we describe the above mentioned methods
in detail. Finally we compare the results with respect to the speed and accuracy
of the computations.

2 Problem definition
In this section we will define the Independent Cascade model, the Generalized
Cascade model and the inverse infection problem.

The pair G = (V, E) is a directed graph, where V denotes the set of nodes and
E C V x V denotes the set of directed links. If there is a wu<v defined for each edge
(u,v), we have a weighted graph. When dealing with infection models, we restrict
the values of the weights to be wu v € [0,1] for each edge (u. v). We will also refer
to the weights as infection probabilities.

The Independent Cascade model is an iterative method based on the process
of active nodes infecting inactive ones. The process starts with an initially active
set of nodes A0 C V(G). Let A, C V(G) be the set of nodes newly activated in
iteration i. In iteration i + 1, every node u € Ai has one chance to activate each
of its inactive out-neighbors v E V \ Uo<j<iSj according to wu v. If the attempt is
successful, then v becomes active in iteration i +1. If more than one node is trying
to activate v in the same iteration, the attempts are made in an arbitrary order
and independently of each other still in iteration i + 1. The process terminates at
step t if At = 0.

The Generalized Cascade model extends this process in the following way. Each
v 6 V{G) has an a priori infection probability wv, and the vertices become active
independently of each other with their assigned probabilities at the beginning.
After this, the infection process of the IC model applies with a randomly selected
active set. In this process, each vertex gets an a posteriori infection probability w'v

corresponding to the probability of infection at the end. In other words, the process
can be interpreted as a transformation of probability distributions over the graph
G.

The Generalized Cascade model can be summarized as follows: Given a graph
G, the edge infection probabilities wUtV for all (u, v) £ E(G), and the a priori
probabilities wv for all v € V(G), we are looking for the a posteriori infection
probabilities w'v for all vertices v £ V(G).

All these applications of infection models require the edge probabilities to be
given beforehand. However, in practice these values are unknown. Therefore it is
necessary to develop an algorithm that is capable of learning these weights. That
is, if we have the a priori and a posteriori distributions of the GC model as the
input of an algorithm, it should assign edge weights wu v for all edges (u, v), such
that the a priori distribution is transformed into a good approximation of the a
posteriori distribution. Some algorithms for the above problem were investigated
in [5]. Note that all of these methods require the repeated computation of the

40 András Bóta, Miklós Krész, and András Pluhár

Generalized Cascade model.
The exact computation of the vertex infection probabilities is difficult [8]. Some

authors have tried to circumvent this by developing algorithms for special classes
of graphs, like trees or DAG-s [7]. In this paper, we will describe four methods for
approximating the a posteriori infection probabilities in the GC Model.

3 Methods
The methods presented below fall into three categories. Simulations are Monte
Carlo generators, i.e. they compute multiple realizations of the probabilistic infec-
tion process, and count the relative frequency of vertex infections.

In contrast to this, heuristics use an approximation of the GC model, circum-
venting the #P-completeness, but still dealing with both the a priori and the edge
infection probabilities. Finally, hybrid methods use some combination of both ap-
proaches.

3.1 Frequency based simulations
The notion of using Monte Carlo based simulations to compute the a posteriori
infection distribution comes from Kempe et al [17]. That is, generating random
edges and vertex infections, according to the edge weights and the a priori vertex
infections, and then approximate the infection probability of vertices by the relative
frequency of vertex infections.

All methods described in this section use the above approach. The original
method of Kempe et al. can be adapted to the requirements of the Generalized
Cascade model. We will refer to this as Complete Simulation. In contrast to this,
Edge Simulation is a hybrid design using heuristics to improve the performance
of the simulation.

3.1.1 Previous works

Kempe, Kleinberg and Tardos developed a method based on reachability [17] to
compute the Independent Cascade model. They construct an unweighted directed
graph G' on the same vertex set as G by drawing the edge (u, v) independently of
the other edges with probability wu,v. The resulting graph G' can be interpreted as
a realization of the possible routes of infection. Those vertices that can be reached
from an initially infected vertex also become infected. This way the computation of
the iterations one by one can be avoided, and the problem of a single simulation step
is reduced to a simple (path) searching problem. Note that this formulation helped
to show that f(A), the expected infection of a set A is a submodular function, that
is f(S U {u}) - f(S) > f(T U M) - f(T) for all v € V(G) and S C T c V{G).

The process can be applied to G multiple times, resulting in a series of real-
izations. The desired distribution can be approximated simply by counting the
relative frequency of vertex infections.

Approximations of the Generalized Cascade Model 41

3.1.2 Complete Simulation

It is easy to adapt the method of Kempe et al. to the needs of the Generalized
Cascade model. In addition to the construction of G', a set AQ C V(G) is created,
according to the following rule: for all v £ V(G), v £ AQ according to the probability
wv. G' and AQ is generated multiple times. We will refer to this value as the sample
size k. Finally let fv denote the relative frequency of infection for vertex v.

Algorithm 1 Complete Simulation
Input: Graph G, sample size k
Output: Relative frequency of infection fv for all v £ V(G)

i: j <- 0
2: for all v £ V: fv 4- 0
3: while j < k do
4: Generate G'
5: Generate AQ
6: 5 ^ - 0
7: Q 4- V{G')
8: for all U £ AQ n Q do
9: for all v € Q do

10: if there is a path u,..., v in graph G' then
11: 5 4— 5 U {u}
12: end if
13: end for
14: Q 4- Q \ S
15: end for
16: for all v £ S: fv 4- /„ + 1
17: j 4- j + 1
18: end while
19: for all v £ V: / „ (- f

At line 10, we allow u = v. In the main loop, it is indifferent which node in
AQ is the source of the infection. Since a node can be infected only once, any node
reachable from a node from AQ can be left out of further computations. Because
of this, the for loops in the algorithm can be interpreted as a single search on G'
starting from the nodes in Ao.

Before the main loop, fv is initialized for all vertices. It is easy to see, that
the algorithm computes the relative frequencies for all vertices correctly. Since this
method is based on frequency counting, its precision and time complexity depends
greatly on the sample size k. We will elaborate on this in Section 4.

3.1.3 Edge Simulation

There is a different way to simulate the generalized model: instead of computing Ao
we can deal directly with the a priori vertex infection probabilities. The notation

42 András Bóta, Miklós Krész, and András Pluhár

is the same as before, wv denotes the a priori infection probability of vertex v. At
line 8, we allow u = v.

Algorithm 2 Edge Simulation
Input: Graph G, sample size k
Output: Relative frequency of infection fv for all v 6 V(G)

l: j *- 0
2: for all V € V: fv<f- 0
3: while j < k do
4: Generate G'
5: for all v S V(G) do
6: S <r- 1

7: for all u € V(G) do
8: if there is a path u,...,v in graph G' then
9: s s(l — wu)

10: end if
11: end for
12: fv*~ fv + 1 - S

13: end for
14: j *~j + 1
15: end while
16: for all V e V: f v £

In contrast to the previous method, the source of the infection does matter,
since the value wv is not the same for different vertices. We also do not have any
restrictions on the structure of G other than being simple, so any vertex can be a
part of a loop. This means, that in order to avoid counting a single wv multiple
times, we have to do a search for each node independently. Obviously the above
approach increases the time complexity in general, but if the edge probabilities are
low enough in G, then G' has many small components, reducing the running time
for each search significantly.

It is clear, that the computational time is greater for ES compared to CS. In
exchange, we can expect, that the precision of the approximation is less dependent
on the sample size. We will elaborate on this in Section 4.

3.2 Neighborhood Bound Heuristic
There are several existing heuristics for the IC model [7, 8, 10, 9] covering a large
area of performance requirements. These methods usually exploit one or more
properties of the infection process. Chen's DAG and LDAG algorithm for example
focuses on the concept, that the edges with high infection probabilities carry the
bulk of the infection process. They propose to construct a local directed acyclic
graph containing the relevant edges for each node, and then compute the infection
process using the DAG.

Approximations of the Generalized Cascade Model 43

The main idea of our method is similar: the construction of a small graph
containing all of the possible paths of infection inside a given neighborhood for a
given vertex. This graph is created in such a way, that the approximation of the a
posteriori infection probability of the corresponding vertex can be easily computed.
It is important to emphasize, that the goal of this method is the approximation of
the GC model as fast as possible, disregarding requirements for precision.

We are also going to rely on the findings in [11, 4]. Based on the examination
of economic networks, the authors have found, that the edge infection probabilities
are small, typically below 0.2. The above observation greatly limits "the travel
distance" of an infection event, since even if we consider a path of length two from
the source of the infection, the probability of infection is reduced to 0.04 or below.

Based on the remarks above, we propose the Neighborhood Bound Heuristic
(NBH). We will denote the set containing the in-neighbors of vertex v as N~(v).
For all v £ V(G) we are going to construct a weighted, rooted tree Tv with v as
the root, and edges pointing towards v. In the first step all vertices u £ N~ (v) are
added to Tv, as well as the edges (u,v) £ E(G) for all u £ N~(v). In the second
step we are going to deal with the second neighborhood of v. For all u £ N~(v)
we are going to add the nodes z £ N~(u) \ {u} and all of the edges (z, u) £ E{G)
to Tv. The subtractions of v is necessary to avoid loops of length two. For all
edges in Tv we keep the edge weights from G. Take note, that nothing prohibits
the nodes of G (with the exception of v) from appearing multiple times in Tv, this
corresponds with our idea of representing all possible infection paths in the second
neighborhood of v.

The computation of the a posteriori infection probability of v in Tv is easy.
Tv has three levels: the leaves, N~(v) and the root v. The a posteriori infection
probabilities of the leaves are the same as their a priori ones, since they do not have
in-neighbors. A node u £ N~ (v) gets infected if one of the leaves connected to it is
infected, or becomes infected by itself, meaning w'u = 1 — (1— wu) rLeJV-(«)(1—w'z)-
The computation is executed in the same fashion for v.

The above method is extremely fast, since w'v can be computed in a single run
on the edges of Tv, and if G is sparse, \E(TV)\ is small. The construction of Tv is
simple, if we limit the process to the second neighborhood of v in G. If we consider
larger neighborhoods, nothing prohibits |E(!T„)| from growing exponentially, and
it becomes increasingly difficult to avoid loops. Finally, if we consider the fact,
that the edge weights are small, then the loss of precision is still within acceptable
bounds.

3.3 Aggregated Linear Effect Model
Our goal in this section is to build up a model that more or less approximates the
mechanism of the Generalized Cascade model. We begin with some motivations
and define the Aggregated Linear Effect Model, shortly ALE model afterward. For
a weighted graph G, let the a priori infection of a vertex v be wv. If one considers
only one step of the linear effects at v, it can be defined as Eu-ueivO) Wu>v W v '
This is nothing else, but x + Bx, where B is the transpose of A, the weighted

44 András Bóta, Miklós Krész, and András Pluhár

incidence matrix of G, and x is the vector of a priori infection probabilities.
In the 2nd, 3rd, . . . ith steps we may aggregate the effects of the second, third

etc. neighborhoods by adding the B2x, B3x, ..., Blx correction terms to the
approximation.

3.3.1 Definition of ALE model.

Let B = AT, where A is the weighted incidence matrix of graph G, and x is the
vector, such that xv = wv, then the a posteriori effect y is defined as

y := (/ + B + B2 + ...)x,

where I is the identity matrix.
Note, that Y2u-U€N(V) wU,V + uiv is close to the probability of v getting infected

independently in one step by itself or by a neighbor. In general, if the weights
are small, the error is negligible. Assuming small weights, the infinite series also
converges, and we have the more compact form of

y := (I + B + B2 + ...)x = {I -

The values wv and wUyV do not have to be probabilities any more, we might
consider any appropriate scalar functions (perhaps after scaling in order to maintain
convergence). Now the following questions arise:

How good is the ALE model? How to compute (and later on use) it efficiently?
There are two obvious ways to test the first question. One is to consider some

real problems, make a network model out of those, and compute the optimal weights
in an ALE model such that the model "prediction" are as close to the real values as
possible. However, since the IC models already performed well in such case studies,
we might consider here an easier way. We just take a weighted G with some a priori
infection x, compute the a posteriori infection y by the associated IC model, and
then try to find appropriate new weights such that for the a posteriori effect y' by
the ALE model we get min ||t/ — y'\\ in a fixed norm.

Once we have the appropriate weights, that is the matrix B, we can compute y
easily. Of course not by inverting I — B but solving the equation (I — B)y = x for
y by Gaussian elimination.

4 Results
For the purposes of evaluation we have used sparse graphs generated with the
forest fire model [18], with |G(V)| = n = 1000,..., 40000. This allows us to
examine how much the computation time of a given algorithm scales with graph
size. Since the performance of most methods described here depends on the size of
the infection probabilities, we have used five arrangements of edge weights and a
priori distributions.

Approximations of the Generalized Cascade Model 45

Setup A B C D E
h 0.02 0.05 0.1 0.2 0.5
i2 0.1 0.1 0.2 0.2 0.5

Table 1: Experiment setups.

• Each edge weight is drawn independently from an uniform distribution be-
tween (0,fy).

• The expected size of the set of random infectors is n * ¿2- For each vertex,
there is an a priori infection probability drawn independently from an uniform
distribution between (0,0.2).

• For all other vertices wv = 0.

Using the above process, for each of the unweighted graphs, we have created five
weighted ones with a priori probabilities, resulting in 9 x 5 = 45 different benchmark
networks. The parameters l\ and ¿2 of each arrangement can be seen in table 1.

We have mentioned in the introduction, that our aim is the analysis of economic
networks. We have also mentioned our findings, that infection probabilities in these
networks are usually small. Based on this, we consider the probability arrangements
A through D to be within our area of interest. Setup E is used to measure the
behavior of described methods outside these conditions.

In this section, we are going to evaluate the running time and precision of our
methods1. While the evaluation of computational time is rather straightforward,
we have to make a distinction while measuring performance.

Simulations are Monte Carlo based estimations of the infection process. The
goodness of an estimation is governed by the sample size k. From the Law of Large
Numbers it follows that if k goes to infinity then the simulationed values converge
to the infection probability. Depending on k, the output of the simulations differ
from each other, characterized by their deviation. It is important to emphasize,
that the deviation only depends on A;. It does not depend on the graph size or the
experiment setup.

On the other hand, heuristics apply a process similar to the infection model to
approximate its output in reasonable time. The goodness of the approximation can
be measured by comparing it with a simulation computed with a k large enough
to minimize deviation. The difference between these can be described by an error
function2. The error of these heuristics is highly dependent on the sizes of the edge
weights as well as the size of the network.

Based on the above facts, we will evaluate the precision of the simulations and
the heuristics somewhat differently.

1 W e have implemented the methods in JAVA, and we have used a computer with an Intel
¡7-2630QM processor, and 8 gigabytes of memory.

2For this purpose we have used the root mean squared error function (RMSE).

46 András Bóta, Miklós Krész, and András Pluhár

4.1 Deviation of the simulations
The most important question of simulation is the relation between the sample size
and the accuracy of the simulation. This can be measured as the standard deviation
between the a posteriori infections 3. Increasing k obviously worsens the running
time of the simulation, so it is desirable to find a balance between accuracy and
complexity.

Let us make some heuristics concerning the expected results of CS. The worst
case for the variance is when the characteristic function Xv of the infection of a
vertex v follows a Bernoulli distribution. Then the standard deviation of Xv is
<jv = y/pv{ 1 — wv). The standard deviation of the /¡¡-element sample is

y/kwv(l-wv) _ f 1 \
k ~ \Vk)'

that is to get one more correct digit in the outcome one needs one hundred times
more iterations.

0,035

0,03

0,025

0,02
SF
s

0,015

0,01

0,005
0 P" I I I . I I I I . I , 1 . , . . 1 . i ,

o r H i n o t n o m o i n o i n o i n o i n o i n o u t o i n o
1-1

k

Figure 1: The absolute deviation compared to the sample size. In order to evaluate
very large values of k, we have used a small benchmark network.

Of
course, Xv — Yv + Zv - (YVZV), where Yv and Zv are the characteristic func-

tions of the a priori infection and the infection caused by the network, respectively.
We might assume Yv and Zv independent of each other, and Yv follows Bernoulli
distribution. Now, if we simulate the edges and use the vertex a priori infection

3For testing purposes, we have used Zachary's karate club network [20] with edge weights
between 0 and 0.5 and four initially infected nodes. The a priori infection probabilities of these
nodes were drawn independently from an uniform distribution between 0 and 1.

Approximations of the Generalized Cascade Model 47

probabilities directly, then the approximation of pv is significantly improved. In-
deed, an easy computations gives that

Var(Xv) = Var(Vv) + Var(Zv) < E[YU](1 - E[YV\) + Var{Zv).

However, if we handle Yv as a constant of value E[Y„] then Var(Xv) drops to
Var(Zv). The infection coming for the network is usually much smaller than the a
priori infection, and since it is the sum of almost independent variables, the variance
of Xv must be even much smaller.

Figure 1 shows the standard deviation compared to the sample size k for both
methods. The deviations are averaged for all nodes of the network. It can be seen,
that the empirical results for CS roughly correspond to our heuristics. It can also
be seen, that even for small values of k ES performs better by magnitudes than CS.
In fact, the deviation goes below 10 - 5 for k = 1500, while using CS it goes below
1(T4 only for k = 100000.

4.2 Precision of the heuristics
In order to measure the accuracy of NBH and ALE, we have used a very accurate
Edge Simulation with k = 5000 as a benchmark. It can be seen above that the
expected error of this simulation is less than 10~5. Root mean squared error is
used to measure the difference between the a posteriori distributions.

0,2
0,18 •
0,16 •
0 , 1 4 -

0.12 •
O.l -

0,08
0,06 -
0 . 0 4 •

0.02 -
0 •

.8

E

1 0 0 0 5 0 0 0 lOOOO 2 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 1 0 0 0 SOOO 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 40<X)0

Figure 2: The RMSE of ALE (left) and NBH (right) for all experiment setups.
The small dashed lines indicate the standard deviation of CS for k = 10000 and
k = 1000.

On the left hand side of Figure 2, we can see the performance of ALE compared
to the benchmark. If the edge weights are small enough (below 0.1), ALE is able
to approximate the GC model with reasonable accuracy. For higher weights the
performance of ALE gradually worsens to the point, that for the last two setups
it is not able to produce output within acceptable bounds. The accuracy of the
method also depends on the size on the graph, although for the first two setups, this
is barely noticeable. The situation does not so grim if we consider our experiences

48 András Bóta, Miklós Krész, and András Pluhár

with the edge weights of economic networks, which typically fall into the first two
category.

If we take a look at the performance of NBH on the right, we can see, that if
the edge weights axe below 0.2 (Setup D), the error remains below 0.1. It is easy to
see, that lower edge infection probabilities produce more accurate approximations,
which confirms our expectation, that if these probabilities axe low enough, infections
do not travel far. Like ALE, NBH is also slightly dependent on the size of the
network. It is also clear, that NBH performs better than ALE in general, producing
lower error levels for the same arrangements of infection probabilities.

We can compare these result to the deviation of the simulation based methods.
The small dashed lines on both parts of Figure 2 indicate the standard deviation
of CS with k = 10000 (lower) and k = 1000 (higher). Take note, that according to
Figure 1, the deviation of ES is lower, even for k = 100. Based on the above fact,
we can say, that the performance of both methods is comparable to the simulations
only if the infection probabilities are small enough.

4.3 Computational time
On Figure 3 we can see the computational time of our methods on four probability
arrangements. The results for setup A and B were almost the same, so we have left
out the former one.

12CO
10C0

4 0 0

200

V +

/
/

y

2500

2000

1500

1000

500

1200

2000

SCO

400

200

/ ' -CS (k = lOCOO)

/ / / / ES (k 4 1 0 0 0]

• • / ES (k 4 1 0 0)
N SH

AL£

1000 5000 10CD0 15000 20000 25000 30000 35000 40000 1000 5000 10000 15000 20000 25000 30C00 35000 40000

5000 -

4500 -

4000 •

3500 -

3 0 0 0 / y * CS (k 4 10000)
U-2500

2000

1500

2000
500

" — — ES(k4loOOI
" £5 (k 4 100)

" NBH

1000 5000 10000 15000 20000 25000 30000 35000 40000 1000 5000 10000 15000 20000 25000 30000 35000 40000

Figure 3: The running time of the algorithms measured in seconds, compared to
the size of the graphs. Experiment setup B (upper left), setup C (upper right),
setup D (lower left) and setup E (lower right).

The running time of CS scales more or less linearly with graph size, indepen-

Approximations of the Generalized Cascade Model 49

dent of probability setups. However, the deviation of CS only decreases below an
acceptable level if k is sufficiently high. This means, that even tough the compu-
tation of a single G' is fast, a large amount of realizations have to be generated in
order to compete with other methods. As a consequence, CS is the slowest of the
methods on the first three experiment setups. Its use is only recommended if the
probabilities are too high for the other algorithms to tackle.

Unlike CS, the performance of ES is highly dependent on the size of infection
probabilities. The computational time gradually worsens with the increase of edge
weights, to the point where even k = 100 is infeasible. This corresponds with our
remarks in Section 3.1.3. Take note though, that the deviation of ES is smaller
than CS by magnitudes, meaning an ES with k = 100 outperforms a CS with
k = 10000 in terms of precision. In our area of interest, ES seems to be a reasonable
compromise between precision and computational time.

Due to its local nature, NBH is the fastest of the methods. Even on the largest
graphs it completes the task in less than two seconds for all experiment setups. As
we have seen in the previous section however, this comes at a cost of decreased
precision, on all but the smallest probability arrangements. As a consequence, its
use is only recommended if the network is large, and the infection probabilities are
low.

ALE scales similarly compared to the simulations with a slight increase in per-
formance for the first three probability arrangements, but it is unable to produce
meaningful output on the last two setups. If we take the findings of the previous
section into account, then we can conclude, that ALE should only be used if the
infection probabilities are very low.

5 Conclusions
In this paper we have described four different methods able to compute the Gener-
alized Cascade model. All of these methods are based on the observation, that in
realistic networks, the edge infection probabilities are low.

The Edge Simulation is a Monte Carlo based method that greatly reduces the
variance of the resulting a posteriori distribution. Tests indicate that the variance
can be reduced by two magnitudes with the same sample size. Unfortunately the
method requires more computations than other simulations, and its speed depends
on the edge infection probabilities.

The Neighborhood Bound Heuristic limits the effect a node has on another one
to a distance of two. Its accuracy is surprisingly good in graphs with small weights,
but even in this case, care must be taken with its use.

The direct adaptation of the method developed by Kempe et al. can be an
acceptable choice if the infection probabilities are high. The computational time
of CS is independent of the former, and scales linearly with both the size of the
network, and the number of samples.

The Aggregated Linear Effect is a model that tries to approximate the mech-
anism of the Generalized Cascade model, but is computationally more tractable

50 András Bóta, Miklós Krész, and András Pluhár

only if the edge weights are small enough. It is also important to note, that the
inverse infection problem can be solved directly with the use of ALE, avoiding the
additional cost of a learning algorithm.

Acknowledgments. The first and third authors were partially supported by
the European Union and the European Social Fund through project FuturICT.hu
(grant no.: TÁMOP-4.2.2.C-11/1/KONV-2012-0013).

The second author was partially supported by the European Union and co-
funded by the European Social Fund through project HPC (grant no.: TAMOP-
4.2.2.C-11/1/KONV-2012-0010).

The second author was also supported by the Gyula Juhász Faculty of Educa-
tion, University of Szeged (project no. CS-004/2012).

References
[1] R. Albert, A. L. Barabási, Statistical mechanics of complex networks. Reviews

of Modern Physics, 74 (2002) 47-97.

[2] M. Boguna, R. Pastor-Satorras, A. Vespignani, Absence of epidemic threshold
in scale-free net-works with degree correlations. Phys. Rev. Lett. Vol. 90 No 2.
(2003) 028701-1-4 .

[3] B. Bollobás, Modern Graph Theory, Springer, New York (1998).

[4] A. Bóta, L. Csizmadia and A. Pluhár, Community detection and its use in
Real Graphs. Proceedings of the 2010 Mini-Conference on Applied Theoretical
Computer Science - MATCOS 10 (2010) 95-99.

[5] A. Bóta, M. Krész and A. Pluhár, Systematic learning of edge probabilities in
the Domingos-Richardson model. Int. J. Complex Systems in Science Volume
1(2) (2011) 115-118.

[6] Tianyu Cao, Xindong Wu, Tony Xiaohua Hu and Song Wang, Active Learn-
ing of Model Parameters for Influence Maximization. Machine Learning and
Knowledge Discovery in Databases, Lecture Notes in Computer Science, eds.
Gunopulos et al., Springer Berlin/Heidelberg, (2011) 280-295.

[7] Wei Chen, Yifei Yuan and Li Zhang, Scalable Influence Maximization in Social
Networks under the Linear Threshold Model. Proceeding ICDM '10 Proceedings
of the 2010 IEEE International Conference on Data Mining, IEEE Computer
Society (2010) 88-97.

[8] Wei Chen, Chi Wang and Yajun Wang, Scalable Influence Maximization for
Prevalent Viral Marketing in Large-Scale Social Networks. Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM (2010) 1029-1038.

Approximations of the Generalized Cascade Model 51

[9] M. Kimura, K. Saito, Tractable models for information diffusion in social net-
works. Knowledge Discovery in Databases, Lecture Notes in Computer Science
Springer Berlin / Heidelberg, (2006), 259-271.

[10] W. Chen, Y. Wang, S. Yang, Efficient influence maximization in social net-
works. Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM (2009) 199-208.

[11] A. Csernenszky, Gy. Kovács, M. Krész, A. Pluhár, T. Tóth, The use of infection
models in accounting and crediting. Challenges for Analysis of the Economy,
the Businesses, and Social Progress, Szeged 2009.

[12] P. Domingos, M. Richardson, Mining the Network Value of Costumers. Pro-
ceedings of the 7th International Conference on Knowledge Discovery and Data
Mining, ACM (2001) 57-66.

[13] O. Diekmann, J. A. P. Heesterbeek, Mathematical epidemiology of infectious
diseases. Model Building, Analysis and Interpretation. John Wiley & Sons,
2000.

[14] M.E.J. Newman, The structure and function of complex networks. SIAM Re-
view 45, (2003) 167-256.

[15] M. Granovetter, Threshold models of collective behavior. American Journal
of Sociology 83(6) (1978) 1420-1443.

[16] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the Spread of Influence though
a Social Network. Proceedings of the 9th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, ACM (2003) 137-146.

[17] D. Kempe, J. Kleinberg, E. Tardos, Influential Nodes in a Diffusion Model
for Social Networks. Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP), Springer-Verlag (2005) 1127-
1138.

[18] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws,
shrinking diameters and possible explanations. Proceedings of thelth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ACM (2005) 177-187.

[19] M. Krész and A. Pluhár, Prediction of Economic and Social Events by Infection
Processes. To appear in Encyclopedia of Social Network Analysis and Mining,
Springer (2012).

[20] W. W. Zachary, An information flow model for conflict and fission in small
groups. Journal of Anthropological Research 33 (1977), 452-473.

Acta Cybernetica 21 (2013) 53-73.

Application Oriented Variable Fixing Methods for
the Multiple Depot Vehicle Scheduling Problem

Balázs Dávid* and Miklós Krész1'

Abstract

In this article, we present heuristic methods for the vehicle scheduling
problem that solve it by reducing the problem size using different variable
fixing approaches. These methods are constructed in a way that takes some
basic driver requirements into consideration as well. We show the efficiency
of the methods on real-life and random data instances too. We also give an
improved way of generating random input for the vehicle scheduling problem.

Keywords: vehicle scheduling, variable fixing

1 Introduction
The multitude of problems arising in public transportation forms a complex sys-
tem. These problems can be categorized into two main groups: vehicle scheduling
problems and driver scheduling problems. However, these two sets can not be con-
sidered totally independently of each other, as vehicle schedules are needed as the
basis of constructing driver schedules. Literature addresses the hierarchy between
these tasks either by using an integrated or a sequential approach.

Integrated models for the combined vehicle- and driver scheduling problem have
become more and more efficient lately [7, 11], and based on them, useful methods
exist for the long-term planning of a transportation company's schedule. However,
these solutions are still not fast enough for being considered as part of an interactive
decision support system.

A sequential approach of the optimization problem breaks it down into a series
of different tasks, which are solved one after the other. Such a system can have
many different sub-problems, as the one seen in [4], but usually 3 phases have to
be carried out: vehicle scheduling, driver scheduling and driver rostering. Fast
methods that give efficient solutions exist for all these sub-problems. The main
drawback is that the majority of these methods consider solving a stand-alone
problem only, and does not deal with its integration into a larger system. However,
breaking down the main problem into different smaller tasks results in a flexible

'University of Szeged, E-mail: davidbflinf.u-szeged.hu
^University of Szeged, E-mail: kreszfljgypk.u-szeged.hu

54 Balázs Dávid and Miklós Krész

system, so this approach can be an ideal choice to be used for interactive decision
support.

In this paper, we will deal with the vehicle scheduling problem as paxt of such a
system. We give a brief overview of the problem itself, and analyze the requirements
for real-life applications. We examine a heuristic by Gintner et al. [12], and develop
new algorithms using their idea as a basis. We provide test results for all examined
methods on real life and random data as well. We also introduce a new way
of creating random data based on a method by Carpaneto et al [9]. This new
algorithm is needed because the structure of the instances generated by the method
in [9] is different from real-life instances of Hungarian transportation companies.
We wanted to test our methods on random data that more closely resembles the
structure of real-life Hungarian instances.

2 The Vehicle Scheduling Problem
In this section, we present the vehicle scheduling problem, and give an overview of
its important models and methods from literature.

Let V be the set of vehicles, and T the set of trips. For each t € T trip, let
dt(t) and at{t) be its departure and arrival time, and let sl(t) and el(t) denote
its starting and ending location respectively. Two trips i,jeT are compatible if
there is enough time between at(i) and dt(j) to cover the distance between el(i)
and sl(j). A vehicle schedule can contain compatible trips only. A vehicle task is
called a deadhead trip if the vehicle changes its location without executing a trip.

The aim of the vehicle scheduling problem is to assign vehicles to execute the
trips of a given timetable. These assignments must satisfy certain conditions:

• Every trip must be executed exactly once.

• Trips assigned to a vehicle must be compatible with one another.

• The cost of the assignment must be minimal.

We examine the possible components of the cost function in the following sub-
section.

2.1 Costs of a Vehicle Schedule
One of the most important steps is to determine the costs arising in our problem.
There axe several operational costs that can be taken into consideration for a vehicle:

• Trip distance cost: the cost of a vehicle to cover a unit distance (usually 1
km) while executing a trip.

• Deadhead distance cost: the cost of a vehicle to cover a unit distance
while executing a deadhead trip.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 55

• Daily cost of a vehicle: the cost of making a vehicle available for use on
the given day.

Trip and deadhead distance costs can easily be determined, as the gas consump-
tion of the vehicles is a known parameter. Daily costs are more difficult to give,
as they incorporate a number of different smaller costs (eg. maintenance, upkeep,
etc.), but the cost of renting a vehicle of the same type for one day can be a good
estimate. Using these operational costs only, the problem can be solved in different
ways:

• If only the daily costs are used in the objective, the number of vehicles will
be minimized.

• If only the deadhead costs are included, the amount of deadhead trips will be
minimized, thus minimizing the location changes.

• To get an overall operational cost, all of the above costs have to be included
in the objective function.

As we mentioned earlier, the solution of the vehicle scheduling problem alone
is just the basis of a daily schedule of a transportation company. Using the above
defined operational costs only does not necessarily give a good solution if we want
to use it in an "application oriented" way. The vehicle schedules have to be assigned
to drivers, who also have a set of constraints for their driver schedules. Driver rules
have many different types, and the regulations also vary from country to country,
and from company to company. One of the most important constraints that all of
them have in common is the limitation of the maximum continuous driving time
of a driver. Because of this, vehicle drivers must be assigned a break after a fixed
amount of driving time at most.

If the solution of the vehicle scheduling problem produces too "dense" schedules
(which do not have enough gaps between tasks to assign these breaks), then the
driver scheduling algorithms have to transform the schedules. This means extra
computation time for the driver algorithm, and it also means that the underlying
vehicle schedule will also be changed significantly, modifying its cost retroactively.
This aspect must also be considered, when solving the vehicle scheduling problem.

2.2 Single and Multiple Depot
In some cases the vehicles can also be classified into depots. A depot of a vehicle
can mean its starting geographical location, but it can also represent its vehicle
type. In both cases a depot-compatibility vector is given for every trip that shows
the types of vehicles able to execute the trip.

Complexity of the vehicle scheduling problem depends on the number of vehicle
depots. If all vehicles belong to the same depot, the problem is a single depot vehicle
scheduling problems (SDVSP). An SDVSP can be modeled as a minimum-cost flow
problem, thus even large-size (several thousand trips) instances are polynomially
solvable to an optimum. Such a formulation is given in [5].

56 Balázs Dávid and Miklós Krész

However, real life instances usually have 2 or more depots. These types of
problems are called multiple depot vehicle scheduling problems (MDVSP). The
MDVSP was first formulated by Bodin et al. [6], and its NP completeness was
proven by Bertossi et al. [3].

Solving the MDVSP results in a set of vehicle schedules, each assigned to a
vehicle from one of the depots. For every pair of trips i and j on any schedule, they
have to be compatible, and their depot-compatibility has to match the depot of the
vehicle assigned to the schedule. However, the solution itself can be constructed
with regards to many different costs and constraints.

2.3 Models and Methods for the MDVSP
Literature discusses three main types of models for the MDVSP: single commodity,
set partitioning, and multi-commodity. An overview of the different approaches
can be found in [8]. In this paper, we will be dealing with the multi-commodity
approach, which uses multi-commodity network flow models. In these models,
every depot has its own commodity layer in the network, and only those trips are
considered at a given layer, which can be executed from the corresponding depot.

The connection-based network gives every possible connection between the trips
of the problem. To define the problem, the following additional notations have to
be introduced: The set of depots that can execute a trip t is denoted by g{t). Let
Td C T be the set of trips that can be executed from depot d. Similar to the trips,
let every d depot have a starting location sl(d) and ending location el(d). The set
of nodes of our network will be the following:

N = {dt(t) U at(t) U sl(d) U el(d)\t eT,de D}.

Let

Ad = {(dt(t),at(t))\t € Td}

be the set of trips that can be served by depot d, and let

Bd = {(at(t),dt(t'))\t,t' € Td are compatible}

be the possible deadhead trips of depot d.
Let

Pd = {(sl(d),dt(t)), (at(t), el{d))\t e Td}

be all the pull-in and pull-out edges of depot d.
The above sets give us the set of edges of the connection based network:

E = Ad U Bd U Pd U {(el(d), sl(d))} for every deD.

Variable Fixing Methods for the Multiple Depot Vehicle Scheduling Problem 57

Based on the sets introduced above, a solution of the MDVSP can be determined
by using the network (N,E) . We define an integer vector x for every edge of the
network. A vector component belonging to an edge e of depot d is denoted by xd.
The problem can be formalized in the following way:

E 4(t),at(t) = L V i £ T (1)
d€g(t)

^ E * « = 0 , V d € D , V n e AT (2)

xd e 0,1, except for (el(d), sl(d)) (3)

where n + is the set of outgoing, and n~ is the set of incoming edges from node
n.

According to constraint (1) each trip has to be executed exactly once, while
(2) means that every vehicle arriving to a geographical location has to leave that
location. Constraints for the number of vehicles in each depot can be set as an upper
bound for the circulation edges of the corresponding depot. Any flow satisfying
the above conditions can give a feasible solution of the problem. For an optimal
solution, we have to minimize

y) CeXe,
e

where ce is the cost of edge e.
The main drawback of the connection based model comes from its size. The

number of compatible trips is high, even with a small number of trips in the problem,
and this results in a large number of possible deadhead trips. This makes the size
of the problem so large that it can not be used effectively on real-life data, where
the number of trips is a couple of thousands usually.

The time-space network has been introduced to vehicle scheduling by Kliewer et
al. [13]. It eliminates the drawback that comes from the size of the connection-based
network. This way, it is possible to solve larger-sized real-time MDVSP instances
efficiently. As we described earlier, the number of edges connecting compatible
trips in the connection based model is high, but only a few of these are actually
used in a feasible solution. However, if we left any of these connections from the
model, we would lose the optimality of the solution.

The time-space network efficiently reduces the number of edges. The model
arranges data in two dimensions: time and space. Space represents the set of ge-
ographical locations, while the timelines at each location represent a sequence of
events. The arrival and departure times of the tasks are denoted on the correspond-
ing timelines, and give the nodes of the model.

The time-space network is constructed using the above given nodes. Apart
from this difference, the set N of nodes of the network can be defined similar to the
connection based approach. The definition of Ad is also similar for each depot d € D

58 Balázs Dávid and Miklós Krész

and Pd is given with the help of the time-lines associated with the corresponding
depot.

The definition of deadhead trips is the other main difference between the two
models. The timelines used by the time-space network can be used to aggregate
deadhead trips by introducing so-called waiting edges. These edges connect ad-
jacent nodes on the timeline. This method reduces the size of the problem sig-
nificantly. Waiting edges always connect two adjacent nodes on the appropriate
timeline. Denoting the set of waiting edges with Wd for every depot de D, the set
of edges of the time-space network is:

E = Ad U Bd U Pd U Wd U {(el(d), sl(d))} for every deD.

Using these, the IP model of the time-space network can be given in a similar
way to the connection based network:

£ xdt{t),at{t) = l,Vi € T (4)
des(t)

£ £ ^ = 0 , V d e D , V n e A (5)

xde > 0, (6)

xd integer (7)

Considerably bigger instances can be solved to optimality using the time-space
network. However, the running time can still be an issue, especially in the case
of larger real-life instances. Literature provides a variety of methods for solving
large MDVSP. Selected heuristics based on both mathematical programming and
combinatorial aspects can be found in [14]. However, these solve the standalone
vehicle scheduling problem, and do not consider the "application oriented" structure
of the vehicle schedules discussed above. We will present a solution method that
takes this aspect into consideration also.

In [10], we present a collection of heuristic methods for the MDVSP found in
literature, and also analyze the "application oriented" usefulness of their results.
Paper [10] partially studied the idea of variable fixing too, which research later
became the basic idea for this paper.

3 Reducing the MDVSP model size
In this section, we will give a heuristic to solve the MDVSP, taking into considera-
tion both operational costs, and the "application oriented" structure of the vehicle
schedules. A solution with short running time and well structured schedules is
important for an interactive decision support system.

Gintner et al. [12] propose a two-phase heuristic to solve large instances of the
MDVSP by decreasing its model size. A number of variables of the model are fixed,

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 59

and the resulting new problem is solved to optimality afterwards. Because of these
two steps, they call this approach fix-and-optimize. The idea behind their heuristic
is to solve a number of simplified models of the original problem, and decide on the
variables to be fixed based on their results. This is done by finding series of trips
that are common in all solutions. If such trips are found, it is presumed that they
are likely to appear in the global optimum in the same way. These trips are called
stable chains, and are used as single trips in the model of the MDVSP.

Their method decomposes the original MDVSP into an SDVSP for every depot.
This problem is constructed and solved in the following way:

• The capacity of the depot is equal to the sum of all depot-capacities of the
MDVSP.

• Only those trips are considered, which can be executed from depot.

After the SDVSP sub-problems are solved for each depot, their solutions are
used to create stable chains. If a sequence of trips appears in the same order in all
solutions, then they are considered as a chain. Using these stable chains as single
trips, a smaller MDVSP model is built that has the following properties:

• The number and capacity of the depots are the same as in the original prob-
lem.

• The set of trips of the new problem consists of the trips that are not included
in any of the stable chains, and a newly created trip for each stable chain.
Their costs are the sum of all the trips these chains represent. The departure
time and starting location of the first trip of the chain, and the arrival time
and ending location of the last trip of the chain are used for this new trip as
starting and ending data. These trips can be executed from any depot.

After this new MDVSP is solved, the trips in the stable chains have to be
substituted back instead of the new trips, to acquire the final solution.

We chose to develop a heuristic based on the idea of variable fixing, as it can
model the " application oriented" aspect of the problem. This is done by fixing trips
in the same chain "that should belong together in the final solution". We can also
control the amount of time between two consecutive trips of a chain by not adding
a possible trip to a chain if that would leave too little, or too much gap in between.

As the basis of the method, we solved a simplified model of the problem that
we call a "quasi-multiple depot" model. Though we use only a single depot in
this model, two trips are connected only if they would be connected in the multiple
depot case as well. This means that the trips have to be compatible, and they must
also share a common depot from which they can be served. The cost of the arc
between these two trips in our model is calculated using the cheapest possible cost
of all their common depots. The capacity of the depot is the sum of the capacities
of all depots in our original problem. Pull-out and pull-in arcs of the depot have
the weight of the minimal deadhead trip from and to any of the depot locations of

60 Balázs Dávid and Miklós Krész

the original problem. Once this "quasi-multiple depot" model is constructed, it is
solved by an MILP solver.

We experimented with three different approaches for finding stable chains in
the solution of the above problem:

• Build chains with regards to depot costs.

• Fix trips with the same depot-compatibility in a chain.

• Assign trips of the same bus-line to a chain.

The methods will be presented in the following subsections. We also illustrate
on a small example their difference in building chains.

3.1 Building chains using depot costs

This was the first heuristic we developed for solving the MDVSP. Depots are ordered
into a list increasingly according to the following cost:

k * cost(daily) + cost(km)

where cost{daily) is the daily cost of a single vehicle from the depot, cost(km)
is the cost of that vehicle to travel 1 km, and e > 0 is a parameter.

For every depot in this order, the algorithm examines all the vehicle schedules
in the result of the "quasi-MDVSP". If subsequent trips are found which can be
executed from this depot, they are considered together in stable chains. These trips
are flagged, and cannot be the part of other stable chains. The description of this
algorithm can be seen in Algorithm 1.

This algorithm is only the basis of finding the chains, further constraints can
be introduced:

• We can give a limit to the number of trips in the chains.

• The length of the chains can be maximized.

• The minimum/maximum gap in time between two trips of the chain can be
given.

Experience shows, that limiting the length of the stable chains with the above
constraints results in a solution with better cost, but has an increase in running
time. The running time of the heuristic was very fast, but the quality of the
solutions was far from what we have expected. Because of this further changes
have been experimented with to improve the cost of the solution, with a minimal
increase in the running time.

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 61

Algorithm 1 Variable fixing using depot costs,
l: Determine the order D of depots
2: S 0,V 0,L <- 0
3: for each d G D do
4: for all trips j £ V the solution do
5: while j can be executed from d do
6: L <r- j
7:
8: j = nexttrip(j)
9: end while

10: if \L\ > 1 then
11: 5 - f - L
12: end if
13: L <—0
14: end for
15: end for
16: return S

3.2 Building chains based on depot-compatibility
Using our experience gained from the method presented above, we tried to find a
way to fix trips that have some property in common instead of using a cost function.
In our second method, we tried to construct stable chains based on similar depot-
compatibilities of the trips. We first examined those trips from the solution of
the "quasi-MDVSP" that can be executed from all d depots. Then all that are
compatible with d — 1 depots, and so on. Two subsequent trips are assigned to the
same chain if they have exactly the same depot-compatibility in the solution. This
algorithm is described in Algorithm 2. The same additional extra constraints that
we have shown at Algorithm 1 can also be introduced here.

3.3 Building chains using trips of the same bus-line
This method of constructing the stable chains is closer to the schedule building
practice of transportation companies. A driver usually uses the same vehicle during
his shift, and he is carrying out consequent trips of the same bus-line. Some changes
might occur in his schedule, but their number remains low. However, when solving
the MDVSP using an MILP solver, the resulting vehicle schedules usually have a
high number of line changes. Though this can not be modeled in costs directly, it
puts some load on the driver itself.

We tried to build stable chains using this as a guideline. We fixed those trips
in a chain only that belong to the same bus-line. We also set a maximum time
limit of the gap between two such trips. If two subsequent trips belong to the same
bus-line, but are far from each other in time, then they are not fixed in the same
chain. The description of this method can be seen in Algorithm 3.

62 Balázs Dávid and Miklós Krész

Algorithm 2 Variable fixing based on depot compatibilities.
1: 5 4 - 0, V 4 - 0,L 4 - 0
2: for d = numof (depots) downto 1 do
3: for all j V trips compatible with exactly d depots do
4: L 4 - j
5: V 4 - j
6: k = nextrip(j)
7: while j and k have the same depot-compatibility do
8: L 4 - k
9: V 4 - k

10: j = k
11: k = nexttrip(j)
12: e n d while
13: if \L\ > 1 t h e n
14: S 4 - L
15: end if
16: ¿ 4 - 0
17: end for
18: end for
19: return S

Algorithm 3 Variable fixing based on same bus-lines.
1: 5 4 - 0 , V 4 - 0 , L 4 - 0
2: for all j trips do
3: L 4 - j
4: V 4 - j
5: k = nextrip(j)
6: while line(j) = line(k) and dt(k) - at(j) < limit do
7: L 4 - k
8: V <r-k
9: j = k

10: k — nexttrip(j)
11: end while
12: if \L\ > 1 t h e n
13: S 4 - L
14: end if
15: ¿ 4 - 0
16: end for
17: return S

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 63

3.4 An illustrative example of building chains
In this subsection we show the differences between the three variable fixing methods
presented above. Let us consider a vehicle scheduling problem with 3 depots, 8 trips
and 4 geographical locations (A,B,C,D).

Table 1: Details of the trips.

Trip From To Departure Arrival Depots
1 C B 10 12 1,2,3
2 B A 12 14 1,2,3
3 B C 12 14 2,3
4 A B 14 16 1,2,3
5 B A 16 18 1,2
6 A B 18 20 1,2
7 C D 22 24 2,3
8 D C 24 26 2

Table 1 gives every detail of the trips, including their start and end geographical
locations, their departure and arrival times and the depots that they are compatible
with. Furthermore, suppose that trips between the same geographical locations
belong to the same bus-line. This gives us the following three lines:

• Line A-B: trips 2,4,5,6.

• Line B-C: trips 1,3.

• Line C-D: trips 7,8.

Let the deadhead distance between any pair of geographical locations, and the
pull-in and pull-out distance for all depots be 2 minutes. The depot costs of the
problem are the following:

• Depot 1: 100 daily cost and 10/minute distance cost

• Depot 2: 200 daily cost and 20/minute distance cost

• Depot 3: 300 daily cost and 30/minute distance cost

The structure of the above problem can be seen on Figure 1. The horizontal lines
represent the geographical locations, while the arrows between them correspond to
the trips. All three heuristics solve a quasi-multiple depot problem, which results
in the following two vehicle schedules:

• Schedule 1 executes trips 1,2,4,5,6.

• Schedule 2 executes trips 3,7,8.

64 Balázs Dávid and Miklós Krész

A

B

C

D

Figure 1: The structure of the problem

The heuristics will try to construct chains based on these schedules. Applying
the method based on depot costs, the cost function will give the depot order 1,2,3
for an arbitrary e > 0. Using this order, the following chains are constructed:

• Chain 1: trips 1,2,4,5,6.

• Chain 2: trips 3,7,8.

If we build the chains with regards to depot-compatibility, first we examine trips
that are compatible with all 3 depots, then the trips compatible with 2 depots, and
finally the trips that are compatible with 1 depot only. This results in the following
chains:

• Chain 1: trips 1,2,4.

• Chain 2: trips 5,6.

• Chain 3: trips 3,7.

• Chain 4: trip 8.

Considering bus-lines when building the chains, we have to examine all 3 bus-
lines in the schedules. The method constructs the following chains:

• Chain 1: trips 2,4,5,6.

• Chain 2: trip 1.

• Chain 3: trip 3.

• Chain 4: trips 7,8.

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 65

4 Random instances
Though we were provided with the real-life instances of the transportation company
of Szeged, that gives us only a limited database. As it is difficult to access real-life
instances from other companies, the easiest way to acquire more test data that has
the properties of the real-life input is to use an algorithm that generates it based
on our needs. Many papers from literature that deal with the vehicle scheduling
problem present the efficiency of their methods on random instances generated
according to an algorithm by Carpaneto et al. [9]. However, our test experience
shows that the structure of the data generated by their method was different from
real-life instances in many aspects. Because of this, we propose an improved way
of generating random data in this section. First, we describe the above method,
and then give a new variation for it.

4.1 Generation method by Carpaneto et al.
The input of the algorithm is the n number of trips, and the m number of depots.
The number of geographical locations is uniformly chosen from the interval [§,§] ,
their locations are chosen in a uniform random way on a 60*60 grid. The deadhead
trips between geographical locations p and q correspond to their d(p, q) Euclidean
distance.

The properties of every t, trips is determined using the above. The start and
end sl(t) and el(t) geographical locations are chosen uniformly from [1,/]. These
locations determine the length of the trip, d(sl(t), el(t)). Trips can have two types:
short trip, or long trip.

There is a 40% chance that a t trip becomes a short trip. Its dt(t) departure
time is also chosen randomly:

• with a 15% chance uniformly from [420,480]

• with a 70% chance uniformly from [480,1020]

• with a 15% chance uniformly from [1020,1080]

The at(t) arrival time of a short trip is chosen uniformly from the interval
[dt{t) + d(sl(t), el(t)) + 5, dt(t) + d(sl{t),el(t)) + 40].

Long trips are generated with a 60% chance. Their dt(t) departure time is
chosen uniformly from [300,1200], while their at(t) arrival time is chosen uniformly
from [dt(t) + 180,dt(t) + 300]. Long trips have the same start and end location,
which means that a value is assigned to sl(t) = el(t) uniformly from [1, /] .

They also presented a possible placement of the depots for m = 2,3. The
number of vehicles in each depot is determined uniformly from [3 + ^ , 3 + ^] .

4.2 Our new generation method
Our experience showed that the instances generated using the above method were
very differently structured from the real-life data we were dealing with. We decided

66 Balázs Dávid and Miklós Krész

to modify this method to become closer to those real-life instances. The main
difference of this model from our data was that trips had no pre-assigned depot-
compatibilities. For this, we introduced an additional input: a pi probability for
every 1 < i < m depot.

The pi value gives the probability that a trip can be executed from depot
i. When the trips are generated, they are assigned a v = (vi,...,vm) depot-
compatibility vector. For every Vi,

{true with pi probability
false otherwise

. If all components of the v recieve false values, then exactly one of them is set
as true. This is also decided using the given probabilities. A trip can be executed
only from those depots, whose corresponding components have a true value.

Analyzing the trips of the original generator, we found that the average length
of the trips was too high compared to our real-life data, and the trips were scattered
geographically. To address this, we introduced some further changes.

The number of generated geographical locations was also very high compared to
the number of trips, and two trips rarely followed each other at the same location
in a small timeframe. After experimenting, we found the interval that gives
an acceptable number of locations. However, because of the decreased number of
geographical locations, we also had to decrease the area they are generated at. We
used a 30 * 30 grid for this.

To address the problem of the too long average length of the trips, we slightly
modified the generation of the trips as well. The ratio of the long and short trips
has been exchanged, and we generated short trips with a 60% chance, and long
trips with only a 40% chance.

The length of the trips has been decreased. The at(t) arrival time of a short trip
is chosen uniformly from the interval \dt(t)+d(sl(t), el(t)), dt(t)+d(sl(t),el(t))+20],
while the at(t) arrival time of a long trip is chosen uniformly from [dt(t) +40, dt(t) +
60].

Using the modification above, the random generated instances we received re-
sembled more closely to the real-life data we were provided with by the transporta-
tion company of Szeged city.

5 Test Results

The different variable fixing approaches discussed earlier were tested on real-life
data instances from the city of Szeged, Hungary, as well as on random data gen-
erated by an algorithm described in the previous section. We present their results
below.

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 67

5.1 Real-life instances
Our real-life instances were taken from the transportation company of the city of
Szeged, Hungary. The company uses 11 different day-types (called combinations)
over its planning period. To get a complete schedule for a normal planning period
(which is 2 months in the case of the company), the vehicle scheduling problem
has to be solved for all 11 combinations. The daily driver schedules will depend
on the combination type of the corresponding day. Of all the combinations 4 have
been selected as test cases. The properties of their optimal solutions can be seen
in Table 2. The combinations with higher number of trips (szeged 1 and szegedf)
are workdays of the week, while szeged2 and szeged3 are instances taken from a
Sunday and Saturday respectively.

The running time given in the table is the running time in seconds needed to
find an optimal solution using the SYMPHONY solver on the time-space network
model of the problem.

Table 2: Optimal solution of the instances.

Instance Day type Running time(s) Vehicles Dense schedules
szeged1 Weekday 872 96 4
szeged2 Sunday 431 44 3
szeged3 Saturday 250 55 6
szeged4 Weekday 1179 96 3

As it is visible, the running times of the weekday instances can reach 20 minutes,
and solving all the 11 combinations of the company to optimality would take about
8500 seconds. The 2-2,5 hours of running time for calculating the vehicle schedules
is not acceptable from the perspective of a decision support system, as there are
the additional driver schedules and rosters that still have to be calculated for the
whole planning period (which is usually several weeks or months).

We will examine three aspects of the results given by the heuristics:

• The gap in cost of the result from the optimal solution of the MDVSP.

• The ratio of the running time of the heuristic compared to the running time
of the IP solver.

• The structure of the schedules.

When vehicle schedules are used as an input in driver scheduling, different driver
constraints have to be fulfilled. The most important of these are the maximum
consecutive driving time without any rest, and the total length of the schedule
given to a driver. We analyze the structure of the vehicle schedules using these
aspects. If a schedule violates any of the mentioned constraints, it is labelled as a
"dense" schedule.

68 Balázs Dávid and Miklós Krész

The results of the variable fixing heuristic of Gintner et al. can be seen in Table
3. Every solution shows a decrease in running time: the average running time of
the instances is about 40% of the original, which would mean a running time of
3000-3500 seconds (almost 1 hour) for all the vehicle schedules. The gap from the
optimum varies between 0,25%-0,40%.

Table 3: Solution of the variable fixing heuristic of Gintner et al..

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szegedi 0,27% 57,45% 96 6
szeged2 0,41% 31,55% 44 3
szeged3 0,37% 42,80% 55 6
szeged4 0,25% 35,69% 96 4

The heuristic that uses a depot-cost function for building the chains decreases
the running time to around 8,8% of the time needed for the IP solver. This means
that a solution is obtained in a couple of minutes (which is at most 4-5 in all test
cases). The total running time for all 11 combinations is between 10-15 minutes,
which is really good. However, the gap from the optimal solution has risen signifi-
cantly: in some cases, it was greater than 2,5%. As opposed to the variable fixing
heuristic, the greedy method fixes significantly more trips (~ 66% in comparison
with ~ 33%) into stable chains, which greatly reduce the size of the problem. How-
ever, the method is less precies because of the fact that more trips are fixed in
chains. Limiting the chain construction with the before mentioned alternative con-
straints (e.g. limit the size/length of the chains, or the types of chosen trips) will
lead to a solution with a better cost. On the other hand, less fixed trips also mean
a greater problem size, which results in an increase in running time. The results of
this method can be seen in Table 4.

Table 4: Solution using chains based on depot costs.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szegedi 2,63% 9,29% 100 3
szeged2 1,20% 3,71% 46 5
szeged3 1,12% 10,40% 57 7
szeged4 2,32% 8,40% 98 3

Building the chains based on depot-compatibility shows a more ordered struc-
ture than the method discussed above. Though more trips remain single, which
comes with a slight increase in running time (in average 11,63% of the IP solution,
which is about 15-20 minutes for all the combinations), it is still acceptable. The
gap became also significantly smaller, it is at most around 1,25%. This value can

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 69

be acceptable, though still seems a bit high. The cost can be improved in the same
way as in the previous case, but this will also result in an increase in running time.
However, the rate of decrease in the cost will be much smaller with the inclusion
of additional constraints. The results of this heuristic can be seen in Table 5.

Table 5: Solution based on depot-compatibility.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 1,14% 12,84% 97 2
szeged2 0,34% 6,50% 44 4
szeged3 0,38% 16,00% 56 8
szeged4 1,26% 19,42% 97 2

Taking into consideration the experience of the previous solution methods and
analyzing their difference from the solution of the IP solution, we decided to apply
a more structural method for building the chains. Using trips of the same bus-line
in a chain again leads to less fixed trips, which means an overall decrease in running
time to 24,41% of the original. This results in about 30-35 minutes to solve all the
combinations. On the other hand, the gap of the solutions from the optimum is
very favourable, not more than 0,60% in any of the instances, but there are much
lower ones around 0,20%, or even below. The results of this method are found in
Table 6.

Table 6: Solution using chains based on bus-lines.

Instance Gap from opt. Running time ratio Vehicles Dense schedules
szeged1 0,58% 16,28% 97 3
szeged2 0,03% 21,35% 44 5
szeged3 0,23% 26,00% 55 7
szeged4 0,59% 10,86% 97 3

The solution methods give about the same number of badly structured vehicle
schedules as the original IP solutions did. Using additional constraints that limit the
length of the chains, the number of the trips in the chains, or the minimal/maximal
idle time between two subsequent trips in a chain result in a lower number of
"dense" schedules besides the smaller gap from the optimum. However, this would
still affect the running time of the methods.

With the use of these "dense" schedules we tried to give a formal way of evaluat-
ing the "goodness" of the vehicle schedule structure with regards to driver schedul-
ing. While the number of badly structured schedules stays approximately the same
using any of the shown heuristics, the impact it has on a driver scheduling algo-
rithm can be really different depending on which vehicle heuristic is used. We

70 Balázs Dávid and Miklós Krész

experimented with several sequential vehicle and driver methods for the problem,
among which our most recent research can be found in [2]. Test results show that
using any of our proposed variable fixing methods gives a better cost at the end of
the driver scheduling phase than using either the optimal MDVSP solution, or the
heuristic of Gintner et al.

5.2 Solutions on random data input
As we mentioned earlier, we also tested the algorithms on random data instances.
We tried different problem sizes with 50, 250, 500 and 1000 trips respectively. Out
of the 4 methods above, the heuristic of Gintner et al. failed to find any chains in all
cases, while our heuristic using bus-lines rarely fixed any trips, and it always fixed
only less than 5 trips using these inputs. This means that both methods ended up
solving the original (or almost exactly the original) MDVSP, and thus their results
can not be analyzed properly.

The heuristic of Gintner et al. needs a large number of trips in the input that
can be executed from any of the depots. Besides this, these trips have to be close
enough to one another so that every solved SDVSP sub-problem schedules them in
the same sequence. If the trips that are compatible with every depot are scattered
on the timeline of the problem, then none or only some of the trips will be fixed in
chains. This scenario is likely to happen in the proposed random instances, which
explains the failure of the heuristic in finding chains.

The method based on bus-lines has the same problem on this randomly gener-
ated input. Real-life instances have different bus-lines, which roughly mean that
there are given p and q geographical locations, between which trips occur back and
forth with a given frequency. Random generated instances will not have this kind
of order in their timetable, thus this heuristic is likely to fail too.

The results of the other two heuristics can be seen in Table 7. The col-
umn marked with (cost) represent the heuristic that uses a cost function, while
the column marked with (depot) give results for the heuristic based on depot-
compatibility. The heuristic using a cost function arrived at about the same results,
as on the real-life instances, while the heuristic based on depot-compatibility also
fixed fewer trips than usual. As this method also depends on trips sharing the same
depot, it also has a more difficult time finding chains.

Table 7: Solution on random instances.

Instance Gap (cost) Gap (depot)
random_50
random_100
random_500
random_1000

0% 0%
0% 0%

1,57% 9 * 10_ 6%
1,54% 0,02%

Test experience on the random instances show that the data generated by our

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 71

method is still different from real-life instances in some structural aspects. Heuris-
tics that are based on structural properties appearing in real-life data (Gintner
et. al, bus-lines) can not be applied effectively to most of the generated input.
This means that we need a method that models the properties of real-life instances
more closely. The two main parts that have to be improved in the random gen-
erator are the possibility to create entire bus-lines randomly, and to model the
depot-compatibility distribution of trips in a better way.

6 Conclusions and Future Work
We examined the vehicle scheduling problem and its existing models and methods
in literature, to find one that fits the framework of an interactive decision support
system. Such a method is important, as transportation companies do not only need
to have an efficient long term planning software, but they must also have a way to
assist important decisions and give suggestions in a reasonable time. Running time
was an important criterion for such a method, but the value of the solution had to
stay close to the optimum as well.

We developed several solution approaches based on the core idea of an efficient
heuristic by Gintner et al. Each of our solution approaches became more refined
as the previous one, as their results were analyzed and taken into consideration at
every step. Our final heuristic comes with both an acceptable running time, and
a small gap from the optimal solution. Moreover, our test experience shows that
they also work well in a sequential decision support system.

We also examined the commonly used random generator method of Carpaneto et
al. However, our experience showed that the distribution of trips generated by their
algorithm was very different from real-time instances. We proposed an improved
version of this algorithm so that its output has a structure that is closer to real-life.
Extensive testing on these instances showed that some of our presented methods
also work nicely on random data as well, and produce an acceptable solution for it.

Test results show that the heuristic methods can be slightly improved. In order
to do this, more analysis has to be carried out into the structure of the solutions and
their differences from the schedules of the original IP solution. Further experiments
can also be made with the different parameters and limiting constraints discussed
in the paper.

The metric of "dense" schedules that we introduced to measure the effect of our
algorithms on future driver schedules turned out to be poorly defined. A different
analysis has to be carried out into the interaction of vehicle and driver schedule.
We have to give another metric by identifying the exact types of schedules that are
expensive to transform in the driver phase.

The random data generating algorithm also has to be improved further. As
we have seen at our test cases, the structure of results on random instances differs
from real-life cases in important elements. The most important of these is the in-
clusion of bus-lines, which are crucial to methods that take this structural property
into consideration. This requires additional study of the original timetables of our

72 Balázs Dávid and Miklós Krész

real-life cases, and tuning the parameters that affect the number and position of
geographical locations, and the frequencies of the trips.
A c k n o w l e d g m e n t s .

This work was partially supported by the Szeged City Bus Company (Tisza
Volán, Urban Transport Division) and Gyula Juhász Faculty of Education, Univer-
sity of Szeged (project no. CS-004/2012).

The second author was partially supported by the European Union and co-
funded by the European Social Fund through project HPC (grant no.: TAMOP-
4.2.2.C-11/1/KONV-2012-0010).

References
[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B. Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, 1993.

[2] Árgilán, V., Balogh, J., Békési, J., Dávid, B., Krész, M., Tóth, A. Driver
scheduling based on driver-friendly vehicle schedules, in Proceedings of
OR 2011 International Conference on Operations Research, pages 323-328,
Springer-Ver lag, 2011.

[3] Bertossi, A.A., Carraresi, P., Gallo, G. On Some Matching Problems Arising
in Vehicle Scheduling Models. Networks 17, pages 271-281, 1987.

[4] Békési, J., Brodnik, A., Pash, D., Krész, M. An integrated framework for bus
logistic management: case studies, in Logistik Management, pages 389-411,
Physica-Verlag, 2009.

[5] Bodin, L., Golden, B. Classification in vehicle routing and scheduling. Net-
works 11, pages 97-108, 1981.

[6] Bodin, L., Golden, B., Assad, A., Ball, M. Routing and Scheduling of Vehicles
and Crews: The State of the Art. Computers and Operations Research 10,
pages 63-212, 1983.

[7] Borndorfer, R., Lobel, A., Weider, S. A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. Computer-aided Systems
in Public Transport, pages 3-24, 2008.

[8] Bunte, S., Kliewer, N. An overview on vehicle scheduling models. Journal of
Public Transport 1(4), pages 299-317, 2009.

[9] Carpaneto, G., Dell'Amico, M., Fischetti, M., Toth, P. A branch and bound
algorithm for the multiple depot vehicle sheduling problem. Networks 19, pages
531-548, 1989.

[10] Dávid, B. Heuristics for the Multiple-Depot Vehicle Scheduling Problem, in
Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer
Science, pages 23-28, 2011.

Variable Fixing. Methods for the Multiple Depot Vehicle Scheduling Problem 73

[11] Gintner, V., Kliewer, N., and Suhl, L. A Crew Scheduling Approach for Pub-
lic Transit Enhanced with Aspects from Vehicle Scheduling. Computer-aided
Systems in Public Transport, pages 25-42, 2008.

[12] Gintner, V., Kliewer, N., and Suhl, L Solving large multiple-depot multiple-
vehicle-type bus scheduling problems in practice. OR Spectrum 27, pages
507-523, 2005.

[13] Kliewer, N., Mellouli, T., Suhl, L. A time-space network based exact optimiza-
tion model for multi-depot bus shceduling. European Journal of Operational
Research 175, pages 1616-1627, 2006.

[14] Pepin, A.-S., Desaulniers, G., Hertz A., Huisman, D. Comparison of Heuristic
Approaches for the Multiple Depot Vehicle Scheduling Problem. Journal of
Scheduling 12, pages 17-30, 2009.

Acta Cybernetica 21 (2013) 75-122.

Online Clustering on the Line with Square Cost
Variable Sized Clusters

Gabriella Divéki*

Abstract

In the online clustering problems, the classification of points into sets
(called clusters) is done in an online fashion. Points arrive one by one at
arbitrary locations, to be assigned to clusters at the time of arrival without
any information about the further points. A point can be assigned to an
existing cluster, or a new cluster can be opened for it. Existing clusters
cannot be merged or split. We study one-dimensional variants. The cost
of a cluster is the sum of a fixed setup cost scaled to 1 and the square of
the diameter of the cluster. The goal is to minimize the sum of costs of the
clusters used by the algorithm. In this paper we investigate the problem on
the line.

We examine two versions, both maintaining the properties that a point
which was assigned to a given cluster must remain assigned to this cluster,
and clusters cannot be merged. In the strict variant, the size and the exact
location of the cluster must be fixed when it is initialized. In the flexible
variant, the algorithm can shift the cluster or expand it, as long as it contains
all points assigned to it. We consider the online and the semi-online (the
input is sorted according to their coordinates from smallest to largest i.e.,
from left to right) versions of the above two variants.

We present the first online algorithms for the solution of the problem.
We describe algorithms for the strict and the flexible variant both for the
online and semi-online versions. We also give lower bounds on the possible
competitive ratio in all of the cases.

Keywords : online algorithms, competitive analysis, clustering problems

1 Introduction
In clustering problems, we seek for a partitioning of n demand points into k groups,
or clusters, while a given objective function, that depends on the distance between
points in the same cluster, is minimized. In the online version, the demand points

*Subotica Tech - College of Applied Sciences, Marka Oreskovica 16, 24000 Subotica, Serbia,
E-mail: diveki.gabriella@gmail.com

mailto:diveki.gabriella@gmail.com

76 Gabriella Divéki

axe presented to the clustering algorithm one by one. The online clustering algo-
rithm maintains a set of clusters, where a cluster is identified by its name and the
set of points already assigned to it. Each point must be assigned to a cluster at the
time of arrival; the chosen cluster becomes fixed at this time. The clusters cannot
be merged or split.

Usually, the quality of an online algorithm is measured by competitive analysis.
An online algorithm for a minimization problem is C-competitive if the algorithm
cost is never more than C times the optimal offline cost. (For a good introduction
to competitive analysis, see [3, 11, 17].) In the case of clustering problems, the
costs are based on the number of clusters and their properties, and they depend on
the exact specification of the problem.

In this paper we consider the 1-dimensional variant of the 2-dimensional online
clustering with variable sized clusters problem which is presented in [22]. In our
model points of the 1-dimensional Euclidean space arrive one by one. After the
arrival of a point we have to assign it to an existing cluster or to define a new
cluster for it without any information about the further points. The clusters are
intervals, the cost of each cluster is the sum of the constant setup cost scaled to 1
and the square of the length of the interval. The goal is to minimize the total cost
of the clusters.

We consider two variants, both having property that a point assigned to a given
cluster must remain in this cluster, and clusters cannot be merged. In the strict
variant, the size and the location of the cluster must be fixed when it is initialized.
In the flexible variant, the algorithm can shift the cluster or expand it, as long as
it contains all the points assigned to it.

In [6] the one-dimensional variant of our problem is examined (with linear cost),
where there is no restriction on the length of a cluster, and the cost of a cluster
is the sum of a fixed setup cost and its diameter. Both the strict and the flexible
model have been investigated and an intermediate model, where the diameter is
fixed in advance but the exact location can be modified is also studied. In [6], tight
bounds are given on the competitive ratio of any online algorithm belonging to any
of these variants. Tight bounds are given of l + \/2 ~ 2.414 on the competitive ratio
for the online problem in the strict model, and tight bounds of 2 in the semi-online
version. In the intermediate model, the results of the previous model were extended
and it is shown that the same bounds are tight for it as well. Using the flexible
model, the best competitive ratio dropped to $ = 1+2y/3 « 1.618. The semi-online
version of this model is solved optimally using a trivial algorithm which is discussed
as well in [6].

Several results are known on online clustering with fixed unit sized clusters. A
study of online partitioning of points into clusters was presented by Charikar et
al. [5]. The problem is called online unit covering. A set of n points needs to be
covered by balls of unit radius, and the goal is to minimize the number of balls used.
The authors designed an algorithm with competitive ratio 0(2dd\ogd) and gave a
lower bound of H(log d/ log log log d) on the competitive ratio of deterministic online
algorithms in d dimensions. This problem is strictly online: the points arrive one

Online Ciustering on the Line with Square Cost Variable Sized Clusters 77

by one, each point has to be assigned to a ball upon arrival, and if it is assigned to
a new ball, the exact location of this ball is fixed at this time. The tight bounds
on the competitive ratio for d = 1 and d = 2 are 2 and 4, respectively.

Chan and Zarrabi-Zadeh [4] introduced the unit clustering problem. Here the
input and goals are identical to those of unit covering, but the model of online
computation is different. This is an online problem as well, but it is more flexible
in the sense that the online algorithm is not required to fix the exact position of
each ball at the first time the ball is "used". The set of points which is assigned
to a ball (cluster) can always be covered by that ball and the ball can be shifted
if necessary. The goal is still to minimize the total number of balls used. Unit
covering and unit clustering are the same problem when observing in an offline
fashion, and the problem is solvable in polynomial time for d — 1. In the online
model an algorithm for the unit clustering problem has more flexibility because
of the optional shifting of a cluster. In [4], the authors showed that standard
approaches lead to algorithms of competitive ratio 2 (some of which are valid for
unit covering). The lower bound of 2 for unit covering in one dimension is valid even
for randomized algorithms. A non-trivial randomized algorithm was presented: a
^-competitive algorithm; also in [21] an -^-competitive randomized algorithm. In
[10] an improved deterministic algorithm was given (with competitive ratio |) and
in [8] an algorithm of competitive ratio |. Currently the best known lower bound
is | (see [10]).

In [4, 8, 10, 21] the two-dimensional problem is considered using the norm
instead of the ¿2 norm. Thus, "balls" are squares or cubes. The one-dimensional
algorithms are used as building blocks in most results in the mentioned papers.
This problem has a higher competitive ratio than the one-dimensional case (the
best known lower bound is ^ - see [8]). Other variants of the one-dimensional
online unit clustering problem were studied in [9].

Our problem is also related to online facility location [7, 12, 13, 14, 15, 19],
where the input is a sequence of points and the algorithm has to partition them
into clusters and it has to assign a facility to each cluster. On the other hand in
facility location the cost of the cluster differs: it is the sum a fixed setup cost and
the service cost which is the total distance of the points from a facility assigned to
the cluster. In some of the online facility location models it is allowed to merge
clusters or to re-assign points.

Our results: We present the first online algorithms for the solution of the
problem. We present algorithms for the strict and the flexible variant both for
the online and semi-online versions. In this paper, when we refer to a semi-online
algorithm we mean an online algorithm for restricted set of inputs in which the
points arrive one by one when they are sorted according to their coordinates from
smallest to largest (i.e., from left to right).We also give lower bounds on the possible
competitive ratio in all of the cases.

We analyze algorithms and give their competitive ratio. We prove that the
GRIDa algorithm is 3-competitive in the strict model if we use appropriate size
for the cells for the grid. We present the algorithm SOSMa for the semi-online
strict model and prove that it has competitive ratio 2 if the size of the cells are

78 Gabriella Divéki

within appropriate bounds. We also give lower bounds in the strict model for both
variants: 2.2208 for the online and 1.6481 for the semi-online variant.

We extend the algorithm to the flexible model and we prove that it is 2-
competitive if we use appropriate size for the cells. In this model we show that
no online algorithm can have smaller competitive ratio than 1.2993. Also, we give
the lower bound for the semi-online flexible model: 1.1991144.

In the rest of the paper for an algorithm A and input I we use A(I) to denote
the cost of A on input I.

2 The offline problem
As far as we know the offline clustering with this objective function have not been
studied yet. Many papers are published on the offline version where the number
of clusters is a given constant k. Usually the cost is the sum of the diameters (see
[16] and its references for details) but there are also some results on the models
where it depends on the powers of the diameters (see [2]), and even for general cost
functions (see [18]). All of these problems are NP-hard. If the number of clusters is
not fixed and the cost depends on the diameters then the problem is polynomially
solvable for trees see [20] and it has not been studied for more general metric spaces
yet.

Lemma 1. The offline problem can be solved optimally by the dynamic program-
ming algorithm DP using the algorithm for the variation of the k-median problem.

This is an interesting transition: our offline clustering problem on the line with
linear objective function can be solved with a simple greedy algorithm with 0(n •
logn) time complexity (see [6]), the problem on the line with squared cost can be
solved by a standard 0(n3) time dynamic programming algorithm. On the other
hand the 2-dimensional case seems to be much harder, we conjecture that it is
NP-hard.

The input is n request points (xi, ..., xn). The dynamic programming algorithm
is shown in Algorithm 1.

Algorithm 1 Algorithm DP

• The request points are sorted by their coordinates in ascending order.

• Define the subproblem F(i,r) (i > r): the first i request points are di-
vided into r clusters. Then the optimal cost of the clustering problem is
minr(F(n,r) +r).

• The values of F(i, r) can be calculated by the following recursions.
F(i, 1) = (n - xfy2

F(i, r) = mirij=r{F(j - 1, r - 1) + (Xi - x^)2}

Online Ciustering on the Line with Square Cost Variable Sized Clusters 79

The dynamic programming algorithm correctly calculates because if the last
cluster is [xj,xi\ then we have to assign the first j — 1 request points into r — 1
clusters optimally.

Based on these steps of the dynamic programming algorithm a 2-dimensional
array can be filled sorted by the second dimension r in ascending order. Then one
can get the optimal solution from this table. As the algorithm DP fills a n n x n
table and an element of the table can be computed in 0(n) steps, therefore the
time complexity of algorithm DP is 0(n3).

3 The strict model

3.1 The online problem
The GRID algorithm which uses a grid in the 1-dimensional space is defined in
[9] for the problem of unit covering with rejection. In [22] the GRIDa algorithm
was investigated in 2 dimensions for the strict model; we consider its special 1-
dimensional case and also the analysis is similar.

Algorithm GRIDa works as follows. Upon arrival of the first point in the
interval Ik = (ha, (k + l)a] for every integer —oo < k < oo, a new cluster is opened
in the interval [ka, (k + l)a] and all future points in this interval are assigned to this
cluster. The competitive ratio of GRIDa is determined by the following theorem.

Theorem 1. The competitive ratio of algorithm GRIDa is

max{F([-2 + + i j) , F(\-2 + + 2a2}

where F(k) = ^ ¡ ^ A k > 1.

Proof. Consider an arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of this cluster.

k-a < r< (k+l)-a

k-a

Figure 1: The optimal cluster intersects at most k + 2 clusters from the grid

Suppose first that k • a < r < (k+ 1) • a for an integer k > 1. Then this optimal
cluster intersects at most k + 2 clusters from the grid (see Figure 1). Therefore,
if we consider only the requests of this optimal cluster then GRIDa has at most

80 Gabriella Divéki

(1 + a2)(k + 2) cost. Thus the competitive ratio on this subsequence is at most
(i+a2Kfc+2) < (i+0(fc+2) = F(ky The derivative of this function is

_ (1 + a2) • (1 - 4fcg2 — k2a2)
(1 + k2a2)2

F'(k) is 0 at k* = - 2 + y j 4 + The second derivative of F(k) is

_ 2 • (1 + a2) • a2 • (k3a2 - 3k + 6k2a2 - 2)
(} ~ (k2a2 + I)3

while F"{k*) < 0 for every a. Therefore F'(k) is positive before k*, and it is
negative after k*. This yields that F(k) has maximum at k*. We have to consider
the positive integers, so the maximum is attained either at k = [—2 + ^4 + Aj-J or

at fc= \ - 2 + y /4 + ^] .
Now suppose that r < a. Then the cluster intersects at most 2 clusters from

the grid. Therefore, considering the requests of this cluster GRIDa has at most
2 • (1 + a2) cost. Thus the competitive ratio on this subsequence is at most (2 +
2a2) /(l + r2) < 2 +2a 2 .

Now we prove that the analysis is tight. Consider an arbitrary a and let e be
a small positive number. If the request sequence consists of the points — e and £
then the optimal solution uses only one cluster and has cost 1 + (2e)2 while the
algorithm uses two clusters and has cost 2(1 + a2). Since e can be arbitrarily small
we obtain that the competitive ratio is not smaller than 2 + 2a2.

-jí2—F- I j I

Figure 2: The interval with endpoints — e and ka + e

Now suppose that all the points are requested in the interval with endpoints — e
and ka + e (see Figure 2). If we use only one cluster then the cost is 1 4- (ka + 2e)2.
GRIDa uses k+2 cells, thus its cost is (l+a2)(fc+2). This yields that a lower bound
on the ratio of the cost of GRIDa and the optimal cost tends to F(k) as e tends to
0. Therefore we obtained that the competitive ratio of GRIDa is not smaller than
F(k) for any positive fc, and this shows the tightness of our analysis. •

Corollary 1. The smallest competitive ratio of GRIDa is obtained if ^^ < a <
then the competitive ratio of the algorithm is 3.

Proof. First observe that F(k) = 3 for k — 1 for each value of the parameter a. If
< a < then F(k) < 3 for all integers k > 1 and also 2(1 + a2) < 3, thus

the algorithm is 3-competitive. If a > -4= then 2(1 + a2) > 3 . If a < —j= then

Online Ciustering on the Line with Square Cost Variable Sized Clusters 81

F(2) > 3, therefore if a £ then the competitive ratio of GRIDa is larger
than 3.

•
Remark 1. The competitive ratio of any online algorithm for the strict model is
at least 2.2208. The proof of this lower bound in [22] (where the 2-dimensional
variant of this problem is studied) uses one dimension so it also applies in our case.

3.2 The semi-online strict model
In the semi-online model the points arrive in ascending order. A possible algorithm
to solve this problem is SOSMa.

Algorithm 2 Algorithm SOSMa

1. Let p be the new point.

2. If the algorithm has a cluster which contains p, then assign p to that cluster.

3. Else, open a new cluster [p, p + a] and assign p to the new cluster.

Theorem 2. The competitive ratio of algorithm SOSMa is

max{F([—1 + y i + l j) , F (r - l + ^ + ¿ 1) , 1 + a2 }

where F(k) = ^tffl&A k >

Proof. Consider and arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of this cluster.

Suppose first that k • a < r < (k + 1) • a for an integer k > 1. Then this optimal
cluster intersects at most k + 2 clusters (see Figure 1). We have to consider only the
clusters which left endpoint is bigger than or equal to the left endpoint of this opti-
mal cluster. The eventual other cluster which is hanging into this optimal cluster is
considered with the optimal cluster on the left. Therefore, if we consider only these
clusters then SOSMa has at most (1 + a2)(k + 1) cost. Thus the competitive ratio
on this subsequence is at most (1 + A i + 1) < ^ t O + i " ^ = T h e derivative of
this function is

_ (1 + a2) • (1 — 2fcq2 — fc2q2)
[) ~ {l + k2a?f

F'(k) is 0 at k* = - 1 + + The second derivative of F(k) is

82 Gabriella Divéki

F"(k) =
2 • (1 + a2) • a2 • (fc3a2 - 3fc + 3k2g2 - 1)

(/c2a2 + l)3

while F"(k*) < 0 for every a (the calculations have been made in MATLAB). This
yields that F(k) has maximum at k*. We have to consider the positive integers, so
the maximum is attained at k = [—1 + JI + J or at k = [—1 + JI +

Now suppose that r < a. Then the cluster intersects at most 2 SOSMa clusters,
but we have to consider only the cluster which left endpoint is bigger than or equal
to the left endpoint of this optimal cluster. Therefore, considering the requests of
this cluster SOSMa has at most 1 + a2 cost. Thus the competitive ratio on this
subsequence is at most (1 + a 2) / (l + r2) < 1 + a2.

Now we prove that the analysis is tight. Consider an arbitrary a and let e be
a small positive number. If the request sequence consists of one point then the
optimal solution has cost 1 and the algorithm uses one cluster and has cost 1 + a2.
We obtain that the competitive ratio is not smaller than 1 + a2.

Now suppose that all the points are requested in the interval with endpoints
—e and ka + e. If we use only one cluster then the cost is 1 + (ka 4- 2e)2. SOSMa

uses k + 1 cells, thus its cost is (1 + a2)(k 4- 1). This yields that a lower bound on
the ratio of the cost of SOSMa and the optimal cost tends to F(k) as e tends to
0. Therefore we obtained that the competitive ratio of SOSMa is not smaller than
F(k) for any positive k, and this shows the tightness of our analysis. •

Corollary 2. The smallest competitive ratio of SOSMa is obtained if ^ < a < 1,
then the competitive ratio of the algorithm is 2.

Proof: First observe that F(k) = 2 for k = 1 for each value of the parameter
a. If < a < 1 then F(k) < 2 for all integers k > 1 and also 1 4- a2 < 2, thus
the algorithm is 2-competitive. If a > 1 then 1 + a2 > 2. If a < then F(2) > 2,
Therefore if a £ 1] then the competitive ratio of SOSMa is larger than 2.

Theorem 3. The competitive ratio of any semi-online algorithm for the strict
model is at least 1.6481.

Proof. Let the first request point be pi — 0 and let ai be the length of the cluster
which is opened by the algorithm. Let the second request point be P2 = ai + £•
Then the online algorithm opens a new cluster with length a2 > 0.

• If ai + e < 0.83035 then

— if a2 < 0.30817 then another request point arrives: = a\ + 0,2 + 2e.

A(I) 3 + af + a2 + a2 3 + a? + 4- a\ 3 + a? 4-
OPT(I) ~ 1 + (ai + q2 + 2e)2 1 + (qj + q2)2 ~ 1 + (01 + a2)2

Online Ciustering on the Line with Square Cost Variable Sized Clusters 83

3 + 0.830352 + 0.308172

- 1 + (0.83035 + 0.30817)2 > '

The inequality is valid because the ratio is decreasing both in ai and a2;
£ 0, ai < 0.83035, 0 < a2 < 0.30817 and a3 > 0.

if a2 > 0.30817 then the request sequence stops and we have:

A(I) > 2 + qf + 0% 2 + al+aj
OPT(I) ~ 1 + (ai + e)2 1 + a2

2 + 0.830352 + 0.308172

* 1 + 0.830352 > L 6 4 8 1

The inequality is valid because the ratio is decreasing both in ai and a2;
£ 0, ai < 0.83035 and a2 > 0.30817.

If ai + e > 0.83035 then

— if a2 < 0.77894 then another request point arrives: p3 = + a2 + 2e.
The optimal solution may use 2 clusters ([pi,pi] and \p2,pz\) and the
estimation follows:

A(I) 3 + aj + a\ + q§ 3 + af + +
OPT(I) ~ 2 + (02 + e)2 2 + 4

3 + a\ + a\ 3 + 0.830352 + 0.778942

" 2 + a2 " 2 + 0.778942 > L 6 4 8 1

The inequality is valid because the ratio is decreasing both in a\ and a2;
£ -> 0, ai < 0.83035, 0 < a2 < 0.77894 and a3 > 0.

— if a2 > 0.77894 then the request sequence stops. The optimal solution
may use 2 clusters ([pi,pi] and [p2,p2]) and we have:

A(I) 2 + of + q2 2 + 0.830352 + 0.778942

OPT(T) ~ 2 " 2 > L 6 4 8 1

The inequality is valid because the ratio is decreasing both in a\ and a2;
ai < 0.83035 and a2 > 0.77894.

•

84 Gabriella Divéki

4 The flexible model

4.1 The online problem
In the case of 1 dimension with the linear cost the ECC (extend closed cluster)
algorithm (see [6]) has competitive ratio ~ 1.618. In [22] it is extended to
2-dimensions and it is shown that the extended algorithm ECC is not constant
competitive. If we consider the 1-dimension variant with the square cost we obtain
that it is neither constant competitive. The proof of that claim is the same as in
[22]. As the proof shows an algorithm should limit the size of the clusters. The
following extension of the GRIDa algorithm satisfies this property.

Algorithm 3 Algorithm FGRIDa

1. Let p be the new point.

2. If the algorithm has a cluster whose current associated interval contains p,
then assign p to that cluster, and do not modify the associated interval of the
cluster.

3. Else, consider the cell from the grid which contains p.

a) If this cell does not have a cluster, then open a new cluster and assign
p to the new cluster. In this case the current cluster consists of a single
point p.

b) Otherwise, extend the cluster contained in the interval to cover p.

Theorem 4. The competitive ratio of algorithm FGRIDa is 2 if < a < 1.

Proof. Consider an arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of the side of this cluster.

Suppose that k-a <r < (k+1) - a for an integer k > 1. Then the optimal cluster
intersects at most k + 2 cells of the grid. The cells which are not at endpoints of the
optimal cluster might be completely covered by FGRIDa. Consider now the end
cells, denote by A\ and A2 the square costs of the intervals covered by the optimal
cluster in these end cells and let A = Ai + A2. At these end cells of the optimal
cluster we have two possibilities. If the cell has no intersection with other optimal
clusters, then OPT and FGRIDa cover the same parts of the cell. If the cell
intersects at least one other optimal cluster, then it might be completely covered
by FGRIDa but then its online cost is divided between at least two optimal clusters
and we have to consider only the half of this cost here which is | • (1 + a2). Therefore
we obtained that assigning a total cost 2 • +a2) + A from the online cost to these
end cells we cover the full online cost by the costs assigned to the optimal clusters.
Thus we assigned at most (1 + a2) • k + 2 • ¿(1 + a2) + A = (k + 1)(1 + a2) + A

Online Ciustering on the Line with Square Cost Variable Sized Clusters 85

cost from FGRIDa(I) to this optimal cluster. The cost of the optimal cluster is
at least 1 + k2a2 + A. If we consider the ratio of these costs we obtain that it is

(k + 1)(1 + a2) + A (fc + !)(! + a2)
k2a2 + 1 + A - k2a2 + 1 '

If k = 1 then this ratio is 2 for each a. For k > 1 and a > 1 this ratio is smaller
than 2.

Now suppose that r < a. Then the optimal cluster intersects at most 2 cells
from the grid. At these cells again we have two possibilities. If the cell has no
intersection with other optimal clusters, then OPT and FGRIDa cover the same
parts of the cell. If the cell intersects at least one other optimal cluster, then it might
be completely covered by FGRIDa but then its cost is divided between at least
two optimal clusters and we have to consider only the half of this cost here which
is + a2). Therefore we obtained that assigning a total cost 2 • |(1 + a2) + r2 =
1 + a2 + r2 from FGRIDa(I) to this cluster we cover FGRIDa(I) by the costs
assigned to the optimal clusters. The cost of the optimal cluster is at least 1 + r2.
If we consider the ratio of these costs we obtain that it is

1 + r2

On the other hand 1 + a2 < 2 if a < 1.

• F! H ¡1 FJ 3
' F 'J I1 Y I1 Y
0 a 2a 3a 4a 2na

Figure 3: The competitive ratio of FGRIDa: the n intervals with endpoints (2i —
l)a — e and 2ia + e, i = 1,..., n

Now we prove the tightness. Fix an a and let e > 0 be a small positive number.
Consider the input In where all the points in the n intervals with endpoints (2i —
l)a — e and 2ia + e, i= 1,...,n are requested (see Figure 3).

Then a solution can use each such interval as a cluster therefore the cost of
OPT is at most n • (1 + (o + e)2). Now investigate the behavior of FGRIDa. It
covers completely the grid cells with endpoints ia and (i + l)a, i — 1,..., 2n — 1 and
with £2 cost the 2 end cells.

Therefore we obtained that FGRIDa(In) > (1 + a2)(2n - 1) + 2(1 + e2). The
ratio FGRIDa(In)/OPT(In) tends to 2 as £ tends to 0 and n tends to oo, thus we
proved that the algorithm is not better than 2-competitive. •

Theorem 5. The competitive ratio of any online algorithm for the flexible model
is at least 1.2993.

86 Gabriella Divéki

Proof. Suppose that there exists an online algorithm with smaller competitive ratio
than 1.2993, denote it by A. Consider the following input sequence. The first two
points are Pi = 0 and p2 — 0.878. Now distinguish the following cases.

• If A assigns these points to different clusters then three more points arrive:
P3 = 0.329, P4 = 0.439 and p5 = 0.549. The optimal algorithm uses only
one cluster and its cost is 1 + 0.8782 = 1.770884. The cost of the online
algorithm is at least 2 + 0.3292 + 0.4392 = 2.300962 (it is the case when A
extends both existing clusters "inward": one to the nearest new point and
the other to the second new point - see Figure 4), thus the ratio is at least
2.300962/1.770884 > 1.2993, which is a contradiction.

• If A assigns the points to one cluster then two more points arrive ps = —0.355
and p4 = 1.233. Then the optimal algorithm uses two clusters, both of them
have size 0.355, thus the optimal cost is 2 • (1 + 0.3552) = 2.25205. The cost
of A is at least 2 + (0.878 + 0.355)2 = 3.520289, thus the ratio is at least
3.520289/2.25205 « 1.563149, which is a contradiction.

Figure 4: Lower bound in the flexible model: the cost of the online and offline
algorithms

We obtained contradiction in both cases, thus we proved the theorem.

4.2 The semi-online flexible model
Theorem 6. The competitive ratio of any semi-online algorithm for the flexible
model is at least 1.1991144-

Proof. Suppose that there exists a semi-online algorithm with smaller competitive
ratio than 1.1991144, denote it by A. Let the first two request points be pi = 0
and p2 = 0.81725.

• If the semi-online algorithm A puts them into one cluster then another request
point arrives ps = 1.29147. The cost of the semi-online algorithm is at least
1 + 1.291472 = 2.6678947609 (it is the case when the algorithm extends the
existing cluster to the new point) while the optimal offline algorithm uses two
clusters with pi in the first and p2 and pz in the second cluster. Its cost is
2 + 0.474222 = 2.2248846084, so we obtain:

0.439 -,

- H —
) \ 0.549 ,

0.329 0.878

•

Online Ciustering on the Line with Square Cost Variable Sized Clusters 87

All) 2.6678947609 > « 1199116 > 1 1991144
OPT(I) - 2.2248846084 A - i y a i A 0 > ^ ^

• If the semi-online algorithm A puts pi and p2 into two clusters, the sequence
stops. The offline algorithm puts them into one cluster, so the competitive
ratio is:

All) 2
> t r ^ r ^ r ~ 1.199114409 > 1.1991144 OPT(I) ~ 1 + 0.817252

In both cases we have contradiction so the claim of the theorem holds.
•

Remark 2. We note that a similar modification to the algorithm SOSMa like
in the online case (modification of GRIDa that led to the algorithm FGRIDa)
does not result in a better competitive ratio than 2 (like in the online case with
algorithm FGRIDa).

References
[1] Anagnostopoulos, A., Bent, R., Upfal, E., and Van Hentenryck, P. A simple

and deterministic competitive algorithm for online facility location. Informa-
tion and Computation, 194(2), 175-202, 2004.

[2] Bilo, V., Caragiannis, I., Kaklamanis, C., and Kanellopoulos, P. Geometric
Clustering to Minimize the Sum of Cluster Sizes. ESA '05, LNCS 3669, pp.
460-471, 2005.

[3] Borodin, A. and El-Yaniv, R. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[4] Chan, T. M. and Zarrabi-Zadeh, H.. A randomized algorithm for onine unit
clustering. Theory of Computing Systems, 45(3), 486-496, 2009.

[5] Charikar, M., Chekuri, C., Feder, T., and Motwani, R. Incremental clustering
and dynamic information retrieval. SIAM Journal on Computing, 33(6), 1417-
1440, 2004.

[6] Csirik, J., Epstein, L., Imreh, Cs., and Levin, A. Online Clustering with
Variable Sized Clusters. Algorithmica, DOI: 10.1007/s00453-011-9586-2, 2011

[7] Diveki, G. and Imreh, Cs. Online facility location with facility movements.
Central European Journal on Operations Research, 19(2), 191-200, 2011.

88 Gabriella Divéki

[8] Ehmsen, M. R. and Laxsen, K. S. Better bounds on online unit clustering. In
Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT2010), pages 371-382, 2010.

[9] Epstein, L., Levin, A., and van Stee, R. Online unit clustering: Variations on
a theme. Theoretical Computer Science, 407(1-3), 85-96, 2008.

[10] Epstein, L. and van Stee, R. On the online unit clustering problem. ACM
Transactions on Algorithms, 7(1), Article 7 (18 pages), 2010.

[11] Fiat, A., Woeginger, G. J., editors. Online algorithms: The State of the Art,
LNCS 1442. Springer-Verlag Berlin, 1998.

[12] Fotakis, D. Incremental Algorithms for Facility Location and k-Median. The-
oretical Computer Science, 361, 275-313,. 2006.

[13] Fotakis, D. A Primal-Dual Algorithm for Online Non-Uniform Facility Loca-
tion. Journal of Discrete Algorithms, 5, 141-148, 2006.

[14] Fotakis, D. Memoryless Facility Location in One Pass. Proceedings of STACS
'06, LNCS 3884, 608-620, 2006.

[15] Fotakis, D. On the Competitive Ratio for Online Facility Location Algorith-
mica, 50(1), 1-57, 2008.

[16] Gibson, M., Kanade, G., Krohn, E., Pirwani, I. A., and Varadarajan, K. On
Metric Clustering to Minimize the Sum of Radii. Algorithmica, 57, 484-498,
2010.

[17] Imreh, Cs. Competitive analysis. In Algorithms of Informatics Volume 1, ed.
Antal Iványi, mondAt, Budapest 2007, 395-428.

[18] Levin, A. A generalized minimum cost k-clustering. ACMTrans. Algorithms,
5(4), Article 36, 2009.

[19] Meyerson, A. Online facility location. In Proceedings of the 43nd Annual
Symposium on Foundations of Computer Science (FOCS2001), pages 426-431,
2001.

[20] Shah, R. and Farach-Colton, M. Undiscretized dynamic programming: faster
algorithms for facility location and related problems on trees. In Proc. of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002),
pp. 108-115, 2002.

[21] Zarrabi-Zadeh, H. and Chan, Т. M. An improved algorithm for online unit
clustering. Algorithmica, 54(4), 490-500, 2009.

22 Diveki, G. and Imreh, Cs. An online 2-dimensional clustering problem with
variable sized clusters Submitted to OPTE, 2011.

Acta Cybernetica 21 (2013) 89-122.

Spectrum Skeletonization: A New Method for
Acoustic Signal Feature Extraction

Tibor Dobján* and Gábor Németh1

Abstract

Vibration Analysis Tests (VAT) and Acoustic Emission tests (AE) are
used in several industrial applications. Many of them perform analysis in
the frequency domain. Peaks in the power density spectrum hold relevant
information about acoustic events. In this paper we propose a novel method
for feature extraction of vibration samples by analyzing the shape of their
auto power spectrum density function. The approach uses skeletonization
techniques in order to find the hierarchical structure of the spectral peaks.
The proposed method can be applied as a preprocessing step for spectrum
analysis of vibration signals.

Keywords: spectrum analysis, skeletonization, spectrum segmentation, fea-
ture extraction

1 Introduction
Acoustic events play an important role in several fields of industries [10,25,27,30,
32]. Nowadays, vibration analysis tests are one of the applied methods for non-
destructive testing. Vibration analysis tests are used to diagnose rotating machines
[31] and for detection of hit and leakage [8]. With acoustic emission burst analysis
we can draw conclusions about existing cracks and crack propagation [26].

These methods investigate acoustic samples by extracting some features of the
vibration signal. There are three major methods for vibration signal feature ex-
traction:

1. In time domain some statistical parameters (e.g., root mean square, mean,
variance, skewness, kurtosis) can be computed [17,27]. There are also time
synchronous average signal (TSA) based methods, filter based methods, and
stochastic methods [8,28].

'College of Dunaújváros, Hungarian Acoustic and Industrial Diagnostic Testing Laboratory,
E-mail: dobjan.tiborSemail.duf.hu

tUniversity of Szeged, Institute of Informatics, E-mail: gnemethSinf.u-szeged.hu

90 Tibor Dobján and Gábor Németh

2. Frequency domain analysis is used to investigate the frequency components of
periodic signal samples [17,32,36]. Applications of frequency-domain analysis
use Fast Fourier Transformation (FFT) [14].

3. Time-frequency domain analysis can be used for non-periodic and non-sta-
tionary signal samples, like bursts [17,36]. Applications of time-frequency
domain analysis use continuous wavelet transforms (CWT) [23].

In this paper we propose a novel method for feature extraction from the auto
power spectrum density (APSD) function. Our approach produces an automatic
partitioning of a given APSD function along the frequency axis, where each range
contains a dominant frequency component. Our method ensures that the bounds
of frequency ranges, referred to as separators in the following, are defined within
the local minima of the APSD function: by this way no relevant peak in the power
spectrum density is split to disjunct frequency ranges. The peaks of the APSD
function are detected by the skeletonization method [12,29]. Skeleton is a shape
descriptor that summarizes the general form of objects. Since skeletons provide
also structural properties of the power spectrum, each separator can be located
between two skeletal branches.

The rest of this paper is organized as follows: Section 2 gives a short description
about our used data. Section 3 details how to determine the relevant frequency
ranges of the APSD function. Section 4 contains discussion about some possible
improvements and connecting problems of our basic methods. The main conclusions
of this document are summarized in Section 5.

2 Collection of recorded signals
Two datasets of acoustic events are examined in this paper. First, we have collected
some acoustic emission event from Gleeble-measurements, however, the count of
recorded signals was not large enough for a reliable evaluation, hence we also created
a dataset of noises from knocks. Each event was registered manually.

2.1 Gleeble-measurements
In the Gleeble-laboratory of College of Dunaújváros we carried out a measurement
by Gleeble 3800 thermo-mechanical physical simulator, which is able to preform
tensile tests and hot deformation on steel specimens.

In the test we put a standard tensile test specimen into the jaws of Gleeble
(see Figure 1). We placed two acoustic emission sensors at the end of the specimen
behind the jaws. The specimen was then heated according to the heating profile (see
Figure 2). It was heated up at 10 °C/s to 900 °C, and then held at temperature
for 120 seconds. The specimen was subsequently controlled cool at 10 °C/s to
approximately 400 °C and free cooled the rest of the way to room temperature.

During the test, we listened to acoustic emission events in the 1MHz frequency
range (Fs = 2MHz). The measurement systems stored the whole time-series during

Spectrum Skeletonization: A New Method ... 91

Figure 1: Drawing of a test specimen to be put into the jaws of Gleeble

Time (sec)

Figure 2: Thermal profile of the test specimen

the test. We found that there is an artificial periodicity in the most of events (see
Figure 3(a)).

We found real acoustic events in the beginning of the cooling period (see Figure
3(b)). These acoustic events come from the observed physical phenomenon that
can be used in the industrial applications. Unfortunately, we have only a few
recorded signals of the artificial periodic noise. To show that our method produces
different spectrum segmentation for different source of noises, we created a database
of acoustic events.

92 Tibor Dobján and Gábor Németh

sum síin* SÍIM sum siitx simt siios SÍM* si¿» su» siisto suhu ha» síim szhm szjiu v.á» sin» szjm siáu 5¿¿w 1Í41 U4I liö 12*1 12*1 liU 12S1 üfl Lh« 12*1 12*1 12*1 12*1 12M 1241 1241 1241 1241 1241 1241 1241
Twnt

(b)

Figure 3: Time series of artificial periodic noise (a). Acoustic events on the cooling
period (b). Signal segments marked by squares are periodic artificial, while the
segments marked by ellipses are real acoustic events.

2.2 Knocking noises

The acoustic events were recorded by a general headset microphone to a single
channel WAV file with 44100Hz sampling frequency (Fs = 44100Hz). As for gath-
ering well-identified short time acoustic signal, we have dropped 6 objects having
different shapes and materials into a china and a plastic dishes: toothpick (wood),
match (wood), staple (metal), safety pin (metal), screw (metal), and nail (metal).
Knocking these objects in the dishes indicates 12 strict classes of noises, but as for
considering the material of objects, there are four classes taken into the account.
Each of the 12 types of noises contains 100 recorded signals.

The recorded signals have various lengths, hence we had to cut the investigated
signals for the same size (i.e., 1024 samples (see Figure 4)). These parts are cutted
out around the first location where the signals reach their maximum amplitudes
(see Figure 4). One may think that there is no difference between recorded sig-
nals, however there were various distances between the dish and the microphone,
moreover the dropping height of the objects also differed during the recording.

3 Feature extraction from vibration signals

In this section, we will explain our proposed method for feature extraction.
Let x(n) be a vibration signal containing n sampled data and the ith value of

x{n) is denoted by Xi (i = 1 , . . . , n).
Let us denote fmax the maximal frequency that is flf, and let A / the frequency

resolution, where Af = " " . Furthermore, we denote the set of investigated
2

frequencies by T = {Af, 2 A / , . . . , fmax}.

Spectrum Skeletonization: A New Method ... 93

vibration signal of knocking safety-pin in china

vibration signal of knocking match in plastic dish

Figure 4: A various vibration signals using 1024 samples. The sampled data begins
l /4n before and ends 3/4n after location of the maximum peak amplitude (where
n is the number of samples).

To compute the frequency spectrum we use Fast Fourier Transform (FFT). The
APSD function of vibration signal x(n) is computed by Equations (1) and (2) [14].

apsd = log (-\FFT((s(n))|) (1)

APSD(f) = min (apsd) + apsd(i),
f = Af-i, (i = l , . . . , n) (2)

We use only the positive half of the APSD function. Figure 5 shows an example
for an APSD function.

Next, the APSD function of signal x(n) is mapped into a quadratic binary image
T\psd :

IAPSD(U,V) =
1 if v < n APSD(u • Af)

2 max(APSD(i)) ieJ7 (3)
0 otherwise

In / a p s d the background is white and black points represent the quantized
values below the APSD function.

94 Tibor Dobján and Gábor Németh

10000 20000

Figure 5: APSD function of a vibration signal

After we created the APSD function image /APSD, the dominant peaks and
frequency ranges have to be determined. First we extract the center line of the
APSD function image by a topology preserving skeletonization algorithm [12,29].
Here we used a thinning algorithm [3,6,12,13,18,19,20] to extract the centerline,
since it is the most efficient skeletonization technique for digital pictures. Skeletal
branches are growing into dominant peaks of function. Furthermore, the centerline
indicates the hierarchical structure of peaks as well.

As a next step, the lowest connected skeletal curve segments (i.e., that are
depicted with thick gray curve in Figure 6(b)) are removed. This curve segment
is characterized as the set of skeletal points having the maximum y coordinate
in each column in image /APSD (if the (0,0) point of /APSD is its upper-left cor-
ner, and y coordinates increasing vertically down). This provides that the skeletal
branches growing into the peaks of APSD function will be disconnected at their
roots. Removal of the lowest curve segments disconnects only the skeletal branches
into isolated skeletal trees, but does not affect the hierarchy of the side branches
in the trees (see Figure 6(b) and (c)). The width of a tree can be determined by
measuring the horizontal distance between the endpoints of the most left and most
right branch of the tree. It is not hard to see that, the ranges (i.e., the widths) of
the skeletal trees indicate disjunct intervals in the whole frequency range, however
the union of these disjunct intervals does not form to whole frequency range. Our
aim is to partition the whole frequency range into intervals by separators such that
the union of the intervals matches the length of the whole range, with no peaks
split by any of the separators.

Spectrum Skeletonization: A New Method . . . 95

(b) Spectrum skeleton (centerline)

(c) Spectrum skeletal trees

Figure 6: Spectrum is mapped to a binary image (a), centerline (b), and the skeletal
trees (c) of the spectrum. Note that in (b) the lower skeletal branches (that ensures
the connectedness) of the skeleton is removed. Hence only the skeletal trees are
left.

96 Tibor Dobján and Gábor Németh

Let T (l) and 7~(2) two adjacent skeletal trees. Furthermore, let us denote the
most left and most right upper endpoint of tree T by 77 and Tr, respectively. We
propose that, the separator line between T(l) and 7~(2) is chosen at the frequency,
where the APSD function reaches its minimum between T (l) r and T(2); (see Figure
7). Our method is sketched in Algorithm 1.

Figure 7: A part of the spectrum image is enlarged (left), and the location between
the skeletal trees (right). The separator is drawn where the APSD function reaches
its minimum between skeletal trees T (l) and T(2).

Algorithm 1 Partition the APSD function to dominant frequency ranges
Func Partition APSD (APSD (.F))

1: Map the APSD(F) function to the image I. Getting a binary picture about
the APSD function

2: Extracting centerlines of image I.
3: for i = 1 to n /2 do Split centerlines into skeletal trees.
4: Delete (i.e., change it to white) the skeletal points with maximum y coordi-

nate in column i.
5: end for
6: Let c be the count of skeletal tree. Labeling is used.
7: Let the trees are labeled from 1 to c from left to right (i.e., the left most tree

has Label 1, and the right most tree has Label c).
8: for z = l to c — 1 do Finding separators between two trees.
9: Find sept € [T(i)r,T(2 + 1);], where APSD([T(i)r,T(i + l)j]) reaches its

global minimum.
10: end for
ll: return {sepi,..., sepc_i}

Spectrum Skeletonization: A New Method ... 97

In the case of spectrum skeletons, the challenge is to match the appropriate
branches to each other. In acoustic vibration signals, numerous of extra peaks
may appear in the spectrum because of various acoustic noises. Thinning algo-
rithms may produce many skeletal branches that are grown from the extremities
of boundary points. Several points in a spectrum-image may fulfill the applied
geometric constraints of the thinning algorithm, which means each peak may be
represented by a skeletal side branch. The count and the position of the endpoints
is strongly dependent on the variance of the spectrum. Hence, instead of the end-
points we focus of usage of skeletal components and the hierarchic structure of
skeletal trees, which indicate the dominant spectrum segments.

In spectrum segmentation, conventional methods partition the frequency range
equidistantly (see Figure 8(a)) [11,33]. Equidistant segmentation does not consider
the shape of the spectrum which means that some peaks of the spectrum may be
split during the segmentation. According to our concept, dominant peaks hold
relevant information about the source of the event.

In our approach, where the frequency ranges are partitioned dynamically (see
Figure 8(b)), each relevant peak is represented by a skeletal tree. The width of a
frequency range is determined by the difference of local minima around the given
skeletal tree. The APSD functions of recorded signals are always differ from each
other because of the background noise of the signal. Hence there is no guarantee
that skeletons will indicate the same number of branches and the same number
of frequency domain partitions for each APSD function from the class of similar
acoustic events. One may think that this noise produce several trees and small
frequency ranges. Each noisy peak is represented by a skeletal side branch, but
this does not dominant affect to the tree widths. With the help the dynamic
partitioning can be described a given APSD function.

4 Further works
The proposed method holds some new ideas that point to a new way of spectrum
segmentation. These could be a component of a complex acoustic event recognition
system. The quality of event registration is important since it is the input of the
segmentation algorithm. It may influence the results of feature extraction. Using
skeletal structures we could represent the APSD spectra by graphs. We assume
that graph (or sub-graph) isomorphism also can be applied in identification. For
identification and clustering of acoustic events we use machine learning methods.
What follows is an explanation of their planned use.

4.1 Auto event registration
Our feature extraction method is based on Fourier transformation. The Fourier
transformation is not suitable for analysis transient acoustic events because it is
suitable only for stationary time series. To get the best approximation, we should
select the beginning and the end time of the event correctly, with following rules:

98 Tibor Dobján and Gábor Németh

0 5000 10000 15000 20000 22050 Hz

(a) Spectrum is partitioned into ranges of same size

0 5000 10000 15000 20000 22050 Hz

(b) Spectum is partitioned dinamically

Figure 8: Regular (equidistant) partition of the frequency range (a). Dynamic
partitioning using skeletal trees (b). Frequency axis can be computed by product
the position of the separator by A / .

Spectrum Skeletonization: A New Method ... 99

• The selected piece of time series should contain only the event, with the least
background noise. (There is always background noise during the event.)

• It should contain the entirety of the event

There are more solutions on the literature for this problem like Auto regression
- Akaike Information Criterion (AR-AIC) [21] or Sequential Probability Ratio Test
(SPRT) [8]. The frequently used approaches are the threshold-based algorithms.

4.2 Using graph theory
Since skeletonization methods produce reduced structures which represent the dom-
inant peaks in the APSD functions, they are able to build a graphic structure. In
future work we would like to build graphs from skeletal branches, and sub-graph
isomorphism may help us to find out differences in structure. Since the area below
the APSD function does not contain any cavity, this area can be represented by
a tree graph derived from centerlines. This concept leads to comparison of graph
(or sub-graph) structures for identification. We can assume that similar acous-
tic events have similar skeletal structures that can be identified by corresponding
graph branches. Graph correspondences constructed by centerlines gave a solution
for several applications [1,7,15,24,35].

4.3 Machine learning
In order to recognize the source of the signal, some machine learning algorithms are
applied. Machine learning classifies signals based on some features (e.g., maximum
amplitude, variance of the signal, or partial RMS rates) [4,5,9,22]. Machine learning
is composed of two phases: in the learning phase, a set of sample data is assigned by
class labels and their considered features are extracted; while in the second phase
some unclassified data must be assigned to a class only based on their features. We
investigated of usage the following classifiers in the future work: Linear classifiers
determine a hyperplane in the feature space that separates data into two classes
correctly. Support vector machines (SVM) [2,16,34] are kernel based classifiers
that allow non-linear class borders for better accuracy. AT-means classifiers are
capable of distinguish more than two classes as well. Both of the linear and SVM
classifiers are binary classifiers (i.e., they separate data into two disjunct sets),
however there exists some extension of them to distinguish more than two classes.
One of the concepts is one-against-all, while the other one is the one-against-one
comparison [34].

5 Conclusion and open questions
In this paper we presented a novel method for spectrum segmentation based on
skeletons. The proposed algorithm can be applied as a preprocessing step in spec-
trum description and analysis.

100 Tibor Dobján and Gábor Németh

The APSD function computed from acoustic vibration signals are
mapped to a binary image, where the background is represented by white pixels,
and the area below the APSD function is formed by black pixels. The centerline
of the APSD function image is extracted by a topology preserving thinning algo-
rithm. The dominant peaks in the APSD function image are represented by skeletal
branches which hold some structural information about the set of local maxima of
APSD function. The extracted centerline is used for spectrum segmentation. Re-
moval of the lowest segments of centerline splits the "skeleton" into skeletal trees.
These skeletal trees indicate the main frequency components in the APSD function,
however their union does not form the whole frequency range. Hence, we found the
border of the frequency ranges in the minimum of function value in the frequency
intervals between two skeletal trees. This fulfills our requirement to the effect that
no peak in the spectrum is split into disjunct frequency segments. According to our
concept, peaks in the APSD function hold relevant information about the origin of
the acoustic signal.

We are working on some open questions in our further works:

• Thinning methods work on binary images, and quantization the APDS values
yield some distortions in our data. Voronoi skeleton [12,29] works with the
original values, hence it can be a more appropriate solution for segmentation
based on skeletons.

• In pattern recognition and shape analysis skeletons are converted to graphs,
then it can be used for the formal description of the shape. In the further
works we are focusing to the graph representation to describe similarity of
APSD functions.

The proposed feature extraction by skeletons opens a new window for vibration
signal processing and spectrum segmentation.

References
[1] Bai, X. and Latecki, L. J. Path similarity skeleton graph matching. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 30(7):1282 -1292,
july 2008.

[2] Ben-Hur, A. and Weston, J. A user's guide to support vector machines. In
Carugo, Oliviero, Eisenhaber, Frank, and Walker, John M., editors, Data Min-
ing Techniques for the Life Sciences, volume 609 of Methods in Molecular Bi-
ology, pages 223-239. Humana Press, 2010.

[3] Bertrand, G. and Couprie, M. Two-dimensional parallel thinning algorithms
based on critical kernels. Journal Mathematical Imaging and Vision, 31(1):35-
56, May 2008.

[4] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

Spectrum Skeletonization: A New Method ... 101

[5] Bishop, C. M. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[6] Couprie, M. Note on fifteen 2d parallel thinning algorithms. In Internal Report,
Université de Marne-laVallée, 2006.

[7] Demirci, M. F. and Osmanlioglu, Y. Many-to-many matching under the I-i
norm. In ICIAP, pages 787-796, 2009.

[8] Dobján, T., Pletl, Sz., Deák, T., Doszpod, L., and Pór, G. Identification of
the place and materials of knocking objects in flow induced vibration. Acta
Cybernetica, pages 53-67, 2010.

[9] Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. Wiley, New
York, 2. edition, 2001.

[10] Eltabach, M., Vervaeke, T., Sieg-Zieba, S., Padioleau, E., and Berlingen, S.
Features extraction using vibration signals for condition monitoring of lifting
cranes. In Proc. of International conference (Surveillance 6), Compiegne, 2011.

[11] Ghaderi, H. and Kabiri, P. Automobile independent fault detection based on
acoustic emission using FFT. In Singapore International NDT Conference &
Exhibition (SINCE 2011), 2011.

[12] Gonzalez, R. C. and Woods, R. E. Digital Image Processing (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[13] Guo, Z. and Hall, R. W. Parallel thinning with two-subiteration algorithms.
Commun. ACM, 32(3):359-373, March 1989.

[14] Heinzel, G., Rüdiger, A., and Schilling, R. Spectrum and spectral density esti-
mation by the Discrete Fourier Transform (DFT), including a comprehensive
list of window functions and some new at-top windows, 2002.

[15] Hiransakolwong, N., Vu, K., Hua, K. A., and Lang, S.-D. Many-to-many
skeletal-graphs matching approach to shape recognition. In Proc. Interna-
tional Conference: Sciences of Electronic, Technologies of Information and
Telecommunications, 2004.

[16] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A practical guide to support vector
classification. Technical report, Department of Computer Science, National
Taiwan University, 2003.

[17] Jossa, I., Marschner, U., and Fischer, W.-J. Signal-based feature extraction
and SOM based dimension reduction in a vibration monitoring microystem.,
pages 283-288. London: Springer, 2001.

102 Tibor Dobján and Gábor Németh

[18] Kardos, P., Németh, G., and Palágyi, K. An order-independent sequential
thinning algorithm. In Wiederhold, P. and Barneva, R. P., editors, IWCIA,
volume 5852 of Lecture Notes in Computer Science, pages 162-175. Springer,
2009.

[19] Kardos, P. and Palágyi, К. Order-independent sequential thinning in arbitrary
dimensions. In Proc. IASTED International Conference on Signal and Image
Processing and Applications, SIPA 2011, pages 129-134, Crete, Greece, 2011.

[20] Kong, T. Yung and Rosenfeld, A., editors. Topological Algorithms for Digital
Image Processing. Elsevier Science Inc., New York, NY, USA, 1996.

[21] Küperkoch, L. Automated recognition, phase arrival time estimation and loca-
tion of local and regional earthquakes. PhD thesis, Ruhr-Universität, Bochum,
Germany, 2010.

[22] MacKay, D. J. C. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002.

[23] Mailat, S. A Wavelet Tour of Signal Processing, 2nd ed. Academic, San Diego,
CA, 1999.

[24] Palágyi, К., Tschirren, J., Hoffman, E. A., and Sonka, M. Quantitative analysis
of pulmonary airway tree structures. Computers in Biology and Medicine,
36(9):974-996, 2006.

[25] Peng, Z., Chu, F., and He, Y. Vibration signal analysis and feature extrac-
tion based on reassigned wavelet scalogram. Journal of Sound and Vibration,
253(5):1087 - 1100, 2002.

[26] Pór, G., Doszpod, L., and Dobján, Т. Developing an acoustic emission mea-
suring system based on modular high speed data acquisition devices. In 30th
European Conference on Acoustic Emission Testing and 7th International Con-
ference in Acoustic Emission, September 2012.

[27] Samanta, B. and Al-Balushi, K.R. Artificial neural network based fault di-
agnostics of rolling element bearings using time-domain features. Mechanical
Systems and Signal Processing, 17(2):317 - 328, 2003.

[28] Schoonewelle, H., Hägen, Т. H. J. J. Vau Der, and Hoogenboom, J. E. A com-
parison of three time-domain anomaly detection methods. Annals of Nuclear
Energy, 23(2):159-170, 1996.

[29] Siddiqi, K. and Pizer, S. Medial Representations: Mathematics, Algorithms
and Applications. Springer Publishing Company, Incorporated, 1st edition,
2008.

[30] Su, H., Chong, К. Т., and Ravi Kumar, R. Vibration signal analysis for
electrical fault detection of induction machine using neural networks. Neural
Computing and Applications, 20(2): 183-194, March 2011.

Spectrum Skeletonization: A New Method ... 103

[31] Szántó, J. and Nagy, I. Integration of fault diagnostic technologies into a com-
plex condition monitoring system and its practical results. In World Congress
on Maintenance (WCM-2008), pages 24-26, November 2008.

[32] Tang, J., Chai, T.Y., Zhao, L.J., and Wen, Y. Feature extraction and se-
lection based on vibration spectrum with application to mill load modeling.
In Advanced Control of Industrial Processes (ADCONIP), 2011 International
Symposium on, pages 266-271, may 2011.

[33] Tsunodaa, T., Kato, T., Hirata, K., Sekido, Y., Sendai, K., Segawa, M., Yam-
atoku, S., Morioka, T., Sanoa, K., and Tsuneokaa, O. Studies on the loose
part evaluation technique. Progress in Nuclear Energy, 15:569-576, 1985.

[34] Weston, J. and Watkins, C. Support vector machines for multi-class pattern
recognition. In ESANN, pages 219-224, 1999.

[35] Xu, Y., Wang, B., Liu, W., and Bai, X. Skeleton graph matching based on
critical points using path similarity. In Zha, Hongbin, Taniguchi, Rin-ichiro,
and Maybank, Stephen, editors, Computer Vision - ACCV 2009, volume 5996
of Lecture Notes in Computer Science, pages 456-465. Springer Berlin / Hei-
delberg, 2010.

[36] Yang, H., Mathew, J., and Ma, L. Vibration feature extraction techniques
for fault diagnosis of rotating machinery : a literature survey. In Asia-Pacific
Vibration Conference, pages 801-807, Gold Coast, Australia, 2003.

Acta Cybernetica 21 (2013) 105-122.

The Vagueness Measure: A New Interpretation and
an Application to Image Thresholding

József Dombi* and Gergely Gulyás1

Abstract
Here, we introduce a new interpretation of the vagueness measure (which

appeared in an earlier work) and an application for this approach. If the
vagueness measure is computed for the distribution function of a given pop-
ulation, the value obtained gives a similar characteristic as the standard de-
viation of the population. Based on this property, a new global thresholding
algorithm was developed that generalizes the idea of Otsu's optimality cri-
terion by the means of continuous-valued logic. The performance of this
method is compared with other commonly used algorithms to validate the
usefulness of the proposed approach. Although the purpose of this algorithm
is to threshold a grayscale image (which can be a useful step in the segmenta-
tion process of biological and medical images), it can be generalized for other
tasks that require the separation of two or more populations, characterized
by real values.

Keywords: Image segmentation; Global thresholding; Fuzziness measure;
Pliant system; Vagueness functions; Vagueness measure; Ignorance Functions;
Weak Ignorance Functions

1 Introduction
In the field of fuzzy sets, the fuzziness measures are used to reflect the uncer-
tainty of the membership functions. The vagueness measure [9] was derived from
fuzziness measures and it is a part bf the Pliant system [11] which is a coher-
ent continuous-valued logical system. A vagueness measure can be constructed by
means of vagueness functions, which are closely related to entropy functions like
Shannon's entropy function (as we showed earlier). In this paper we present a new
interpretation of the vagueness measure. When applied to a distribution function,
the result value gives a similar characteristic as the standard deviation of the given
population.

In the field of image processing, segmentation is one of the most important tasks.
The goal of segmentation is to divide the image into disjoint regions so that these

*6720, Szeged, Árpáid tér 2, Hungary, University of Szeged, E-mail: dombiSinf. u-szeged. hu
tUniversity of Szeged, E-mail: gulyasg0inf.u-szeged.hu

106 József Dombi and Gergely Gulyás

classés represent different objects. A frequently used technique for segmentation is
the global thresholding, whose method is very useful in biological and medical image
processing. Generally, the task requires to choose an appropriate threshold value
for a given property and this value divides the pixels of the image into two classes
based on the property: the pixels whose property value axe below of the threshold
constitute the first class, while the others belong to the second class. In many cases
the property is the grayscale value of the pixels, but it can be other feature value
which were computed for each pixels. Many algorithms have been introduced in
the literature that can choose a good threshold value [15, 18, 23, 24, 26, 29, 33].
Some of these methods are based on fuzzy set theory and are able to handle any
ambiguity of data [3, 4, 6, 7, 13, 14, 27, 28].

In this paper we will present the vagueness measure in a new context because we
apply it on distribution functions. We will show that this interpretation is related
to the standard deviation. Based on this property, we give a new application of the
vagueness measure in a global thresholding algorithm which generalizes the idea of
Otsu's method. The proposed approach will be compared with other well-known
algorithms in order to show the effectiveness of the algorithm.

2 Preliminaries
Let / be a 2-dimensional discrete image function which is defined in such a way
that

/ : { 0 , . . . , M - 1} x {0 , . . . , IV - 1} { 0 , . . . , L - 1},

where L denotes the maximum intensity level. Let h denote the histogram (func-
tion) of the image which gives the number of occurrences at a given gray level:

Hq) = |{(z,2/) : f(x,y) = q and (x,y) is a pixel}|,

where |.| is the cardinality of a given set. The normalized histogram p gives the
probability of occurrence of a given gray level:

p(q) = P(intensity = q) = /ffl
£<=o MO

For a given threshold value t, we can define the a priori probabilities of the back-
ground and object:

pg } = ¿ P (9) PS? = £ P(9)
9=0 q=t+1

As we mentioned earlier, which part of the intensities belongs to the object depends
on the image, but for simplicity we will take the object to be the brighter part of
the image. Let c denote the cumulative distribution function such that

The Vagueness Measure: An Application to Image Thresholding 107

9
c(q) = ¿(intensity < q) =

i=0

Consider the cumulative distribution functions of the background and object
for a given threshold t:

Ei=o M*)

fffaH ^ b ^ i q = t+l,...,L —1
E<=t+i MO

We can assign a binary image to a given grayscale image / and a given threshold
intensity t in the following way:

(s.l/) = | J ft(xv) = l * Xfix^Kt
J t (' y > > n otherwise

In general, a global thresholding algorithm is one that determines a single thresh-
old value and thresholds the entire image with that value.

3 Vagueness functions and vagueness measure
In Fuzzy Theory [31, 32] the membership function (denoted by p) can be regarded
as the approximation of the characteristic function belonging to crisp sets. Then,
a fuzziness measure expresses the distance between the characteristic function and
a given membership function, and reflects the uncertainty of the membership func-
tion. In the following sections we introduce the vagueness functions and the vague-
ness measure [9] which belong to the Pliant system (which will be also introduced).
The vagueness measure can be interpreted as a fuzziness measure in the Pliant
system but we give a new interpretation of the vagueness measure on distribution
functions (when it does not play the role of a fuzziness measure).

3.1 Pliant system
The Pliant system [8, 10, 11] is a subclass of continuous valued logic where the
fuzzy logical operators like negation, conjunction and disjunction, and the fuzziness
measure constitute a coherent system. In the Pliant logic each operator is defined
by one generator function. In fuzzy logic, several different generator functions are
used. One of the main features of the Pliant concept that consists of infinitely
many negations [8]. In the following we shortly introduce the definition of the
Pliant system and the necessary notions from fuzzy logic.

108 József Dombi and Gergely Gulyás

Definition 1. We say that n{x) is a negation ifn: [0,1] —>• [0,1] satisfies the fol-
lowing conditions:

CI
C2
C3
C4

n : [0,1] —> [0,1] is continuous (Continuity)
n(0) = 1, n(l) = 0 (Boundary conditions)
n(x) < n(y) for x > y (Monotonicity)
n(n(x)) = x (Involution)

Using the general representation theorem we have for the strict t-norm (conjunc-
tive operator) and strict t-conorm (disjunctive operator) the following definitions.

Definition 2. Let fc(x) : [0,1] —¥ [0, oo] be continuous and strictly decreasing
monotone generator function. Then

c(x,y) = f-1(fc(x) + fc(y))- (1)

is a strict t-norm (conjunctive operator).

Definition 3. Let fd(x) : [0,1] —> [0, oo] be continuous and strictly increasing
monotone generator function. Then

d(x,y) = fj1(fd(x) + fd(y)). (2)

is a strict t-conorm (disjunctive operator).

Note: In Pliant logic, c stands for the conjunctive operator and d stands for the dis-
junctive operator. Those familiar with fuzzy logic theory will find that the terminol-
ogy used here is slightly different from that used in standard texts [1, 2, 5,12,17, 21].

Definition 4. If fc(x) and fd{x) are related in an inverse manner, i.e.

fc(x)fd(x) = 1, (3)

then we will call the generated connectives a Pliant system. It has been shown that
only this system of strict t-norms and t-conorms is equipped with infinitely many
negations [8].

Definition 5. The general form of the multiplicative Pliant system is

oa(x,y) = f-1 ((/ Q (x) + / Q (y)) 1 / a) (4)

where f : [0,1] —> [0, oo] is a continuous and strictly decreasing function which is
the generator function of the strict t-norm operator.

If a > 0, than oa(x,y) conjunctive operator (t-norm).
If a < 0, than oa(x,y) disjunctive operator (t-conorm).

The corresponding negation is:

*M - r ' (/ « $ }) - "»-M = ' " (7 l r) (6)

The Vagueness Measure: An Application to Image Thresholding 109

We have to note that r)u and are well defined and satisfy the conditions of
Definition 1 (see in [8]), thus the negations can be interpreted when f(x) = 0. The
parameter v, like ¡/» is the neutral value of the negation and can be interpreted as
the strictness of the negation.

Because the generator function is determined up to a multiplicative constant,
we can arrange it such that f(uo) = 1 and so r}„(x) = f~l [f(u)/f(x)). If f(v0) =
f (v) = 1, then we get the following.

Definition 6. Let f(x) : [0,1] —> [0, oo] be continuous and strictly decreasing
monotone function. Then

,M = r ' (^) P)
is the standard Pliant negation function.

In the Pliant system the conjunctive and disjunctive operators exist in weighted
forms which are defined by the following formulas:

(. >\
c(w, x) = / 1 ($ > / (* ,)) and d(w, x) = / 1 1 1

K k ' ^ J

(8)

Thus, we can define a bivariate conjunction operator where the weights are equal,
and what we call mean conjunction operator.

Definition 7. Let c(x, y) denote the mean conjunction operator in bivariate case:

c (x , 2 /) = r 1 Q (/ (z) + / (2 /))) (9)

where f: [0,1] —>• [0, oo) is a continuous, strictly decreasing generator function such
that / (1) = 0 ([8]).

3.2 Vagueness functions and measure
The idea and construction of a vagueness measure [9] can be derived from the
fuzziness measure. Now we will introduce the vagueness measure as a part of the
Pliant system.

Definition 8. The vagueness function v : [0,1] —>- [0,1] in the Pliant system is

v(x) = c(x, rj(x)) = (¿(x) + (10)

Definition 9. The normalized vagueness function is

V * (X) = ^) V { X) > (U)

where OQ is the fix point of the negation 7] such that T](VQ) = z/0.

110 József Dombi and Gergely Gulyás

Now we will give a list of properties for the vagueness function:
(PI): v(x) = 0 iff x € {0,1} (Sharpness: no vagueness)
(P2): v{x)/v{uo) = 1 iff x = u0 (Maximality: maximal vagueness)
(P3): v(x\) < v(x2) if (Monotonicity)

x\ < x2 and X\ < or
Xi > x2 and Xi > vo

(P4): v(x) = v(r)(x)) (Symmetry)
We can get a very simple form of the vagueness function if we use the generator
function of the Dombi operator [8], namely f(x) = (M r) " - First: w e get the
following formula:

vQ{x) = : p . (12)

In the Dombi operator case the negation 7? in the Pliant system is the standard
negation T}{x) = 1 — x (based on Definition 6) and therefore vq = | and va(vo) =
and we get the following.

Definition 10. The normalized vagueness function in the Dombi case is

1 2
va(x) = —7—xv<*{x) = 2va(x) ' r . (13)

V M I+GIW+KIIOT
Let a = 1. Then the vagueness function and the normalized vagueness function
have the following simple forms:

v\{x) = 2x(l - x) or C[(x) = 4x(l — x) (14)

While we got the idea of the vagueness measure from the fuzziness measures, it can
be interpreted in a more general way than a measure of fuzziness. Thus, we give a
definition which works on a finite set of values from [0,1].

Definition 11. Let x = {xi,x2,..xn} where Xi G [0,1], and let v be a vagueness
function. Then

77 ' * n • ,
is a vagueness measure defined by v.

Definition 12. Let V* denote the vagueness measure defined by v*, where v*a is
the normalized vagueness function in the Dombi case.

3.3 Relationship between the vagueness measure and the
standard deviation

As we showed earlier in [9], the vagueness measure can be interpreted as a fuzziness
measure. In this subsection we provide a small example which shows that if the

The Vagueness Measure: An Application to Image Thresholding 111

vagueness measure is applied to a distribution function, it is closely related to the
variance of the given population.

In our example, three histograms were generated using three Gaussians with the
same mean and different standard deviations (the discrete histogram functions were
generated by a simple sampling process). The cumulative distribution functions
were also calculated, all functions can be seen in Figure 1. The dashed, the solid and
the dotted line histograms were created using 15, 30 and 45 as standard deviation
values, respectively. The corresponding vagueness values are 16.92, 33.85 and 49.96
(we used VJ as the vagueness measure), which are related to the former standard
deviations. A short explanation is the following. The less the standard deviation,
the sharper the distribution function is (see in in Figure 1), and more values are
closer to 0 or 1, which leads a smaller vagueness measure value. Table 1 contains
more vagueness measure values calculated for the example distribution functions
using different a values as measure parameters.

(a) Histograms (b) Distribution functions

Figure 1: Example histograms and cumulative distribution functions. The dashed,
the solid and the dotted line histograms were created using Gaussians with the
standard deviation values 15, 30 and 45, respectively.

3.4 Relationship between the vagueness and weak ignorance
functions

We have to mention the similarity between the vagueness functions and weak igno-
rance functions which were proposed in [25] and have almost the same properties,
although they have different constructions. Weak ignorance functions can be de-
fined based on ignorance functions [4].

Definition 13. A continuous mapping G: [0, l]2 [0,1] is an ignorance function
such that:

112 József Dombi and Gergely Gulyás

0
a 15.000 30.000 45.000

0.125 32.658 65.218 90.927
0.250 25.777 51.540 74.609
0.500 20.551 41.100 60.360
1.000 16.923 33.846 49.958
2.000 14.658 29.317 43.350
4.000 13.371 26.743 39.570
8.000 12.684 25.369 37.546

Table 1: Relationship between the vagueness measure and the standard deviation.
The table contains the vagueness measure values computed for the example dis-
tribution functions (with different standard deviation values, appeared in the first
row) where the measure has different a values (appeared in the first column).

(Gl) G(x, y) — G(y, x) Vx, y € [0,1]
(G2) G(x,y) = 0iffx = l ory = 1
(G3) G(0.5,0.5) = l
(G4) G is decreasing in [0.5, l]2

(G5) G is increasing in [0,0.5]2

Theorem 1. Let G: [0, l]2 —• [0,1] be an ignorance function. The continuous
function g: [0,1] —> [0,1] given by

g(x) = G(x, 1 - x)

is a weak ignorance function which satisfies:
(gl) g(x) = g{ 1 - x) Vx £ [0,1]
(g2) g(x, y) = 0 iff x £ {0,1}
(g3) g(0.5) = 1

The similarities between the vagueness and weak ignorance functions are ob-
vious. The (92) property is the same as the (PI) property. In the case of the
(9I) property, it can be seen that the vagueness function is more general because it
expresses the (P4) symmetry using a general negation, while the standard strong
negation N(x) = 1 - x appears in the (9I) property. The (P2) property states
that a normalized vagueness function gets its maximum (= 1) at the fixpoint of its
negation. If we suppose again that in (9I) the strong negation appears with the
fixpoint 0.5, then (93) tells us that at this fixpoint 9 has its maximum value. It is
the same as in (P2) if we restrict it to the strong negation. The monotonicity is
not required for weak ignorance functions explicitly.

The Vagueness Measure: An Application to Image Thresholding 113

4 Thresholding based on vagueness measure
Now we present a new global thresholding algorithm which uses the vagueness
measure and generalizes the idea of Otsu's method [22]. Although this algorithm
works on a grayscale image it can be generalized for the case of real values because
it only needs the distribution functions of the populations. First, consider the two
vectors of the cumulative distribution function values of the background and object
for a given threshold t:

cg> = {¿§{t + 1),cg>(i + 2) , . . . , cg)(L - 1)}

Similarly to Otsu's thresholding criterion [22] which minimizes the intra-class vari-
ance, we construct a new method which minimizes the joint vagueness measure of
the background and the object in order to yield two well separated population of
intensities.

Definition 14. Let Cf^ and, (¿Q the vectors of the cumulative distribution function
values of the background and object for a given threshold t. Then the joint vagueness
measure belonging to these vectors and the threshold t is defined by the following
formula:

p g - K ^ ^ + p g - r ^) . (16)

With the notations above we can express the new thresholding criterion in the
terms of the following optimization problem:

t* = argmint [p%] • V*ai (cg>) + • V ; , (c g })) , (17)

where t* is the best threshold corresponding to the minimum joint vagueness mea-
sure. The apriori probabilities of the background and the object balance the effect
of the vagueness measures if the two population do not have the same size. The
pseudo-code of the algorithm can be seen below (Algorithm 1: Pliant Thresholding
Algorithm (PTA)). The method requires the histogram h of the image and the
parameters of the vagueness measures (01,02) as the input. The first step can be
carried out by using only the histogram. In the second step the calculated values
must be used and the vagueness values. The algorithm chooses the threshold t*
which belongs to the lowest joint vagueness measure.

An example image and the running results of the PTA can be seen in Figure 2.
Figure 3 contains an example where the PTA was applied on the same image using
different values of 01, o 2 .

5 Experimental results
In order to validate the performance of the PTA, it was applied to a set of synthetic
images and to a set of standard images (which are widely used in the literature).

114 József Dombi and Gergely Gulyás

(c) Optimal segmentation (d) The thresholded image using the value 156

(e) The distribution functions belonging to the(f) Joint vagueness measure as the function of
threshold value 156 the threshold value

Figure 2: An example image and the results of the PTA. The algorithm chose the
threshold value 156.

The Vagueness Measure: An Application to Image Thresholding 115

Algorithm 1 Pliant Thresholding Algorithm (PTA)
Require: histogram h, parameters of the two vagueness measures Qi, a 2

(a) compute p^\pq\ Cq1 for all t € [0, L — 1]

(b) compute joint vagueness measures for all t G [0, L — 1]

(i) compute value V* t ^C^'j

(ii) compute value V*2 ^ C q ^

(iii) compute the joint vagueness measure

(c) take t* as the best threshold corresponding to the minimum joint vague-
ness measure

Figure 3: Applying of the PTA using different sets of (ai ,a 2) : (0.0625,16.0),
(0.125,8.00), (0.25,4.00), (0.50,2.00), (1.00,1.00), (2.00,0.50), (4.00,0.25),
(8.00,0.125), (16.00,0.0625), from left to right, top to bottom.

116 József Dombi and Gergely Gulyás

We compared the PTA (using the parameters au = a 2 = with some other
well-known and commonly used thresholding methods, namely Otsu's method [22],
Huang-Wang algorithm [13], Kittler's method [16], Li's method [20], and Area
algorithm [3] (with 4>i(x) = 4>2(x) = x). There are many approaches available for
comparing thresholding algorithms in the literature [19, 24, 26, 33]. Here we have
applied the misclassification error [30] as the performance criterion which is the
following.

Definition 15. Let Bo and Fo denote the known background and object pixel
sets belonging to the optimal segmentation, and let BT and FT be the background
and object area pixels in the result image thresholding by t, respectively. Then
the misclassification error which belongs to a given threshold t is computed by the
following formula:

5.1 Comparison on the sets of synthetic images
Now, we introduce the creating process of the synthetic images which were used in
the first evaluation. The first (basic) image set was created as follows. An image
consists of a square on the center of the image which is the object and the other
surrounding pixels compose the background (we do not need more complicated
shapes because the algorithm works on the image's histogram). The object and the
background were generated by two Gaussians (with different means but with not
necessarily different standard deviations). The means were picked up from the set
{0,30,50,120,150,200} while for the deviations we used the set {10,20,30} (not all
of the possible selections were generated). So we got a synthetic set with 250 images.
We applied different distortions on the synthetic images in order to yield more test
cases: we used additive Gaussian noise (with different standard deviations) and
impulsive salt-and-pepper noise (with different amount of corrupted pixels). Each
distortion with 4 different parameters were used on the original images so the total
number of the images was 250 + 250 • 2 • 4 = 2250. Some examples can be seen in
Figure 4.

Figure 4: Synthetic image examples (from the left to the right): standard image
without any distorsions, image with Gaussian noise, and image contaminated by
salt-and-pepper noise.

The Vagueness Measure: An Application to Image Thresholding 117

The summarized results can be found in Table 2. The rows belong to different
synthetic sets: the first contains the misclassification errors on the original images
while the next four show the results on the images with additive Gaussian noise, and
the last four give the values for the salt-and-pepper noise contaminated images. As
it can be seen the PTA and the Area algorithm have almost the same error values
(small differences occur in the the cases of the salt-and-pepper noise contaminated
images) and both perform better than the other studied methods.

Type Otsu Huang-W. Kittler Li Area PTA (a = 0.5)
B 0.049 0.049 0.071 0.053 0.045 0.045
G2 0.049 0.049 0.080 0.054 0.045 0.045
G5 0.051 0.055 0.084 0.056 0.048 0.048
G10 0.058 0.068 0.113 0.065 0.059 0.059
G15 0.070 0.093 0.164 0.079 0.076 0.076
SP1 0.054 0.052 0.077 0.058 0.049 0.048
SP3 0.071 0.061 0.078 0.072 0.058 0.056
SP5 0.099 0.072 0.089 0.090 0.069 0.065
SP10 0.124 0.098 0.109 0.136 0.096 0.108

Table 2: Misclassification errors on synthetic images. Every row belongs to a set
of synthetic images: B means the original synthetic images, G denotes the images
with additive Gaussian noise where the number is the standard deviation cr, and
SP refers to the salt-pepper noise contaminated images where the number gives the
percentage of the modified pixels.

5.2 Comparison on the set of standard images

The second evaluation of the algorithm was investigated by using 20 classical and
bimodal test images which are taken from a collection of Carnegie Mellon University
(http://www.cs.cmu.edu/~cil/v-images.html). The images can be seen in Figure 5
while the ground-truth images appear in Figure 6 where the ground-truth thresholds
were set manually.

The missclassification error values are presented in Table 3 below. These values
are the average measures calculated for the 20 test images. In this case, the PTA
gives a slightly worse result than Otsu, but Li's algorithm and the Area perform
very similarly. We should mention here that the measure ME suffers from the
subjectivity of the human expert or observer who sets the ground-truth thresholds,
so these différencies could be regardarded as insignificant. However we have chosen
the ground-truth threshold instead of creating a gold standard mask because we
compare global thresholding algorithms, and we think in this case that the ground-
truth threshold value gives the technical maximum for these algorithms at least
from ME aspect.

http://www.cs.cmu.edu/~cil/v-images.html

118 József Dombi and Gergely Gulyás

Figure 5: Original images

Images Otsu Huang-W. Kittler Li Area PTA (a = 0.5)
Standard 0.085 0.135 0.185 0.101 0.106 0.095

Table 3: Misclassification errors on standard images.

The Vagueness Measure: An Application to Image Thresholding 119

| » H *

• ' M l * *
• • • • » * *

Figure 6: Ground-truth images

120 József Dombi and Gergely Gulyás

6 Conclusions
In this study we provided a new interpretation of the vagueness measure which
assigns a value to a distribution function that is similar to the population's standard
deviation. Then we gave an application using this property (in the form of a global
thresholding algorithm). The proposed method performs as well as or better than
the classical and state-of-the-arts methods. One advantage of this approach is that
the algorithm can be parameterized, hence it can be adapted to a given problem.
In the future, we would like to try other conjunction operators taken from the
Pliant system (e.g. a weighted conjunction) that have more parameters. It is an
interesting question of how the parameters should be optimized such that it fits the
given problem. Anyway, it would be useful to know what classes of problems the
vagueness measure can be applied to.

7 Acknowledgments
This work was partially supported by the European Union and the European So-
cial Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-
2012-0013).

References
[1] Alsina, C., Schweizer, B., and Frank, M.J. Associative functions: triangular

norms and copulas. Word Scientific Publishing, 2006.

[2] Beliakov, G., Pradera, A., and Calvo, T. Aggregation Functions: A Guide for
Practitioners. Studies in Fuzziness and Soft Computing. Vol. 221., Springer,
2007.

[3] Bustince, H., Barrenechea, E., and Pagola, M. Image thresholding using re-
stricted equivalence functions and maximizing the measures of similarity. Fuzzy
Sets and Systems, 158(5):496-516, 2007.

[4] Bustince, H., Pagola, M., Barrenechea, E., Fernandez, J., Melo-Pinto, P.,
Couto, P., Tizhoosh, HR, and Montero, J. Ignorance functions. An appli-
cation to the calculation of the threshold in prostate ultrasound images. Fuzzy
Sets and Systems, 161(l):20-36, 2010.

[5] Calvo, T., Mayor, G., and Mesiar, R., editors. Aggregation Operators., vol-
ume 97 of New Trends and Applications Studies in Fuzziness and Soft Com-
puting. Physica-Verlag, Heidelberg, 2002.

[6] Chaira, T. and Ray, AK. Segmentation using fuzzy divergence. Pattern Recog-
nition Letters, 24(12): 1837-1844, 2003.

The Vagueness Measure: An Application to Image Thresholding 121

[7] Chaira, T. and Ray, AK. Threshold selection using fuzzy set theory. Pattern
Recognition Letters, 25(8):865-874, 2004.

[8] Dombi, J. Demorgan systems with an infinitely many negations in the strict
monotone operator case. Information Sciences, 181:1440-1453, 2011.

[9] Dombi, J. Fuzziness measure in the pliant system: The vagueness measure.
Acta Technica Jaurinensis, 4(1), 2011.

[10] Dombi, J. On certain class of aggregation operator. Information Sciences,
Under review process, 2011.

[11] Dombi, J. Pliant operator system. Recent Advances in Intelligent Engineering
Systems, Studies in Computational Intelligence, Springer, 378:31-58, 2012,
under print.

[12] Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E. Aggregation Functions.
Encyclopedia of Mathematics and Its Applications 127, Cambridge University
Press, Cambridge, 2009.

[13] Huang, L.K. and Wang, M.J.J. Image thresholding by minimizing the measures
of fuzziness. Pattern Recognition, 28(1):41-51, 1995.

[14] Jawahar, CV, Biswas, PK, and Ray, AK. Investigations on fuzzy thresholding
based on fuzzy clustering. Pattern Recognition, 30(10):1605-1613, 1997.

[15] Kapur, JN, Sahoo, PK, and Wong, AKC. A new method for gray-level picture
thresholding using the entropy of the histogram. Computer Vision, Graphics,
and Image Processing, 29(3):273-285, 1985.

[16] Kittler, J. and Illingworth, J. Minimum error thresholding. Pattern Recogni-
tion, 19(l):41-47, 1986.

[17] Klement, E.P., Mesiar, R., and Pap, E. Triangular norms. Dordrecht:Kluwer,
2000.

[18] Lee, S.U., Yoon Chung, S., and Park, R.H. A comparative performance study
of several global thresholding techniques for segmentation. Computer Vision,
Graphics, and Image Processing, 52(2): 171-190, 1990.

[19] Levine, M.D. and Nazif, A.M. Dynamic measurement of computer gener-
ated image segmentations. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (2): 155-164, 2009.

[20] Li, CH and Tam, PKS. An iterative algorithm for minimum cross entropy
thresholding. Pattern Recognition Letters, 19(8):771-776, 1998.

[21] Mesiar, R., Kolesarova, A., Calvo, T., and Komornkova, M. A Review of
Aggregation Functions. Fuzzy Sets and Their Extension: Representation, Ag-
gregation and Models. Studies in Fuzziness and Soft Computing, Vol. 220,
2008.

122 József Dombi and Gergely Gulyás

Otsu, N. A threshold selection method from gray-level histograms. Automatica,
11:285-296, 1975.

Ridler, TW and Calvard, S. Picture thresholding using an iterative selection
method. Systems, Man and Cybernetics, fBBB Transactions on, 8(8):630-632,
2007.

Sahoo, PK, Soltani, S., and Wong, AKC. A survey of thresholding techniques.
Computer Vision, Graphics, and image Processing, 41(2):233-260, 1988.

Sanz, Josean, Fernndez, Alberto, Sola, Humberto Bustince, and Herrera, Fran-
cisco. A genetic tuning to improve the performance of fuzzy rule-based classifi-
cation systems with interval-valued fuzzy sets: Degree of ignorance and lateral
position, int. J. Approx. Reasoning, pages 751-766, 2011.

Sezgin, M. and Sankur, B. Survey over image thresholding techniques
and quantitative performance evaluation. Journal of Electronic Imaging,
13(1):146-168, 2004.

Tizhoosh, H.R. Image thresholding using type II fuzzy sets. Pattern Recogni-
tion, 38(12):2363-2372, 2005.

Wang, Q., Chi, Z., and Zhao, R. Image thresholding by maximizing the index
of nonfuzziness of the 2-D grayscale histogram. Computer Vision and Image
Understanding, 85(2): 100-116, 2002.

Weszka, J.S. A survey of threshold selection techniques. Computer Graphics
and image Processing, 7(2):259-265, 1978.

Yasnoff, W.A., Mui, J.K., and Bacus, J.W. Error measures for scene segmen-
tation. Pattern Recognition, 9(4):217-231, 1977.

Zadeh, L.A. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

Zadeh, L.A. Fuzzy sets and their applications to cognitive and decision pro-
cesses. Academic Press, New York, 1975.

[33] Zhang, Y.J. A survey on evaluation methods for image segmentation. Pattern
Recognition, 29(8): 1335-1346, 1996.

Acta Cybernetica 21 (2013) 123-134.

Elimination of the Background of Electron
Microscope Images by Using FPGA

Ádám Fazekas^ Hiroshi Daimonj Hiroyuki Matsudaj
and László Tóth*

Abstract

The purpose of our development is to design an FPGA based hardware
acceleration system that is able to be used for analyzing photoemission elec-
tron microscope (РЕЕМ) images or improving their quality. Even though a
usual РЕЕМ has an energy filter unit, which is able to eliminate certain dis-
turbing signals, a post processing computation can also be useful to improve
the image quality. Here we propose an FPGA based hardware acceleration
system for the computation of a certain image background component. It has
uniquely designed hardware modules that perform the computations in par-
allel, resulting in less calculation time. The system shown here is a prototype
which was only used for testing and experimental purposes.

Keywords: photoelectron spectra, Shirley background, field-programmable
gate array, hardware acceleration

1 Introduction
Due to the technological advancement there is an increasing demand for observ-
ing processes which take place in micro- and nano-scale ranges. For this purpose
among others, photoemission electron microscopy (РЕЕМ) provides a solution. It
gives photoelectron spectra from individual small areas and has a wide range of
applications in many branches of science, such as physical, chemical and biological
research, nanotechnology, semiconductor design and manufacturing. However the
images that they produce could contain certain disturbing signals which completely
obscure the useful information, i.e. a photoelectron peak contains large background
originated from higher energy peaks. There are several ways to eliminate this back-
ground component and one of them is to apply post-process computations. This
method can be a computationally intensive task because the background should
be calculated for each pixel, so it is appropriate to use hardware acceleration to

'University of Debrecen, Faculty of Informatics, Department of Informatics Systems and Net-
works, Kassai ut 26 Debrecen, 4028 Hungary. E-mail: adam.j .fazekasflgmail. com

+Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, N A R A 630-0192 JAPAN

124 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

reduce the execution time. Field-programmable gate arrays (FPGA) [2] provide an
excellent opportunity for the design of such systems. The FPGA architecture of-
fers massive parallel capabilities and uniquely customizable hardware components
designed to carry out the given task in the most efficient way. In this paper we
propose a prototype of hardware acceleration system for computing a background
component on FPGA platform. The system was implemented and tested on an Al-
tera DE2 Development and Education FPGA board [1]. The design performs the
calculations in parallel with specialized hardware components; therefore, it takes
less time to complete than it would take with an ordinary computer.

2 Physical background

2.1 About the Photoelectron Emission Microscope

This work is related to a new display-type ellipsoidal mesh analyzer (DELMA)
[6, 14], with a new type l7r sr wide acceptance angle spherical aberration corrected
electrostatic lens (WAAEL) [5, 9, 7, 8, 15]. This special photoemission electron mi-
croscope is able to be used for simultaneous angular and energy distribution mea-
surements, electron spectroscopy and spectrography, diffraction and holographic
measurements. Furthermore, due to the extremely large acceptance angle it can
be used for stereo photoemission electron microscopy (Stereo-PEEM) to obtain
three-dimensional atomic and electronic structures of microscopic-materials.

2.2 The examined background component

There are several solutions for the correction of chromatic and spherical aberration
where i.e. one of the unique is operating by applying a time dependent electric
field [11]. The objective lens that was applied in our case corrects the spherical
aberration only by applying a quasi-ellipsoidal shape mesh lens inside [5]. One of
the advantages of this type of lens is that the sample area is field free. Further-
more, it has no pass energy limit; therefore, it can be applied in wide energy ranges.
However, due to the wide acceptance angle it requires careful design and construc-
tion. The quality of the measured images can be improved if we can distinguish the
background and then subtract it from the image. This can be achieved by taking
images at many pass-energies, where each pixel of the image behaves in a way that
is known, but differently from the background components (Fig. 1) [15]. In this
paper we deal with the elimination of the Shirley-background component [12] by
using an FPGA processor. As a first step we have examined this method for image
processing purposes and tested it on a low cost FPGA device.

Background Elimination by Using FPGA 125

Figure 1: The spectral image sequence (bottom) and the corresponding intensity
distribution for the calculations of the background subtracted images [15, 6]. Curve
'a' is the original intensity distribution among the energy axes (E) at given (x,y)
coordinates on the images, where an elastic peak and a plasmon-loss peak are seen.
Curve 'b' is the calculated Shirley-background. Curve 'c' is the intensity after the
subtraction of the background.

3 The applied Hardware

3.1 A brief description of Field Programmable Gate Arrays

Field programmable gate arrays (FPGA) are integrated circuits that do not have
specific functionality; therefore, one must program the device to make it able to
perform the required task. The main components of an FPGA are the logic blocks
that contain logic elements, programmable interconnect and input/output ports. In
addition, almost every FPGA has further special components like embedded mem-
ory or multiplier circuits. By configuring or reconfiguring the logic elements and
the programming interconnect between them the functionality is given to the device
to perform the desired task. This flexibility allows the designer to implement vari-
ous hardware designs using a hardware description language like Verilog or VHDL.
The benefits of FPGAs are not only the flexibility but also the paralleling capabili-
ties. The implemented hardware modules can be run parallel independently, which
greatly improves the system efficiency. For these reasons FPGAs often provide
higher performance than ordinary processors and digital signal processing devices
[2].

126 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

3.2 The applied FPGA device

The background computing system was implemented on an Altera DE2 Develop-
ment and Education FPGA board [1]. This device has a Cyclon II FPGA processor,
some basic hardware peripherals such as external memories and several input out-
put ports like RS-232. Although this device was not developed for high performance
computations, it was perfectly suitable for testing and experimental purposes for
the prototype system. For the design we used the Altera Quartus II web edi-
tion development software, and implemented the design in the Verilog hardware
description language.

4 Implementation

4.1 Algorithm

To determine the background component (Fig. 2) we used the iterative Shirley
method [12] and modified the algorithm structure for a feasible hardware design.
The method was implemented in both hardware and software platforms for com-
parison reasons.

Figure 2: The Shirley background and parameters for its computation.

Our design divides the Shirley algorithm into two phases. The first phase com-
putes the area between the points of the background (Si) and the points of a
spectrum (data) with rectangle approximation; where E\ and E2 are the two en-
ergy indexes, the background computation takes place between them, and its values
are set by the user. A E is the energy difference (step size) between two consec-
utive points in the spectrum. Here is the pseudocode for the area computation
(Amax =Ai+ A2):

Background Elimination by Using FPGA 127

Algorithm 1 Area computation
l: for k := E2 downto E\ do
2: Amax •= Amax + (data(k) - Si(k)) * AE
3: A2(fc) '•= Amax

4: end for

This part also computes the value of A2 for every point because it is produced
during the computation of Amax- The second phase computes the points of the
Shirley background for the next iteration, where I\ and I2 are the intensities at E\
and E2 energies. Pseudocode for computing the Shirley background in the 'i'-th
iteration:

Algorithm 2 Shirley computation
1: for j := Ei to E2 do
2: Si(j) := h + (h - I2) * (A2(j)/Amax)
3: end for

This separation is important since we could define unique arithmetical circuits
for both parts that made the computation more efficient. In the following, the
implementation will be explained in more details.

4.2 System architecture
The background computing system consists of two main components, an FPGA
based computer unit and a Java application running on a personal computer. The
Java application provides the measured data and the computation parameters for
the FPGA through serial communication using the RS-232 communication stan-
dard. Also, this application gives user interface for the system, where the computa-
tion parameters such as E\, E2 and the step size AE can be set. The FPGA stores
the incoming data in the external memory. After the transfer, the central controller
unit starts serving the background computer hardware modules which operate in
parallel. The computed background intensities are stored in the external memory
too. When all the background intensities have been calculated, the central con-
troller unit sends the results back to the Java application through the serial port.
Figure 3 shows the schematic diagram of the system. There are subsystems for
the different tasks such as the memory controller for the memory operations, the
I /O controller for communication, and Shirley modules for computing the Shirley
background. Each subsystem is controlled by the system controller which has the
role of managing the serving strategy for the Shirley modules.

4.3 Shirley background computation with hardware modules
The values of the Shirley background are determined by specialized hardware mod-
ules. All of the Shirley modules have their own memory and arithmetical modules

128 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

Figure 3: The system architecture.

so they could operate independently in parallel. The modules implement the iter-
ative Shirley method for the background calculation. The current system operates
with the IEEE-754 standard single precision floating point and the Q32.16 fixed
point number formats [3]. We used real numbers to keep the computation precision
however, considering only image processing purposes even integer arithmetic would
be enough. In this case we can get much shorter running time and simpler circuit,
but the results would not reflect the measured data precisely. The primary data
format used for storing data in the memory and transferring it between the PC
and the FPGA system is IEEE-754 standard single precision floating point. The
arithmetical modules are optimized with a pipeline technique [10] that results in in-
creased throughput and reduced running time. The Shirley modules consist of three
major components; the arithmetical, the memory controller and the Shirley con-
troller units. The memory controller unit performs the read and write operations
on the dedicated memory which contains the required data for the computation
of one spectrum. The controller unit manages the computation procedure imple-
mented as a finite state machine [4]. The iterative Shirley method was divided
into two parts as mentioned earlier. The area between the measured data and the
flat background intensities is computed at the beginning of the process and the
new approximations of the background intensities are calculated afterwards. The
area processor unit (Fig. 4) determines the summarized area, Amax, in the first
step of each iteration, while the A2 values are saved for every point in a dedicated
memory, so they will be simply read out when they are needed for the calculation.
This part uses Q32.16 fixed point arithmetic for fast summation, thus conversion
is required at the ingress and egress part of this circuit. After this, the Shirley pro-
cessor unit (Fig. 4) determines the intensities of the points of the next background
approximation. The Shirley computer module uses the IEEE-754 standard single
precision floating point number format, because the division can be implemented
more efficiently by this than the fixed point case. The reason behind the usage
of different number formats is that the summations consume much more time and
resources with floating point than with fixed point numbers, even if we consider the

Background Elimination by Using FPGA 129

time for conversion. Furthermore, the division with fixed-point number format has
similar disadvantages compared to the case of floating-point. The whole iteration
forms one pipeline circuit; therefore, the computation of the background intensities
performed rapidly.

Measured —(Converter/-

Background —(Converter
Converter)— Result

Figure 4: The block diagram of the area processor unit.

Figure 5: The block diagram of the Shirley processor unit.

The iteration process ends when the difference between two consecutive back-
ground approximations no longer exceeds a predefined constant value.

4.4 The final results
We have designed a hardware accelerated computation system that can distinguish
certain components of electron microscope images originated from different physical
processes, i.e. the disturbing backgrounds. The prototype of the system has been
completed and it is able to determine and subtract certain background components.
The magnified test images of a mesh sample (SUS316, #100) were taken by the
DELMA at the beam-line BL07LSU of Spring-8 [6, 13] (Fig. 6). The sample in
the presented work was irradiated by 1 keV energy and 250 pm diameter electron
beam with 14° inclination to the sample surface. The system performance was
tested on low magnification images with forced quality degradation by taking the
images with fully opened apertures. The magnified (12 x) images were intensified
and converted into visible light with a microchannel plate (MCP) - phosphor screen
combination and recorded as 300 x 300 pixel size images by a PCO camera. Figure
6 shows the results of the background removal by FPGA processor. Significant
improvements can be seen at the electron beam illuminated image center after the
subtraction of this background component (Fig. 6).

In the center of the image notable contrast and signal-to-noise ratio improve-
ment can be seen (Fig. 7). This is important since the center region can be used
in higher magnification cases.

130 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

f 4 4
i X j .

Figure 6: The original (left) [6] and background-subtracted images by FPGA pro-
cessor (right). The arrows indicate the centerlines of the sample region where the
intensity curves of figure 7 were measured.

Comparison of intensity distributions

Figure 7: The intensity distribution of the images in the horizontal centerlines of
the sample region marked by the blue (original) and red (background-subtracted)
arrows in Fig. 6.

We have also achieved remarkable results in the relative reduction of running
time. Using specialized hardware components the background computation is done
efficiently in parallel. Our present system realizes two parallelized computation
threads where the limitation comes only from the utilized development board's
properties. Theoretically, the parallel threads are limited only by the physical re-
sources of the FPGA and the applied serving strategy. For example, by a board
with more advanced FPGA, we could implement even more than a thousand par-
allel Shirley modules. In this case large amounts of measured data must be sent to

Background Elimination by Using FPGA 131

the device; therefore, the bottleneck of the prototype system is the communication
between the PC and the FPGA board. However, this process can be omitted by
integrating the FPGA based system into the measuring device. The current FPGA
prototype system has significantly shorter computation time than an ordinary com-
puter has even though that the applied FPGA has only 50 MHz clock frequency
while the PC runs on 3.6 GHz. Furthermore, the FPGA has much lower power
consumption. The following table summarizes the results:

Table 1: Running times of the FPGA system with one Shirley module, with two
Shirley modules in parallel, and the PC for a hundred spectra.

Spectrum length
(number of points)

Running Time (ms) Spectrum length
(number of points) FPGA1

PC2oftware
Spectrum length
(number of points) 1 Shirley-module 2 Shirley-module PC2oftware

70 3,660 2,267 6,317
175 8,070 5,101 19,038
350 15,420 9,828 30,496
700 30,102 19,278 44,389

Table 1 shows the running times of the algorithm on different platforms. Column
one holds information about the length of the spectra. The second column shows
that the computation time of hundred spectra were measured. The third column
shows the running time of the background computation on the FPGA1 with one
Shirley module. In this case there is no parallel computing of different spectra,
just the hardware implementation of the previously described algorithm, with a
pipelined design. The fourth column shows the running time of the background
computations for a hundred spectra with two parallel Shirley modules on the FPGA.
In those cases there are no external factors that would affect the length of the
computation so they are identical for every run. The fifth column shows the running
time of the software implementation of the same algorithm on a personal computer2.
There are several factors that affects the computation time such as the scheduling of
the operating system or available resources at a given moment etc. So the running
time, in this case, is the average of several computations. The results on the FPGA
tend to be better than on the PC (Fig. 8) even though that the PC has a much
higher clock frequency (50MHz « 3,6GHz) and the point is to offload the efforts
from the PC and embed the background correction system into the measuring
device. The performance can be increased further if more Shirley modules can be
placed on the FPGA.

1 Altera DE2 board with Cyclone II FPGA clocked with 50 MHz.
2 P C configuration: Motherboard: Gigabyte 890XA-UD3, Processor: A M D Phenom(tm) II X 4

965 (4 CPUs) 3.4GHz, Memory: 4096MB RAM, Operation System: Windows 7.

132 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

45

40

35 •o c
8 30
tó

1 25 ©
•1»
O> c
c 15
c
0c

10

5

0

Running t imes of the background computat ions in dif ferent platforms

IHfPGA1 single thread
fllFPGA1 two threads
L+PC2 j

Spectrum length

Figure 8: The proportions of the difference between the running times of different
platforms remain the same if the spectrum length (energy resolution of the image
sequence) is increasing.

5 Conclusions
The prototype of the background computer system provided remarkable results and
important experiences which will be useful at the design of a new high performance
hardware acceleration system. During the development of the prototype we realized
that relevant performance enhancement requires a high-end FPGA platform which
has the necessary resources to determine the background values in real-time. That
device could be used as an embedded unit related to the measuring instrument so
it is no longer necessary to use communication protocols between the PC and the
hardware. The running time could be easily reduced in the future if the system
performs the computations in more than two threads of the Shirley modules, which
is limited mainly by the applied hardware resources and not by the realization of the
method, therefore using a higher performance FPGA, more parallel computation
modules could be executed simultaneously.

6 Acknowledgement
We would like to thank to the Japan Synchrotron Radiation Research Institute
(JASRI) for getting possibility of using the BL07LSU beam-line at the Super Pho-
ton Ring - 8 GeV [13] synchrotron facility and to the Altera Company for providing
the DE2 development and education board in the framework of Altera University
Program.

1 Altera D E 2 board with Cyclone II F P G A clocked with 50 MHz.
2 P C configuration: Motherboard: Gigabyte 8 9 0 X A - U D 3 , Processor: A M D Phenom(tm) II X 4

965 (4 CPUs) 3.4GHz, Memory: 4096MB R A M , Operation System: Windows 7.

Background Elimination by Using FPGA 133

References
[1] Altera Corporation. DE2 Development and Education Board User Manual.

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf, 2006.

[2] Altera Corporation. FPGAs. http://www.altera.com/products/fpga.html,
2011.

[3] Brown, S. and Vranesic, Z. Other Number Representations, pages 282-288.
McGraw-Hill Higher Education, 2002.

[4] Brown, S. and Vranesic, Z. Synchronous Sequential Circuits, pages 447-527.
McGraw-Hill Higher Education, 2002.

[5] Daimon, H., Matsuda, H., and Tóth, L. Stereo-peem for three-dimensional
atomic and electronic structures of microscopic materials. Surface Science,
601 (20):4748-4758, 2007.

[6] Goto, K., Matsuda, H., Hashimoto, M., Nojiri, H., Sakai, C., Matsui, F., Dai-
mon, H., Tóth, L., and Matsushita, T. Development of display-type ellipsoidal
mesh analyzer. e-Journal of Surface Science and Nanotechnology, 9:311-314,
2011.

[7] Matsuda, H. and Daimon, H. Approach for simultaneous measurement of
two-dimensional angular distribution of charged particles, ii. deceleration and
focusing of wide-angle beams using a curved mesh lens. Physical Review E,
74(036501), 2006.

[8] Matsuda, H., Daimon, H., Tóth, L., and Matsui, F. Approach for simultaneous
measurement of two-dimensional angular distribution of charged particles, iii.
fine focusing of wide-angle beams in multiple lens systems. Physical Review E,
75(046402), 2007.

[9] Matsuda, H., H., Daimon, Kato, M., and Kudo, M. Approach for simultane-
ous measurement of two-dimensional angular distribution of charged particles:
Spherical aberration correction using an ellipsoidal mesh. Physical Review E,
71(066503), 2005.

[10] Popa, M. A flexible and general solution for reconfiguring pipeline computing
systems. International Conference on Computer Systems and Technologies, I,
2004.

[11] Schnhense, G. and Spiecker, H. Correction of chromatic and spherical aber-
ration in electron microscopy utilizing the time structure of pulsed excitation
sources. Journal of Vacuum Science & Technology B, 20(1523373):2526-2534,
2002.

[12] Shirley, D. A. High-resolution x-ray photoemission spectrum of the valence
bands of gold. Physical Review B, 5(12):47094714, 1972.

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf
http://www.altera.com/products/fpga.html

134 Adám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, László Tóth

[13] SPring-8 (Super Photon Ring - 8 GeV). Japan synchrotron radiation research
institute (jasri) 1-1-1, kouto, sayo-cho, sayo-gun, hyogo 679-5198 japan (SON-
LINE, 2011.

[14] Tóth, L., Goto, K., H., Matsuda, Matsui, F., and Daimon, H. New 1 7r sr
acceptance angle display-type ellipsoidal mesh analyzer for electron energy
and two-dimensional angular distribution as well as imaging analysis. Nuclear
Instruments and Methods in Physics Research Section A, 648:58-59, 2011.

[15] Tóth, L., Matsuda, H., Matsui, F., Goto, K., and Daimon, H. Details of
1 7T sr wide acceptance angle electrostatic lens for electron energyand two-
dimensional angular distribution analysis combined with real space imaging.
Nuclear Instruments and Methods in Physics Research Section A, 661:98-105,
2011.

Acta Cybernetica 21 (2013) 135-134.

A Probabilistic Quality Model for - an
Industrial Case Study*

Péter Hegedűs1

Abstract

Both for software developers and managers it is crucial to have clues about
different aspects of the quality of their systems. Maintainability is probably
the most attractive, observed and evaluated quality characteristic of all. The
importance of maintainability lies in its very obvious and direct connection
with the costs of altering the behavior of the software.

In this paper we present an existing approach and its adaptation to the
C # language for estimating the maintainability of the source code. We used
our model to assess the maintainability of the C # components of a large inter-
national company. We analyzed almost a million lines of code and evaluated
the results with the help of IT professionals of our industrial partner.

The application of our method and model was successful as the opinions
of the developers showed a 0.92 correlation with the maintainability values
produced by our C # maintainability model.

Keywords: software maintainability, ISO/IEC 9126, C # quality model, in-
dustrial case study

1 Introduction
Both for software developers and managers it is crucial to have clues about dif-
ferent aspects of the quality of their systems. The information can mainly be
used for making decisions, backing up intuition, estimating future costs and assess-
ing risks. The ISO/IEC 9126 standard [13] defines six high-level product quality
characteristics which are widely accepted both by industrial experts and academic
researchers. These characteristics are: functionality, reliability, usability, efficiency,
maintainability and portability. The characteristics are affected by low-level quality
properties that can be internal (measured by looking inside the product, e.g. by
analyzing the source code) or external (measured by execution of the product, e.g.
by performing testing).

"The publication is supported by the European Union and co-funded by the European Social
Fund, TAMOP-4.2 .2 /B-10/1-2010-0012.

^University of Szeged, E-mail: hpeterflinf.u-szeged.hu

136 Péter Hegedűs

Maintainability is probably the most attractive, observed and evaluated quality
characteristic of all. The importance of maintainability lies in its very obvious and
direct connection with the costs of altering the behavior of the software. Although,
the quality of source code unquestionably affects maintainability, the standard does
not provide a consensual set of source code measures as internal quality properties.
The standard also does not specify the way how the aggregation of quality attributes
should be performed. These are not deficiencies of the standard, but it offers a kind
of freedom to adapt the model to specific needs.

We have introduced a practical quality model in one of our previous works [3]
that differs from the other models (e.g. [4, 5, 6, 12, 17]) in many ways:

• It uses a large number of other systems as benchmark for the qualification.

• The approach takes into account different opinions of many experts, and the
algorithm integrates the ambiguity originating from different points of view
in a natural way.

• The method uses probabilistic distributions instead of average metric values,
therefore providing a more meaningful result, not just a single number.

Although the introduced model proved to be useful and accepted by the scientific
community, real industrial settings and evaluations are required to show that our
solution is useful and applicable in real environments too. Additionally, the first
published model is only a prototype for the Java language and weighted by a small
number of researchers and practitioners. The goal of the current work is to develop
a method and model for estimating the maintainability of the C # systems of a large
international company. To achieve this goal, the following tasks were completed:

• Together with the industrial partner, we have introduced a new maintainabil-
ity model for systems written in the C# language.

• A benchmark from the C # systems of the company has been created (almost
a million C # code lines has been analyzed).

• A method and tool has been developed for qualifying the smaller components
of the company's software using the benchmark - producing a relative measure
for maintainability of the components (we were able to rank the components
of the company).

• A new weighting has been created involving the developers and managers.

• According to the method and model, a large number of components have
been evaluated.

The results were discussed after the evaluation and compared to the developers'
opinions. The industrial application of our method and model was successful, as
the opinions of the developers highly correlated with the maintainability values

A Probabilistic Quality Model for C# - an Industrial Case Study 137

produced by our C# maintainability model. This result shows that our probabilis-
tic quality model is applicable in industry, as the industrial partner accepted the
provided results and found our approach and tool very useful.

The rest of the paper is organized as follows. First, we give a short overview
about the related work in Section 2. Then, in Section 3 we introduce our approach
for estimating maintainability and describe the details of the case study setup. In
Section 4 we present and evaluate the results of the case study. Section 5 collects
the possible threats to the validity of our work. Finally, we conclude the paper in
Section 6.

2 Related Work
A large number of works deal with software maintainability analysis using the source
code of the software. Kanellopoulos et al. [14] apply data mining and clustering
techniques to comprehend an object-oriented system and evaluate its maintainabil-
ity. They successfully explore some quality attributes of the JBoss open source
system. To understand whether some technologies consistently outperform others,
Sartori et al. [19] use some crude indicators, such as the density of bugs and the
time required to fix bugs. They find that there is a connection between these in-
dicators and the programming language of the software. We also use source code
metrics and static analysis but unlike these works we are particularly interested
in the ISO/IEC 9126 based qualification of an industrial software. Moreover, we
focus on the C # language and its specific quality attributes to be able to assess
the maintainability of programs.

There are many other existing practical quality models. Some of them [2, 4, 7,
12, 16] adapt the ISO/IEC 9126 standard. These models are based on low level
source code metrics and a method for aggregating these values to higher levels.
There are other models also, e.g. Bansiya and Davis [4] present a hierarchical model
for assessing the quality of object-oriented design. Their model focuses on design
level metrics. Plosch et al. introduce a quality model [18] based on a technical
topic classification. Their approach is more technical than the ISO/IEC 9126 and
makes it easier to assign metrics - provided by static code analysis tools - to quality
attributes. Letouzey presents a quality model and analysis model [15] which is used
to estimate the quality and the technical debt of an application source code. He
uses the concept of technical debt for expressing the quality of the software (larger
debt indicates worse maintainability) based on different indicators calculated from
the source code. Although we also introduce a new quality model, our primary
purpose is to empirically validate its results with the help of an industrial case
study rather than showing only a formal approach or results on small examples.
We focus on the quality of C # systems while the mentioned quality models are
either specific to Java or very general (applicable to any 0 0 system).

There are many papers presenting industrial case studies of maintainability
analysis of C# systems. But while we are interested in the ISO/IEC 9126 based
qualification, they focus on different quality properties. Gatrell et al. [10] perform
a study analyzing the refactorings in a commercial C # software comprising 270

138 Péter Hegedűs

versions. In another work Gatrell and Counsell focus on the fault-proneness [9]
of the code, they document a study of change in commercial, proprietaxy C #
software and attempt to determine whether a relationship exists between class
changes and faults. The work of Goldschmidt et al. [11] concentrates particularly
on the maintainability of the applied persistency techniques in C # systems.

3 Approach

3.1 Probabilistic Software Quality Model

Our probabilistic software quality model [3] is based on the quality characteristics
defined by the ISO/IEC 9126 standard.

The computation of the high level quality characteristics is based on a directed
acyclic graph whose nodes correspond to quality properties that can either be in-
ternal (low-level) or external (high-level). Internal quality properties characterize
the software product from an internal (developer) view and are usually estimated
by using source code metrics. External quality properties characterize the software
product from an external (end user) view and are usually aggregated somehow by
using internal and other external quality properties. The nodes representing in-
ternal quality properties are called sensor nodes as they measure internal quality
directly. The other nodes are called aggregate nodes as they acquire their measures
through aggregation. The edges of the graph represent dependencies between an
internal and an external or two external properties. The aim is to evaluate all the
external quality properties by performing an aggregation along the edges of the
graph, called Attribute Dependency Graph (ADG).

Goodness is the term that we use to express how good or bad an attribute is.
We assume that the goodness of each sensor node is not known precisely; hence it is
represented by a random variable with a probability density function, the goodness
function. For constructing goodness functions we make use of the metric histogram
over the source code elements, as it characterizes the whole system from the aspect
of one metric. As the notion of goodness is relative, we expect it to be measured by
means of comparison with other histograms. Applying a distance function between
two histograms, we get one goodness value for the subject histogram that is relative
to the other histogram. In order to obtain a proper goodness function, we repeat
this comparison with histograms of many different systems independently. In each
case we get a goodness value which can basically be regarded as sample of a random
variable from the range [—00,00]. Interpolation of the empirical density function
leads us to the goodness function of the sensor node.

Besides constructing goodness functions for sensor nodes, we need a way to
aggregate them along the edges of the ADG. We created an online survey where
we asked many experts (both industrial and academic people) for their opinion
about the weights between quality attributes. The number assigned to an edge is
considered to be the amount of contribution of source goodness to target good-
ness. Consequently, the votes form a multi-dimensional random variable for each

A Probabilistic Quality Model for C# - an Industrial Case Study 139

aggregate node. Taking into account every possible combination of goodness values
and weights, and also the probabilities of their outcome, we defined a formula for
computing goodness functions for every aggregate node. It is the multi-dimensional
extension of the classical linear combination. The aggregation method ensures that
the goodness functions of aggregate nodes are really expressing the probabilities of
their goodness from the aspect represented by the node.

Warning J f Error

5
{Fault pronaness j

CBO J M c C a b e J N 1 1
I I , ' I

LLOC] [code complexity)

> ' > "f 1

[comprehension] [CC
=J

Testability j I Analyzability 1 j Stability j I Changeability

-A
Effectiveness

Figure 1: Java maintainability model

In our previous work [3] we have introduced a prototype ADG (see Figure 1)
for Java language. To be able to perform the construction of goodness functions
in practice, we have built a source code metric repository database, where we up-
loaded source code metrics of more than 100 open source and industrial software
systems. To get an absolute measure for software maintainability, we calculated
all the maintainability values of the systems in the repository. The resulting dis-
tribution of the values can be seen on Figure 2. As the values given by the quality
model are unbounded we can assign to each system a rank value according to this
distribution. The rank is a real value between 0 and 1 that objectively reflects the
absolute maintainability value of a system based on the used repository database.
Note that the rank is exactly the proportion of the systems in the repository that
have a worse maintainability value than the subject system.

3.2 Adaptation of the Approach to C # Language
To adapt the previously described approach for qualifying the C # components of
our industrial partner we have introduced a new ADG. As a result of a collective
work the ADG shown in Figure 3 has been developed. It is much larger than the
Java prototype ADG and contains some C # specific rule violations also. We chose
FxCop [1] as a rule checker and built the number of different rule violations into
the model as sensor nodes. The reason behind choosing FxCop is that it is a widely
accepted rule checker in the C # world and our industrial partners already used this

140 Péter Hegedűs

Maintainability value

Figure 2: Distribution of the maintainability of benchmark systems

checker at the time of model construction. For calculating the source code metrics
we used the Columbus toolset [8]. The sensor nodes included in the model can be
seen in Table 1. We note that the differences in the sensor nodes compared to the
Java model are rather general improvements on the model than specialties of C # .
Only FxCop rule violations were added due to the adaption of the C # language.

Table 1: Sensor nodes in the model

DIT Depth of inheritance tree NLE Nesting level
N01 Number of outgoing invocations IR Interoperbility Rules
CBO Coupling between object classes NR Naming Rules
McCabe McCabe's cyclomatic complexity CC Clone coverage
LCOM5 Lack of cohesion on methods PR Performance Rules
DR, UR Design Rules and Usage Rules1 SR Security Rules
N11 Number of incoming invocations LLOC Logical code lines of
LLOC Logical code lines of (class) classes
(method) methods

The model contains the following intermediate aggregated nodes:

• Unit Complexity - the class level complexity of the system.

• System Complexity - the complexity of the system as a whole.

• Code Complexity - the general complexity of the source code.
1A11 the rule sensor nodes refer to the number of FxCop rule violations of that group found in

the system.

A Probabilistic Quality Model for C# - an Industrial Case Study 141

i <" i ("" 1 () (1 ()

l̂ m̂mnWdiyj (UrtttaLwHy)

I CocW twmptoHy j |" LLOCjiwHod) j f NR j (U.OC) [' LCOM5]

Figure 3: The created C# maintainability model

• 00 design - the fulfillment of OO design principles.

• Fault-proneness - the fault proneness of the code due to dangerous program
constructs.

• Comprehension - how easy it is to comprehend the code of the system.

• Implementation flaws - the implementation problems in the system.

• Implementation quality - the low level quality of the code implementation.

• Effectiveness - the effectiveness of the code change.

The ISO/IEC 9126 quality characteristics2 in the model are the following:

• Testability - the capability of the software product to enable modified software
to be validated.

• Analyzability - the capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be modified.

• Changeability - the capability of the software product to enable a specified
modification to be implemented, where implementation includes coding, de-
signing and documenting changes.

2 The model does not include all the characteristics defined by the standard yet.

142 Péter Hegedűs

• Stability - the capability of the software product to avoid unexpected effects
from modifications of the software.

• Functionality - the capability of the software product to provide functions
which meet stated and implied needs when the software is used under specified
conditions. The functions satisfy the formulated or supposed conditions.

• Maintainability- the capability of the software product to be modified. Modi-
fications may include corrections, improvements or adaptation of the software
to changes in environment, and in requirements and functional specifications.

• Quality - the overall quality of the software system.

4 Results and Evaluation
To make the maintainability model work we had to build a benchmark database
from different C # systems. Since our approach of creating benchmark database
from large number of open source systems was not applicable, in this case we needed
a new idea. As our industrial partner owns a huge amount of C # code itself and
they were only interested in the code maintainability of their components compared
to each other we decided to build a benchmark from their over 300 components3.
This way we were able to give a relative maintainability value for each component
(estimate the component's maintainability in comparison to other components).
Moreover, we could define a ranking based on the relative maintainability between
the components. Some basic properties of our partner's source code can be seen in
Table 2.

Table 2: Basic properties of the industrial partner's software

Property Value
Total number of logical lines of code
Total number of classes in the system
Total number of methods in the system
Number of components in the system

711 944
4 942

48 787
315

As a final step before the qualification of the components a weighting was in-
troduced on the created C # ADG. 7 IT professionals from our industrial partner
and 5 academical co-workers voted on the importance of each dependency between
quality attributes. We assigned the distribution of the votes to each edge in the
ADG as weights to be able to perform the aggregation algorithm (for details see
Section 3.1).

With the help of the adapted model, benchmark and votes we calculated the
maintainability values of each component. The results of 10 selected components

3Here we refer to the source code of a self-compilable dll or exe as a component.

A Probabilistic Quality Model for C# - an Industrial Case Study 143

can be seen in Table 4. The detailed results of the best out of these 10 components
is shown in Figure 4. On the left hand side we present the goodness values of low
level quality properties (i.e. sensor nodes) of the system. Although our model works
with goodness functions we can simply derive a single value by taking the average
of the samples. 0 means the worst, while 1 means the best achievable result. On
the right side the goodness values of high level quality attributes (i.e. aggregate
nodes) are shown. The method level code lines (LLOC) got the worst qualification
from the sensor nodes. From ISO characteristics Functionality got the best score
according to our model.

Testability
Stability ImplemtnutkmQjainy

Maintainability

FaultProfwness

Functionality / ¿T i •4 LCOMS \ \\ 1 .VOT1

/ \] V
CodtCompiuity ^

\
Ar̂tyv ability
Impierrwnutiorjftawt

Otmpfehiiiaiitit

\ Changeability

Ouality

SvttcmCompiexlty
OODeaign

Figure 4: Detailed results of a C # component

The maintainability values of the 10 presented components were manually eval-
uated by 7 IT professionals of the company. We chose components that each of the
IT professionals knew well. So they were able to subjectively assess the maintain-
ability of these components. Every IT professional scored the maintainability of the
10 components on a scale from 0 to 10. 0 means the worst possible maintainability,
10 the best. After collecting all the votes we calculated the average of these votes
and divided the value by 10 to convert the value to the [0,1] interval. In this way we
could compare the maintainability values provided by our model with the average
votes of the IT professionals. Table 4 shows the maintainability values together
with the normalized average subjective votes. Although the average human votes
are higher than the estimated values the Pearson correlation analysis gave 0.923,
a very high correlation between the two data sets. Since our model does not calcu-
late an absolute maintainability measure, the values cannot be compared directly.
However, the correlation analysis showed that our model was able to assess the
maintainability of the components relatively to each other which was our goal.

Due to the small sample size and low variance in the values we performed a
test where we randomly excluded two out of the ten cases and recalculated the
Pearson's and Spearman's rank correlation values. We wanted to rule out that the

144 Péter Hegedűs

high correlation is caused by a few dominant values. Table 3 shows the recalculated
correlation values for ten cases.

Table 3: The recalculated correlation values

Pearson's 0.879 0.925 0.879 0.924 0.948
Spearman's 0.896 0.896 0.896 0.854 0.970
Pearson's 0.925 0.924 0.923 0.901 0.777
Spearman's 0.812 0.854 0.916 0.896 0.766

The last column presents the case when the largest and smallest value is re-
moved. Even in this case the correlation values remain fairly high. But in general,
we can say that there is not much variance in the original and recalculated values
meaning that the high correlation is not caused by some dominant values. More-
over, Spearman's rank correlation is even more stable than Pearson's correlation.
It is good because it relies on the ordering of the values and the ordering of the
qualifications is the most important in our case study.

Additionally to the subjective voting, we have discussed the results of all these
components with the IT professionals in detail. Every extreme sensor values have
been justified and for every component we reached a consensual acceptance of the
goodness values of high level quality characteristics. Moreover, all the IT profes-
sionals agreed with the ranking of the components suggested by the maintainability
values.

Table 4: The maintainability values and the average IT professional votes

Maintainability 0.311 0.261 0.261 0.261 0.26
Avg. expert vote 0.56 0.48 0.473 0.53 0.47
Maintainability 0.26 0.221 0.221 0.216 0.178
Avg. expert vote 0.49 0.4 0.44 0.45 0.3

5 Threats to Validity
An obvious threat to the validity of the presented results is the fact that the cal-
culated maintainability values are relative. This means that the presented values
reflect the maintainability of the components in comparison to the code base of our
industrial partner. What follows from this is that the best component has a main-
tainability value of 1 and the worst has 0. We cannot place the maintainability of
the components on an absolute scale based on these values. However, our primary
goal was not to give an absolute measure for maintainability but to be able to rank

A Probabilistic Quality Model for C# - an Industrial Case Study 145

and compare the components of our partner according to their maintainability. For
this it is enough to have a relative maintainability value because the ranking of the
components would be the same using absolute measures. Moreover, it is very easy
to adapt our approach to get an absolute measure for maintainability. Only the
benchmark database should be extended with many other third party C # systems.

Another major threat is a relatively small number of experts taking part in
model declaration and dependency weighting. As we try to estimate a subjective
concept a very large number of human opinions would be required to get an objec-
tive estimation. However, our experiences show that with the votes of more than
10 persons a very good estimation can be reached. Additionally, it is also very easy
to add more expert votes to our model and get more reliable data.

Since it would have been a tiresome task to manually validate the results of
all the 315 components we selected 10 of them. So our conclusions about the va-
lidity of our maintainability estimations are limited to the evaluated components.
Nevertheless, we think that due to the nature of the selection we examined a rep-
resentative sample of the results and our model indeed approximates the opinions
of the IT professionals well.

6 Conclusions and Future Work
In this paper we presented an approach and a concrete model for estimating the
maintainability of C # systems. Our primary purpose was to prove the applicability
of our previous approach in an industrial environment. Therefore, we adapted our
Java specific quality model to assessing the maintainability of C# systems.

This work has been performed in collaboration with the co-workers of our in-
dustrial partner, an international software development company. The adaptation
of our previous approach included the following steps: 1) introduction of a new
maintainability model for C # systems, 2) creation of a benchmark from the C #
components of the company, 3) development of a method and tool for qualifying
the smaller components of the company's software using the benchmark, 4) intro-
duction of a new weighting involving the developers and managers of the company,
and 5) evaluation of a large number of components.

The results were discussed after the evaluation and compared to the develop-
ers' opinions. The industrial application of our method and model was successful,
as the opinions of the developers highly correlated with the maintainability values
produced by our C # maintainability model. This result shows that our probabilis-
tic quality model is applicable in industry, as the industrial partner accepted the
provided results and found our approach and tool very useful.

An obvious direction of the future research is to collect more votes to model
weights and evaluate more C # systems. The manual inspection of the model based
estimations could help improving the qualification process and model.

We also plan to extend the presented approach to different languages. We
already have preliminary results on a simple PL/SQL and C maintainability model.
Besides these languages there is also a plan to adapt our qualification approach to

146 Péter Hegedűs

C + + and Python languages. After completing the prototype versions of these
models we plan to perform a similar industrial case study to that presented here.

References
[1] FxCop Home Page.

http://msdn.microsoft.com/en-us/library/bb429476(v=vs. 80) . aspx.

[2] Baggen, R., Schill, K., and Visser, J. Standardized Code Quality Bench-
marking for Improving Software Maintainability. In Proceedings of the Fourth
International Workshop on Software Quality and Maintainability (SQM2010),
2010.

[3] Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., and Gyimóthy, T. A
Probabilistic Software Quality Model. In Proceedings of the 27th IEEE In-
ternational Conference on Software Maintenance, ICSM 2011, pages 368-377,
Williamsburg, VA, USA, 2011. IEEE Computer Society.

[4] Bansiya, J. and Davis, C.G. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 28:4-17,
2002.

[5] Carvallo, J. P. and Franch, X. Extending the ISO/IEC 9126-1 Quality Model
with Non-technical Factors for COTS Components Selection. In Proceedings
of the 2006 international workshop on Software quality, WoSQ '06, pages 9-14,
New York, NY, USA, 2006. ACM.

[6] Chua, B.B. and Dyson, L.E. Applying the IS09126 Model to the Evaluation
of an E-learning System. In Beyond the comfort zone: Proceedings of the 21st
ASCILITE Conference, pages 184-190, Perth, Australia, 2004. Citeseer.

[7] Correia, J. P., Kanellopoulos, Y., and Visser, J. A Survey-based Study of the
Mapping of System Properties to ISO/IEC 9126 Maintainability Characteris-
tics. IEEE International Conference on Software Maintenance, pages 61-70,
2009.

[8] Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy, T. Columbus -
Reverse Engineering Tool and Schema for C++ . In Proceedings of the 18th
International Conference on Software Maintenance (ICSM 2002), pages 172-
181. IEEE Computer Society, October 2002.

[9] Gatrell, M. and Counsell, S. Size, Inheritance, Change and Fault-proneness in
C # Software. Journal of Object Technology, 9(5):29-54, 2010.

[10] Gatrell, M., Counsell, S., and Hall, T. Empirical Support for Two Refactoring
Studies Using Commercial C# Software. In Proceedings of the 13th inter-
national conference on Evaluation and Assessment in Software Engineering,
EASE'09, pages 1-10, Swinton, UK, 2009. British Computer Society.

http://msdn.microsoft.com/en-us/library/bb429476(v=vs

A Probabilistic Quality Model for C # - an Industrial Case Study 147

[11] Goldschmidt, T., Reussner, R., and Winzen, J. A Case Study Evaluation of
Maintainability and Performance of Persistency Techniques. In Proceedings
of the 30th international conference on Software engineering, ICSE '08, pages
401-410, New York, NY, USA, 2008. ACM.

[12] Heitlager, I., Kuipers, T., and Visser, J. A Practical Model for Measuring
Maintainability. Proceedings of the 6th International Conference on Quality
of Information and Communications Technology, pages 30-39, 2007.

[13] ISO/IEC. ISO/IEC 9126. Software Engineering - Product quality. ISO/IEC,
2001.

[14] Kanellopoulos, Y., Dimopulos, T., Tjortjis, C., and Makris, C. Mining Source
Code Elements for Comprehending Object-oriented Systems and Evaluating
Their Maintainability. SIGKDD Exploration Newsletter, 8(l):33-40, June
2006.

[15] Letouzey, J. L. The SQALE Method for Evaluating Technical Debt. In Third
International Workshop on Managing Technical Debt (MTD), pages 31-36.
IEEE, June 2012.

[16] Muthanna, S., Ponnambalam, K., Kontogiannis, K., and Stacey, B. A Main-
tainability Model for Industrial Software Systems Using Design Level Metrics.
In Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE'00), WCRE '00, pages 248-256, Washington, DC, USA, 2000. IEEE
Computer Society.

[17] Oman, P. and Hagemeister, J. Metrics for Assessing a Software System's
Maintainability. In Proceerdings of the Conference on Software Maintenance,
volume 19, pages 337-344. IEEE Computer Society Press, 1992.

[18] Plôsch, R., Gruber, H., Kôrner, C., Pomberger, G., and Schiffer, S. A Proposal
for a Quality Model Based on a Technical Topic Classification. In Proceedings
of SQMB 2009 Workshop, 2009.

[19] Sartori, V., Eshete, B., and Villafiorita, A. Measuring the Impact of Different
Metrics on Software Quality: a Case Study in the Open Source Domain. In
Proceedings of the Fifth International Conference on Digital Society, 2011.

Acta Cybernetica 21 (2013) 149-134.

An Empirical Study of Reconstructing
hv-Convex Binary Matrices from

Horizontal and Vertical Projections*

Zoltán Ozsvár1 and Péter Balázs1

Abstract

The reconstruction of hv-convex binary matrices (or equivalently, binary
images) from their horizontal and vertical projections is proved to be NP-
hard. In this paper we take a closer look at the difficulty of the problem.
We investigate different heuristic reconstruction algorithms of the class, and
compare them from the viewpoint of running-time and reconstruction quality.
Using a large set of test images of different sizes and with varying number
of components, we show that the reconstruction quality can depend not only
on the size of the image, but on the number and location of its components,
too. We also reveal that the reconstruction time can also be affected by the
number of the so-called switching components present in the image.

Keywords: discrete tomography, reconstruction algorithm, hv-convex bi-
nary matrix, kernel-shell method, simulated annealing

1 Introduction
Tomography is a method of producing a 3D image of the internal structure of an
object from its projections, without damaging it. This is usually achieved by recon-
structing 2D slices from the projections and then assembling them. Applications
of computerized tomography arise from various fields of science: image processing,
medical imaging, nondestructive testing, electron microscopy, etc. The Filtered

'This work was supported by the European Union and co-funded by the European Social
Fund under the grant agreement TÁMOP-4.2.2 /B-10/1-2010-0012, "Broadening the knowledge
base and supporting the long term professional sustainability of the Research University Centre
of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists".
The work of Péter Balázs was also supported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences and the O T K A PD 100950 grant of the Hungarian Scientific
Research Fund.

'Faculty of Science and Informatics, University of Szeged, Aradi vértanúk tere 1., H-6720
Szeged, Hungary, E-mail: 0zsvar.Zoltan8stud.u-szeged.hu

'Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2.,
H-6720 Szeged, Hungary, E-mail: pbalazs@inf .u-szeged.hu

150 Zoltán Ozsvár and Péter Balázs

Backprojection and variants of the Algebraic Reconstruction Methods are the most
commonly used algorithms to reconstruct images from their projections [8, 12].
However, they require several hundreds of projections to ensure an acceptable im-
age quality. In Binary Tomography (BT) we assume that the examined object is
homogeneous, thus the image to be reconstructed contains only black (object) and
white (background) pixels. With this additional information, algorithms of BT
can often produce images of good quality, even from just a small amount (say, at
most 10-20) of projections [9, 10]. The reconstruction of a binary image is also
feasible from just its horizontal and vertical projections [15]. Nevertheless, in that
case the task is usually extremely underdetermined, i.e., there may be numerous
different binary images with the same two projections. To overcome this problem,
we can assume that the image satisfies certain geometrical conditions, too. In this
paper we study the reconstruction of hv-convex binary images from the horizontal
and vertical projections, from an experimental point of view. We perform several
tests to compare different algorithms for reconstructing hv-convex binary images.
The structure of the paper is the following. Chapter 2 is for the preliminaries. In
Chapter 3 we describe three heuristical algorithms for solving the abovementioned
task. In Section 4 we give our experimental results. Finally, Section 5 is for the
conclusion.

2 Preliminaries
A binary image is a digital image containing just black (also called as object or
foreground) and white (background) pixels. A binary image of size to x n (where
to, n £ N) can also be represented by a binary matrix F = (f i j) m xn where value
1 (respectively, value 0) indicates that the color of the corresponding pixel is black
(respectively, white). Discrete sets (finite subsets of the 2D integer lattice Z 2) can
also be used to represent a binary image, with the agreement that the rows are
numbered from top to bottom (and the columns are numbered from left to right).
A position of the lattice belongs to the discrete set if and only if the corresponding
matrix position has value 1. In this paper we will use the three concepts equiva-
lently. Since rows/columns with 0 projection value can be reconstructed easily in a
preprocessing step and then be eliminated, we also will assume that each row and
column of the matrix contains at least one 1. Figure 1 shows the three different
representations of the same binary image.

The horizontal and vertical projection of the image F is the vector H(F) = H
= (hi,..., hm) and V(F) = V = (tq, . . . ,vn), respectively, where

71 771
hi = (i = 1,.. -,TO) and vj = (j = l,...,ri). (1)

j=l i=l
For example, the binary image F in Fig. 1 has the horizontal and vertical projection
H(F) = (1,1,2,2,3), and V(F) = (3,1,2,2,1), respectively. The class of all binary
matrices having the horizontal projection H, and vertical projection V will be
denoted by BM(H, V).

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 151

1 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 1

Figure 1: Different representations of the same object as a discrete set, as a binary
image, and as a binary matrix (from left to right).

A switching component of a matrix is a 2 x 2 submatrix of the form

"1 0~ 0 T
0 1 or 1 0

To avoid confusion, we emphasize that the above submatrix is formed by select-
ing two (not necessarily consecutive) rows and two (not necessarily consecutive)
columns of the matrix. It is easy to see that the horizontal and vertical projections
of a matrix do not change if we invert the values in the four positions of a switching
component. A much stronger statement is also true.

Theorem 1. [15] Let A,B e BM{H,V) (B # A). Then A is transformable into
B (or vice versa) by a finite sequence of switching components.

The reconstruction task consists in finding a binary image with the given hori-
zontal and vertical projections. However, due to the presence of switching compo-
nents, those projections usually do not uniquely determine the image itself. Thus,
further prior information is needed in order to reduce the number of possible solu-
tions. Two positions P = (pi,p2) and Q = (<71,(72) in a discrete set F are said to
be 4-adjacent if \pi — <711 + \p2 — q2\ = 1. The positions P and Q are 4-connected if
there is a sequence of distinct positions P 0 , . . . , Pk in F such that Po = P, Pk = Q,
and Pi is 4-adjacent to P;_i (for each I = 1 , . . . , k). A discrete set F is 4-connected
if any two points in F are 4-connected. Every discrete set F can be partitioned
(in a uniquely determined way) into maximal 4-connected subsets, which are called
the components of F. The discrete set is called h-convex (respectively, v-convex) if
its elements follow consecutively in each row (respectively, in each column). The
discrete set is called hv-convex if it is both h- and v-convex. Figure 2 demonstrates
the above concepts.

3 Algorithms for Reconstructing hv-Convex Bi-
nary Images

It is known, that the reconstruction of general hv-convex discrete sets from their
horizontal and vertical projections is an NP-hard problem [16]. On the other hand,

152 Zoltán Ozsvár and Péter Balázs

Figure 2: An h-convex 4-connected discrete set (a), a v-convex 4-connected discrete
set (b), an hv-convex 4-connected discrete set (c), and a general hv-convex discrete
set with 4 components (d).

if the hv-convex discrete set is also 4-connected, then the reconstruction can be
solved in polynomial time [4, 5, 6]. Our goal is to reveal the reason of being the
more general problem computationally hard. In this section, we shortly describe
three heuristic algorithms from previous works to solve the problem.

3.1 Kernel-Shell Algorithm
The kernel-shell (or core-envelope) algorithm (see Algorithm 1) is a greedy type
heuristic algorithm which approximates the discrete set F to be reconstructed by
two sequences of discrete sets [13]. The first sequence is nondecreasing, and it
consists of the so-called core sets which satisfy

G0 C Ci C • • • C F, (3)

while the second (nonincreasing) sequence of so-called envelope sets satisfies

S0 D Si D • • • D F. (4)

Denoting the minimal bounding rectangle of F by T, as initial core and envelope
sets we can use

Go = 0 and S0 = T. (5)

In every iteration, the new core set is constructed as the maximal hv-convex
discrete set (operator J) from the current core set Ck, extending it to horizontal
and vertical directions by taking into account the horizontal and vertical projection
values (operator c) and the current envelope set Sk (Step 2). Similarly, the new
shell is constructed as the intersection of the maximal possible extensions of the
current core Ck, by taking into account the horizontal and vertical projection values
(operator s) and the cmrrent envelope set Sk (Step 3).

If the kernel and the shell coincide, then we found a solution (Steps 4-6). Oth-
erwise, if G = Ck (i.e., the core set does not change in an iteration), then the core
cannot be further increased. Thus, we use a stack memory P, and guess all the

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 153

positions of the shell not belonging to the kernel whether the core can be extended
with that given position (Steps 7-9). This heuristic step might be repeated (if
needed) several times (Steps 10-11). If we get that Ck £ Sk, then the guess led to
a contradiction, and we do a backtrack step (by deleting the tested position from
the shell) if possible, i.e., if the stack is not empty (Steps 15-18). Otherwise, there
is no solution (Steps 13-14).

Algorithm 1 Core-Shell Algorithm
Input: the vectors H £ Nm and V G Nn

Output: the binary matrix F with H{F) = H, V(F) = V or the message "no
solution"

l: Co = 0, So = T, k = 0, P is an empty stack
2: C:= J(c(Sk,H)Uc(Sk,V)UCk)
3: S:=s(Ck,H)ns(Ck,V)nSk

4: if Ck = Sk then
5: return F
6: end if
7: if C = Ck then
8: (C, 5, ((i,j) G S\C) P); C := CU{(*, j) } ; Ck+1 := C; Sk+i := S; k := k+1
9: end if

10: if Ck C Sk then
11: goto Step 2
12: else
13: if Ck £ Sk and P is empty then
14: FAIL (no solution)
15: else
16: P —7 (C, S, (i,j)); Ck+1 := C; Sk+1 = Sk \ {(», j) } ; k := k + 1; goto Step 2
17: end if
18: end if

3.2 Algorithm Based on Simulated Annealing

The next algorithm is based on Simulated Annealing (SA) [14] where the objective
is to maximize the number of adjacent ones in an unknown binary matrix X =
(xij)mxn, he., the following function

m—1 n m n—1
f(X) = £ £ XijXi+ij + £ £ XijXi,j+1 (6)

¿=1 j—1 1=1 j=l
subject to

n
£ z i j =hj (i = l,...,m) (7)
j=l

154 Zoltán Ozsvár and Péter Balázs

= U j (j = l , . . . , n) (8)
i=l

with Xij e {0,1} (i — l,...,m and j = l , . . . , n) . Constraints (7) and (8) ensure
that the matrix X satisfies the given projections.

Algorithm 2 outlines this method that was published in [11] on the basis of [7].
For generating an initial solution that satisfies the projections, Ryser's algorithm is
used [15]. The neighborhood of a solution matrix is defined as the set of all matrices
obtained by a single switching. As Theorem 1 says, by applying such switchings,
all the binary matrices satisfying the given projections can be constructed. In
Step 3, p € (0,1) is a random variable, generated in each iteration from a uniform
random distribution. The initial temperature was set to 5, and the algorithm was
terminated when the best solution did not improve for the last 1000 iterations or
when the temperature reached 0.0005. Those parameters as well as the cooling
factor were set empirically by a long process of trial and error.

Algorithm 2 Algorithm Based on Simulated Annealing
Input: Xact = computed initial solution, Temp = 5, Nbr = 0
Output: the binary matrix X with H(X) = H and V(X) = V

l: while (Temp > 0.0005 and Nbr < 1000) do
2: Xnext <— invert a randomly chosen switching component in Xact

3: if (/(Xact) < f (Xnext)) or (p < exp(-\f (Xact) - f (Xnext)\/Temp) then
4: Xact Xnext; Temp := Temp • 0.9995; Nbr := 0;
5: else
6: Nbr++;
7: end if
8: end while

3.3 Algorithm Based on the Location of the Components
Let F be a binary image with k (k > 1) components such that x Jt = [fr, i[] x \ji, j[]
is the minimal bounding rectangle of the Z-th component of F (I = 1,..., k). We
say that the components of F are disjoint if for any I ^ I' (where 1 < 1,1' < k)
It IT Iv = 0 and Ji n Jv = 0 (see Fig. 3).

In [1] the author presented an algorithm to reconstruct discrete sets having
disjoint components from their horizontal and vertical projections, by locating the
possible positions of the components. It is clear, that the hv-convex images nat-
urally consist of disjoint components. Moreover, those components are hv-convex
4-connected images, which can be reconstructed in polynomial time ([4, 5, 6]).
Thus, this algorithm is also capable of the fast reconstruction of hv-convex im-
ages. The outline of the method is given as Algorithm 3, which uses the following
definition.

Definition 1. Let S be a class of 4-connected binary images, H € Nm and V e N " .
We say that the intervals [¿i,¿2] of H (\ < i\ < i2 < m) and \ji,j2] ofV (1 < ji <

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 155

Figure 3: A discrete set with three disjoint components (left), and an hv-convex
discrete set with four disjoint components (right).

J2 < n) are compatible with respect to the class S if a 4~ connected binary image
PeS exits with 7i(P) = (hi1 , . . . ,hi2) and V(P) = (vj1,..., Vj2).

Algorithm 3 Algorithm Based on the Location of the Components
l: find and store all compatible interval-pairs [ii,i2] of H and [ji,j2] of V w.r.t.

the class of hv-convex 4-connected binary images;
2: starting out from the first row connect interval-pairs found in Step 1, until all

the components of the image are found, such that
a) the rows of the intervals of H are consecutive and pairwisely disjoint, and
b) the columns of the intervals of V are pairwisely disjoint;

4 Experimental Results

4.1 Implementation Details
We implemented the algorithms of Section 3 in order to study their performance
from the viewpoint of running-time and reconstruction quality.

The kernel-shell algorithm was implemented with two different data structures.
We designed an array data type where we represented the set of core and shell
positions by two two-dimensional arrays of size m x n. The core positions were
marked by Is, and the shell points by 2s. The second data structure (called first-
last type) stored the first and the last elements of the core and the shell in each
row and each column (or alternatively -1, if there was no element of the set in
the given row or column). This structure was suggested in [13] and it uses four
one-dimensional arrays of size m and another four one-dimensional arrays of size
n. The two data structures are presented in Fig. 4.

The two variants of the kernel-shell heuristic, the algorithm based on Simulated
Annealing and the method based on the location of the components were imple-
mented in JAVA, and the test run on an AMD Athlon X2, 2.1 GHz with 2GB RAM
under Ubuntu 11.01. In the experiments we used a large set of hv-convex images,

156 Zoltán Ozsvár and Péter Balázs

2 4 3 3 1

'0 0 1 0 0' '2 2 2 2 2' Core: Shell:
0 1 1 0 0 2 2 2 2 0 RowFirst: 3,2,2,2,-1 RowFirst: 1,1,1,1,1
0 1 1 1 0 shell= 2 2 2 2 2 RowLast: 3,3,4,2,-1 RowLast: 5,4,5,2,5
0 1 0 0 0 2 2 0 0 0 ColumnFirst: -1,2,1,3,-1 ColumnFirst: 1,1,1,1,1
0 0 0 0 0 2 2 0 2 2 ColumnLast: -1,4,3,3,-1 ColumnLast: 5,5,3,5,5

Figure 4: Example image, where x represents the core and the gray pixels form
the shell. The state is represented both by the array and the first-last data types.

with different sizes (from 10 x 10 to 50 x 50) and varying number of components
(from 1 to 4), by picking them from uniform random distributions, using the meth-
ods of [2, 3].* For each size and number of components the data set contained 100
images. Since the algorithm based on Simulated Annealing uses random values, for
each test data we repeated the reconstruction 5 times, and took the average speed
and correctness of the five runs. In the following we present results just for a part
of the test images, but we made the same observations by investigating the entire
data set.

4.2 The Quality of the Reconstructions
First, we studied the quality of the reconstructions. Even if the image to be re-
constructed is hv-convex, there can be a significant difference between two images
having the same horizontal and vertical projections, due to the presence of the
switching components (see, e.g., Fig. 5). To measure the error of reconstruction,
we computed the conventionally used RME (relative mean error) [17] with the
formula

RME = ^ ' ' J Q ''Jl , (9)

where M° = (m°•) is the original binary matrix (the expected image), and Mr =
(m[j) is the binary matrix of the reconstruction.

The mean value and the variance of the RME for some of the data sets are given
in Table 1. Note that the reconstruction quality of the kernel-shell method does not
depend on the applied data structure. We can observe that - due to the fact that

* We used the benchmark collection available at h t t p : / / v w . i n f . u - s z e g e d . h u / - p b a l a z s /
benchmark/benchmark.html

http://vw.inf.u-szeged.hu/-pbalazs/

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 157

Figure 5: Two different hv-convex discrete sets with the same projections.

the SA algorithm does not guarantee hv-convexity - the quality of its results are
usually worse than those of the other two methods. The core-shell method usually
outperforms the algorithm based on the location of the components, although not
significantly. However, all algorithms show an increasing trend in the RME value
(yielding worse and worse quality) with the increasing number of components of
the image. We found that images consisting of fewer components have usually
significantly fewer switching components than those with more components, which
could be an explanation for this trend.

Table 1: Quality of the reconstructions in RME as a function of the number of
components (first column), and the size of the image (horizontally)

Core-Shell - Array/First-last data type
10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

mean variance mean variance mean variance mean variance mean variance
1 0.0181 0.0918 0.0027 0.0128 0.0002 0.0017 0.0002 0.0017 0.0001 0.0008
2 0.1005 0.3577 0.0138 0.0406 0.0062 0.0186 0.0320 0.1712 0.0114 0.0999
3 0.2669 0.5426 0.0483 0.1130 0.0173 0.0433 0.0668 0.2929 0.1234 0.3405
4 0.7000 0.7730 0.1171 0.2279 0.0570 0.1608 0.1044 0.4083 0.1890 0.5122

Simulated Annealing
10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

mean variance mean variance mean variance mean variance mean variance
1 0.3771 0.3239 0.5606 0.3573 0.6905 0.3711 0.7091 0.4536 0.6965 0.3957
2 0.7919 0.5172 1.0104 0.4949 1.0682 0.5091 1.1263 0.5371 1.1255 0.5326
3 0.9133 0.6889 1.1019 0.6027 1.2006 0.5825 1.2678 0.6125 1.2609 0.5963
4 1.0685 0.8217 1.3180 0.6548 1.3653 0.6394 1.3086 0.6827 1.2806 0.6590

Algorithm Based on the Location of the Components
10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

mean variance mean variance mean variance mean variance mean variance
1 0.0123 0.0401 0.0022 0.0094 0.0033 0.0019 0.0023 0.0014 0.0012 0.0009
2 0.0382 0.1105 0.0055 0.0257 0.0126 0.1002 0.0303 0.2217 0.0058 0.2406
3 0.1852 0.3217 0.0290 0.0676 0.0346 0.1772 0.1380 0.4023 0.1466 0.5303
4 0.5757 0.6457 0.0839 0.3402 0.1123 0.4233 0.1560 0.6073 0.2964 0.7169

158 Zoltán Ozsvár and Péter Balázs

It is easy to see that if the X 6 BM(H, V) image is hv-convex, then

i=i >=i
f(X) = max{/(M)|M € BM{H, V)} = - 1) + ^ (u , - 1) . (10)

m n

However, SA can also produce non-hv-convex images, which occasionally can have
better RME values than others which are not hv-convex (see Fig. 6 for an example).
For this reason, we also calculated how the criteria of convexity defined in (6) is
satisfied. Table 2 depicts for each reconstructed set the value of (6) divided by its
possible maximum determined by (10). From this table it becomes evident that -
regarding the SA based algorithm - not only the RME value but also the convexity
of the reconstructed image gets worse and worse, as the size of the image and the
number of its components is increasing.

H s s
(a) (b) (c)

Figure 6: Original image (a). An hv-convex solution with RME=1 (b). A non-
hv-convex image (c) with the same projections but better RME value (RME=0.5)
than image (b).

Table 2: Quality of the reconstruction measured as the fraction of the number of
adjacent ones and its possible maximum

Number of adjacent ones - Simulated Annealing
10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

mean variance mean variance mean variance mean variance mean variance
1 0.94 0.04 0.89 0.06 0.86 0.07 0.86 0.09 0.87 0.07
2 0.87 0.05 0.79 0.06 0.77 0.06 0.76 0.05 0.76 0.06
3 0.87 0.05 0.77 0.06 0.73 0.06 0.71 0.06 0.70 0.05
4 0.87 0.05 0.72 0.05 0.69 0.05 0.68 0.06 0.69 0.06

We also analyzed the effectiveness of the switching operators in the SA based
algorithm. We calculated the difference of f(S) — f(R) and again, divided by the
maximum value given by (10), where S and R denoted the final reconstruction
and the initial solution matrix provided by the Ryser algorithm, respectively. The
results are shown in Table 3. We can deduce that the more components the discrete
set has, the greater the difference is in quality between the initial and the final
solutions. This again, can be justified by the observation, that - owing to the more
switching components in the image - Ryser's algorithm gives a worse initial solution
regarding the hv-convex property, in case of bigger number of components.

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 159

Table 3: Quality of the correction as a function of the number of components (first
column) and the size of the image (horizontally)

Quality of the correction - Simulated Annealing
10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

mean variance mean variance mean variance mean variance mean variance
1 0.08 0.05 0.06 0.04 0.05 0.03 0.05 0.04 0.04 0.03
2 0.18 0.07 0.10 0.04 0.09 0.03 0.08 0.03 0.08 0.03
3 0.22 0.07 0.13 0.04 0.10 0.03 0.09 0.02 0.10 0.02
4 0.27 0.08 0.16 0.04 0.12 0.03 0.10 0.02 0.10 0.02

4.3 Running Time of the Reconstructions

Table 4 shows the running time (clear CPU usage, without garbage collecting) of
the algorithms. First of all, the running time of the SA based algorithm is more
or less independent of the number of components. It is rather influenced by the
cooling schedule and the number of the switching components which increases with
the size of the image. Furthermore, the two versions of the core-shell algorithm show
similar performance. Images with 1 or 2 components can be reconstructed much
faster than images with 3 or 4 components. In both implementations, the running
time increases rapidly both by increasing the size of the set, and the number of
its components. On the contrary, the speed of the algorithm based on the location
of the components is mostly influenced by the size of the image, and not by the
number of components. Finally, the implementation with the array data type is
much faster than the one using the first-last data structure. The reason is, that
this latter one needs more calculation for processing the new kernel and shell, when
a heuristic step is taken.

One more observation is that in case of the kernel-shell method the size of the
components has an important effect on the speed of the reconstruction. If the image
contains a relatively big component, then it is more likely that in the first step a
non-empty kernel can be produced, yielding less or no need for using the time-costly
stack operators. In case of smaller components, the stack must be used more often
for guessing, which means many steps of backtracking and a lot of execution time
(see Fig. 7).

Finally, it is worth to note that the average time of the reconstruction with the
kernel-shell method and the algorithm based on the location of the components can
significantly differ with the same components but aligning them in different ways.
Figure 8 shows just an example in case of images of size 30 x 30 with 4 components,
but we found similar trends in any other test cases.

160 Zoltán Ozsvár and Péter Balázs

Table 4: The average and the variance of the running times in milliseconds
Core-Shell - Array data type

10 20 30 40 50
average variance average variance average variance average variance average variance

1 39.73 4.92 52.82 11.33 74.77 37.12 147.81 126.75 246.45 325.99
2 42.53 4.20 71.63 45.65 146.87 97.71 334.67 351.82 735.52 1172.44
3 45.08 4.87 102.21 83.98 341.86 478.53 872.21 1341.80 1526.40 2783.91
4 47.33 13.61 292.23 402.12 1032.04 2333.96 1697.22 2264.28 3094.40 3277.27

Core-Shell - First-Last data type
10 20 30 40 50

average variance average variance average variance average variance average variance
1 37.67 1.87 50.16 9.54 73.98 27.93 124.15 74.56 215.61 143.69
2 42.22 3.99 80.52 34.43 166.89 103.44 530.95 534.85 1349.71 1467.54
3 45.82 4.99 169.31 138.09 570.69 495.88 1719.58 1574.60 2223.90 2043.90
4 45.41 5.88 755.18 824.58 2006.66 2155.59 2934.82 2408.63 5889.01 4992.17

Simulated Annealing
10 20 30 40 50

average variance average variance average variance average variance average variance
1 145.36 63.91 319.39 154.14 492.51 248.76 673.49 351.06 852.51 456.82
2 182.08 72.76 421.86 168.49 638.97 266.82 839.62 367.29 1053.75 461.08
3 184.24 69.54 386.23 143.50 612.47 245.05 832.27 334.91 1037.32 419.95
4 182.63 60.67 366.21 117.53 571.41 201.29 752.02 274.17 940.79 352.44

Algorithm based on the location of the components
10 20 30 40 50

average variance average variance average variance average variance average variance
1 1.07 0.43 2.03 1.32 1.66 12.45 2.86 3.74 9.05 71.72
2 1.64 1.79 7.01 14.22 44.86 128.45 77.67 325.58 446.63 945.98
3 3.02 2.48 91.56 423.13 217.65 505.17 267.18 510.26 687.54 1591.19
4 4.47 10.07 356.46 790.07 436.50 1214.05 575.66 507.71 962.66 2212.41

5 Conclusion
In this paper we studied different algorithms for reconstructing hv-convex binary
images. Knowing from theory that the task is NP-hard, we found that the difficulty
of the problem depends on several factors. In case of the core-shell algorithm, the
reconstruction speed and quality is in connection with the size of the image, and
the number, the position, and the size of the components. The efficiency of the SA
based algorithm depends on the number of the switching components in the image.
Finally, the reconstruction efficiency of the algorithm based on the location of the
components is mostly determined by the size of the image, and the number and
position of the components. Thus, a fast algorithm for reconstructing hv-convex
binary images must somehow combine the core-shell operators, the localization of
the components, and the switching operators, too. In a future work we also intend
to investigate how prior information on the number and size of the components can
facilitate the reconstruction. We believe that the deeper insight we gained through
our experiments can help us to design more efficient reconstruction algorithms for
this class, in the near future. We also hope that this knowledge could also reveal
the difficultness of the reconstruction in other classes of binary images, too.

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 161

(a) (b)

Figure 7: Two different images with the same number of components, (a) When
the core-shell algorithm can give an initial non-empty kernel (indicated by thick
lines), and (b) when the algorithm cannot give an initial non-empty kernel.

600

500 | - i -

400 l~t~f r l

300 —

200 -1

100

« I N N N N r t X l N H N H m M N H N H N n m H r n H N
.H.-l.-t.-l.-t.-jfNfNfNIOirNrNHlrOrOtrirOroTrxr^'^-T^t

Figure 8: Average reconstruction time of the core-shell algorithm (with array data
type) in milliseconds for images of size 30 x 30 with 4 components allocated them in
different orders. Permutations on the horizontal axis indicate how the components
are positioned relatively to each other. Components are numbered from top to
bottom, and the permutation shows their orders from left to right.

162 Zoltán Ozsvár and Péter Balázs

References
[1] P. Balazs, Discrete tomographic reconstruction of binary images with disjoint

components using shape information, International Journal of Shape Modeling
14:2 (2008) 189-207.

[2] P. Balazs, A benchmark set for the reconstruction of hv-convex discrete sets,
Discrete Appl. Math. 157 (2009) 3447-3456.

[3] P. Balazs, A framework for generating some discrete sets with disjoint compo-
nents by using uniform distributions, Theoret. Comput. Sci. 406 (2008) 15-23.

[4] E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Reconstructing convex poly-
ominoes from horizontal and vertical projections, Theor. Comput. Sci. 155
(1996) 321-347.

[5] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction
of 4- and 8-connected convex discrete sets from row and column projections,
Lin. Algebra Appl. 339 (2001) 37-57.

[6] M. Chrobak, C. Durr, Reconstructing hv-convex polyominoes from orthogonal
projections, Inform. Process. Lett. 69 (1999) 283-289.

[7] G. Dahl, T. Flatberg, Optimization and reconstruction of hv-convex (0,1)-
matrices, Discrete Appl. Math. 151 (2005) 93-105.

[8] G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruc-
tion from Projections, 2nd edition, Springer, 2009.

[9] G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms
and Applications, Birkhauser, Boston, 1999.

[10] G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its Ap-
plications, Birkhauser, Boston, 2007.

[11] F. Jarray, G. Tlig, A simulated annealing for reconstructing hv-convex binary
matrices, Electronic Notes in Discrete Mathematics 36 (2010) 447-454.

[12] A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE
Service Center, Piscataway, NJ., 1988.

[13] A. Kuba, Reconstruction of two-directionally connected binary patterns from
their two orthogonal projections, Computer Vision, Graphics, and Image Proc.
27 (1984) 249-265.

[14] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation
of state calculation by fast computing machines, J. Chem. Phys. 21 (1953)
1087-1092.

Ail Empirical Study of Reconstructing hv-Convex Binary Matrices 163

[15] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J.
Math. 9 (1957) 371-377.

[16] G.J. Woeginger, The reconstruction of polyominoes from their orthogonal pro-
jections, Inform. Process. Lett. 77 (2001) 225-229.

[17] A. Kuba, G.T. Herman, S. Matej, A. Todd-Pokropek: Medical applications
of discrete tomography, Discrete Mathematical Problems with Medical Appli-
cations, DIM ACS Series in Discrete Mathematics and Theoretical Computer
Science, AMS, 55:195-208 (2000).

Acta Cybernetica 21 (2013) 165-134.

Performance Metrics Based Mobile
Resource Management*

Krisztián Pándi1 and Hassan Charaf1

Abstract

Mobile computer technology has greatly evolved in the recent years. Cloud
computing is recognized to be a new area for solving performance issues. Mo-
bile terminal can take advantage from cloud computing. To cope with these
new resources and fulfill new quality and performance requirements a more
sophisticated architecture and resource management is necessary. The ba-
sis of effective resource management is a precise knowledge of the hardware
and software capabilities. Performance metrics serve as an input for resource
management. This study will present architecture of mobile resource man-
agement using cloud resources. The main task of such resource management
is to decide which application where to run; on the mobile terminal or in the
cloud. This paper identifies key components of resource management, settles
the tasks and relationships between them.

Keywords : performance metrics, cloud, mobile, resource management

1 Introduction
A mobile terminal can use cloud for solving performance issues and to obtain richer
user experience. The aim of this study is to present an architecture for mobile
resource management, that can benefit from cloud computing. Performance mea-
surement and usable metrics are necessary for our later research: decision making
mechanism implementation. The goal of the mechanism is to decide where is the
optimal place for a certain service/application to run; on the mobile terminal itself
or on public cloud computing server. Hence a performance and usage of the mobile
terminal should be determined.

Cloud computing promises [5] to provide high performance, flexible and low cost
on- demand computing services. Emerging complexity of the application used in

'This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TÁMOP-4.2 .2 .C-11/1 /KONV-2012-0013) .

t Budapest University of Technology and Economics, Department of Automation and Applied
Informatics, E-mail: {Pandi.Krisztian.Charaf.Hassan}®aut.bme.hu

166 Krisztián Pándi and Hassan Charaf

mobile terminals implicate harnessing these extra performance resources. Applica-
tions with distributed components differ from traditional non distributed applica-
tions in numerous attributes, such as communication type and overhead, latency,
concurrency etc.

The task of the proposed mobile terminal resource and service management is
to decide where an application or service should be executed. To effectively fulfill
this complex task a sophisticated and dedicated decision formula is needed. This
formula uses dedicated software and performance metrics. Mobile terminal cou-
pled with distributed system can be dynamic, changing over time, resulting CPU
and network load changing. Therefore mobile terminal as a part of the distributed
hierarchy needs to have very different metrics than traditional software and per-
formance metrics. With mobile computer technology progress, the software and
hardware platform becomes more and more complex, together with the amount of
the tasks meant to be processed. Mobile terminals have some special features in
comparison with traditional computing; small size, dependence on limited battery
lifetime, computing power is changing, possible presence of 3D hardware, network
bandwidth is limited, and almost exclusively wireless, relatively small display size
and special user input.

Usually similar applications are used in mobile terminals and in traditional
computers thus similar user experience is expected. Therefore, with comparably
less performance nearly the same look and feel is required. In consequence of
that capabilities of the mobile hardware should be efficiently harnessed with smart
resource management and load balancing.

The main contributions of this paper are: (i) discussion on applicable mobile
performance measurement and metrics ; (ii) recommendation to gather the charac-
teristics of mobile phone usage and creating a user specific profile; (iii) discussion
on the architecture of mobile resource management, which uses cloud computing
resources to enhance the user experience of the mobile terminal.

The rest of this paper is organized as follows: Section II presents the related
work. In Section III we discuss the performance measurement methodology, based
on that we recommend a performance measurement and profile creation layer in
Section IV. In Section V we discuss the architecture for mobile resource manage-
ment. Finally, in Section VI questions for the future work is described.

2 Related work
The need for measuring performance of computing machines emerged early, and so-
lutions exist for this problem. Early days were dedicated for creating standardized
benchmark programs, such as SPEC [9] or EEMBC [11] etc. Common attributes
of these benchmarks axe the batch style execution, what is measuring program
executing time and speed. The less is the executing time the higher is the sys-
tem performance. All of these benchmarks axe measuring not only the program
execution, but the operating system itself, with its interrupts, caching etc, what
make the result ambiguous. This batch like execution does not simulate fully the

Performance Metrics Based Mobile Resource Management 167

everyday operation and usage; it is not detailed enough. Other benchmarks see
the optimal metrics in picking commonly used applications from the application
pool, and running them one by one. Although this is only a derivative of previous
solution, there is a possibility to run these applications parallel. To summarize:
currently available performance metrics mainly come from traditional computing
world.

Adaptive Mobile Systems solutions proposed a model, where applications or
services are traveling from performance lack devices to device in idle. Adaptation
is an application attribute to change its behavior when surrounding environment
changes (CPU load, battery power etc.). Adaptation strongly depends on current
system performance, so some efforts are made to define metrics. One solution
is to measure CPU load, and battery power, and send it to the application for
decision making [14], as battery time is a key point in mobile terminals. Online
collection of dynamic software metrics (number of invocations, and response time)
was considered [13]; a drawback is that the application code must be changed to
insert measurement code. In [15] metrics for service oriented systems are proposed,
namely size, coupling, performance, and resource utilization.

Effective resource managements static and standard goal is to extract as much
performance as possible from available hardware and software base. As technol-
ogy changed, the resource management methods and focus may change from time
to time as well. Efforts are made to research this field; mobile cloud computing
middleware is presented in [16] focusing on service and service bus. Computer ser-
vice performance is presented in [7], numerical modeling the response time of the
services.

A summarization work on cloud and grid computing is presented in [12]; most
interesting part is when it states it is often impractical to assume such detailed priori
knowledge of management policies for all the resources will be available to resource
brokers in a large and dynamic heterogeneous environment. Recommendation is to
use resource management "in the dark". Another article [4] quantitatively compares
the layered queuing and historical techniques including thoughts on how they could
be combined. In [17] resource management mechanism for clouds is described, with
compound framework that integrates hierarchical structure and P2P architecture
and combines their characteristics. The mentioned paper is mainly focusing on
traditional cloud topology with high bandwidth network access. Although some
methods can be used for mobile architecture.

A potential synergy between mobile terminal and cloud is proposed in [10], it
is found that cloud deployed applications that employ mobile devices as end-points
are particularly exciting due to the high penetration of mobile devices. The value
of the article in complex approach to both end of the cloud, the cloud itself and
the possible endpoint (mobile as well).

Authors of [8] created a framework which partitions the workload of complex
services in a distributed environment and keeps the Web service interfaces on mobile
devices. Article describes a service like approach, assuming that every application
can be executed as a web service. Our approach is similar to this, but with following
difference:

168 Krisztián Pándi and Hassan Charaf

• All the functions/applications are partly executed locally on mobile terminal,
thus resources of the mobile device are always employed. In our opinion it
must not be always the case. Video content can be streamed, gps content can
be sent via network etc.

• Only heavy duty tasks are executed in the cloud. In our architecture, we do
not make such a difference between tasks.

An interesting approach is the CloneCloud [6], a system that automatically
transforms mobile applications to benefit from the cloud. It contains a flexible
application partitioner and execution runtime that enables unmodified mobile ap-
plications running in an application-level virtual machine, placed in the cloud. This
approach is transforms single-machine execution into distributed execution auto-
matically, but part of the process must run on the mobile. A cloned virtual machine
with virtual hardware is needed, with complex profiler, migration handler. Our ar-
chitecture does not recommend such a granular execution, where threads and their
content are travelling from Cloud to mobile terminal. We propose data migration
rather than thread migration, and that full jobs would execute in one place, not
partial part of the jobs.

Neither of the method focuses on profile creation, what can be beneficial dur-
ing resource optimization. The proposed resource management strongly rely on
information coming from profile.

3 Performance measurement - methodology

Performance measurement is a rather complex task, as we have seen in chapter
II. and there is a decision to be made which path to follow. One approach is to
measure pure performance of certain hardware component, namely CPU, GPU,
storage, network bandwidth etc. This gives us a very good detailed picture of
capability of given hardware component. Obviously in a complex system, there
is no clean testing of component, because system parts strongly depend on each
other. This dependency must be handled; impact can theoretically be minimized
with careful design, dependency can be taken into account saying it comes with the
method. Despite mentioned drawbacks, this method is suitable for checking basic
capabilities of the hardware itself. Prom performance metric point of view, these
tests have very limited usability; global throughput of the system often cannot
be predicated from atomic parts of the system. Although, it can be used if the
service or application component strongly depends on hardware component. For
this a good real life example is hard to give. Talcing games as an example (they
are highly performance consuming applications), it can be seen that they do not
exclusively depend on GPU capabilities of the hardware. Game application also
depends on input peripheries, storage, or network bandwidth of a device. Other
example is media streaming; network is a strong factor of the overall performance,
beside CPU properties, not to mention storage size and speed. Cloud computing

Performance Metrics Based Mobile Resource Management 169

is a good example where these separate benchmarks come in hand; to have a good
service management mechanism, basic performance characteristics must be known.

Another approach is to measure performance on application base. The basic
idea is to collect commonly used applications, and run them in a batch way, one
after the other, in specific order. Problems with this approach are:

• how to decide which application to run in this benchmark

• can a common application basket be selected from numerous application pools

• which applications and how long to run

• how to assign a weight to an application, to calculate a final score

• what consequences can be derived from different application run for the new
application

For commonly used applications this performance measurement is suitable for
comparison, but for a new, or custom application it does not add much to our
knowledge. Additional problem of this performance measurement method is that
there is no knowledge about real application running on the device. This can be
avoided if on the fly measurements are implemented on the device. We suggest this
method; a data collector can create a profile, based on the mobile terminal usage.
The concept is that long term measurement is implemented on the mobile device,
which monitors the terminal usage. The data is collected and evaluated, and based
on that a real life benchmark can be created and collected.

Other not frequently mentioned aspect of the performance measurements is the
multithreaded multi-core environment. Todays mobile hardware CPU is multi-
cored, and this must be included in the performance measurements. The simplest
way is to gain performance measurement, to launch the same application twice, and
see its behavior, or simply launch the application and see whether it scales with
multiple-core. Data collection is also meaningful, because the application usage
can be monitored, together with applications that are running in parallel, giving
the resource management mechanism usable basic data.

4 Performance measurements
One of the focus of this study is what kinds of performance measurements are
mandatory for effective application management. The management needs to de-
cide where certain application should run, on mobile terminal or in the computing
cloud. Special challenge of cloud computings resource management is that the
application/service must run and finish in the fastest way. Driving factor of the
resource management is to gain speed in application calculation and running time;
enhanced user experience is expected. Decision has to be made how this require-
ment can be achieved. At first glance it seems that every application must run in

170 Krisztián Pándi and Hassan Charaf

cloud (as [8] recommends for example), because that will lead to highest user expe-
rience. Unfortunately this is not always true. Cloud computing has a bottleneck,
it can have a huge computing capacity, but there are several criteria to harness it:

• all data must be present in the cloud computing environment

• all data will be calculated in cloud computing environment

• data travel from client (currently mobile terminal) to server, or to client from
server is expensive from performance point of view.

• client should be online

Effective cloud computing usage depends on the available network connection
quality, mostly on latency and available bandwidth. Although network bandwidth
is increasing, it cannot keep up with the CPU performance and storage capacity;
the gap is opening. And even if several megabits are present in wired connection,
wireless connection will have more limited bandwidth. A good benchmark will
test the available bandwidth in longer term, to assist to effective decision making
mechanism. Long term measurement can have more benefits; time and locality
dependent map can be made containing data about available bandwidth, the time
interval for this bandwidth can be used etc. With this profile application man-
agement can be enhanced. So, the most important metric is the available network
bandwidth.

Additional straightforward metrics are; CPU, GPU, storage I/O, keyboard in-
put capacity. For our architecture an important performance metric is the user
mobile application usage characteristics. For example, if the user tends to use
more application at the same time, it is a good idea to take it into account. User
experience is enhanced, if time consuming applications are moved into the cloud,
like a background task, while providing more performance to other applications.

For performance measurement currently available solution can be used (e.g. for
GPU Basemark [1], GL benchmark [2], WP bench [3] etc.). For missing benchmarks
a custom one can be made focusing on certain parts of the hardware. This applies
for example to I/O performance of the mobile device storage, because the built in
component may vary from model to model. The key is the comparability and the
ease together with multi platform implementation.

In Fig. 1 code migration measures are listed. Although it is code and not
application specific, it gives us an overview what performance metrics are necessary
for further evaluation and decision making. It is worth to mention, that with
increasing number of metrics, the decision matrix is getting more and more complex.

The question is what to do with performance measurements results. It is not
necessary to test every device of the mobile terminal. An online database stored in
the cloud is suitable for effective resource management needs. This online database
can hold performance information about the known mobile terminal models, and
if a terminal is connecting to cloud, it can be updated and used.

Fig. 2 shows profile creation procedure. Performance measurement results
are collected from mobile terminal runtime results, or downloaded from network

Performance Metrics Based Mobile Resource Management 171

Attribute Metric

Software

Size of executable module (e.g. Java .class file)
Size of a serialized object
Size of an in-memory object
Size of an extra-memory for execution of a method
Number of executable statements/instructions
Size of serialized parameters
Number of method invocations

Performance

Method execution time
Method invocation time
Instance migration time
Class migration time

Resource
Utilization

Network bandwidth
Network usage
Size of available memory
Memory usage
Processing power
Processing usage

Figure 1: Code Migration Performance Measures

database containing device specific information. The database prevents basic de-
vice characteristics to be rechecked all the time, for example CPU statistics, GPU
presence etc. Performance metrics are handled to profile manager. Application and
resource usage history is also collected and provided to profile manager, for further
processing and decision making.

Table 1: Application categories based on performance requirement
Applications Performance requirement Applications

CPU Storage Network GPU
Browser + Flash +++ ++ +++ ++
Browser No Flash + + ++
Games +++ ++ ++ +++
Office ++ + ++
Image viewer ++ ++ ++
Chat text + +
Voice chat ++ ++
Online media content +++ ++ +++ +++
Storage backup with compression ++ +++ +++
VNS/SSH X + ++

Table 1 shows a categorization of applications used in mobile terminals. Some
performance requirements are collected and weighted with + sign, showing the
extent of the usage. This gives us an overview on performance critical parts. These
application can run parallel, or if additional CPU core is available, on different
cores. Without user experience dropdown, an application can run parallel, if it
does not use the same resource heavily. If a race condition occurs; it will lead to

172 Krisztián Pándi and Hassan Charaf

Figure 2: Performance metrics and profile creation

lags and slow interaction.
This paper does not deal with performance measurement of cloud. It is a task

of later research, to verify whether it is necessary to verify the performance of the
cloud. In this paper we can safely assume that beside the network overhead, cloud
has more calculating and storage I/O capacity in comparison to mobile terminal.

5 Resource management in mobile terminal
In the previous chapters the performance measurement of mobile terminal was
discussed, which will serve as an input for the resource management. The task of
such management layer is to decide where certain application to be run.

In this chapter the architecture of a resource management system will be dis-
cussed. The place of the resource management is in the mobile terminal. If no
network connection is available, or it is relatively slow, every application will run
on the mobile terminal. Mobile terminal must remain usable if some hardware
resource is not available or has low performance.

Currently we do not deal with how it can be technically done to have the same
application or part of the application available in cloud or in the mobile terminal. It
is a scope of future research. We assume that they are present, and every application
can run either on the mobile terminal or in the cloud. This hypothesis might seem
strong; in related work [12] [13] solution for this can be found, although we listed
the problematic parts of them. In future the topic will be checked in more detail.

Performance Metrics Based Mobile Resource Management 173

The first problem to deal with; where the data physically is. For applications
heavily dependent on input data, or dealing with large data, from performance point
of view it is necessary to have the data locally. Mobile terminals have wireless
connection, which is relatively slow; network interface should be warily used, to
avoid unnecessary and frequent data sending.

As an example an image viewer application will manipulate pictures faster if
they are available on local storage, and photos taken with the device are certainly
there. Other case if the images are placed in the cloud, that way cloud manip-
ulation can be faster. This leads us to another aspect; security and background
synchronization.

Using cloud computing to aid resolving a performance bottleneck in mobile com-
puting has an important aspect; financial cost of the used cloud resource. Detailed
discussion of this topic is not the task of this study although the suggested resource
management is capable of dealing with it. In the profile the user can define the cost
attribute (limit, preferences etc) and the decision is influenced by these factors.

Data can travel from mobile terminal to the cloud if the synchronization is
enabled. It can be done when the network is not used, and in this way large data
can be transferred to or from cloud unnoticeably. To achieve this, earlier mentioned
profile making is necessary. It needs to be known, or at least predicted, when the
network will be in idle state, when it is heavily used. Table 1 comes in hand in this
work item, it can be known that what type of application is using which resource
of the terminal; with that information the smart synchronization can be realized.
Another benefit from profile mechanism is that heavily used data can be identified.
If a user is normally editing and modifying the attachments of an email, as an
example, it is good to keep them on both storage places, to be ready for network
unavailability and to allow data to be processed on mobile terminal and cloud as
well.

From user profile parallel used application can be identified. This leads to
an interesting opportunity; optimization for that type of usage can be done in
the resource management. Application place to run can be modified not only
based on performance metrics, but based on the user mobile usage. If application
is producing large data usually serving for other applications as an input; it is
good to run them in the same place. But if there is no large data involved, run
them separately, and making some resource free for other applications. Network
availability can be taken into account in this case, together with safe data storage.

There is a feature in every operating system, to put processes to background
till further usage. This enables the operating system to do some optimization with
resources, unload the application partly or totally from memory, and place it to
swap memory. Similar feature might be feasible in the resource management too;
background task can be moved to or from cloud freeing mobile terminal resource.

Battery usage and state should be monitored during decision making. If the
mobile terminal is running out of the battery, application heavily using CPU can
be moved to the cloud, regardless of performance degradation. This could be set as
a configuration parameter similarly to some operation systems, user could choose
between energy schemes, defining the behavior in such case. Performance of the

174 Krisztián Pándi and Hassan Charaf

mobile terminal can be measured on the device itself, or the common data can be
purchased form the online database. Profile information, or other user specific, but
not so sensitive information must be stored on the mobile terminal. Beside obvious
data protection, the resource management layers need this information constantly,
even if network connection is not available.

Mobile terminal Cloud

Figure 3: Resource management architecture

Fig. 3 shows the resource management architecture with key parts. Profile part,
what is mobile terminal specific, already contains necessary performance metric in-
formation. Profile changes on the fly, with actualized performance information and
application usage collected from mobile terminal. If the resource management de-
cides that application will run faster, application from cloud is called, and returned
information is transferred transparently to mobile terminal. This happens unno-
ticeably, the user should feel the speed enhancement from this management. In-
formation is transmitted through available and constantly changing network band-
width. Storage block represents mobile terminal local data; it can be synchronized
automatically to cloud if user enables this feature.

6 Future work
The presented architecture is capable of enhancing the user experience and har-
nessing extra performance given by cloud computing environment. Realization in
test implementation will follow, to confirm resource management architecture. Col-
lectable performance metrics should be limited to extent that serves the effective
resource management, without unnecessary data. Cloud computing environment
should be checked from performance point of view. The financial cost of the cloud
computing should be a part of the architecture as well, how and where is a part

Performance Metrics Based Mobile Resource Management 175

of future work. We assumed that every application can be run in cloud or in the
mobile terminal. Technical and theoretical background of this topic will be checked
in future work.

References
[1] Basemark. http://www.rightware.com/benchmarking-software/product-

catalog/, accessed on Jan. 20. 2013.

[2] Glbenchmark. http://www.glbenchmark.com/benchmarks.jsp, accessed on
Jan. 20. 2013.

[3] Wp bench. http://www.windowsphone.com/hu-hu/store/app/wp-
bench/e447e949-01c0-43fl-8b65-76d752d7d305, accessed on Jan. 20. 2013.

[4] Bacigalupo, D.A. Resource management of enterprise cloud systems using lay-
ered queuing and historical performance models. In 2010 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd Forum
(IPDPSW), pages 1-8, April 2010.

[5] Buyya, Rajkumar. Market-oriented cloud computing: Vision, hype, and reality
of delivering computing as the 5th utility. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID '09, pages 1-, Washington, DC, USA, 2009. IEEE Computer Society.

[6] Chun, Byung-Gon, Ihm, Sunghwan, Maniatis, Petros, Naik, Mayur, and Patti,
Ashwin. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems, EuroSys '11, pages
301-314, New York, NY, USA, 2011. ACM.

[7] Gani, Hendrik, Dr, Supervisor, and Ryan, Caspar. The impact of runtime
metrics collection on adaptive mobile applications. 2005.

[8] Hassan, Mahbub, Zhao, Weiliang, and Yang, Jian. Provisioning web services
from resource constrained mobile devices. In Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, CLOUD '10, pages 490-497,
Washington, DC, USA, 2010. IEEE Computer Society.

[9] J.L.Henning. Spec cpu2000: Measuring cpu performance in the new millenium.
IEEE Computer, 33(7):28-35, 2000.

[10] Lehman, Tobin J. and Vajpayee, Saurabh. We've looked at clouds from both
sides now. In Proceedings of the 2011 Annual SRII Global Conference, SRII
'11, pages 342-348, Washington, DC, USA, 2011. IEEE Computer Society.

[11] Levy, M. Evaluating digital entertainment system performance. IEEE Com-
puter, 38(7):68-72, 2005.

http://www.rightware.com/benchmarking-software/product-
http://www.glbenchmark.com/benchmarks.jsp
http://www.windowsphone.com/hu-hu/store/app/wp-

176 Krisztián Pándi and Hassan Charaf

[12] Majumdar, Shikharesh. Resource management on clouds and grids: challenges
and answers. In Proceedings of the lfih Communications and Networking
Symposium, CNS '11, pages 151-152, San Diego, CA, USA, 2011. Society for
Computer Simulation International.

[13] McGregor, John D., Cho, Il-Hyung, Malloy, Brian A., Curry, E. Lowry, and
Hobatr, Chanika. Collecting metrics for corba-based distributed systems. Em-
pirical Softw. Engg., 4(3):217-240, September 1999.

[14] Noble, Brian D., Satyanarayanan, M., Narayanan, Dushyanth, Tilton,
James Eric, Flinn, Jason, and Walker, Kevin R. Agile application-aware adap-
tation for mobility. In Proceedings of the sixteenth ACM symposium on Op-
erating systems principles, SOSP '97, pages 276-287, New York, NY, USA,
1997. ACM.

[15] R.Rossi, Z. Tarri. Software metrics for the efficient execution of mobile services.
In in Proc of ECOWSO6 Workshop on Emerging Web Services Technology,
December 2006.

[16] Wang, Qian. Software metrics for the efficient execution of mobile services. In
SOA's Last Mile-Connecting Smartphones to the Service Cloud, pages 80-87,
September 2009.

[17] Xingye, Han, Xinming, Li, and Yinpeng, Liu. Research on resource manage-
ment for cloud computing based information system. In Proceedings of the 2010
International Conference on Computational and Information Sciences, ICCIS
'10, pages 491-494, Washington, DC, USA, 2010. IEEE Computer Society.

Acta Cybernetica 21 (2013) 177-134.

x86 Instruction Reordering for Code Compression

Zsombor Paroczi*

Abstract

Runtime executable code compression is a method which uses standard
data compression methods and binary machine code transformations to achieve
smaller file size, yet maintaining the ability to execute the compressed file as
a regular executable. With a disassembler, an almost perfect instructional
and functional level disassembly can be generated. Using the structural in-
formation of the compiled machine code each function can be split into so
called basic blocks.

In this work we show that reordering instructions within basic blocks
using data flow constraints can improve code compression without changing
the behavior of the code. We use two kinds of data affection (read, write)
and 20 data types including registers: 8 basic x86 registers, 11 eflags, and
memory data. Due to the complexity of the reordering, some simplification is
required. Our solution is to search local optimum of the compression on the
function level and then combine the results to get a suboptimal global result.

Using the reordering method better results can be achieved, namely the
compression size gain for gzip can be as high as 1.24%, for lzma 0.68% on the
tested executables.

Keywords : executable compression, instruction reordering, x86

1 Introduction
Computer programs, more precisely binary executables are the result of the source
code compiling and linking process. The executables have a well defined format
for each operating system (e.g. Windows exe and Mac binary [6, 15]) which usu-
ally consists of information headers, initialized and uninitialized data sections and
machine code for a specific processor instruction set.

Compression of executables is mainly used to reduce bandwidth usage on trans-
fer and storage needs in embedded devices [11]. Even today Linux kernels for
embedded devices are stored in a compressed file (so called bzlmage) [1], and ev-
ery program for Android comes in a compressed format (apk) [20]. The literature
distinguishes between two different approaches whether the produced compressed

'Department of Telecommunications and Media Informatics, Budapest University of Technol-
ogy and Economics, El-mail: parocziStmit.bme.hu

178 Zsombor Paroczi

binary remains executable without any additional software or hardware or not. In
the first case the resulted binary includes the decompression algorithm and some
bootstrapping instructions for restoring the original binary during runtime within
the memory of the device. In the second case, the decompression is done on the
operating system level or by special hardware, which has a predefined compression
method with built in parameters. In this case the decompression method and the
additional dictionaries is not an overhead in each binary, which allows decompres-
sion algorithms to use bigger dictionaries. If the decompression is hardware based,
the performance can be significantly improved, which can also limit pure software
based solutions.

Runtime executable code compression is a method which uses standard data
compression methods and binary machine code transformations to achieve smaller
file size, yet maintaining the ability to execute the compressed file as a regular
executable. In our work we focus on machine code compression for Intel x86 in-
struction set with 32bit registers for both type of code compression approaches. It
is important to note that the same method with minor modifications should work
on each instruction set.

Various compression methods for the x86 machine code have been developed
over the past years. Most of them use model based compression techniques (such
as Huffmann coding, arithmetic coding, dictionary-based methods, predication by
partial match and context tree weighting) with CPU instruction specific transfor-
mations such as jump instruction modification [2, 7]. These compression algorithms
are lossless, so the binary before compression and after decompression is identical.
In most cases the CPU instruction specific transformations are also reversible, the
most common transformation is the jump instruction modification. x86 long jump
instruction is 5 byte long. The first byte identifies the instruction, the last 4 is a
relative jump address. The transformation modifies the jump address from rela-
tive to absolute before compression and does the inverse after decompression. This
transformation may help producing smaller compressed binaries because most of
the addresses used in x86 are absolute, so the transformed jump instructions have
a better chance for model based matching and range encoding.

The compiled machine code is usually in one section of the executable, a contin-
uous chunk of raw data, with a few known entry points. There is no clear indication,
where each function or even instruction begins, it all depends on the actual exe-
cution. A function is a sequence of instructions in one continuous block with the
following limitation: jump and call instructions from one function can transfer ex-
ecution either into another part of the same function or to the first instruction
of another function. If functions are called from outside, they always return and
restore the stack according to the used call convention.

Very few compression methods try to identify functions. Most of them use
binary pattern matching for known instructions - such as first byte match for jump
transformation. When the executable is generated by a "standard" compiler certain
patterns can help to identify functions in the code - such as stack protection stubs
(push ebp; mov ebp, esp). Using a disassembler, an almost perfect instructional and
functional level disassembly can be generated [21]. Using the structural information

x86 Instruction Reordering for Code Compression 179

of the compiled machine code, each function can be split into so called basic blocks,
sequences of instructions including zero or one control transfer instruction at the
end of the block [3, 9].

In our work we demonstrate that the reordering of instructions within a basic
block can improve code compression without changing the behavior of the code.
Our approach searches for local compression optimums on the function level for
each function than combines these results to achive a suboptimal global result.
With this novel approach we achieved the compression size gain for gzip can be as
high as 1.24%, for lzma 0.68% on the tested executables.

2 Related work
Compression techniques for executables have been investigated by a number of
researchers. Research directions can be categorized into two different groups: mod-
ification of the compiled (and sometimes not linked) machine code for smaller size or
better compression, and different compression methods and models for the specific
task of executable compression.

In the first category researchers tried to exploit the potentials of the same
methods used in compilers, which resulted in aggressive inter-procedural optimal-
ization of repeated code fragments, but without actual data compression methods.
To increase the matching code segments the register renaming and local factoring
transformation was used [11]. Using data dependency with instruction reordering
was presented in the PLTO framework, which used the conservative analysis to
gain performance with optimizing cache hit, instruction prefetching and branch
predication [23]. Basic block reordering, without modifying the block itself, is also
used to gain performance, mainly due to branch predication [18].

Reusing multiple instances of identical code fragments have been also exploited
in the Squeeze++ framework, but it was done on various levels of granularity: pro-
cedures, code regions with unique entry and exit points, basic blocks and partially
matched basic blocks [24, 8, 9].

Some works focus on the structural analysis of the whole program graph to
identify common patterns [5, 10] or some other ways to simplify the structure of
the graph [14, 5, 9] or even discover non-trivial equivalence in it [10, 13]. These
methods focus on the control flow nature of the machine code, on the basic block
level, they do not attempt to modify the code using the data flow information.

Refined compactation methods (unreachable code elimination, whole function
abstraction, duplicate code elimination, loop unrolling, branch optimalization) can
be used in various fields, which require specific tasks such as operation system
kernel compactation [13] and ARM specific compactation [10].

For simplicity, all of these methods used additional link-time data to help sepa-
rating the pointers (relocation data) from constant values, our method doesn't rely
on such data. All of these compactation methods aim for smaller file size by modify-
ing the machine code, yet maintaining the executability. But non of these methods
exploit the results of the data compression research field, in fact some of these

180 Zsombor Paroczi

compactations have a negative effect, if the machine code is later compressed [12].
Compression method evaluation and modification is also a widely researched

field. Recompressing Java class files with various compression favorable modifica-
tion resulted in significant gains, modifications include custom opcodes and string
reordering, with the gzip compressor used as a black-box compressor [22]. Without
further knowledge, in compiled machine code stream compressors, like gzip, are
widely used as a black-box compressor, including android executables and linux
kernels [5]. Compression can benefit from the known structure of the data, split-
stream compression techniques conceptually split the input stream of instructions
into separate streams, one for each type of instruction field. This lossless com-
pression strategy can improve the compression rate significantly [19]. The same
concept of separating the machine code into multiple context models can be used
with instruction reordering, which can be compressed as non-sequential data [7]. In
systems with limited memory, such as embedded systems, decompression methods
have more limitations. Some algorithms decompress functions on demand, which
means that the functions are decompressed on the first access [5].

All of these compression methods either use data compression as a black-box to
simply compress the resulted binary as a stream, or use some special heuristic to
supposedly encourage redundancy. This will always result in a suboptimal solution,
neither of these works experiment with all the possible reorderings, due to the com-
plexity. In our solution, the granuality of the search is fixed on the function level,
but all the possible reorderings axe tested, resulting the function level optimum of
the compression.

The most closely related work to ours is PPMexe [12]. In this work the reorder-
ing is done globally (A1 algorithm) and on basic block level (A2, A3 algorithm),
but the goal is to improve the predication rate of PPM by maximizing the num-
ber of n-symbol context occurrences. PPM highly depends on split-stream coding,
a reversible transformation, which separates the structural information of an in-
struction into different streams. Our approach uses gzip and lzma and treats the
machine code as one stream, searching for local optimum on the function level.

3 Reordering instructions

Original basic block Reordered basic block
mov eax, ebx mov ecx, edx
mov ecx, edx mov eax, ebx
add eax,ecx add eax,ecx
ret ret

Table 1: Instruction reordering

Instructions have a predefined order in the executable, but in fact, every instruc-
tion could be executed once every required parameter is available. This statement
is referred as data dependency. The basic idea behind reordering is that changing

x86 Instruction Reordering for Code Compression 181

the instruction order within a basic block will produce different raw data, which
could lead to different compressed size, that may be smaller than the compressed
original one. An example of reordering can be seen in Table 1. The original and the
reordered basic block are functionally equal, after running both on various input
the effect (observable registers and flags) are the same for both code sequence. The
byte representation of the blocks in this example differ in 2 bytes. The original byte
sequence is 6689d86689dl6601c8c3 in hexadecimal notation while the reordered
byte sequence is 6689dl6689d86601c8c3, which can lead to better compression - for
example if other parts of the code section has the pattern of d86601.

Figure 1: Data dependency graph inside a basic block

To ensure that the reordered block has exactly the same effect as the original
one, the data dependency relations must be analyzed. The data usage for each
instruction can be calculated using a disassembler [21], and from the dependencies
a local data flow graph can be produced for each basic block. (See Figure 1.)

'CS
>

DS
SS
ES
FS
GS

f EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

+

EAX
EBX
ECX
EDX
EBP
ESI
EDI

* + [displacement] (1)

The x86 instruction set in user mode uses 8 data registers (EAX, EBX, ECX,
EDX, EBP, ESI, EDI, ESP), the instructions can access memory using a strict
addressing mode (1). Due to the memory protection methods provided by modern
operating systems, segment registers (CS, DS, SS, ES, FS, GS) are usually not used

182 Zsombor Paroczi

in user space programs. It is safe to ignore those along with debug registers and
control registers.

The x86 instruction set uses a special status flag register which contains the cur-
rent state of the processor represented as different binary flags stored as bits of the
register. These bits are used to store extra information about the last instruction
and can be used to manipulate the outcome of the next instruction. For example
the multiply instruction sets the overflow flag if the result cannot be represented on
the current register due to overflow, the overflow flag can be tested in a conditional
jump which may transfer execution to some error handling code.

Memory access uses a well defined formula but identifying whether two pointers
are the same or not is impossible in the majority of the cases. For example [eax+14]
, [00401000h] and [esp+14h] could point to the same address or to three completely
different address. Some disassemblers, like Hex-Rays' IDA1, can identify trivial
cases for identical memory pointers but the analysis is complicated and should be
done on the whole code section [21]. In our work we decided to treat the whole
memory as one entity, the so called memory data. This simplifies the dependency
model because every memory location can be treated as a single virtual register
which can be used for both reading and writing. It is required to handle memory
writes and reads because it will cause further data dependencies in the code.

We distinguish two kinds of data affection (read and write) and use 20 data types
including registers: 8 basic x86 registers, 11 binary flags in the eflags register, and
memory as a whole. Each instruction has a well defined data usage [16], which
defines which registers / flags are used in different instructions, and how these
registers affect the output. For simplicity each control flow instruction (such as
condition, unconditional jump and call instructions) should be treated as if they
write every data type. This ensures that during reordering within a basic block the
control flow instructions remain at the end of the block.

The following rules are used to generate the data dependency :
A instruction should be before B instruction (considering original order A before

B):
• if A reads any data type B writes, or

• if A writes any date type B writes, or

• if A writes any data type B reads.
The reordered and the original code have the same data flow graph, which means
that they have the same effect (observable registers, flags and memory), only the
control flow graph can be different, but at the end of each basic block the executed
instructions have the same quantity, and only the execution order may vary [5, 12].

An example of basic block instruction data dependency is demonstrated in Fig-
ure 1. Each instruction is indicated by a separate box, the original position in the
first line, and the actual instruction in the second line. The arrows represent data
dependencies within the block. All the indirect dependencies are hidden. The circle
marks the entry point of the basic block.

'http^/www.hex-rays.com/products/ida/index.shtml (Last accessed: 2013-01-15)

http://www.hex-rays.com/products/ida/index.shtml

x86 Instruction Reordering for Code Compression 183

4 Compression and permutation count
Most of the lossless data compression algorithms are designed to exploit statistical
redundancy in the data. Reordering basic blocks could change the data statistics
which may improve compression. Without any assumption about the actual data
compression method we will consider a non-zero compression time which grows at
least linearly with the size of the input data. To determine which input is the most
compressible, the compression method should be executed on each input variation,
then the one with the smallest compressed data size should be chosen.

The possible number of different reorderings for a basic block are bounded by k\
, where k is the number of instructions within the block, but this number could be
significantly lower because of the data flow constraints. Using the following formula
the total permutation count can be calculated:

N Mi
I H K (2)

« i
where N is the total number of functions, M, is the number of basic blocks within
the ith function and n t J is the permutation count for the jth basic block in the
ith function. The best compression can be achieved only by testing all reorderings,
which gives the global optimum. Due to the huge permutation count and the
non-zero compression time this could be done only for very small files.

0 20 40 60 80 100 120 140
Instruction count within a function

Figure 2: Function count by instruction count

Common programming methodology and practices suggest that the complexity
(possible execution path count - branches) of each function should be relatively
low. This way the source code can be easy to understand, maintain and test. Dur-
ing compilation the control flow can change after inlining/outlining functions but
the distribution of the instruction count for functions does not change significantly.
Analyzing a sample dataset which was taken from the libc system executable, a his-
togram can be created (Figure 2.), which shows the instruction count in functions.
As expected, there are a lot of functions with only few instructions, the average
function consists of 57 instructions, and only a couple of functions have more than
100 instructions.

184 Zsombor Paroczi

20 40 60 80 100
Instruction count (in a function)

Figure 3: Permutation count

The permutation count (with valid data dependency) for each function was
also calculated. The results can be seen on Figure 3. By increasing the instruc-
tion count, the permutation count of a function is also increasing. There is no
common rule for the permutation count growth, low instruction count functions
may also have a lot of permutations (e.g. "_strcspn_g" function in the dataset,
30 instructions, 76.951.350 possible permutations), and long functions may have
only a few permutations (e.g. "getpass" function in the dataset, 133 instructions,
192 permutations). The permutation count heavily depends on efficient data type
usage.

To keep the permutation count at a manageable level instead of searching for
the global optimum in the compressibility local optimum places should be consid-
ered. The local optimum search is done on the function level, where each function
is evaluated separately and every basic block permutation is tested within the func-
tion.The search algorithm is detailed in pseudo code in Algorithm 1.

first basic block
perm. #1

second basic block
perm. # 1

third basic block
perm. # 1

first basic block
perm. #2

second basic block
perm. # 1

third basic block
perm. # 1

first basic block
perm. #K

second basic block
perm. # 1

third basic block
perm. # 1

first basic block
perm. #1

second basic block
perm. # 2

third basic block
perm. # 1

Figure 4: Local optimum search iterations

This means that the optimal reordering for a selected function is calculated by
compressing all the possible reorderings on the function level. In each iteration one

x86 Instruction Reordering for Code Compression 185

Algorithm 1 Pseudo code for the global suboptimum search
l: result=empty
2: for each function do
3: perms=calculate every permutation of basic blocks in the function
4: f o r each perms d o
5: compress the selected permutation
6: if this is the smallest compressed size t h e n
7: incode=the uncompressed function
8. end if
9: end for

10: append incode to result
11: end for

of the basic blocks gets another permutation and the whole function is recompressed
and tested. As shown on Figure 4., this can be done with a simple limited counter
function. This way the optimum search problem can be calculated in a distributed
way, the algorithm should not have any information regarding the jump/call target
for the control flow instructions.

In a basic block there is only one (if any) control flow instruction. This instruc-
tion is always at the end of a basic block. Among x86 instructions only control
flow instructions have relative to current address pointers, that is why reordering
instructions can be done by simply changing the instruction's order.

5 Implementation
In our implementation the function splitting is done by starting from the entry
point and dynamic library export addresses then tracing the code using a disas-
sembler and following each control flow edge with a depth-first-search. On each call
instruction target a new function splitting point must be created. This way most
of the code section gets analyzed, and using function split points the code can be
split into functions. This result is double checked with the constraint for functions
introduced in the second section, and if needed, the result gets modified.

Splitting functions into basic blocks are done by identifying the control flow
instructions within a function, then splitting the code after the control flow in-
structions and finally at the point before the jump target points. This way the
constraint for basic blocks can be granted (an example is shown in Figure 5., where
9 basic blocks have been identified in the example function). According to data
flow analysis among these basic blocks only two can be reordered at the instruction
level. The stack is heavily used to store data, which results in a large number of
memory writes and reads.

The data dependency analysis is done using the free open source x86 disassem-
bler called BeaEngine2. A binary dependency matrix gets defined which defines the

2http://www.beaengine.org/ (Last accessed: 2013-01-15)

http://www.beaengine.org/

186 Zsombor Paroczi

H=? —"I*/11

*
Figure 5: Data flow and basic blocks in a function

instruction order constraints. In the matrix the item tiij is true if the ith instruc-
tion within the basic block must be before the jth. This constraint is transitive, so
by propagating the items in the matrix, the transitive closure can be generated for
easier access of the rules.

Some functions can still have a lot of permutations therefore only functions with
less than 2.000 possible permutations were tested due to the computational limits.
In the example shown on Figure 5. the 2nd block has 11 different permutations,
the 7th block has 12 different permutations, so overall 132 cases have been tested.

The latest stable gzip3 (version 1.3.12) and lzma4 (version 5.0.3) software were
used to compress the produced code. The parameters used for compression are:

• gzip: -9 (best compression)

• lzma: -e (extreme compression)

6 Results
For the sample function shown on Figure 5. the original code was 195 bytes com-
pressed with gzip and 176 bytes compressed with lzma. Using reordering the com-
pressed size was decreased by 2 bytes using gzip and 3 bytes using lzma, so the
original code was not optimally ordered for compression purposes as shown on
Figure 6.

To evaluate the explained method and the implementation, several files were
tested from various compilers and operating systems. The filenames, operating
systems, compilers and sources for the testifies are shown in Table 2. In case of
node.js, due to the high number of functions, only the first 1000 were tested. These
binaries are commonly used on each operating system. All of these programs /
libraries are written on a high level language (usually C++) , which means that a

3http:/ /www.gzip.org/ (Last accessed: 2013-01-15)
4http:/ /tukaani.org/xz/ (Last accessed: 2013-01-15)

http://www.gzip.org/
http://tukaani.org/xz/

x86 Instruction Reordering for Code Compression 187

I 40
3
S g
a

«S 20 Li <D
-O
E
I 0

Figure 6: gzip and lzma compression results

Name OS Compiler Source (Last accessed: 2013-01-15)
libc-2.13.BO (~0ubuntul3.1) Ubuntu gcc http://packages.ubuntu.com/natty/libc6-i386

unzip (6.0-4) Debian gcc http://packages.debian.org/squeeze/unzip
libconfig.dll (1.4.8) Windows VS2008 http://www.hyperrealm.com/libconfig/

node.js (0.8.8) Mac llvm http:// nodejs.org/dist /lat est/ node- vO. 8.8-darwin-x86.tar.gz

Table 2: Source of the files used in tests

compiler generates and optimizes the executable part of the binary. This excludes
macro optimization which usually done at the machine code level by a human
expert.

For verifying the statement, that the reordered code is functionally equal to
the original, we performed several unit tests on the reordered functions. During
the tests there were no major performance regressions which may arise due to
reordering of code which was optimized for speed.

Name
Code section Compressed size in bytes Gain

Name in bytes without reordering with reordering percentage Name
all processed gzip lzma gzip lzma gzip lzma

libc-2.13.so 413.619 110.944 46.353 39.848 45.778 39.576 1.24% 0.68%
unzip 74.905 5.012 2.933 2.944 2.903 2.924 1.02% 0.67%

libconfig.dll 17.123 8.982 4.128 3.952 4.127 3.944 0.02% 0.20%
node.js 303.248 93.544 39.554 33.688 39.451 33.616 0.26% 0.21%

Table 3: Compression results

For evaluating the compression result, the non-machine code part of each file
have to be omitted, the result should be compared using the reordered and the
original data in compressed form. In Table 3. the result for compression tests can
be seen, the function level statistics are in Table 4. Using the reordering method

43 44
40

56

- . 1 .

24

LL 12

S
 3

L_: L...Í - 3 - 2 - 1 0 1 2 3 4 5
Compressed size change

DI gzip 11 lzma

http://packages.ubuntu.com/natty/libc6-i386
http://packages.debian.org/squeeze/unzip
http://www.hyperrealm.com/libconfig/

188 Zsombor Paroczi

Name Method
Byte gain per function

Name Method
Avg. Std. dev.

libc-2.13.so gzip 2.666 3.663
libc-2.13.so izma 0.993 2.094

unzip gzip 1.288 1.766
unzip lzma 1.244 2.227

libconfig.dll gzip 0.583 1.096
libconfig.dll lzma 0.366 1.269

node.js gzip 0.902 1.650
node.js lzma 0.543 1.604

Table 4: Detailed compression results

better results can be achieved: the compression size gain for gzip can be as high as
1.24%, for lzma 0.68%.

«, 800

I 600
<2
•8 400
1-I

| 200
a

Z

Compression gain (in bytes)

1B gzip IB lzma

Figure 7: Compressed code size change

A detailed statistics on compression gain can be seen on Figure 7, these results
are for libc-2.13.so. In this case more than 40% of all the functions can have a
better compressible reordering than the original one but the compression gain is
usually small (1-3 bytes/function) but significantly bigger gains are also possible
(5-10 bytes / function).

7 Future work
Future work will include evaluation of other code transformation methods used
together with instruction reordering, such as pattern based instruction substitu-
tion [14, 4, 17] and also exploiting the basic principles of the split-stream com-
pression. The data types used in this work can be also refined using much more
sophisticated analysis on memory access, especially on the stack. Instead of local

72 4

73

290325

I I 1 2 0 j f - ,
I l 1 3 (i r i 16 3 9 13 M 2 9 1 4 1 1

0 1 2 3 4 5 6 7 8 9 10

x86 Instruction Reordering for Code Compression 189

optimum search on function level, other search methods or optimum criteria should
be considered, such as genetic algorithms.

References
[1] Linux kernel 2.6.30 changelog. Online. Last accessed: 2013-01-15.

http: //kernelnewbies.org/Linux_2_6_30.

[2] Beszédes, Árpád, Ferenc, Rudolf, Gyimóthy, Tibor, Dolenc, André, and Kar-
sisto, Konsta. Survey of code-size reduction methods. ACM Comput. Surv.,
35(3):223-267, September 2003.

[3] Bruening, Derek L. Efficient, transparent and comprehensive runtime code
manipulation, 2004.

[4] Bruschi, Danilo, Martignoni, Lorenzo, and Monga, Mattia. Code normaliza-
tion for self-mutating malware. IEEE Security and Privacy, 5(2):46-54, March
2007.

[5] Chanet, Dominique, De Sutter, Bjorn, De Bus, Bruno, Van Put, Ludo, and
De Bosschere, Koen. Automated reduction of the memory footprint of the
linux kernel. ACM Trans. Embed. Comput. Syst., 6(4), September 2007.

[6] Corporation, Microsoft. Microsoft portable executable and common
object file format specification. Online. Last accessed: 2013-01-15.
http: //msdn. microsoft. com / en-us/library /windows/hard ware/gg463119. aspx.

[7] Dai, Wenrui, Xiong, Hongkai, and Song, Li. On non-sequential context mod-
eling with application to executable data compression. In Data Compression
Conference, 2008. DCC 2008, pages 172 -181, march 2008.

[8] De Sutter, Björn, De Bus, Bruno, and De Bosschere, Koen. Sifting out the
mud: low level c + + code reuse. SIGPLAN Not., 37(11):275-291, November
2002.

[9] De Sutter, Björn, De Bus, Bruno, and De Bosschere, Koen. Link-time binary
rewriting techniques for program compaction. ACM Trans. Program. Lang.
Syst., 27(5):882-945, September 2005.

[10] De Sutter, Bjorn, Van Put, Ludo, Chanet, Dominique, De Bus, Bruno, and
De Bosschere, Koen. Link-time compaction and optimization of arm executa-
bles. ACM Trans. Embed. Comput. Syst., 6(1), February 2007.

[11] Debray, Saumya K., Evans, William, Muth, Robert, and De Sutter, Bjorn.
Compiler techniques for code compaction. ACM Trans. Program. Lang. Syst.,
22(2):378-415, March 2000.

[12] Drinic, Milenko, Kirovski, Darko, and Vo, Hoi. Ppmexe: Program compres-
sion. ACM Trans. Program. Lang. Syst., 29(1), January 2007.

190 Zsombor Paroczi

[13] He, Haifeng, Trimble, John, Perianayagam, Somu, Debray, Saumya, and An-
drews, Gregory. Code compaction of an operating system kernel. In Proceedings
of the International Symposium on Code Generation and Optimization, CGO
'07, pages 283-298, Washington, DC, USA, 2007. IEEE Computer Society.

[14] Hundt, Robert, Raman, Easwaran, Thuresson, Martin, and Vachharajani,
Neil. Mao - an extensible micro-architectural optimizer. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO '11, pages 1-10, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[15] Inc., Apple. Os x abi mach-o file format reference. Online. Last accessed:
2013-01-15. https://developer.apple.eom/libraxy/mac/#documentation /De-
veloperTools/Conceptual/MachORuntime/ Reference/reference.html.

[16] Intel. Intel 64 and ia-32 architectures software de-
veloper manuals. Online. Last accessed: 2013-01-15.
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

[17] Kumar, Rajeev, Gupta, Amit, Pankaj, B. S., Ghosh, Mrinmoy, and
Chakrabarti, P. P. Post-compilation optimization for multiple gains with pat-
tern matching. SIGPLAN Not., 40(12):14-23, December 2005.

[18] LIU Xian-Hua, YANG Yang, ZHANG Ji-Yu CHENG Xu. A basic-block
reordering algorithm based on structural analysis. Journal of Software,
2008/19:1603-1612, 2008.

[19] Lucco, Steven. Split-stream dictionary program compression. SIGPLAN Not.,
35(5):27-34, May 2000.

[20] Morrill, Dan. Inside the android application framework. 2008.

[21] Paleari, Roberto, Martignoni, Lorenzo, Fresi Roglia, Giampaolo, and Bruschi,
Danilo. N-version disassembly: differential testing of x86 disassemblers. In
Proceedings of the 19th international symposium on Software testing and anal-
ysis, ISSTA '10, pages 265-274, New York, NY, USA, 2010. ACM.

[22] Pugh, William. Compressing java class files. SIGPLAN Not., 34(5):247-258,
May 1999.

[23] Schwarz, Benjamin, Debray, Saumya, Andrews, Gregory, and Legendre,
Matthew. Plto: A link-time optimizer for the intel ia-32 architecture. In
In Proc. 2001 Workshop on Binary Translation (WBT-2001, 2001.

[24] Sutter, Bjorn De, Bus, Bruno De, Bosschere, Koen De, and Debray, Saumya.
Combining global code and data compaction. Technical report, 2001.

https://developer.apple.eom/libraxy/mac/%23documentation
http://www.intel.com/content/www/us/en/processors/architectures-

Acta Cybernetica 21 (2013) 191-134.

Geometric Newton-Raphson Methods
for Pláne Curves

Gábor Valasek} Júlia Horváth, András Jámbori,
and Levente Sallai

Abstract
Our paper reviews Kallay's results on a geometric version of the clas-

sic Newton-Raphson method, in the context of plane curve queries, e.g.
curve-curve intersection, point-curve distance computation. Variants of the
geometric Newton-Raphson methods are proposed and empirically verified.
Keywords: curves, distance, intersection

1 Introduction
Plane curves are fundemantal tools in many applications, ranging from being build-
ing blocks of aesthetically pleasing figures [5] [9], to defining NC machine tool paths
[3] or highway roads [4].

Many applications require certain queries to be carried out on these curves, e.g.
finding the closest point of the plane curve to a given point in the plane, or finding
the intersection of two plane curves.

These queries can be formulated as systems of nonlinear equations, and to
answer one of these queries, the corresponding system has to be solved. A popular
choice for solving such systems of equations is the Newton-Raphson (NR) method.

The NR method starts from an initial guess and refines it iteratively, produc-
ing a sequence of guesses converging to the roots of the equations, provided an
appropriate initial guess was used.

The NR method creates a linear approximation of the problem at each guess,
and the next guess is the solution of this linear approximation.

Kallay proposed a geometric Newton-Raphson iteration in [1]. At each step,
the curves in the query are substituted by higher order geometric approximants at
the current guess, and then the query in question is solved on these and the guess
refinement makes use of the solution on the geometric approximant.

Our goal was to empirically compare the traditional and the geometric NR
method, and to propose variants of Kallay's method that retain its robustness and
low iteration counts, at a reduced computational cost, if possible.

* El-mail: valasekSinf.eIte.hu

192 G. Valasek, J. Horvath, A. Jambori, and L. Sallai

The paper is organized as follows. Section 2 briefly compares the traditional and
geometric NR algorithms and reviews Kallay's main results. Section 3 details our
main contribution, the variants of Kallay's scheme by geometric approximant choice
(parabola instead of circle) and construction (derivative-free geometric approximant
creation). Section 4 shows the plane curve queries that served as the test problems
for the comparison of the various NR methods and that the 3-point circle fitting
variant is a viable, derivative-free modification of Kallay's geometric NR method
in these problems. Section 5 summarizes the results.

2 Geometric Newton-Raphson methods
The Newton-Raphson (NR) method is a powerful tool for solving nonlinear equa-
tions. It defines an iterative process, which given a suitable starting point, converges
to the roots of the equations. Each step of the iteration refines the current guess
by using the solution of a linear approximation of the problem at the current guess.

The classic NR method is sensitive to the choice of the initial guess, that is, its
convergence is not guaranteed for abritrary starting points. If the initial guess is
within a certain neighborhood of an isolated guess, then the NR method produces
a sequence of guesses that converges to the root quadratically. If the iteration is
started from the neighborhood of a multiple root, then the rate of convergence is
linear. [10]

The idea of using higher order approximations within the NR method, instead
of a linear one, to gain higher convergence rate has been present in the litera-
ture [8]. Let the (m + l)th derivative of the function, whose root we are looking
for, be bounded. Then the mth degree Taylor polynomial will be an mth order
approximation, yielding a convergence rate of m + 1 (for isolated roots) [1].

Let us consider the case of finding the zeros of an univariate equation.
In the generalized NR method, the solution of a degree m equation is required

in the guess-refinement step, making the cases m > 2 less practical.
In addition to being computationally feasible, the case of m = 2 also has a

straightforward geometric interpretation: at each step, an approximating parabola
has to be intersected with the x-axis. This version of the Newton-Raphson method
has a convergence rate of 3. Lee et. al. [6] and Park et. al. [7] proposed the use of
osculating circles instead of parabolas, which are also second order approximations
of the curve, however, the computational overhead, resulting from the curvature
computations, made their approach less practical. [1]

It was Kallay who noted, that for geometric problems involving plane craves,
using osculating circles has advantages when the osculating circles are used to
approximate the curves in the query instead of approximating the equations for-
malizing the query on the curves.

In [1] Kallay proposed a geometric variant of the Newton-Raphson method,
which utilizes a transformation that preserves the geometric domain of the original
query, yet it retains the attractive quadratic convergence speed properties of the
original NR method and improves on robustusness (at the expense of computational

Geometrie Newton-Raphson Methods for Plane Curves 193

cost, required due to the construction of geometric approximations).
Kallay's geometric NR method used geometric approximants to the original

curves at each guess, and solved the queries on these. Then the results on the
proxies were transformed back to the domain of the original curves to compute the
new guess.

Let I C K be an open set and p(f) : I K 2 a smooth, regular parametric
plane curve. Let us consider the following simple, general pseudo-code for the
Newton-Raphson methods:

x = InitGuessC p(t))

while (not IsDone(p(t), x))

{
x = NextStep(p(t), x)

>
InitGuess() creates the initial guess for the root of the function f(t), f(t) being

the mathematical formulation of the geometric query on the plane curve p(f).
IsDone() is the termination condition of the NR iteration, which will be dis-

cussed in more detail in section 4.
NextStep() is the guess-refinement step. In the case of the classic NR method,

it would return x - JT^-
For geometric NR methods, NextStep() can be defined as follows:

NextStepC p(t), x)

{
proxy gp = ProxyCreate(p(t), x)

proxy_solution = ProxySolveQueryC gp, x)

return x + ProxyReparam(p(t), x, gp, proxy_solution)

>
ProxyCreate() constructs a geometric proxy for the curve, which approximates

p(f) at the current guess x. ProxySolveQuery() computes the result of the query
on the geometric proxy and ProxyReparamQ transforms the solution back into the
original curve's domain.

3 Variants of the geometric Newton-Raphson
methods

In this section we overview the line and circle proxy creation based on differential
geometry, required for Kallay's geometric NR method.

To be able to provide an empirical comparison of the use of different geometric
proxies, we propose a parabola proxy creation heuristic.

It must be noted that the curvature computation comes with an overhead which
makes the geometric Newton methods more expensive to implement. To alleviate

194 G. Valasek, J. Horvath, A. Jambori, and L. Sallai

this, we propose line and circle proxy creation heuristics, that do not require the
evaluation of the derivatives of the curve.

3.1 Line proxies
Line proxies were used in Kallay's geometric Newton method when the curvature
of the curve p(t) became 0 at the current guess xn, xn being a regular point of
p(t). In this case, the tangent line was used as the proxy for p(f).

The line proxy can be represented by a point po € R2 and a tangent direction
vector v, |v| = 1. Its parametric form is 1(f) = po + fv.

At the current guess xn, po = p(xn). We used the following two tangent
direction definitions in the tests:

• Direction computed from the derivative of the curve: v = [p'(zn)]> as Kallay

• Direction estimated from forward differences: v = [p(xn + h) — p(xn)], so
that the derivaties do not have to be evaluated

where [a] = |f|.
The second version comes from the geometric definition of the tangent line [2]:

keeping p(xn) fixed, the tangent line is the limit of the lines passing through p(xn)
and p(x„ + h) as h 0.

3.2 Circle proxies
The circle proxy can be represented by one of its points po G M2, its normal
n, |n| = 1 pointing towards the center of the circle, and its radius r > 0.

Kallay detailed the use of osculating circles as geometric proxies. The signed
curvature of a smooth parametric curve can be computed as [3]

, . _ (p'fon) x p"(gn)) • z
K{Xn) ~ |p'(xn)|3

where z = x x y denotes the unit vector perpendicular to the plane of the curve,
x, y being the orthonormal basis vectors of the plane of the curve.

If k(x„) # 0, the radius of the osculating circle of p(t) at xn is p(xn) = y
In this case, the circle proxy can be defined by setting p0 = p(xn) , r = p(x„), and
n to the principal normal of the curve p(t) at xn.

It is important to recall that the osculating circle of p(f) at xn can be defined
geometrically as well [2]: the osculating circle is the limit of the circles through
P(z„), p{yk), p(-Zk), where yk} zk xn as k oo.

This leads to a circle proxy construction that does not require the computation
of curvatures and derivatives:

Consider the circle through the points p(xn - h), p(xn) , p(x„ + h), h> 0. Let
us denote its center by c and its radius by R. Then the circle proxy can be defined
by Po = p(xn), n = [c — po], r = R. Later we refer to the circle proxy constructed
this way as the 3-point circle proxy.

Geometrie Newton-Raphson Methods for Plane Curves 195

3.3 Parabola proxies
The parabola proxy is represented by its apex po e l 2 , an orthonormal frame to
and no, and a e l . The parametric form of the parabola we use is then

r(t) = Po + it0 + at2 no-

Recall that the curvature of r (t) at t = 0 is k(0) = 2a.
An approximating parabola proxy to p(f) at xn can be constructed by setting

Po = p(x„), to = [p'(xn)], a = K(Xu)/2, and no to the principal normal of p(f) at
xn.

4 Testing

4.1 The problem
Let I C R be an open set and let us consider the problem of finding the closest
point of a smooth, parametric plane curve p (t) : I R2 , to an arbitrary point of
the plane, q € R2 .

The above problem can be formulated as finding a curve parameter t £ I, such
that it minimizes the squared distance

d2(p(t),q) = (q - p (i) . q - p (i)) , (1)

where (a, b) denotes the dot product of a, b € R2 .
Differentiating (1), we find that the parameter t* £ R corresponding to the

point of the curve that is closest to q should satisfy

< q - p (i *) , p ' (O > = 0 ,
where the prime denotes differentiation with respect to the curve parameter.

Let f(t) = (q — p(t),p'(t)). The classic Newton-Raphson method can be used to
find the roots of f(t).

Given an initial guess xo £ R, let

_ f{xn)
xn+1-xn fl{Xn)

= x (x - p (x n) , p / (x n)) n = 1 2
(x - p (x „) , p " (x n)) - (p ' (xn) ,p ' (x„)) ' ' ' " '

If xo is chosen from within a neighborhood of an isolated root, this yields a
quadratically converging iteration. If x0 resides in a neighborhood of multiple
roots, then the rate of convergence is linear. It is important to note, however, that
the iteration may not converge at all.

One can plot convergence figures of Newton-maps Np(z) = z— ^f^j with various
functions p(z). E.g. Figure 1 shows which initial guesses of the complex plane result

196 G. Valasek, J. Horvath, A. Jambori, and L. Sallai

Figure 1: The application of the Newton-map Np(z) = z — jf^y to the polynomial
p(z) = z3 — 2z + 2, z £ C. The red, green, and blue points of the complex plane
denote initial guesses that create convergent iterations to different roots. The black
points, forming Julia sets, denote elements of the complex plane, that do not yield
a convergent Newton-Raphson iteration, if used as initial guesses.

in a convergent Newton-Raphson iteration in the case of p(z) = z3 — 2z + 2, z £ C.
The discussion of starting point selection - which also affects the geometric NR
methods - falls beyond the scope of our paper, we refer the interested reader to e.g.
[10].

4.2 Test framework
The implementation of the NR methods was based on the pseudo-code of the gen-
eralized NR algorithm listed in section 2.

Each variant of the Newton-Raphson method uses the same InitGuess method,
so that each algorithm starts from the same initial guess. We have taken equidistant
parameter values and computed which one creates the closest point on the curve
to q and used it as xo-

The termination condition IsDone() has to be chosen carefully. Since the tradi-
tional NR solution finds a root of the function

/(t) = <q-p(t*),p'(t*)>,
the termination condition |/(x)| < e seems to be a reasonable choice at first.

However, upon closer inspection, one can find that this condition is very sensitive
to the parametrisation of the curve. That is, if the magnitude of p'(t) over I is
bounded and M = max{|p'(i)| : t £ /}, N = max{|q - p(f)| : t £ / } , then the

Geometrie Newton-Raphson Methods for Plane Curves 197

reparametrisation t <— jfj^t will make any initial guess xo El the final guess as
well, since

l<q - P (^) , (P (^)) ') l = ~ P (^) , P ' (^) > l

< —-—lq — p(———)l • |r>'C ————)I NM vyNMn NM

^ T!TJnm =e-NM

The iteration never start, since the termination condition is true for any initial
guess.

Choosing |x„+i — x„| < e for IsDone() instead, to anticipate the slow-down of
root refinement, is still parametrisation-dependent, but to a much smaller extent
than the previous one.

Given the fact that the domain is geometric in the case of geometric NR meth-
ods, one is motivated to find purely geometric termination conditions, which are
also parametrisation independent. An example of this is the following:

Let the algorithm stop once the tangent at the current guess is (very close
to being) perpendicular to the vector pointing from the current guess to q. In
practice, this can be checked more easily by comparing the cosine of the angle
between the difference vector q — p(t) and p'(t). Using this, the algorithm stops
when |([q — p(t)], [p'(t)])| < e, where [a] :=] f [i a / 0. Please note, that this is the
geometric interpretation of condition |/(t)| < e.

The geometric, parametrisation-independent version of condition |xn+i— xn\ < e
would be to stop the iteration if the arc-length between xn and xn+i is smaller than
e. In practice, however, it is more efficient to use |p(xn+i) — p(x„)| < e.

In addition to the above, IsDone should return true when the iteration count
has exceeded a certain limit.

NextStep() is x = x — jf^j in the case of the traditional NR method. The
implementation of the geometric NextStepQ is detailed in the following subsection.

4.3 Implementation of the geometric NR methods
Section 3 has shown the proxy creation strategies for the various proxies, required
for ProxyCreateQ. In this subsection ProxySolveQuery() and ProxyReparam() are
being investigated.

Finding the closest point of a line proxy to a given point in the plane is straight-
forward. Let ProxySolveQuery() return tn = (v , q - p 0) , as explained in Figure 2a.
The closest point x of the line proxy to q is x = p 0 + tnv.

In general, the ProxyReparamQ function uses the following strategy, as pro-
posed by Kallay [1]: compute the arc-length sn on the proxy between the current
point of the iteration and the solution of the query. Let us estimate the parameter
difference required to travel sn along the original curve! This can be achieved by

198 G. Valasek, J. Horvath, A. Jambori, and L. Sallai

<v,x-P0>

(a) Finding the closest point x of a line,
represented by one of its points po and
its tangent direction v, to a point q in
the plane

(b) Finding the closest point x of a circle,
represented by one of its points po, the
unit normal vector pointing from po to
the center and the radius r, to a point q
in the plane

Figure 2: Finding the closest point x of line and circle proxies to a given point q
in the plane.

assuming that the parametric speed along the original curve can be estimated by
|p'(xn)| sufficiently, and setting At = |p<(gn)|-

In the case of line proxies, ProxyReparamQ returns [p/(Sn)| •
Finding the closest point of a circle to q requires only elementary geometry as

well, see Figure 2b. c denotes the center of the circle and t = [p'(xn)]. The closest
point of the circle to q is the closest intersection of the circle and the line going
through c and q. Then a = atan2((t, q — c), (—n, q — c)). ProxyReparam returns

ra
|p'(*„)r

There is no elementary solution for this query in the case of parabola proxies.
Let (xo,i/o) 1) 6 coordinates of the query point in the coordinate system of the
parabola (with origin po, and to, no as the x and y axes, respectively), p(xn) =
(x,y). Then

d2(q, p(x„)) = (X - x0)2 + (2ax2 - y0)2,

from which it follows that

d2'(q, p(x„)) = 4a2x3 + (2 - 4ay0)x -2xo-0

has to be solved using the formula for cubic equations.
Since the apex of the parabola is p(xn), ProxyReparam returns

2ax/4a2x2 + 1 + asin(2ax)
4a|p'(xn)|

Geometrie Newton-Raphson Methods for Plane Curves 199

4.4 Results
The tests consisted of generating 100 random Bezier curves, with random degree
between 10 and 100, and 100 random points for each curve. Then the following
NR algorithms were used to find the closest point of the curve to the given random
point:

• The classic NR method

• Kallay's geometric NR method using osculating circle proxies

• A geometric NR method using tangent line proxies

• A geometric NR method using estimated tangent lines from forward differ-
ences

• A geometric NR method using estimated osculating circles (the circle through
3 points of the curve)

• A geometric NR method using osculating parabola proxies

Each method was called three times for every point to investigate the effect of
the following iteration termination conditions:

• Condition 0

• Condition 1

• Condition 2

Everything else was the same for all methods, including initial guesses, compar-
ison and error thresholds.

For each method, we collected the following data: the ratio the method yielded
a convergent iteration within 100 steps, the average amount of steps until a root
is found in the case of convergent iterations, the standard deviation of the average
amount of steps (for convergent cases), and the success rate (how many times did
the given method found the closest point on the curve to q compared to the other
methods).

The focus of our interest in the curve-point distance tests was the average
amount of steps required to finish the iteration, and to find the geometric NR
variants, that can match the average iteration counts of Kallay's geometric NR.

The actual performance time depends on evaluation costs of the curve's points
and derivatives, making it dependent on the problem and type of curves as well.
In the case of integral polynomial curves, the classic Newton method performed
by far the fastest - the proxy set-up and query evaluation costs surprassed that
of the derivatives'. The classic NR was followed by the tangent line and 3-point
circle proxy variants, then Kallay's. The osculating parabola proxy variant was the
slowest.

: |x„+i - xn\ < e

: |p(a++i) - p(x„)| < e

: l([p'(zn)Uq-p(z«])| < e

200 G. Valasek, J. Horvath, A. Jambori, and L. Sallai

Method Eval. p(t) Eval. p'(t) Eval. p"(f)
Classic NR 1 1 1
Kallay gNR 1 1 1

Tangent line gNR 1 1 0
Fwd diff line gNR 2 0 0
3-point circle gNR 3 0 0

Osculating parabola gNR 1 1 1

Table 1: The table shows at how many distinct parameter values the curve and its
derivatives have to be evaluated during a single step of the given NR variants.

The derivative-free variants become more appealing when the evaluation of the
derivatives become more expensive, e.g. in the case of rational curves. Table 1
shows the curve evaluation costs of the various methods.

The rate of convergence is an indicator of how sensitive the given variant is to
the choice of the initial guess. A variant performing poorly in this regard might be
better handled by a different initial guess strategy, however, that investigation is
beyond the scope of our paper.

The win rate is the least decisive attribute in our the tests, it simply tells that
among the algorithms that finished within the prescribed relative error, which one
ceased its iteration at a point of the curve that is closest to the point in the query.

Method Avg. iter. cnt. Std. dev. Converges Wins
Classic NR 8.616472 3.61186 72% 15%
K allay gNR 8.5057535 5.71219 73% 15%

Tangent line gNR 9.570799 4.6349697 56% 6%
Fwd diff line gNR 8.679719 5.4383 75% 23%
3-point circle gNR 3.8460969 2.1435 95% 37%

Osculating parabola gNR 8.092985 5.59519 68% 4%

Table 2: Test results using termination condition 0, relative error 10 6.

Method Avg. iter. cnt. Std. dev. Converges Wins
Classic NR 14.52 6.06115 63% 41%
Kallay gNR 4.63 3.44918 88% 14%

Tangent line gNR 12.1 6.1206 53% 22%
Fwd diff line gNR 13.22 6.0626 44% 17%
3-point circle gNR 4 2.74608 79% 3%

Osculating parabola gNR 10.89 5.1206 59% 3%

Table 3: Test results using termination condition 1, relative error 10 6.

Tables 3 and 4 show that the parametrisation-independent geometric termina-
tion conditions 1 and 2 put Kallay's and the 3-point circle fitting geometric NR

Geometrie Newton-Raphson Methods for Plane Curves 201

Method Avg. iter. cnt. Std. dev. Converges Wins
Classic NR 10.799472 6.65479 49% 37%
Kallay gNR 2.290768 1.47857 88% 11%

Tangent line gNR 12.099338 7.63352 35% 27%
Fwd diff line gNR 8.105676 7.21142 76% 1%
3-point circle gNR 2.8278252 2.25557 94% 5%

Osculating parabola gNR 6.3981366 7.74148 32% 19%

Table 4: Test results using termination condition 2, relative error 10 6.

methods forward considerably in terms of average iteration counts. They also show
that the 3-point circle fitting NR variant has the most similar characteristics to
Kallay's geometric NR method in regards of average iteration count behaviour.

To evaluate its relative performance more in detail, table 5 shows the result of
a more comprehensive test for the classic, Kallay's geometric, and the proposed
3-point circle fitting geometric NR methods, with termination condition 1. Ter-
mination condition 1 was chosen because it is the more general parametrisation
independent termination condition.

A set of 30000 curves, chosen randomly from families of regular and non-regular
curves, were used, and for each curve, 10 random points were generated to compute
the closest point of the given curve to the random point. The curves used in the
test were integral and polynomial Bézier curves, trigonometric curves, piecewise
curves with first and higher order derivative discontinuities.

Method Avg. iter. cnt. Std. dev. Converges Total time
Classic NR 14.32251 6.06115 59% 173s
Kallay gNR 8.85953 5.64918 67% 470s

3-point circle gNR 9.20167 6.74608 75% 284s

Table 5: Test results using termination condition 1 on 30000 random curves, relative
error 10 - 6 . Column Total time shows the run time of a given NR variant on the
random curve and point set, in seconds.

The average iteration counts of the methods are closer to each other than in
the case of integral polynomial curves. Kallay's geometric NR method still requires
the fewest steps on average, but due to the computational cost of a single step, its
run time is the longest. The classic Newton method finished the fastest, followed
by the proposed 3-point circle NR variant.

Table 5 shows that the proposed 3-point modification of Kallay's method suc-
ceeded in speeding up the algorithm while retaining its robustness in the point-curve
closest point computation problem.

CONTENTS

Conference of PhD Students in Computer Science 1
Preface 3
Artyom Antyipin, Attila Góbi, and Tamás Kozsik: Low Level Conditional

Move Optimization 5
Péter Bodnár and László G. Nyúl: Barcode Detection Using Local Analysis,

Mathematical Morphology, and Clustering 21
András Bóta, Miklós Krész, and András Pluhár: Approximations of the Gen-

eralized Cascade Model 37
Balázs Dávid and Miklós Krész: Application Oriented Variable Fixing Meth-

ods for the Multiple Depot Vehicle Scheduling Problem 53
Gabriella Divéki: Online Clustering on the Line with Square Cost Variable

Sized Clusters 75
Tibor Dobján and Gábor Németh: Spectrum Skeletonization: A New Method

for Acoustic Signal Feature Extraction 89
József Dombi and Gergely Gulyás: The Vagueness Measure: A New Interpre-

tation and an Application to Image Thresholding 105
Ádám Fazekas, Hiroshi Daimon, Hiroyuki Matsuda, and László Tóth: Elimi-

nation of the Background of Electron Microscope Images by Using FPGA 123
Péter Hegedűs: A Probabilistic Quality Model for C # - an Industrial Case

Study 135
Zoltán Ozsvár and Péter Balázs: An Empirical Study of Reconstructing hv-

Convex Binary Matrices from Horizontal and Vertical Projections 149
Krisztián Pándi and Hassan Charaf: Performance Metrics Based Mobile Re-

source Management 165
Zsombor Paroczi: x86 Instruction Reordering for Code Compression 177
Gábor Valasek, Júlia Horváth, András Jámbori, and Levente Sallai: Geomet-

ric Newton-Raphson Methods for Plane Curves .' 191

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

