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Abstract 

People have always wanted better visual experiences. From Ultra High Definition 

Television (UHDTV), 3D video to Virtual Reality (VR), the pursuit of overwhelming 

visual experiences is unlimited. For such visual experience, the higher resolution and 

frame rate are important. For instance, the 8K UHD (7680*4320 resolution) with 120 

frames per second (fps) is considered for the video application of the next decade. It is 

reported the sports broadcasting and the perfect VR require even higher resolution and 

frame rate, which sets technical challenges, such as the huge data volume and high 

processing throughput (frame resolution * frame rate).  

Such huge data are impossible to store or transfer without encoding. The video data 

to encode have two types, the pixels and measurements (linear combinations of pixels). 

Pixels are generated from traditional CMOS image sensor, and measurements from 

Compressed Sensing (CS) based CMOS image sensor. The pixel encoding has a long 

history since 1968. High Efficient Video Coding (HEVC) is the most advanced one 

achieving a high compression ratio at the expense of high computational complexity 

contributed by the new features. Hence, designing high performance VLSI architecture 

to support UHD video application are challenging and necessary. Among all 

components in HEVC, the VLSI architecture of Intra prediction and Sample Adaptive 

Offset (SAO) are chosen. Since they are the most different components in function 

comparing with H.264. The different requires new and efficient VLSI architecture to 

support the UHD video encoding. They are discussed and proposed in Chapter 2 and 3 

respectively.   

As the resolution and frame rate increase, the traditional image sensor has power 

consumption problem and higher frame rate is hard to achieve. These problems could 

be solved by new type of image sensor using CS. It could recover the whole image by 

capturing only few measurements in the image sensor. Capturing much less data instead 

of every pixel, the power consumption in the image sensor could be reduced, hence it 

provides a promising future for the increasing resolution and frame rate in video 
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application. Measurements coming from CS image sensor still required encoding 

before the transfer. However, measurements don’t have the obvious spatial similarity 

that provides spaces for intra prediction in HEVC. To better encode the measurements, 

the intra prediction algorithm and VLSI architecture for CS is explored in Chapter 4 

and 5. 

VLSI architecture supporting high parallel degree (amount of pixels/measurements 

process per cycle) is necessary to processing the huge data. However, the higher parallel 

degree results into larger circuit area thus reducing the performance (Throughput / 

circuit area). This dissertation mainly targets on the high-performance VLSI 

architecture of HEVC SAO Estimation, intra prediction for encoder and its extension 

in Compressed Sensing, by using the proposed concept “reduced video data”. Only by 

taking the necessary video data, including pixels and measurements, it is possible to 

reduce the parallel degree in hardware while keeping the performance during the data 

processing. The summary of each chapter is introduced as follows. 

Chapter 1 [Introduction] introduces the big picture of video acquisition process, 

including the traditional imaging and the CS imaging. Next, HEVC intra prediction and 

SAO are introduced. Furthermore, the motivation to explore the intra prediction in CS 

is introduced. At last, proposed concepts of this dissertation are shown. 

Chapter 2 [VLSI architecture of HEVC Intra prediction using reduced 

loaded-pixels] presents the high-performance VLSI architecture for HEVC intra 

prediction. Intra prediction uses neighboring pixels from different directions to predict 

pixels of a block (4x4~32x32). As the block size increases from 16 to 32 in HEVC, it 

takes 3x more neighboring pixels for prediction. Instead of loading all neighboring 

pixels as previous work, only the necessary pixels are loaded. This proposed idea 

reduces the two-third of reference pixels, thus reducing the area and increasing the 

throughput. It is achieved by LUT (Look Up Table) generated by software to tell which 

pixels are demanded in each prediction mode and location. Another proposal is the 

Hybrid Block Reordering and Data Forwarding, minimizing the idle time and 

eliminating the dependency between blocks by creating three Data Forwarding paths. 



 

III 
 

It achieves the hardware utilization of 94%. The proposed VLSI architecture has a gate 

count of 217.8K, and is able to support 4320p@120fps HEVC intra prediction. 

Chapter 3 [Dual-clock VLSI architecture of HEVC Sample Adaptive Offset 

Estimation] presents a high-performance VLSI design for SAO estimation. SAO is a 

process to find out optimal offsets to reduce ringing noises in an image. It consists of 

two steps, Statistics Collection (SC) and Parameter Decision (PD), each of them has 

totally different nature in calculation. SC has huge but simple calculations while PD 

has few but complex calculations. After studying such nature, it is discovered that 

reducing pixels to process per clock cycle in SC significantly reduces the area. Thus, a 

dual-clock architecture is proposed, where SC works under high frequency and PD 

under low frequency, so that SC could process few pixels each cycle. Such proposal 

reduces the overall area by 56%. To further improve the area and power efficiency, 

algorithm-architecture co-optimizations are applied including a coarse range selection 

(CRS) and an accumulator bit width reduction (ABR). CRS shrinks the range of fine 

processed bands for the band offset estimation. ABR further reduces the area by 

narrowing the accumulators of SC. They together achieve another 25% area reduction. 

The proposed VLSI design is capable of processing 8K@120fps encoding. It occupies 

51K logic gates, only one-third of the circuit area of the state-of-the-art design. 

Chapter 4 [Algorithm and VLSI architecture of intra prediction in 

Compressed Sensing using reduced measurements] presents a measurement intra 

prediction framework. Instead of using all measurements for prediction, measurements 

for prediction are reduced to two. These two measurements embed the block boundary 

information of closest area. They are obtained by modifying two rows in the random 

0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is implemented for 

the proposed framework, by substituting the matrix multiplication with shared adders 

and shifters. The experimental results show that our proposed framework can compress 

the measurements and increase coding efficiency, with 34.9% BD-rate reduction 

compared to the direct output of CS-based sensors. The VLSI architecture of the 

proposed framework is 9.1K in area, and achieves the 83% reduction in size of memory 
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bandwidth and storage for the line buffer. This could significantly reduce both the 

energy consumption and bandwidth in communication of wireless camera systems. 

Chapter 5 [Row-Operation-Based Intra prediction under Approximate-DCT 

measurement matrices and its VLSI Architecture implementation] presents the 

row-operation to perform the intra prediction on the proposed approximate-DCT 

measurement matrices. Deterministic measurements matrices derived from 

approximated-DCT are proposed, significantly increasing the coding efficiency 

comparing with the random binary matrix in Chapter 4. However, the intra prediction 

using two measurements in the last chapter could not work on proposed matrices. 

Instead of using all measurements for prediction, the row-operation using three 

measurements are proposed. It achieves intra prediction as Chapter 4, without 

modifying the measurement matrix. Lastly, the VLSI architecture design for the intra 

prediction is proposed. Experiment results show the proposed matrix improve the 

coding efficiency by BD-PSNR increase of 4.2 dB. The proposed row operations 

increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI architecture is only 4.3 

K gates in area and 0.3 mW in power consumption, which is only half of the area and 

the power consumption in previous work. 

Chapter 6 [Conclusions and future work] concludes the contributions of this 

dissertation. The solved and remaining problems are left for the future works. 
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1. Introduction 

1.1 Ultra-High Definition video application and video coding. 

People have always wanted better visual experiences. From Ultra High Definition 

Television (UHDTV), 3D video to Virtual Reality (VR), the pursuit of overwhelming 

visual experiences is unlimited. For such visual experience, the higher resolution and 

frame rate are important. For instance, the 8K UHD (7680*4320 resolution) with 120 

frames per second (fps) is considered for the video application of the next decade. It is 

reported the sports broadcasting and the perfect VR require even higher resolution and 

frame rate, which sets technical challenges, such as the huge data volume and high 

processing throughput (frame resolution * frame rate).  

Such huge data are impossible to store or transfer without encoding. Video contents 

to encode have two types, the pixel and the measurement (linear combinations of pixels). 

Pixels are generated from traditional CMOS image sensor (CIS), and measurements 

from Compressed Sensing (CS) based CMOS image sensor. For the pixel, CIS senses 

the analog pixels one by one and converts them into digital ones; the encoder encodes 

pixels into much smaller bit stream, by encoding methods such as JPEG [47], 

H.264/MPEG- 4 [48], DVC [49], and HEVC / H.265 [7] and transmits the bit stream 

to the decoder. This is the traditional procedure: Capture  Compress  Transmit, as 

shown in Fig. 1.  

 
Fig. 1 Traditional image acquisition procedure 

With the advent of a recently proposed sampling theory, Compressed Sensing (CS) 
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[51], the capturing and compression can be performed in CIS simultaneously. Such 

image sensors are called CS-based CIS (CS-CIS). In CS-CIS, an image is acquired by 

sampling a significantly reduced number of measurements (the linear combination of 

pixels), instead of sampling every pixel. The encoder takes measurements as input and 

compress them into smaller bit stream, and transmit to the decoder, as shown in Fig. 2. 

This technique could reduce the throughput of Analog-to-Digital (A/D) conversion, 

since the number of conversion is reduced by sampling the measurement instead of 

pixel. The reduction in throughput has the potential to reduce power consumption and 

increase the frame rate [52], which has been shown in the recently emerging CS-CIS 

systems [53][54][55].  

 
Fig. 2 Compressed Sensing procedure 

For traditional image acquisition, its merit is that pixel encoding could achieve a 

high compression ratio, as HEVC, the latest, the most advanced and the most complex 

video coding standard, achieving the compression ratio up to 1/200 as shown in Table 

1, which is 50% coding efficiency increase comparing with the previous video coding 

standard, H.264. Compared with storing and transferring the raw video data, it could 

solve the huge data amount issues in storage and transferring. Furthermore, another 

merit is that the compression method is easier to design, since the spatial and temporal 

similarity could be obviously exploited. The demerit is that, however, it has high 

computation complexity and gives challenges in VLSI implementation, resulting into 

difficulties to achieve high throughput and low hardware-cost. Another demerit is that, 

the throughput and the power consumption of ADC dominates the power consumption 
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in the CIS with the increase of the resolution and frame rate [54][53] [55]. 

Table 1 Comparison of compression ratio. 

Coding standard History (since) Compression ratio 

MPEG-2 1995 1/50 

H.264 2003 1/100 

HEVC 2013 1/200 

 
Fig. 3 Video data volume under different resolution and compression methods  

For CS acquisition, the merit is obvious because it could greatly reduce the 

throughput and its power consumption of image acquisition in camera, which is very 

potentially suitable for the increasing throughput in mobile video application. The 

reduced throughput of ADC could reduce the power consumption of CIS and increase 

the possibility to achieve higher frame rate. Since the output of CS-CIS is measurement 

instead of pixel. However, measurements generated in CS is not possible to encode by 

the traditional video coding, which is one of the demerits. Hence, the current existing 

encoding methods are developing and do not have an ideal coding efficiency.  

The comparison of two image acquisition framework is shown in Fig. 4. On one 

hand, the traditional image acquisition framework with traditional video encoding, 

HEVC, achieves a significant compression ratio, at the expense of extremely high 

computational complexity. On the other hand, the CS framework could reduce the data 

volume of A/D conversion, but its output is not applicable to traditional video coding. 

Hence it has lots of spaces to develop new and better video encoding methods 
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applicable to CS.  

 
Fig. 4 Comparison of data volume of two frameworks in CMOS Image Sensor 

and encoder. 

1.2 HEVC encoding  

To transmit such a huge data throughput in the communication channel, deep 

compression from the latest video coding technology, High Efficiency Video Coding 

(H.265/HEVC) [7][20], plays a crucial role. The implementation of the corresponding 

video codecs, however, is challenged by the multiplication of the ultra-high definition 

requirement and an increased complexity per pixel. Compared to the previous 

H.264/AVC standard [21], H.265/HEVC doubles coding efficiency by employing a 

number of new coding tools.  

The encoding of HEVC is to compress sequences of images into the bit stream. It 

includes the following components. First, the transform and quantization, as shown in 

the yellow component in Fig. 5. It has been proposed in [1] and [2] that the image 

energy compaction exists through transform, such as Discrete Cosine Transform (DCT) 

or Hadamard Transform, such that most of the energy are concentrated in the low 

frequency components. Since human’s eyes are more perceptive to the low frequency 

components and not sensitive to the high frequency components, the image data are 

compressed by preserving the low frequency components with a higher accuracy while 

the high frequency components with a lower accuracy.  

Second, it was further proposed in [3] that the data could be further compressed by 

exploiting the spatial and temporal data redundancy, such as the inter prediction and 
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intra prediction shown in Fig. 5. Hence, the residuals instead of the original pixels are 

taken as the input of the transform and quantization. Because of data loss introduced by 

the quantization, the reconstructed pixels in the decoder get different from the original 

pixels in the encoder. To guarantee a successful reconstruction, the same reconstruction 

path as the one in the decoder is built in the encoder. 

Third, image artifacts are generated by the quantization. The De-Blocking Filter 

(DBF) proposed in [4] and [5] are used for removing the blocking artifacts existing on 

the boundary of blocks. The Sample Adaptive Offset (SAO) Estimation, and SAO Filter 

proposed in [22] is used for removing the artifacts existing on the edge region of an 

image. At last, all the data and signals are coded into bit stream by an entropy coder, 

Context-based Adaptive Binary Arithmetic Coder (CABAC).  

 
Fig. 5 HEVC encoding 

1.3 Motivation on Intra prediction and SAO 

The components introduced above are mostly inherited from the previous video 

coding standard. Their history and development are shown in Fig. 6. The VLSI 

architecture design for these components has been proposed and improved in the past, 

and many components are well designed in the previous standard. The coding efficiency 

of HEVC is improved by new features being added in each component, at the expense 

of higher computational complexity. Some components have big changes while some 

have not. Among all the components, Intra and SAO consist of the major changes. Intra 

prediction consists of most of the new features comparing with H.264. SAO is a new 
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coding tool that does not exist in the previous standard, H.264. Because of the new 

functions, the increase of computational complexity in intra prediction and SAO as well 

as their huge difference from the previous standard, there’re many challenges for 

designing the high-performance VLSI architecture supporting the UHD video 

application.  

 
Fig. 6 The history and development of video coding tools existed in HEVC 

Intra prediction contributes to 22%-36% bitrate saving comparing with H.264 by 

introducing new changes at the expense of the increased computational complexity, 

which is reflected in three aspects. First, more block sizes are used in intra prediction 

of H.265. Second, more intra prediction modes in each size of block are utilized. Finally, 

more filtering methods that depend on the prediction modes and sizes of prediction 

blocks are used. These changes increase the difficulty to achieve the high-performance 

architecture. 

1.4 Motivation of applying HEVC Intra prediction to 

Compressed Sensing 

 
Fig. 7 Motivation of applying HEVC intra prediction to Compressed Sensing 

As the resolution and frame rate increase, the traditional image sensor has a power 

consumption problem and higher frame rate is hard to be achieved. Even the HEVC has 
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high coding efficiency, it could not reduce the power and frame rate problem in image 

sensor. Because image sensor is necessary for video to be displayed, such problems 

would influence the further development of video application with higher resolution 

and higher frame-rate. With the advent of CS theory, these problems could be solved 

by a new type of image sensor using CS. It could recover the whole image by capturing 

only few measurements in the image sensor. Capturing much less data instead of every 

pixel, the power consumption in the image sensor could be reduced, hence it provides 

a promising future for the increasing resolution and frame rate in video application. 

However, HEVC does not work on measurements in CS. To make the CS image sensor 

could be widely used in UHD video application, effective encoding algorithm and VLSI 

architecture applicable to CS is necessary.  

The encoding framework of CS is shown in Fig. 8. Since the input of the encoder 

is measurements generated by the CS-CIS, the encoding procedure begins from taking 

measurements block by block as input. Instead of transferring the original 

measurements, the optimal residuals are chosen and transferred to the quantization. Due 

to the quantization error, the reconstructed measurements are not the same as the 

original one. To guarantee the functional consistency in decoder and encoder, the 

reconstruction loop also exists, as shown in the light green part. The framework of 

measurement encoding is similar to the one in Fig. 5, and it is also much simpler.  

 
Fig. 8 Measurement encoding 
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1.5 Proposed concept and target of this dissertation 

VLSI architecture supporting high parallel degree is necessary to real-time 

processing the UHD video data. This dissertation mainly targets on the high-

performance VLSI architecture of HEVC SAO Estimation, intra prediction and its 

exploration in Compressed Sensing. Increasing the parallel degree in VLSI could meet 

the high throughput requirement, while sacrificing the hardware cost. 

The concept “reduced video data” is proposed. Only by taking the necessary video 

data, including pixels and measurements, it becomes possible to reduce the parallel 

degree in hardware while keeping the performance during the data processing. The 

VLSI architecture of HEVC Intra prediction and Sample Adaptive Offset (SAO) 

Estimation for 8K@120fps video encoding are discussed and proposed in Chapters 2 

and 3. In intra prediction, the “reduced-loaded-pixels” is proposed. Only the necessary 

pixels for prediction is loaded from memory, instead of all pixels to load as previous 

work. In SAO estimation, the optimal clock frequency is discovered, so that the optimal 

number of pixels processed per cycle in Statistics Collection could be achieved. The 

dual-clock VLSI architecture work on Statistics Collection and Parameter Decision 

separately to make the calculation in both stage efficient, so that the hardware cost for 

calculation is reduced. The exploration of HEVC intra prediction to CS is discussed in 

Chapters 4 and 5. The proposed algorithm find-out the possibility to reduce the number 

of measurements for intra prediction. The number of measurements is reduced to the 

constant number from the scale that is quadratic growth with the block size as previous 

work. They only consist of the local information of a block for prediction, instead of 

global information for prediction as previous work. It also includes proposed algorithms 

to improve the coding efficiency by the proposed measurement matrices and row-

operation on the matrix. The low-cost VLSI supporting 4K@240fps UHD video 

encoding is also proposed. The big map of the dissertation is shown figure below.  
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Fig. 9 The big map of the dissertation is shown.  

The summary of each chapter is introduced as follows. 

Chapter 2 [VLSI architecture of HEVC Intra prediction using reduced 

loaded-pixels] presents the high-performance VLSI architecture for HEVC intra 

prediction. Intra prediction uses neighboring pixels from different directions to predict 

pixels of a block (4x4~32x32). As the block size increases from 16 to 32 in HEVC, it 

takes 3x more neighboring pixels for prediction. Instead of loading all neighboring 

pixels as previous work, only the necessary pixels are loaded. This proposed idea 

reduces the two-third of reference pixels, thus reducing the area and increasing the 

throughput. It is achieved by LUT generated by software to tell which pixels are 

demanded in each prediction mode and location. Another proposal is the Hybrid Block 

Reordering and Data Forwarding, minimizing the idle time and eliminating the 

dependency between blocks by creating three Data Forwarding paths. It achieves the 

hardware utilization of 94%. The proposed VLSI architecture has a gate count of 

217.8K, and is able to support 4320p@120fps HEVC intra prediction. 

Chapter 3 [Dual-clock VLSI architecture of HEVC Sample Adaptive Offset 

Estimation] presents a high-performance VLSI design for SAO estimation. Its consists 
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of two processes, statistics collection (SC) and parameter decision (PD), each of which 

demands difference frequency. After investigating the optimal frequency, a dual-clock 

architecture is proposed to deal with SC and PD with different speed of clocks. Such a 

strategy reduces the overall area by 56%. To further improve the area and power 

efficiency, algorithm-architecture co-optimizations are applied including a coarse range 

selection (CRS) and an accumulator bit width reduction (ABR). CRS shrinks the range 

of fine processed bands for the band offset estimation. ABR further reduces the area by 

narrowing the accumulators of SC. They together achieve another 25% area reduction. 

The proposed VLSI design is capable of processing 8K@120fps encoding. It occupies 

51K logic gates, only one-third of the circuit area of the state-of-the-art design. 

Chapter 4 [Algorithm and VLSI architecture of intra prediction in 

Compressed Sensing using reduced measurements] presents a measurement-domain 

intra prediction framework. Instead of using all measurements for prediction, 

measurements for prediction are reduced to two. These two measurements embed the 

block boundary information of closest area. They are obtained by modifying two rows 

in the random 0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is 

implemented for the proposed framework, by substituting the matrix multiplication 

with shared adders and shifters. The experimental results show that our proposed 

framework can compress the measurements and increase coding efficiency, with 34.9% 

BD-rate reduction compared to the direct output of CS-based sensors. The VLSI 

architecture of the proposed framework is 9.1K in area, and achieves the 83% reduction 

in size of memory bandwidth and storage for the line buffer. This could significantly 

reduce both the energy consumption and bandwidth in communication of wireless 

camera systems. 

Chapter 5 [Row-Operation-Based Intra prediction under Approximate-DCT 

measurement matrices and its VLSI Architecture implementation] presents the 

row-operation to perform the intra prediction on the proposed approximate-DCT 

measurement matrices. Deterministic measurements matrices derived from 

approximated-DCT are proposed, significantly increasing the coding efficiency 
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comparing with the random binary matrix in Chapter 4. However, the intra prediction 

using two measurements in the last chapter could not work on proposed matrices. 

Instead of using all measurements for prediction, the row-operation using three 

measurements are proposed. It achieves intra prediction as Chapter 4, without 

modifying the measurement matrix. Lastly, the VLSI architecture design for the intra 

prediction is proposed. Experiment results show the proposed matrix improve the 

coding efficiency by BD-PSNR increase of 4.2 dB. The proposed row operations 

increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI architecture is only 4.3 

K gates in area and 0.3 mW in power consumption, which is only half of the area and 

the power consumption in previous work. 

Chapter 6 [Conclusions and future work] concludes the contributions of this 

dissertation. The solved and remaining problems are left for the future works. 
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2. VLSI architecture of HEVC Intra prediction using 

reduced loaded-pixels 

2.1 Introduction 

H.265/High Efficiency Video Coding (HEVC) [1]-[7] is the most recent video 

coding standard, developed by Joint Collaborative Team on Video Coding (JCT-

VC).With the same video quality, 40–50% bit rate reduction is achieved com- pared 

with H.264/AVC (Advanced Video Coding) standard [8]. Intra prediction plays an 

important role in H.265, saving about 22–36% of the bitrate. On one hand, intra 

prediction in H.265 is still based on blocks, and uses neighboring samples’ values to 

calculate the values of the new blocks, which is similar to H.264. On the other hand, 

new changes are introduced in intra prediction of H.265. These new features help 

achieve higher coding efficiency at the expense of an increased computational 

complexity, which is reflected in three aspects. First, more block sizes are used in intra 

prediction of H.265. Second, more intra prediction modes in each size of block are 

utilized. Finally, more filtering methods that depend on the prediction modes and sizes 

of prediction blocks are used. 

To support the real-time application of a higher resolution video, the system needs 

to process data faster. To achieve real-time application of 8K UHD video in intra 

prediction, the system needs to support 16x throughput comparing with HD video 

processing, and 4x comparing with 4K UHD video processing. Overall, more data have 

to be processed within a certain time. 

Several hardware designs have been proposed for H.265/HEVC intra prediction. 

Li in [10] exploited an efficient uniform architecture for 4×4 blocks. This work is the 

first VLSI design try in intra prediction of HEVC. Huang in [11] proposed a memory-

hierarchical and mode-adaptive architecture for 4K Ultra HD HEVC, which has a low 

circuit area. Jung [12] proposed an architecture for intra samples prediction; however, 
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this architecture does not include key functions such as reconstruction or substitution. 

In [13], Palomino proposed an architecture that employs less-multiplier pipelines to 

increase the throughput and support all Prediction Units (PU) sizes. The architecture 

proposed by Liu in [14] applied a post-order traversal to the quad-tree structure 

targeting to reduce the internal buffers in the encoder. It supports all modes and all PU 

sizes for the 1080p@30fps HEVC encoder. In [15], Zhou reclassified the prediction 

modes to reduce the number of reference registers for full HD encoding. Among earlier 

implementations for H.264 intra prediction, He in [16] proposed the MB/block level 

co-reordering scheme to avoid data dependency. Amongst cited works, [11] and [12] 

investigate the decoder’s design, while [13][14][15] and [16] investigate the encoder’s 

design. These works did not solve the 8K video application issue. 

The design of the architecture of the intra prediction engine depends on how the 

reference samples for prediction are fetched and how they are processed. A 

conventional way to deal with this problem in H.264 or HEVC is to fetch all the 

reference samples for processing a Transform Unit (TU) and store them in registers in 

advance. This method has been employed in many previous studies, [11][13][14][15]. 

The advantage of this method is the reduction of the number of accesses to the external 

memory system (on-chip/off- chip memory). However, it has two drawbacks. First and 

most important, prediction is done by selecting reference samples among these registers, 

and with the increase of registers, multiplexing would be more complex; thus, further 

increasing the critical path delay and circuit area. Since the critical path ought to be 

short enough to support a high performance for 8K UHD, this drawback would be a 

critical problem for 8K application. Furthermore, many registers to store all the 

reference samples in the preparation stage is required. For instance, for a 32×32 TU, as 

there are 32 samples in each for the left, top, and top-right neighboring samples, a 

minimum of number of 99 eight-bit registers are required. The large number of registers 

would increase the area of circuit. These two drawbacks make us design our architecture 

based on a different strategy from previous work. The details are shown in latter part. 

To design intra prediction architecture for the 8K UHD H.265 application, we face 
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two key challenges that did not exist in previous work [11]. The first challenge is the 

computational complexity in H.265 intra prediction shown in two aspects. First, a large 

number of reference pixels (up to 99 pixels) have to be loaded for prediction, which is 

four times more than that in H.264. The number of registers for storage increases the 

size and complexity of the circuit, causing performance reduction. Moreover, many 

modes and filtering methods have to be supported. The latter places more restrictions 

on loading reference pixels, making the system harder to design and implement. 

The second challenge is that 8K@120fps UHD real time application requires an 

architecture that allows a high throughput. However, in intra prediction, the dependency 

between the processed and unprocessed TU obstructs the system from achieving a high 

throughput. 

The proposed architecture is based on our main idea, divide-and-conquer strategy. 

The system does not have to fetch all reference samples before prediction, because all 

of them cannot be used immediately. By fetching a small required part for prediction 

first, and keeping fetching the others successively, we could enhance the performance 

and reduce the circuit area. This paper expands on our previous work in [17], and shows 

a more complete design. Main contributions of this paper are outlined as follows: 

 I proposed the first technique, look-up table (LUT) based Reference Sample 

Fetching Scheme (LUT-RSFS), based on the divide-and-conquer strategy. It 

reduces the number of fetched reference samples in worst case from 99 to 13, 

such that the performance is improved and the circuit area is reduced. 

 I proposed the second technique, Hybrid Block Re-ordering and Data 

Forwarding (HBRDF). The 4x4 block level reordering solves the dependency 

problem among 16×16, 32×32 TU. Three paths are created for Data 

Forwarding, to eliminate the dependency of 4×4 and 8×8 TU. Finally, a high 

throughput and hardware utilization of 94% are achieved. 

The rest of the paper is organized as follows. First, Section 2.2 introduces the new 

features for H.265 intra prediction. Then, Section 2.3 describes the data flow of our 

proposal, and its details. Section 2.4 discusses the implementation results and finally 
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Section 2.5 concludes the paper. 

2.2 Introduction to Intra Prediction in HEVC / H.265 

Intra prediction is an important part in the video coding standard. It refers to the 

neighboring samples of previous coded blocks to reduce spatial redundancy. There are 

three types of blocks, Coding Unit (CU), PU and TU in H.265. When a frame is coded, 

it is divided into CUs and each root CU can be recursively divided into or four smaller 

CUs. Each leaf CU will be processed by PUs and TUs. PU ranges from 4×4 to 64×64, 

while TU from 4×4 to 32×32. If a CU is encoded in intra mode, each TU corresponds 

to an intra prediction block with the corresponding PU’s prediction mode. Therefore, 

the block’s size is from 4×4 to 32×32, and 35 prediction modes exist for intra prediction. 

Moreover, various reference sample filtering and substitution methods are added to 

intra prediction in H.265, which do not exist in the case of H.264/AVC. 

2.2.1 Reference sample preparation 

Before predicting a TU, a part of the neighboring samples (left, left-bottom, top-

left, top, and top-right regions) are loaded. These regions may be located out of the 

frame, in other slices or tiles, or in the blocks that are not yet reconstructed. In such 

cases, they are marked as unavailable for intra prediction. In addition, when the 

constrained intra prediction is enabled, the neighboring inter-predicted blocks are also 

marked as unavailable for intra prediction. At that time, the nearest available 

neighboring sample from the unavailable ones is used as a substitute. 

When the TU's size is larger than 4×4, its neighboring reference samples are filtered 

before being used for prediction. There are two types of filtering in H.265 intra 

prediction: three-tap finite impulse response (FIR) filtering and bilinear filtering. The 

bilinear filtering is used in 32×32 TU, when discontinuity is detected. 
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2.2.2 Intra Sample Prediction 

I classify thirty-five intra prediction modes into three classes: angular modes, DC 

mode, and Planar mode. Each of them has a formula, which are stated below. 

 For the angular modes, each predicted sample is calculated according to the 

equation: 

𝑠𝑠𝑟𝑟𝑠𝑠𝑑𝑑. =  ((32 −  𝑤𝑤)  ∗  𝑟𝑟𝑠𝑠 𝑓𝑓 [𝑎𝑎]  +  𝑤𝑤 ∗  𝑟𝑟𝑠𝑠 𝑓𝑓 [𝑎𝑎 +  1]  +  16)  >>  5 (1) 

For angular modes, 2 to 10, and 26 to 34, consecutive neighboring reference 

samples are used for prediction. However, for angular modes 11 to 25, some 

discontinuous reference samples are used in the extended part. 

 For the DC mode, the average of the top and left reference samples' value (dcVal) 

is used as the value for the whole PU. 

To remove discontinuities along block boundaries, the boundary samples are 

filtered in the DC mode, and in the angular mode 10 (horizontal) and 26 (vertical) 

when the luma Transform Block (TB) size is less than 32. The samples in the first 

column, first row and the top-left pixel are replaced by a two-tap FIR filter, fed by 

their adjacent reference sample and their original value. 

 For the Planar mode, an order-2 plane prediction mode of H.264 is used. It is 

defined as the average of two linear predictions, as shown in (4), where N is the 

size of the TU, while x,y=0, . . . , N-1. 

 P𝑥𝑥,𝑦𝑦
V  =  (N −  y)  ∗  R𝑥𝑥,0  +  y ∗  R0,𝑁𝑁+1  (2) 

 P𝑥𝑥,𝑦𝑦
H  =  (N −  x) ∗  R0,𝑦𝑦  +  x ∗  RN+1,0 (3) 

 P𝑥𝑥,𝑦𝑦 =  (P𝑥𝑥,𝑦𝑦
V +  P𝑥𝑥,𝑦𝑦

H  +  N)  >>  (log 2 (N)  +  1) (4) 

2.3 Proposed VLSI Architecture 

This section is divided into four subsections. Subsection 2.3.1 provides an 

overview of our proposed architecture and the data flow in the architecture. Subsections 

2.3.2-2.3.4 discuss the details of techniques used in the architecture according to the 
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data flow. 

2.3.1 Overview 

The inputs of the system are the intra prediction mode, size of TB, residuals of TB 

and its coordinates, xTb and yTb. The outputs are the reconstructed pixels. 

The data flows within the system and the architecture are shown in 0 . The entire 

process is executed in pipeline and includes four steps. These steps correspond to 

the stages R, D, P and W. First, in the R stage, the ad- dress and reference pixels’ 

position based on the prediction mode and coordinates of Tb are generated. Second, in 

the D stage, reference pixels are fetched from the memory and reference pixel 

substitution is proceeded before storage in registers. Third, in the P stage, reference 

pixels are filtered then used for prediction and reconstruction of the pixels based on 4×4 

block. Finally, in the W stage, reconstructed pixels are written back to the memory. The 

following are highlighted: LUT-RSFS (R stage), 4×4 Prediction Block (P stage), and 

HBRDF (W stage). 

Table 2 The selection of reference samples and SRAM banks, given (X,Y)=(0,3), and 
16×16 TU (Bold text represents the samples for filtering) 

Prediction mode Reference samples selected  
by LUT-RSPG 

SRAM banks 
  

23 left:14,13,12,11,10,9,7,6,5,0; top-left(TL); 
top:0,1; 

top-left(TL); top:0,1; 

0,4,5,6,7,TL 

28 top:1,2,3,4,5,6,7,8 0,1,2 

Planar left:15,14,13,12,11,10;TL; top:0,1,2,3,4 
top:0,1,2,3,4 

0,1,3,4,5,TL 

DC Left: 11,12,13,14,15,16 3,4,5 
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Fig. 10 The architecture of the intra prediction 
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Fig. 11 An example to show how RSFS work.  

Given prediction mode is 23, (X,Y)=(0,3). The reference samples update, 4×4 block 
processing order and arrangement of 8 cyclic banks are also shown. 

2.3.2 LUT-RSFG 

Reference sample fetching is an important issue in intra pre- diction architecture. 

It has a great impact on the system performance. As previously mentioned, we propose 

a new reference samples fetching scheme. The main idea is to break a TU into smaller 

parts before processing, so that less reference samples are fetched each time. The new 

scheme reduces the maximum number of fetched reference pixels from 99 (as used in 

[11]) to 13, improving performances and utilizing hardware resources. The scheme 

includes two parts: The LUT based Reference Sample Position Generator (LUT-RSPG) 

and the 8 Cyclic Static Random Access Memory (SRAM) banks. In the follows, we 

present our scheme first and use an example, combining the Table 2 and Fig. 11. 



VLSI architecture of HEVC Intra prediction using reduced loaded-pixels 

21 
 

2.3.2.1 LUT-RSPG 

Reference samples are fetched, smoothed, and then used for prediction. Reference 

sample fetching gets complicated in H.265 with the increased TU’s size, prediction 

modes, and smoothing methods. Angular prediction modes 11 to 25 need some 

discontinuous reference samples and planar mode needs additional top-right and 

bottom-left samples for prediction. Moreover, for smoothing, some additional samples 

are also required. 

I develop the RSPG based on LUT for reference samples fetching. As shown in 0, 

given the size of TU, prediction mode, and coordinates X,Y of 4×4 blocks in TU, RSPG 

indicates which reference samples are needed for prediction. The position of reference 

samples can be found in the LUT by getting the indices and the flag that indicates the 

type of reference samples–top, left, or top-left. The second column in Table 2 The 

selection of reference samples and SRAM banks, given (X,Y)=(0,3), and 16×16 TU 

(Bold text represents the samples for filtering) illustrates the reference samples to fetch 

in some given prediction modes, and the bold number represents the samples used for 

filtering. I use LUT to substitute complex computation in hardware, such as the 

combination of multiplications and additions, so that a lower cost in hardware and 

higher performance can be achieved. Since the LUT used for the fetching scheme has 

numerous items, we used software to automatically generate the LUT. By modifying 

the HEVC Test Model (HM), we record the relative locations of reference samples and 

the corresponding memory banks, for all 4x4 positions under each of all prediction 

modes. 

2.3.2.2 8 Cyclic SRAM banks 

After LUT-RSPG decides which reference samples to be fetched, we must ensure 

that at any time the required reference samples can be fetched from the memory in one 

clock cycle. Since an SRAM bank allows the reading of only one of its cell’s data by a 

specific address per cycle, collisions may occur if some reference samples to be used 

are stored in the same SRAM bank but in a different cell. For instance, in 0, the top 

samples 0–3 in bank 0 and left samples 28–31 in bank 0 cannot be fetched in one clock 
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cycle. 

To avoid collisions, we developed 8 Cyclic SRAM Banks in order to store the 

reference samples. “Cyclic” and “8 banks” are two key points. The arrangement of 

reference samples stored in SRAM banks is shown in 0. The cyclic order guarantees 

that any neighboring 32 samples can be fetched at the same cycle. Especially, for 

prediction modes 11 to 25, the top reference samples 0–4 and the left reference samples 

0–12 have to be fetched simultaneously. In this case, data in bank 4 5 6 7 and in bank 0 

1 is fetched in one cycle. “Cyclic” is designed to solve this problem. 

The number of SRAM banks is another issue to discuss. I want the smallest number 

of banks, provided that no collisions occur, because a larger number of SRAM banks 

makes the chip’s area and power consumption larger. Further, the number of banks 

would be more adequate as a power of two for high performance; this is because the 

ad- dress can then be calculated by shift and the add operation, instead of division. For 

our work, we found that 8 is the most suitable number of SRAM banks. 

After detailing the LUT-RSPG and 8 Cyclic SRAM banks, we use an example to 

show how the Parallel Reference Sample Fetching Scheme works. The graph and data 

can be referred in 0 and Table 2 The selection of reference samples and SRAM banks, 

given (X,Y)=(0,3), and 16×16 TU (Bold text represents the samples for filtering), 

respectively. For instance, when the TU’s size is 16×16, prediction mode is 23, and 

current processing 4×4 block (X==0, Y==3) is located in bottom-left corner inside the 

16×16 TU, then the smoothed reference samples required are left 13,10,6, 3, top-left 

samples, top 0. As two-tap [1 2 1] FIR filtering is needed in 16×16 TUs, the neighboring 

left and right samples of 12, 13 and 14 need to be fetched from the SRAMs. Thus, at 

this cycle, reference samples in SRAM banks 4, 5, 6, 7, Top-left, and 0 are used. 

Top and left reference samples’ memory deployment is shown in Table 3.  Top and 

Left reference samples share the same 8 banks (For each bank, 252 words × 32 bits); 

while the top-left samples uses one bank (2048 words × 8 bits). Each of the eight banks 

is divided two parts, Top (line buffer, C, E) and Left (B, D, B’ and D’). Each parts is 

divided into several regions, allocated to different addresses. 
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There are two types of operation–read and write. Reading occurs at each clock 

cycle; while writing occurs when current processing 4×4 block locates on the right or 

bottom boundary of a TU. At this time, the rightmost and bottommost reconstructed 

samples are written into memory for the prediction of neighboring TU. The address for 

reading and writing is decided by the coordinates of the TU. For in- stance, it reads 

from line buffer if the TU is located on top- most of a Coding Tree Unit (CTU). Besides, 

we use Ping- Pong buffering to prevent the data to be read, from being covered by the 

newly written data. That’s why we divide the memory into several regions. 

Table 3 SRAM Deployment for top, left and top-left luma samples 

Storage 
type 

Name Region Addr. 
Bit 

depth 
Pcs. Bytes 

1R1W 
SRAM 

Top & Left 
Top & Left 

Line 
buffer 

0-239 

32 8 8064 C & E 240-243 

B & D 244-247 

B’ & D’ 248-251 

Top-left  0-2047 8 1 2048 

Total 10112 
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predSample[0,0]~[3,3] needs 6 
reference samples from 0 to 5.

predSample[0,5]~[7,6] needs 9 
reference samples form 2 to 10
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Fig. 12 Analysis of the required number of reference samples for prediction of a 4×4 

block  
(intra prediction mode is 6). 
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Fig. 13 The structure of one PE, designed for Planar, DC and angular predictions. 

2.3.3 4×4 Block Based Prediction 

First, this section presents the reason of using 4×4 blocks. Then, the details and the 

originality of the 4×4 blocks usage are exposed. 

To achieve 8K, 4320p@120fps, we have to satisfy (5), where f represents the clock 

frequency of the system (cycles/second) and n is the number of pixels processed by the 
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system per cycle. 

7680 ∗  4320 ∗  120 =  𝑓𝑓 ∗  𝑛𝑛 (5) 

For a practical system, we aim at decreasing f in order to reduce relatively the 

power consumption. For a system processing at 16 pixels per cycle, when luma/chroma 

samples are processed in parallel, the required clock frequency is 238 MHz. If the 

system processes 32 pixels per cycle, the required clock frequency is 119 MHz 

If our system process 32 pixels per cycle, half of the processing units are wasted, 

since the minimum TU size is 4×4. For the 16-pixels-per-cycle’s processing block, it 

could be 4×4 square block, the 8×2, or 16×1 rectangle blocks. I found 4×4 block is the 

best. Because it requires the least numbers of reference samples in worst cases. I use 

prediction mode 30 as an example, as shown in 0. Further- more, 4×4 blocks can 

enhance the utilization of the hardware resources, since all sizes of TU can be divided 

into one or more 4×4 blocks. 

The 4×4 prediction block we proposed consists of 16 Prediction Elements (PE). 

Each of it processes one sample per cycle. The inputs of each PE inside the 4×4 block 

are prediction mode, weight, and reference index. The detailed design of each PE is 

shown in 0. I generate 2 LUTs to get the weight and reference index instead of using 

formula to calculate in hardware, in order to reduce the path delay. In each predictor, 

there are 4 multipliers, 10 adders, and 5 multiplexers. For the predictor in first row and 

column, 4 additional adders and 2 multiplexers are required for filtering by each 

predictor. “a” is the output of angular prediction mode; “d” is the output of Planar; “e” 

and “b” are the output for boundary samples smoothing in DC mode and horizontal, 

vertical modes correspondingly, when TU is 4×4 to 16×16. The hardware used for 

boundary samples smoothing are only in the first row and first column in the prediction 

block. It should be noted that, from our synthesis result, we find that the data path is 

0.3 ns shorter if Planar mode and angular mode do not share one multiplier. Thus we 

have the planar and angular modes not share one multiplier to achieve a higher 

performance. 
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Fig. 14 Dependency problem in blocks 

(a) Stall of 3 cycles to solve the dependency problem in a 4×4 TU 
(b) Use of Data Forwarding to solve the dependency problem in 4, 8 TU 

R1: Read reference samples for PB1. 
D1: Get data from SRAM and reference sample substitution for PB1.  

P1: Calculate predicted samples and add residuals. 
W1: Write back the result. 
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Fig. 15 Three dependency cases in 4×4 TUs and 8×8 TUs 

2.3.4 Hybrid Block Reordering and Data Forwarding 

This section exposes the data dependency issue in intra prediction of 8K 

application and shows how our proposed solution, called Hybrid Block Reordering and 

Data Forwarding, solves this problem. 

As we know, prediction needs the neighboring TU’s reconstructed pixels as 
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reference pixels, which are stored in the memory. This need illustrates the data 

dependency between TUs. The latter issue occurs when the TU needs the reference 

pixels, not yet stored in the memory. However, at low system throughput, such as 

4K@30fps in [11], this problem does not occur. Because more cycles are required to 

process a TU, when neighboring pixels are needed, they are already stored in the 

memory. 

I will show how Block Reordering and Data Forwarding jointly solve the data 

dependency problem. Block Reordering is applied to 8–32 TUs. Because an 8, 16, and 

a 32 TU can be divided into 4, 16 and 64 4×4 blocks, respectively, we can arrange the 

process order such that the pixels that will be used as reference pixels are processed and 

stored into the memory earlier. I begin with the right-bottom 4×4 block, process from 

right to left, from down to up, and end on the top-left block. The processing order is 

illustrated by curve in 0.  This method can solve the dependency problem if the 

previous TU is 16×16 or 32×32. If the previous TU is 8×8 or 4×4, we need to use the 

following method below, called Data Forwarding. 

Data Forwarding is widely used in hardware design. The idea in our design 

considers using some registers to temporally store the reconstructed pixels with 

dependency, and when these pixels are needed, we control the reference samples to be 

fetched from these registers, instead of from the memory. The novelty is how to apply 

this technique to solve the dependency problem, especially to determine whether the 

reference pixels should be fetched from the registers or from the memory. 

There are three types of dependency in this work. The first one is that P2 depends 

on P1, in 0 (a). Since the 4×4 prediction block processes a 4×4 TU in a cycle. As shown 

in 0 (b), PB1 is processed at cycle n+2 at the P1 stage, and PB2 in Z-order is processed 

at cycle n+3 at the P2 stage. At cycle n+3, PB2 may need the reference samples located 

in PB1, while the result of PB1 cannot yet be used by PB2 since it is being written back 

to the SRAM. If such reference samples are read from the SRAM and used by PB2, 

then the obtained results are erroneous because the reference samples fetched from the 

SRAMs are not the expected reconstructed samples of PB2. To solve this problem, we 
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build the Data Forwarding path ‘a’, shown in 0 (b), to send forward the result of P stage 

to the registers at cycle n+2, and at cycle n+3, the following TU reads the reference 

samples from the corresponding registers, instead of waiting for the predicted samples 

to be written into the SRAMs. 

The second type is that D2 depends on P1, in 0 (a). When PBk , writes back the 

reconstructed samples in Wk stage while PBk+2 use the data to do substitution in the 

Dk+2 stage. For this type, we build the Data Forwarding path ‘b’. The last type is that 

R2 depends on W1, in 5(a).  For 1R1W SRAMs, the reading address and writing 

address cannot be the same when writing and reading operations happen at the same 

cycle.  Reading has to wait until writing finishes. When PBk  try to write back the 

reconstructed samples in Wk stage while PBk+3 reads the same data from the same 

address, the error occurs. To solve it, we build the Data Forwarding path ‘Type 3’, 

shown in 0 (b). It keep writing and does not read. When it needs data, it reads from path 

‘c’ directly. 

Overall, Three Data Forwarding paths, one from stage Pk to Pk+1 (path a), one 

from stage Pk to Dk+2 (path b) and one from stage Wk to Dk+2 (path c), are built to 

eliminate three types of dependency respectively. I use 0 to shows how the dependency 

occur in the 4×4 TUs and 8×8 TUs. For instance, the PB5 in TUIImay use the results 

of PB3  in TUI , and the PB13  in TUIV  may use the results of PB11  in TUIII  as 

reference samples. This is the second types illustrated above, which is marked by blue 

dash line. 

As shown in 5(a), we know the stalling of pipeline for three cycles could eliminate 

the dependency, at the expense of throughput. In our technique, no stall occurs in our 

method, such that the throughput is significantly increased. Even though Data 

Forwarding can solve the dependency problem of all other sizes besides 4×4 and 8×8, 

we do not apply it elsewhere. Because data forwarding makes the pipeline design and 

implementation more complicated and the critical delay becomes longer. Furthermore, 

since the processing order inside a TU is not restricted, then alternatively we can use 

processing reordering to solve this problem. This method is easier compared to Data 
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Forwarding. 

2.4 Implementation Results 

The proposed architecture is designed in Verilog, and synthesized in SMIC 40 nm 

standard-cell libraries. The layout is shown in 0. Before the layout, the delay of the 

critical path is 3.65ns, and after the layout, it is 3.8ns. If the luma and chroma modules 

work in parallel, the throughput’s requirement, 4320p@120fps, can be achieved when 

system’s frequency reaches 260MHz. For 16×16 and 32×32, one and four additional 

cycles are required for data preparation respectively. Since an overhead of 1/17 of the 

total processing time used for data preparation, it’s required to achieve the target by 

reaching 238*17/16=253MHz in the worst case. Hence, including the time for data 

preparation, the through- put is 16*(16/17) = 15.1 pixels/cycle or 22.5 samples/cycle in 

4:2:0 format. A 4/8/16/32/64 PU can be processed in 1/4/17/68/272 cycles, as given in 

Table 4. 

Table 4 Worst throughput cases and processing speeds 

N Substitution & 
filtering (Cycles) 

Perdition 
(Cycles) 

Throughput (Samples/ 
Cycle) 

Time to complete a TU 
(Cycles) 

4 0 1 16 1 

8 0 4 16 4 

16 1 16 15.1 17 

32 4 64 15.1 68 
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Fig. 16 Layout of the proposed intra architecture. 

The luma module (10-bit) with a core size of 0.36mm2 and chip-area utilization of 
80%. The location of each module are marked, while the SRAMs for neighboring 

pixels and line-buffer are shown in white regions. 
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Table 5 Comparison of H.265/HEVC intra prediction architectures for video 
application 

 Proposed architecture Huang’[6] 2013 Jung’[7] 2013 

Platform 40 nm 40 nm 130 nm 

Bit depth 8-bit 10-bit 8-bit 8-bit 

Area (gates) 212K 252K 27K 41K* 

SRAM 430B 538B 612B N/A 

Line buffer 20KB 25KB 16KB** N/A 

Pred. Mode All 

PU sizes All 

Specification 4320p, 120fps 
@260MHz 

2160p, 30fps 
@200MHz 

N/A 
N/A 

Min. Tp 
(samples/cycle) 

22.5 2 8 

Norm.TP  
(samples/cycle/k- gate) 

0.103 0.090 0.074 0.198 

Norm. rea Complexity (gates) 212K 252K 304K N/A*** 

By taking the line buffer into account, the size of the on-chip memory used for 

either 8-bit luma samples or chroma samples is 10K, as shown in Table 2. Thus, the 

overall size is 20 KB. 

The comparison with other works is shown in Table 5. As many key functions are 

not included in [12], the comparison with it is not actually fair. Compared with [11], the 

throughput of our design is 16x higher, with logic area only 7.85x more. In our design, 

the normalized throughput is 0.103, and the normalized area complexity is 212K, com- 

pared with 0.074 and 304K in [11], respectively. Thus, a higher normalized throughput 

or a lower normalized area complexity is achieved by the proposed design. The 

improvement comes mainly from two aspects. 

System’s high throughput is achieved by following aspects: First, by breaking a 

TU into smaller blocks, we reduce the number of reference samples fetched and 

multiplexed for prediction. Second, we separate the multi- pliers for the prediction of 
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the Planar mode and angular modes. These first two aspects make data path shorter in 

order to achieve a higher performance. Third, we develop LUT-RSFS to arrange a tight 

schedule for reference samples preparation and prediction, 16/17 (approximately 94%) 

of cycles are utilized for intra prediction. Finally, we use Block Reordering and Data 

Forwarding to get rid of the data dependency, so that the system can operate under high 

throughput. 

Besides aiming at a high throughput, we also aim at reducing the circuit area.  First, 

as mentioned above, we break TU into small blocks and devised LUT-RSFS to fetch 

reference samples precisely. They reduced number of the reference samples fetched for 

prediction in the worst case, from 99 to 13 reference samples, so that the complexity of 

the control circuit for selecting the reference samples is decreased, and the area of 

relevant circuit can also be reduced. Second, we select 4×4 block as a prediction unit. 

Since it is adaptive to all TU sizes, hardware resource is saved. Finally, more reference 

samples can be reused by the 4×4 block and more neighboring predicted samples share 

probably the same reference samples, so that the area of circuit gets further reduced. 

2.5 Summary 

In this paper, we have presented an 8-bit/10-bit adaptive intra prediction hardware 

architecture for H.265 4320p@120fps application. Based on the divide-and-conquer 

strategy, we proposed two techniques. Using the LUT-RSFS, required reference 

samples are fetched from the SRAMs at each cycle with low complexity and small 

circuit area. By exploiting Block Reordering and Hybrid Data Forwarding, we have 

minimized the idle time and eliminated the dependency between TUs in order to 

increase the throughput.  Hardware utilization of 94% is achieved and only 272 cycles 

are used to process a 64×64 block in worst case. The demerit of the proposal is that the 

bandwidth of SRAM in increased, as multiple loadings of reference samples are 

required for a block larger than 4x4. This would be a problem to solve in the future 

work. 
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3. Dual-clock VLSI architecture of HEVC Sample Adaptive 

Offset Estimation 

3.1 Introduction 

Compared to the previous H.264/AVC standard [21], H.265/HEVC doubles coding 

efficiency by employing a number of new coding tools. Especially, an Sample Adaptive 

Offset (SAO) component is newly introduced as one of the in-loop filters (ILF) ,which 

contributes to up to 18% BD-rate reduction [22]. In H.264/AVC, Deblocking Filter 

(DBF) [23] is the only ILF. Its VLSI implementation has been discussed in many 

previous works [24] [25] [26] [27]. In H.265/HEVC, DBF [28] has been simplified [29] 

[30] [31] [32] [33] [34] and SAO dominates the complexity of ILF especially in a video 

encoder. Several previous works discussed SAO’s implementation. Joo, et al. [35] [36] 

proposed to utilize the intra prediction mode to predict the Edge Offset (EO) type, so 

that the number of EO types could be reduced to save the encoding time. Choi et al., 

[37] evaluated several algorithm-level improvements for SAO. Gao et al., [38] 

developed a low complexity SAO algorithm based on class combination, band offset 

(BO) pre-decision and merge separation category. Rediess et al., discussed the 

architectures of statistics collection and parameter decision, two main components of 

SAO, in [39] and [40], respectively. Mody et al., [41] designed an SAO estimation 

architecture supporting 4K@60fps encoding. Zhu et al. [42] [43] developed a fast SAO 

estimation algorithm its VLSI architecture supporting 8K encoding. The complete 

implementations of SAO estimation [41] and [42] [43] both require relatively large 

circuit area, which still has plenty room for improvement. 

This work aims at designing an efficient VLSI architecture of SAO estimation in 

H.265/HEVC. To achieve high area efficiency, we propose three techniques: 

 Dual-clock SAO architecture: The highly heterogeneous data flow of statistics 

collection (SC) and parameter decision (PD) in SAO causes each part to require a 

completely different preference in working frequency. Such a different preference 
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is the main obstacle for an efficient implementation. This technique addresses 

heterogeneous data flow by separately driving SC and PD at a high- and a low-

speed clocks, respectively, so that each part could be integrated together efficiently. 

It reduce the overall area by 56%, from 156K to 68K gates. 

 Coarse range selection for BO (CRS): Based on the analysis of band distributions 

in each Coding Tree Block (CTB), and on hardware resources for finding best 

bands, this technique estimates the range of bands before SC with an accuracy of 

60-80% and shrinks the range of fine processed bands 32 to 8 to reduce the circuit 

area. 

 Accumulator bit width reduction (ABR): By exploiting the mutual exclusion 

relationship among categories/bands existed in the accumulation process in SC, 

this technique carries out an early termination to accumulators reaching a threshold, 

to further reduce their circuit area. 

The proposed VLSI implementation employing the above techniques occupies 51K 

logic gates, which is only one-third of circuit size of [42], at the same throughput and 

comparable coding efficiency. With a high-speed clock of 1.3 GHz and a low- speed 

clock of 217 MHz, 8K@120fps SAO real-time encoding can be achieved. 

Statistics 
CollectionOrg. 

2x2 pixels / cycle

Rec. 
4x4  pixels / cycle Parameter

Decision

Count
[ 24 / 48 ] Parameter

Sets

Neighboring Information

Sum
[ 24 / 48 ]  

Fig. 17 The overview of SAO.    
Details of the proposed statistics collection engine and parameter decision engine are 

in Fig. 22 and Fig. 23, respectively. 

The rest of paper is organized as follows. Section 3.2 gives an introduction to SAO 

in H.265, its data flow and several hardware friendly approaches for the design. Section 

3.3 analyzes the data flow of SAO, the key challenge and introduces the first proposed 

technique. Section 3.4 A analyzes the characteristics of BO and introduces our second 

proposed technique utilizing those characteristics. Section 3.4.1 explains how mutual 
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exclusion among categories/bands generate inefficiency in hardware utilization, and 

give our third proposed technique. Section 0 shows implementing results and gives 

some analysis on the performance of the proposed design, followed by the conclusion 

in Section 3.6.

3.2 SAO algorithm 

SAO aims at reducing the distortion of the reconstructed pictures, by adaptively 

adding offsets to the reconstructed samples at both encoder and decoder. The SAO 

parameters, i.e. how the offsets should be generated and applied, are signaled at the 

Coding Tree Unit (CTU) level. The offset to be applied depends on the classification of 

the target sample. There are two kinds of classifiers: Edge Offset (EO) and Band Offset 

(BO). The sample classification of EO depends on the comparison between the current 

sample and its neighboring ones, while the sample classification of BO depends on the 

value of current sample itself. The optimal classifier and offsets for each CTU is found 

during the encoding process, called SAO estimation, which comprises the SC and PD 

phases, as shown in Fig. 17. In SC, the BO and EO classifiers classify each 

reconstructed sample in a CTU into different bands and categories, respectively. The 

classification statistics of the current CTU are collected. In PD, based on the statistics 

and the neighboring (left and upper) SAO parameters, the optimal parameter sets 

achieving the lowest rate-distortion cost are found. The parameter sets include the SAO 

mode, types and offsets, as shown in Table 6. 
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Table 6 Output (parameter sets) of SAO.  
Luma and chroma share the same set of parameters in gray parts. Cb and Cr always 

share the same mode and type. 

SAO Mode SAO Type SAO Offset Type AuxInfo 
OFF: 0 N/A N/A 

N/A 
New Mode: 1 

EO 0: 0 

Offset [0:3] 
EO 90: 1 

EO 135: 2 
EO 45: 3 

BO: 4 0-28 

Merge: 2 
Merge Upper: 0 

Follow merged CTU 
Merge Left: 1 

3.2.1 Statistics Collection 

For EO, the category of each sample is decided according to its relationship with 

neighboring samples, following 4 patterns, the horizontal (EO 0), the vertical (EO 90) 

and two diagonal (EO 45 and EO 135) directions, as shown in Fig. 18. A sample that 

falls into none of these categories is classified into category 0. 
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Fig. 18 EO patterns and categories. 
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Fig. 19 Thirty-two Bands division. 

The value of an 8-bit sample (dynamic range (0 to 2BitDepth−1)) is evenly 
divided into 32 bands. The best consecutive four bands are chosen as candidates, e.g, 

Band 14 to 17. 

For BO, the band of a sample is decided according to the value range it falls in. 

The entire dynamic range (0 to 2BitDepth−1) is evenly divided into 32 bands, as shown 

in Fig. 19. An 8-bit sample is classified into band K if it ranges from 8K to 8K+7. Based 

on the statistics collected within a CTB, the best consecutive four bands and their 

corresponding offsets are chosen as candidates to compare with the EO patterns. 
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Fig. 20 An example to illustrate the statistics collection process.  

SAcc and CAcc are abbreviations for accumulators of Sum and Count. E.g. BO 
classification is performed to the 2x2 reconstruction samples (0X93,0x96,0x9b,0x99). 
Since the first two samples belong to band 12, the differences (Org.-Rec.) belong to 

band 12 are summed up. The SAcc and CAcc of band 12 add to 4 and 2, respectively. 
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3.2.2 Parameter Decision 

The purpose of PD is to decide the parameters for the current CTU, based on the 

statistics collected in SC. The parameters include the SAO mode, SAO type, auxiliary 

in- formation and four offsets. The possible outputs are listed in Table 6. The set of 

parameters with lowest rate-distortion (RD) cost is chosen as the one to be coded. RD 

cost is defined as: 

 Cost =  D +  λ ∗  rate  (6)  

,where rate is the number of bits to code the parameters and λ is the Lagrange multiplier. 

Distortion between the original and reconstructed samples modified by SAO can be 

described by the following equation: 

Dpost = � �org(c) − recpost(c)�
2

𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶

 

            =� �org(c) − (recpre(c) + 𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡)�2
𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶

 (7) 

where the offset is calculated by the Sum and Count from SC 

 offset = Sum
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.

  (8) 

By evaluating all the bands, EO patterns, and the merge candidates, the parameter 

sets with minimum cost are chosen as the final decision. The comparison of distortions 

can be simplified by eliminating the org and rec in 𝐷𝐷  and 𝐷𝐷𝑝𝑝𝐶𝐶𝑝𝑝𝐶𝐶 as the following 

equations. The details can be referred in [22] 

 𝛿𝛿𝐷𝐷 =  𝐷𝐷𝑝𝑝𝐶𝐶𝑝𝑝𝐶𝐶  −  𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑜𝑜𝐶𝐶𝑛𝑛𝑡𝑡 ∗ 𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡2 − 2 ∗ 𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡 ∗ 𝑆𝑆𝐶𝐶𝑆𝑆 (9) 

3.2.3 Hardware friendly SAO 

To improve the algorithm’s friendliness to hardware implementation, a previous 

work [42] made modifications to the original SAO algorithm in the HM reference 

software, as listed in the Table 7 from Mods 1 to 4. 
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Table 7 Comparison of modifications made on the HM-16.0 

No Name HM-16.0 ICIP [25] Props. 

1 
Number of iteration 

for offsets 
At most 7 iteration No iteration 

2 
Evaluation method 

for best band 
RD-Cost Distortion 

3 Rate CABAC constant probability model[25] 

4 
Normalization of RD-

cost 
The RD-cost of New RDO 

mode 
The RD-cost of Merge mode 

5 
The range of 

difference 
[-1023,1023] [-7,7] [-15,15] 

6 
Samples unused in SC 

(Fig. 21) 
Region A Region A∪B Region A∪C 

7 Number of bands 32 32 8 

8 
Accumulator bit 
width reduction 

--- --- 

Accumulator 
terminates 

when reaching a 
threshold 
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A

B

C

64x64 CTB

 
Fig. 21 Samples not used in statistics collection, referring to No.6 in Table 7 

In this work, we further apply Mods 5 to 8. Mods 5 enlarges the range of difference 

between original samples and reconstructed samples for a higher precision. Mods 6 

utilizes the top and left boundary samples for statistics collection to increase calculation 

accuracy. As Mod 7 we proposed a technique to estimate the most probably selected 

bands in a CTB and to reduce the searching space for the best bands from 32 to 8 bands, 

the detail of which is explained in Section 3.4.1. As Mod 8 we propose a bit width 

reduction technique for the accumulators, with details given in Section 3.4.2. 

3.3 Dual-clock Architecture 

3.3.1 Heterogeneous data flows of SC and PD 

The main obstacle to an efficient SAO implementation comes from the highly 

heterogeneous data flows of SC and PD. The SC for each EO or BO classifier comprises 

many simple iterations. On the other hand, PD involves significantly less iterations (56 

or less for each CTU) with each of them being much more complex. 

The system throughput (TP) can be regarded as the product of clock frequency 

(𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓) and parallelism (N) in the number of samples processed per clock cycle: 

 𝑇𝑇ℎ𝑟𝑟𝑜𝑜𝐶𝐶𝑟𝑟ℎ𝑠𝑠𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓.∗ 𝑁𝑁 (10) 

The enhancement of TP can come from the increase of either 𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓.  or 𝑁𝑁 . The 
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serial characteristics of SC and the large number of iterations involved, however, make 

SC inefficient to be parallelized. As shown in the gray part in Fig. 22 and Fig. 23, the 

hardware components of these parts have an quadratic growth in area with the 

increase of 𝑁𝑁.  Detailed quantitative analysis will be given in next subsection. In the 

meanwhile, the function of SC decides that a short critical path can be achieved, 

thus a high frequency is preferred. However, a high working frequency is not preferred 

in PD, because 1) it does not need many clock cycles to perform the limited number 

of iterations involved for each CTU and 2) each iteration involves the complex 

computation that results in a long critical path. The big difference in preference to 

the selection of working frequencies, thus becomes the key challenge for integrating 

SC and PD efficiently. 

3.3.2 The optimal clock frequency of SC 

There are many possible combinations of 𝑁𝑁  and 𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓  to support a certain 

throughput. For instance, N = 16 is used in [42] and [41]. However, there are factors, 

area and timing, that constrain the choice of N. I list the hardware usage in the crucial 

modules with N equal to 1, 2, 4, 8, 16 and 32, as shown in III. I explain how area and 

clock frequency constrain the N and show the optimal frequency as the following. 

1) Analysis of area: The modules listed in Table 8 (marked in gray in the Fig. 22) 

dominate the area consumption when compared with other modules in SC. For these 

modules, area increases at a growing rate with the increase of N. The increase in area 

mainly comes from the quadratic growth in quantity of function units (FUs) of EO/BO 

modules, listed in the second row (EO/BO module) in Table 8. Since BO and EO are 

similar in architecture, we use EO as an example. 
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Fig. 22 The architecture of 2×2 statistics collection engine.  

The details of dark gray part in Fig. 17. SAcc,CAcc are abbreviations for the 
accumulators of Sum and Count. 

When N = 1, this sample must belong to one of the five categories. By checking 

the category that this sample belongs to, the corresponding accumulators for Sum and 

Count (SAcc and CAcc as in Fig. 22) operate. When N = 2, there are two cases for the 

second sample “B”, that B belongs to the same category as A, or not. For the former 

case, the corresponding SAcc unit increments by the sum of two differences  and CAcc 

increments by two; for the latter case, operation for each sample is the same as the case 

when N = 1. It could be noticed that the addition of difference of latter samples depends 

on the result of former ones, because the samples with the same category or band are 

accumulated together. Considering whether the rest N − 1 samples have the same 

category with the first sample or not, 2N −1 branches exist and N − 1 adders as well as 

multiplexers are required. Similarly, when we consider rest N − 2 samples with the 
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second sample, 2N −2 branches exist and N − 2 adders as well as multiplexers are 

required. Thus we can conclude that N (N−1)/2 adders, multiplexers and comparators 

are totally required for each EO/BO module at N times of parallelism. 

Besides, the number of inputs necessarily multiplexed to each accumulator also 

grow with the increase of N. As shown in Fig. 22, there are four inputs (sA to sD) for 

each accumulator when N = 4. Furthermore, the larger data width of each adder also 

increases the area consumption. The data are shown in the third row (SAccs/CAccs) of 

Table 8. 

2) Analysis of timing: Though the above analysis reveals that the high area 

efficiency benefits from a smaller N, a smaller N means a higher freq is required to 

sustain the target TP. However, the maximum frequency is constrained since there is a 

loop in SAcc and CAcc, as shown in Fig. 22 (II). The path delay, mainly generated by 

the adder, has a lower bound irrelevant to N. Besides, the path delay in a loop cannot 

be reduced by pipelining. Thus the achievable clock frequency has an upper bound, or 

N has a lower bound given a target TP. 

3) The optimal clock frequency: To support 8K@120fps, the TP required equals 

to 7680 ∗ 4320 ∗ 120 ∗ 1.5. From (8) and Fig. 24, we know the required system 

frequency, 5.2 GHz and 2.6 GHz, are higher than the maximum system frequency (1.5 

GHz to 1.6 GHz) when N equals to 1 and 2 respectively. The maximum frequency 

should always be larger than the frequency required to guarantee a positive slack. Thus 

N equal to 4 is the optimal choice among the candidates with positive slack, since a 

smaller N is more area efficient. Thus the corresponding optimal frequency is 1.3 GHz. 
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Table 8 Relationship between the consumption of hardware resource of crucial 
modules and the increase of N from 1 to 32. (∗: when applying proposals in section 

3.4, this figure is 48, else it is 96.) 

Module 
Name 

FUs Data width 
Compl
exity 

# of FU 1 2 4 8 16 32 

EO/BO 
module 

Adder 5 bits 

O(N2) 
2.5N(N-

1) 
0 5 30 140 600 2480 MUX 3 bits 

Comparator 4 bits 

SAccs 
/CAccs. 

Adder 
Max 

(15bits,5bit+lo
gN) Fig. 6 (II) O(1) 48∗ 48 

Comparator 10∼15 bits 

MUX 2 bits O(N) 48(N-1)* 0 48 144 336 720 1488 

Category 
Classifier 

Adder 3 bits O(N) 2N 2 4 8 16 32 64 

Comparator 8 bits O(N) 7N 7 14 28 56 112 224 

3.3.3 Other feasible models for parallel SC 

1) Multiple sets of accumulators: This model uses N sets of accumulators that 

work independently and have a final accumulation stage. It gives an O(N) hardware 

complexity without affecting critical path, but needs (M-1) extra sets of accumulators. 

The hardware consumption of SAccs/CAccs in Table 8 increases to O(M) from O(1). 

The experiment result shows Accs. of one category occupy 0.55K gates@650MHz. 

Thus, at least extra 13K gates are required, even with only 2 sets of accumulators. The 

proposed model is thus more efficient than the M-set accumulator model as long as N 

is less than 32. 

2) Serial: This model uses 1 set of registers but N sets of multiplexers and adders 

connected in series. It gives an O(KN) hardware complexity, where K = 48 (4 EO 
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pattern * 4 categories/EO pattern + 32 bands). Since each category or band need one 

string of adders and MUXs connected in series. When N is small, K becomes the main 

influence on the area. From our analysis, this linear model is worse than our chosen 

model when N is not greater than 16. 

Overall, compared with the above two models, the model with N=4 that we choose 

is the most area efficient for SC. 

Offset = 
Sum / Count

Dist.= Offset*Offset*Count – Offset*Sum*2

Cost = Dist.+L*Rate

Mem.Compare Cost

Neighboring 
CTU Info.

Offset Merge 
Mode

New RDO 
mode

Parameters 
Decision

Low frequency
1/4~1/6 of freq

Dist_accu = 
Dist_accu + dist

MUX

Costs[5]
write

Count
16EO+8/32BO

Sum
16EO+8/32BO

Offsets
[24/48]

24-4 
MUX

write

read

Sum
[24/48] 

Count
[24/48] 

Best Parameter Set

 
Fig. 23 The proposed architecture of parameter decision Engine.  

The details of light gray part in Fig. 17. 
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Fig. 24 The relationship among parallelism (N), area and frequency in SC. 
Under the process of SMIC 40nm, bars represents the approximate number of 

NAND gates required by the modules listed in Table 8. The dashed line represents the 
min. frequency required and the solid line represents the max frequency could be 

achieved with various N. 

3.3.4 The optimal frequency in PD 

The best parameter sets for each CTB are decided among 4 EO patterns (4 

categories in each), 32 bands, and 2 merge categories (4 offsets to be evaluated in each 

category). Intuitively, it generates a cost for an EO category or a BO band per cycle, 

and a cost for each merge candidate every 4 cycles. This process is pipelined in three 

stages. Totally it takes 16 + 32 + 4 + 4 + 4 = 60 cycles for processing the PD of each 

CTB. Since the result (sum, count) of SC stored in registers are used by PD, the clock 

frequency of PD should be above a lower bound as the following equation: 

 𝐹𝐹𝑟𝑟𝑠𝑠𝑓𝑓𝑃𝑃𝑃𝑃  ≥  𝑁𝑁𝑟𝑟𝑃𝑃𝑃𝑃  ∗  𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶  ∗  𝑁𝑁𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝  (11) 

𝑁𝑁𝑟𝑟𝑃𝑃𝑃𝑃 is the numbers of cycles to finish PD, 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 is the numbers of CTB in a 

frame and 𝑁𝑁𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝 is the number of frames encoded in a second. 

The 𝐹𝐹𝑟𝑟𝑠𝑠𝑓𝑓𝑃𝑃𝑃𝑃 is enough to support the required throughput with 3 pipeline stages 
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when it is only 1/6 or 1/4 of 𝐹𝐹𝑟𝑟𝑠𝑠𝑓𝑓𝑆𝑆𝐶𝐶  (1.3GHz). Their area are 21K and 25K, 

respectively. When 𝐹𝐹𝑟𝑟𝑠𝑠𝑓𝑓𝑃𝑃𝑃𝑃 is 1/2 of 𝑓𝑓𝑆𝑆𝐶𝐶 , 5 pipeline stages are required. Its area is 

30.4K gates, with the area overhead being 45%. It’s very difficult to increase the 

frequency of PD to further match the frequency of SC, because the calculation of Offset, 

Dist. and Cost in PD, as shown in Fig. 23, consists of complicated multiplexing, and 

multiplication, which is challenging for the deep pipeline. 

3.3.5 Proposed architecture 

Based on the analysis above, we propose a dual-clock architecture, where a high 

speed clock drives SC and a low speed clock drives PD, so that the features of each part 

could be exploited. The frequency of the high-speed clock is 1.3 GHz and the frequency 

of the low-speed clock is 1/4 or 1/6 of 𝑐𝑐𝑐𝑐𝑘𝑘ℎ𝑖𝑖𝑖𝑖ℎ−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠. Both of them are derived by 

𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝. The relationship of frequency between them is shown below. 

 𝑐𝑐𝑐𝑐𝑘𝑘ℎ𝑖𝑖𝑖𝑖ℎ−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠  =  𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝 (12) 

 𝑐𝑐𝑐𝑐𝑘𝑘𝑙𝑙𝐶𝐶𝑙𝑙−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠  = 𝑐𝑐𝑙𝑙𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀

= 𝑐𝑐𝑙𝑙𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑓𝑓𝑙𝑙𝐶𝐶𝐶𝐶𝑝𝑝(𝑁𝑁𝐶𝐶𝑆𝑆𝑆𝑆/𝑁𝑁𝐶𝐶𝑃𝑃𝑃𝑃)

 (13) 

In our work, M is four without CRS (to be presented in Section 3.4) or six with CRS. 

For SC, it takes 905, 240 and 240 high-speed clock cycles to process a Luma, Cb 

and Cr CTB in serial, respectively. 𝑁𝑁𝑟𝑟𝑆𝑆𝐶𝐶 is equal to 240, since the minimum number 

of cycles used in SC is decided by the Cb/Cr channel. For PD, it takes 60 low- speed 

clock cycles to find the best parameter candidates for each channel. The resulting M is 

4. With CRS, M increases to 6, since the number of clock cycles for finding the best set 

of candidates (𝑁𝑁𝑟𝑟𝑃𝑃𝑃𝑃) decreases from 60 to 36 with the number of bands decreased from 

32 to 8. 

The processing schedule for SC and PD is shown in Fig. 25. SC and PD are 

processed in pipeline stage s1 and s2, in two different clock domains respectively. The 

data in s1 are kept unchanged for at least M (4 or 6) cycles, so that the data in s1 could 

be caught by the rising edge of low-speed clock, and be transferred to s2 before they 

are updated for another new CTB in s1 during this period. 
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It is noted that two clocks have a frequency relationship of a dividends M and are 

derived by 𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝. The rising edges of each clock are periodically aligned in delta time, 

making it unnecessary to have the extra data synchronization. Compared to using two 

completely independent clocks, it eliminates the hardware expense for an additional 

phase-locked loops (PLL). 
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Fig. 25 The schedule of CTB processed in pipeline in two clock domains. 
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Fig. 26 The number of samples distributed in each band within a CTB.  

(E.g, A normal CTB of video sequence of Racehorse 832×480) 
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Fig. 27 The distribution of number of bands in a CTB in various sequences.  

Video sequences: BQTerrace, BasketballDrill and BlowingBubbles. They are 
evaluated with Quantization Parameter (QP) of 22, 27, 32, 37 and have the maximum, 
medium and minimum BD-rate degradation, respectively, as shown in the 3rd column 

of Table 10. 

3.4 Algorithm-Architecture Co-optimization 

3.4.1 Coarse Range Selection 

The exhaustive search among 32 bands to find the best bands consumes two-third 

(32/48) of hardware resources of the design, while the hardware for EO dominates the 

rest one-third. 

If we could design a hardware friendly scheme that coarsely select the sample value 

ranges in each CTB to reduce the search range from 32 bands to a small number before 

SC, the overall resource for collecting BO statistics can be decreased. The selected 

range would better cover as many samples within a CTU as possible, so that the band 
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characteristics of a CTU could be mainly preserved. As mentioned in Section 3.1, a BO 

pre-decision was proposed in [38]. The BO pre-decision scheme searches among all 32 

bands to find the best one, which is software oriented and aims at speeding up the band 

decision process. However, it is the impracticable for hardware implementation since 

the limitation in SRAM bandwidth causes that lots of cycles are taken to fetch the 

samples in a CTU for pre-decision. 

From Fig. 26 we observe that most of the sample values are distributed in several 

bands, and distribution of the chroma samples are even more concentrated. I further 

collect the statistics of the number of bands used in each CTB in video sequences, so 

as to know how large a range of bands is enough to efficiently classify most of samples 

in a CTB. The distribution of number of bands used in a CTB is shown in Fig. 27. 

Results show that 82% of CTBs have at least 90% of their samples concentrated in no 

more than 8 bands. The distribution is more concentrated when the video sequence 

becomes larger, since each CTB tends to contain less textures. Such results indicate that 

the use of 8 bands to collect the statistics could guarantee most of samples to be 

classified. 

I thus propose the CRS for BO based on most likely band estimation. It reduces 

both the searching space for the best bands and the relevant hardware resource for BO 

from 32 to 8. Before the start of statistics collection, we define a coarse selection stage, 

which contains 16 cycles for a CTB. During this stage the system makes an estimation 

on the bands distribution and finds the center of distribution. In each cycle of this stage, 

a window of 2×2 reconstructed samples scans 16 locations evenly distributed in a CTB. 

The average of the samples in the window are calculated and accumulated. In the last 

cycle of the pre-estimation stage, a final average value is calculated. The band 

belonging to this value is regarded as the one in the center of sample distribution within 

the current CTB. The left 3 bands and right 4 bands of it are considered as the reduced 

8 band candidates, as shown in Fig. 28. The four consecutive bands with minimum cost 

from them will be selected in PD. For the pixels outside the 8 ranges, the SC does not 

collect the statistics of them, which could reduce the coding efficiency. But the 
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reduction is very limited, with average 0.2% BD-rate increase in each configuration. 

The experiment result shows that this proposed technique has the top-1 prediction 

(the proposed best band is the same as the best one from original HM) rate is about 

60%, and the top-3 prediction rate is about 80%. More results about the performance 

of this proposed scheme evaluated in BD-Rate are shown in next section. 

CTB

2x2 block Avg.

Reduce to 8 bands

32 bands

Step. 2

Step. 3

Step. 1

 
Fig. 28 The process of reduced BO candidates searching.  

Step 1 : Scan the 16 evenly distributed windows (2×2 reconstructed samples) one 
bye one, calculate the average value of the samples in the window, and accumulate the 

average value. 
Step 2 : Estimate the average value within the current CTB. Avg. =  (Sum +  8)  ≫

 4. 
Step 3 : Candidate bands range from (Avg.≫  3)  −  3 to (Avg.≫  3)  +  4. 

3.4.2 Accumulator bit width reduction (ABR) 

As shown in Fig. 22, there are 24 or 48 SAccs and CAccs (with or without CRS) 

in SC. Theoretically, each CAcc could increment to the maximum value, 4096 (64×64) 

for each CTB. Since a sample is classified into only one of the bands/categories, 

however, the classification is mutual exclusive with each other. In most cases, the final 

value of CAcc is about several hundreds. 

I thus propose to replace the maximum value of CAcc by a smaller threshold, so as 

to reduce the bit width of CAcc and SAcc. Once the value in CAcc reaches a threshold, 

the accumulations in CAcc and the corresponding SAcc are terminated. The data width 

reduction of function units in CAcc and SAcc depends on the threshold. 
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I compare the effect of BD-rate reduction among three thresholds, 1024, 2048 and 

4096. The experiment result shows that there’s no observable coding efficiency loss for 

any them. In fact, we found a threshold of 1024 could still preserve 97% of statistics. 

The statistics loss has little influence on the coding efficiency. 

By setting a threshold of 1024, we could reduce the data width in each CAcc as 

well as SAcc, contributing area reduction by 5K gates, 10% of the entire area. 
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Table 9 The BD rate comparison of algorithms under LowDelay_Main_P (LDP) 
configuration (Anchor : HM-16.0, SAO off, CTB:64×64) 

 
Video Sequences in 

common test 
SAO_ON 

ICIP14 
[25] 

Proposed 
without  

CRS or ABR 

Proposed 
with  

CRS or ABR 

Class A 
4Kx2K 

Traffic -8.1% -8.2% -8.2% -8.2% 
PeopleOnStreet -6.0% -6.5% -6.4% -6.4% 

Nebuta -7.6% -8.8% -8.5% -8.4% 
SteamLocomotive -16.0% -17.6% -17.6% -17.7% 

Class B 
1080p 

Kimono -7.0% -7.8% -7.7% -7.7% 
ParkScene -8.1% -8.0% -8.0% -8.2% 

Cactus -11.2% -11.6% -11.8% -11.6% 
BasketballDrive -8.4% -8.6% -8.5% -8.8% 

BQTerrace -17.1% -18.2% -18.2% -18.1% 

Class C 
WVGA 

BasketballDrill -8.6% -9.1% -9.2% -8.3% 
BQMall -8.1% -8.2% -8.3% -8.4% 

PartyScene -4.9% -4.9% -5.0% -5.0% 
RaceHorses -8.8% -9.0% -9.0% -9.0% 

Class D 
WQVGA 

BasketballPass -4.6% -4.8% -4.6% -4.7% 
BQSquare -4.4% -4.4% -4.4% -3.7% 

BlowingBubbles -4.2% -4.3% -4.3% -4.3% 
RaceHorses -6.1% -6.1% -6.0% -6.2% 

Class E 
720p 

FourPeople -9.2% -9.6% -9.6% -9.5% 
Johnny -12.3% -12.4% -12.4% -13.1% 

KristenAndSara -11.2% -12.2% -12.1% -12.0% 

Class F 

BasketballDrillText -9.2% -9.5% -9.6% -8.3% 
ChinaSpeed -9.7% -10.9% -10.8% -8.0% 
SlideEditing -4.2% -2.5% -2.3% -1.3% 
SlideShow -7.1% -7.8% -8.0% -5.5% 

Class 
Summary 

Class A -9.5% -10.3% -10.2% -10.2% 
Class B -10.4% -10.8% -10.8% -10.9% 
Class C -7.6% -7.8% -7.9% -7.7% 
Class D -4.8% -4.9% -4.8% -4.7% 
Class E -10.9% -11.4% -11.4% -11.5% 
Class F -7.6% -7.7% -7.7% -5.8% 

All -8.4% -8.8% -8.4% -8.4% 
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Table 10 The BD rate comparison of proposed algorithm with CRS and ABR under 
different configuration, All Intra(AI),Random Access(RA), and LowDelay main(LD) 

(Anchor : HM-16.0, SAO on, CTB :64×64) 

 
Video Sequences in common 

test 
AI RA LD 

Class A  
4Kx2K 

Traffic 0.2% 0.2% 0.2% 
PeopleOnStreet 0.2% 

 
-0.1% -0.2% 

Nebuta 0.2% 
 

-1.0% -1.2% 
SteamLocomotive -0.2% -0.4% -0.8% 

Class B  
1080p 

Kimono 0.2% 0.1% 0.0% 
ParkScene 0.2% 0.2% 0.0% 

Cactus 0.3% 0.1% 0.1% 
BasketballDrive 0.4% 0.1% -0.1% 

BQTerrace -0.1% -0.1% -0.4% 

Class C  
WVGA 

BasketballDrill 0.7% 0.6% 0.6% 
BQMall 0.3% 0.1% -0.0% 

PartyScene 0.1% 0.1% -0.0% 
RaceHorses 0.2% 0.0% -0.2% 

Class D  
WQVGA 

BasketballPass 0.4% 0.1% -0.0% 
BQSquare 0.1% 0.6% -0.1% 

BlowingBubbles 0.1% 0.1% -0.1% 
RaceHorses 0.2% 0.1% -0.2% 

Class E  
720p 

FourPeople 0.2% 0.3% 0.0% 
Johnny 0.5% 0.5% 0.2% 

KristenAndSara 0.4% 0.5% 0.0% 

Class F 

BasketballDrillText 0.6% 0.7% 1.8% 
ChinaSpeed 0.9% 1.3% 1.8% 
SlideEditing 0.5% 1.5% 2.7% 
SlideShow 0.6% 1.0% 1.7% 

Class  
Summary 

Class A 0.1% -0.3% -0.5% 
Class B 0.2% 0.1% -0.1% 
Class C 0.3% 0.2% 0.1% 
Class D 0.2% 0.2% 0.0% 
Class E 0.4% 0.4% 0.1% 
Class F 0.7% 1.1% 2.0% 

All 0.3% 0.3% 0.3% 
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Table 11 Comparison of synthesis result with the previous works 

 This work ICIP’14 [25] ISCAS [24] 

Process 40nm 65nm 28nm 

Area (gates) 51K 156.3K 300K 

SRAM 1.14KB 1.08KB N/A 

TP (pixels/s) for encoding 
4320p,  
120fps 

4320p, 
120fps 

2160p,  
60fps 

Cycles to finish 64x64 CTB:SC 905 384 1600 

Cycles to finish 64x64 
CTB:PD 

40 64 N/A 

Clock Freq. (MHz) 
SC:  

1300 
PD: 
217 

SC & PD: 378 
SC & PD:  

200 

Norm. TP 
(samples/(gates*s)) 

117.1K 38.2K 2.8K 

Table 12 Comparison of the proposals with and without CRS and ABR 

 
Proposed without  

CRS or ABR 
Proposed with  

CRS or ABR 

Area (gates) 

SC modules 43K 30K 

PD modules 25K 21K 

Total 68K 51K 

Cycles to finish 64x64 CTB 
SC modules 870 905 

PD modules 64 40 

SRAM 1.14KB 

TP (pixels/s) for encoding 4320p, 120fps 
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3.5 Experimental Results 

The proposed AD design has been implemented on RTL in SystemVerilog. Logic 

synthesis and physical design have been conducted with Synopsys Design Compiler 

and Cadence SoC Encounter, respectively, in SMIC 40nm CMOS standard cell library. 

For verification, input data and expected outputs were generated from HM 16.0 

software model as stimulus and reference for the hardware design. The layout is shown 

in Fig. 29. The high speed clock domain can work under the required frequency of 1.3 

GHz. I evaluate the power consumption for the video sequence of BasketballDrill with 

QP=37 and under the low delay, main, P slices only (LDP) configuration. The power of 

our design is 48 mW when high speed clock equals to 1.3 GHz. 

To evaluate the coding efficiency of the proposed SAO, two groups of tests are 

conducted over the common test condition [44]. The first group of tests evaluate the 

following five algorithms, including the HM-16.0 default setting with SAO turned off 

(anchor) and turned on, algorithm in [42], the proposed algorithm without and with 

CRS as well as ABR. This group is evaluated under LDP configuration. Since the effect 

of SAO is the most obvious [22] under this condition. The result is shown in Table 10. 

The second group of tests evaluate the following two algorithms, the HM-16.0 default 

setting with SAO turned on (anchor) and the proposed algorithm with CRS and ABR. 

This group is evaluated under three configurations, All Intra (AI), Random Access (RA) 

and low delay (LD). The result is shown in Table 11. 

Comparing with the proposed design with [42] in Table 12 and Table 10, we know 

that our proposed design achieves a reduction by 69% from [42] with no coding 

efficiency loss in BD-Rate. Compared with the result the anchor in Table 11 under 

various configuration, our proposed algorithm has 0.3% coding efficiency loss in BD-

Rate. This is achieved by the following techniques. 

First, the parallelism of SC is reduced from 16 in [42] to 4 in this work, under the 

requirement of meeting throughput of 8K@120fps. As is illustrated in Section 3.3, the 

cost of increasing the paralleling factor N is large in SC of SAO. The paralleling factor 

of 4 is much more area efficient than the factor of 16. Thus, our work reduce the circuit 
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area by 67%, from 156.3K to 68K, based on the same specification and algorithm 

setting. 

Second, we found that the CRS for BO nearly has no observable loss in coding 

efficiency in terms of BD-rate. Both the data shown in Fig. 27 and the top-3 prediction 

rate of 80% reveal that the range selected by our scheme cover most of samples in a 

CTU. The cost of best three bands are so close that even though the best is missed by 

our scheme, there are 2nd and 3rd best to compensate the statistics loss. The differences 

on BD-Rate performance among the best, 2nd and 3rd best bands are small. The  

proposed algorithm-architecture co-optimizations can further reduce the circuit area by 

25%, from 68K to 51K, as shown in Table 9. The reduction in area is contributed by the 

following aspects. 1) CRS decrease the overall SAcc and CAcc in SC decrease by 50%, 

from 48 to 24. The registers used for storing offsets also decrease by 50%, from 48×3 

to 24×3. It achieves a 13 K area reduction, with an area overhead of 2K in the pre-

decision step. 2) CRS also reduces the number of cycles for PD from 60 cycles to 36 

cycles, so that a looser time constraint for PD, increased from 2.8 ns to 4.8 ns, further 

reduces the circuit area by 3K. 3) ABR helps to reduce the data width in each CAcc and 

SAcc, contributing 5K gates reduction with BD-rate increase of 0.1% and 0.2% in LD 

and LDP configuration respectively. 

When synthesized in the same Fujitsu e-Shuttle 65nm process as in [42], our design 

has a logic gate count of 59.6K, with 35.5K and 24.1K for SC and PD, respectively. I 

give a brief comparison on power consumption by analyzing the area, frequency and 

switching factor. The area-frequency product of our work is 35.5K*1.3G + 

24.1K*0.217G = 51.3P, 20% lower than that of [42]: 156K*0.4G = 64.4P. Moreover, 

the high- parallelism SC of [42] involves the updating of more accumulator registers 

per clock cycle, resulting in a higher switching factor. As a result, our design is more 

energy efficient than [42] with reduction in both area-frequency product and switching 

factor. 

I have also implemented an N=8, 650MHz version to study the area and power 

consumption, which turns out to be 60.5K and 32mW, respectively. The N=8 version 
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therefore is 20% larger in area, but 33% more efficient in power. The latter is mainly 

from the fact that a looser timing constraint compared to the N=4, 1.3GHz configuration 

now allows the synthesizer to use slower (and therefore smaller and less power 

consuming) logic cells. Moreover, we roughly implemented and estimated that the 

N=16 version is twice in area compared with the N=8 version, where an even looser 

timing constraint does not influence results much. Overall, the design of N larger than 

8 does not show higher efficiency in energy despite being significantly larger in area. 

The N=4 version is more efficient in area, while the N=8 version is more efficient in 

power. Both can be taken into considerations for applications. 

Parameter
Decision

Statistics 
Collection

BO

EOSRAM

 
Fig. 29 Layout of the proposed SAO architecture. 

A core size of 1.73 mm2 and chip-area utilization of 73%. Before the layout, 
the delay of the critical path is 0.66 ns, and after the layout, it is 0.76 ns. The 

location of PD and SC is marked, while the SRAMs for line buffer are marked in 
white. 
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3.6 Summary 

SAO is a new in-loop filter in H.265 video coding standard. Many researches have 

been trying to improve its performance and area efficiency of hardware design. This 

paper presents an efficient VLSI design of SAO estimation in H.265. I first introduce 

SAO and analyze its data flow. Then we proposed the dual-clock architecture to address 

the heterogeneous data flows of SC and PD, by separately driving SC and PD at a high- 

speed clock and a low-speed clock, respectively. Two clock frequencies with a 

relationship of dividends M eliminates the extra hardware and implementation expense. 

Moreover, the algorithm-architecture co-optimizations, CRS and ABR further reduce 

the circuit area without observable loss in coding efficiency. The proposed architecture 

occupies 51 K logic gates. With a high-speed clock of 1.3 GHz and a low-speed clock 

of 217 MHz, 8K@120fps SAO real-time encoding can be achieved. The demerit of the 

proposal is that the local heat problem would exist due to the high frequency clock. 
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4. Algorithm and VLSI architecture of intra prediction in 

Compressed Sensing using reduced measurements 

4.1 Introduction 

The Internet of Things (IoT) or Machine-to-Machine (M2M) network has been 

widely discussed in recent years and is regarded as the next wave of the information 

technology revolution [46]. Sensors, as the troops of IoT, are the on-the- ground pieces 

of hardware that monitor processes, collect and transmit data. Among the various types 

of sensors, image sensors are those collecting and processing the largest amount of data. 

In M2M networks, massive deployments of wireless camera systems (image sensor 

nodes) are required. Since they are highly battery-constrained devices, low power 

consumption is a fundamental concern. Conventionally, a wireless camera system 

comprises three main components: the CMOS image sensor (CIS), the compressor, and 

the transmitter. Images are acquired by the CIS, which converts the illumination of light 

into a digital signal pixel-by-pixel. The digital signals are compressed by the 

compression unit using encoding algorithms, such as JPEG [47], H.264/MPEG- 4 [48], 

DVC [49], and H.265 [7], before they are transferred to the channel.  This is the 

traditional procedure: Capture → Compress →Transmit, as shown in Fig. 30 (a). 

With the advent of a recently proposed sampling theory, Compressed Sensing (CS) 

[51], the capturing and compression can be performed in CIS simultaneously. Such 

image sensors are called CS-based CIS (CS-CIS). In CS-CIS, an image is acquired by 

sampling a significantly reduced number of measurements (the linear combination of 

pixels), in- stead of by sampling every pixel, and therefore this technique could reduce 

the throughput of Analog-to-Digital (A/D) conversion, as shown in Fig. 30 (b). This 

reduction in throughput has the potential to reduce power consumption and increase the 

frame rate [52], which has been shown in the recently emerging CS-CIS systems 

[53][54][55]. Since the output of CS- CIS are measurements instead of pixels, however, 

the spatially adjacent correlation in the pixel-domain is corrupted during the generation 
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of measurements. Hence, traditional intra coding methods cannot be applied to CS-CIS. 

A direct reconstruction of pixels from the measurements prior to the encoder does not 

work either, owing to the high complexity and power consumption of reconstruction 

[51]. Therefore, a direct measurement-domain compression method with low 

complexity is desirable. It also ought to be compatible with the CS-CIS, which uses a 

binary or ternary random matrix as measurement matrix. 

Several previous works have studied exploiting the spatial redundancy in the 

measurement-domain for image compression. In [56], measurements in previous blocks 

were directly subtracted and used for prediction. Nevertheless, it only partly utilizes the 

horizontal correlation. In [57] [58], the intra prediction occurs by the measurement- 

wise subtraction from the neighboring measurements, similar to pixel-wise subtraction 

inter prediction. In these works, however, the measurements for prediction contain 

irrelevant information, such as the nonadjacent pixels, so that the pre- diction precision 

decreases. In [59], a local structural measurement matrix providing more precise 

prediction is proposed for the measurement-domain prediction by extracting the local 

features within a block. However, it has high computational complexity for a brute-

force search among all the local predictor candidates, and it requires a floating point 

measurement matrix that cannot be applied to the image sensor. Another issue in [57] 

[58] [59] is that they require all the measurements of a block for prediction. It requires 

a large memory bandwidth to fetch / load the data, as well as a large memory storage 

used for line buffer to store all the measurements of neighboring blocks, which would 

be a problem for a power-limited and a storage-limited wireless camera system. Overall, 

the previous works were not designed oriented to CS-CIS, which is required to generate 

simple (binary or ternary) coefficients for image compressive sampling. 

In this paper, which is an extension of our previous work [60], we propose a 

measurement-domain-based intra prediction coding framework as well as its VLSI 

implementation, containing the following features: 

1) A higher compression ratio achieved: By structuring two rows in the random 

binary measurement matrix, the average values of the neighboring block’s row and 
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column are embedded into two measurements, such that they could be extracted during 

the intra coding process to perform more precise prediction. 

2) Low-complexity framework compatible with CS-CIS: It is based on 

compressively sensed images that take the measurement rather than pixels as input to 

the encoder, such that the recovery of pixels from measurements is avoided. Moreover, 

two artificially structured rows retain the binary property of the random matrix, which 

is crucial for the compressive sampling in CS-CIS. 

3) Low hardware cost: The proposed prediction algorithm makes the intra 

prediction hardware-friendly. The matrix multiplication could simply be substituted by 

the shared adder and shift operation. Furthermore, it reduces the size of neighboring 

information fetched / loaded for pre- diction, which significantly reduces the memory 

band- width and storage for the line buffer. 

Experimental results demonstrate that the VLSI architecture of our proposed 

framework is 9.1K gates in area and includes 12 KB dual-port SRAM memory. It could 

support the 4320p@240fps real-time encoding. Compared to the direct output of CS-

based sensors, our proposed framework could compress the measurements and increase 

coding efficiency with 34.9% BD-rate reduction. Compared to the previous work [57], 

this work increases coding efficiency with 7.7% BD-rate reduction and saves 83% size 

of memory bandwidth and storage for line buffer and left neighboring buffer. It can 

significantly reduce both the energy consumption and bandwidth in communication. 

The rest of this paper is organized as follows. Section 4.2 gives an introduction to 

compressed sensing. Section 4.3 presents the proposed framework of measurement-

domain intra prediction. Section 4.4 presents the VLSI implementation of the proposed 

framework. Section 4.5 shows the implementation results and gives some analysis on 

the performance of the proposed algorithm and architecture, followed by the conclusion 

in Section 4.6. 
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measurement

Digital 
measurement

TransmitterLight ...

CIS
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(a)

(b)

 
Fig. 30 Data flow of imaging 

(a) Data flow of traditional imaging:  Capture →Compress →Transmit. (b) Data 
flow of compressive imaging: Capture →Compress →Transmit. (The red part shows 

where this work is in the data flow). 

Pixel 
array

𝜙𝜙1 𝜙𝜙2 

∑△ 

Light

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

𝑥𝑥15  𝑥𝑥16 

𝜙𝜙3 𝜙𝜙4 

ADC
X

𝑌𝑌 = [ 𝑦𝑦1   …  𝑦𝑦4 ]  
 

Fig. 31 Brief architecture of CS-CIS.  
e.g. As the architecture in [9], each block is 4×4, including 16 pixels and the 

sampling rate is 1/4. Φ1 to Φ4 are four rows of the matrix Φ. 
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4.2 Compressed Sensing (CS) 

4.2.1 Concept of CS: 

The CS theory [51] asserts that only a few measurements are enough to recover the 

signals, as long as the signals are sparse in some transform domain. Suppose the image 

signal X =  [x1 . . . x𝐶𝐶 ]𝐶𝐶can also be represented in the transform domain Ψ, as 

 X =  ΨS (14) 

where S =  [s1 . . . s𝐶𝐶 ]𝐶𝐶 is the signal represented in Ψ transform domain and Ψ is an 

n × n transform matrix. The signal X is said to be k-sparse if it has only k non-zero 

coefficients. 

I would like to recover signals X =  [x1 . . . x𝐶𝐶 ]𝐶𝐶  from m ≪ n  linear and non-

adaptive measurements Y  = [y1 . . . y𝑓𝑓 ]𝐶𝐶, which are taken from the random projection 

as 

 Y =  ΦX (15) 

where Φ is an m × n measurement matrix. I know that the system is under-determined 

since m < n. The CS theory asserts that the signal 𝑆𝑆′  can be recovered with high 

probability using only m = cklog(n
k
) measurements for some constant C, by solving 

the L1-norm minimization problem (3) 

 min ‖𝑆𝑆′‖1  s. t Y =  ΘS′ (16) 

where Θ = ΦΨ and the measurement matrix Φ must be in- coherent with transform 

matrix Ψ to preserve the Restricted isometry property (RIP) [51]. The CS theory shows 

that Φ can even be a random 1/−1 or 0/1 matrix, while Ψ could be a discrete cosine 

transform (DCT), discrete wavelet transform (DWT), contourlet transform and so forth. 

The problem (16) can be solved by basis pursuit [51]. To a noise environment, (16)  

can be extended to Y′ = ΘS′ + Z, where Z represents the noise. It could be solved by 

basis pursuit denoising [51]. After the recovery of S′ , the signal X′  can thus be 

calculated by (14). 
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𝑋𝑋 = [𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛 ]𝑇𝑇 

𝑌𝑌 = [𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦𝑆𝑆 ]𝑇𝑇 
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𝑌𝑌𝑟𝑟′ = 𝑌𝑌𝑄𝑄𝑟𝑟 ′ ≪ 𝑄𝑄𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠  

Channel

 
Fig. 32 Process of CS-based image sensing, encoding, and decoding.  

The proposed work is indicated by the white box. 

4.2.2 Process of CS image sensing: 

In the CIS, the A/D conversion is the dominant source of power consumption [54]. 

The advent of CS theory promises that the recovery can be achieved from the 

significantly reduced number of captured measurements, hence reducing the A/D 

conversions for the measurements and their related power consumption. 

Fig. 31 shows the principle of CS-CIS. The luminance is sensed by the pixel array. 

Analog pixel signals are summed up to yield measurements, which are then digitalized 

by the A/D converters. Note that the generation of measurements is controlled by the 

elements in the measurement matrix. Therefore, a simple enough binary (0/1 or −1/1) 

or ternary (−1/0/1) matrix is used in CS-CIS to simplify the measurement calculation 

so that the complex and energy-consuming analog multiplier could be avoided in the 

implementation. Moreover, considering the infeasibility and scalability of the image 

sensor implementation and the complexity of image recovery, the pixel array is divided 

into blocks to perform the sampling [54] [55]. 
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Fig. 33 Predictor candidates  

(bottom row of upper block and right-most column of left block.) 
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Fig. 34 Proposed artificially structured rows. 
(a) N × N block being processed. (b) Mechanism of a structural random binary 

(0/1) matrix. The last N pixels are summed up by multiplying the 1st row.  Every Nth 
pixel is summed up by multiplying the 2nd row. 
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4.3 Proposed Coding Framework Based on Measurement- 

Domain Intra Prediction 

4.3.1 Proposed framework 

As shown in Fig. 32, for each block: 1) The analog signals of n pixels are acquired 

by the pixel array inside the sensor, X =  [x1 . . . x𝐶𝐶 ]𝐶𝐶. The measurements are calculated 

through (15) in the analog domain and digitalized into Y =  [y1 . . . y𝑓𝑓 ]𝐶𝐶  . 2) Intra 

prediction is performed on measurements before the quantization, entropy coding, and 

transmission. 3) The bit stream obtained from the channel is decoded, dequantized, and 

then reconstructed into measurements. 4) The reconstructed signal X′  is recovered 

from the decoded measurements Y′ by solving (16). 

In the pixel domain, adjacent pixel values are similar. This property is exploited by 

the traditional intra prediction, in which the adjacent pixels in neighboring blocks are 

used as predictors. Pixels with shorter distance tend to be better predictors. In the 

measurement domain, however, measurements within a block have no similarity with 

each other, making it difficult to apply the traditional intra prediction. In spatially 

directional predictive coding (SDPC) [57], the predicted measurements are selected 

from one of the four designed prediction modes. However, the measurements selected 

as the predictors are a combination of all the pixels (nearby and far away) within a 

neighboring block, resulting in a long prediction distance (and therefore low prediction 

accuracy) on average. Thus, we propose a prediction algorithm by only picking the 

nearby pixels for prediction to increase the coding efficiency. 

Inspired by traditional intra prediction [61], we propose to use the boundary 

information (bottom row of upper block and the right-most column of left block) as 

predictor candidates, as shown in Fig. 33. A structural random 0/1 measurement matrix 

is proposed to extract the boundary information to generate the measurement predictor 

Yp , so that Yr = 𝑌𝑌 − 𝑌𝑌𝑝𝑝 smaller with a more concentrated value distribution than Y. 
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4.3.2 Structural measurement matrix 

A random 0/1 measurement matrix is used in the CS-CIS [54] [55], because of its 

hardware friendliness in implementation. I propose to structure the first two rows of the 

random 0/1 m × n measurement matrix. In the first row, the last N values are set to 1’s, 

while the rest are set to 0’s. In the second row, every Nth values are set to 1’s, while 

the rest are set to 0’s. When the signal 𝑋𝑋 projects to the structural random measurement 

matrix, the first two measurements have special meaning in the projection. The 

measurement 𝑦𝑦1 represents the sum of pixel values in the bottom row of a block and 

the measurement 𝑦𝑦2 represents the sum of pixel values in the right-most column, as 

shown in Fig. 34 (b). Though two rows are artificially structured, it could be regarded 

as one of the random cases. The experimental results show that it could preserve the 

RIP without affecting the reconstruction of image quality. 

4.3.3 Measurement-domain intra prediction 

From the first measurement of the upper block 𝑦𝑦1𝐶𝐶𝑝𝑝 and block size N, the average 

pixel value of the bottom row (BR) in the upper block, 𝐴𝐴𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 ∈ 𝑟𝑟, can be easily 

obtained by the shift operation in hardware. Similarly, the average pixel value of the 

right-most column (RC) of the left block 𝐴𝐴𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 can be obtained from 𝑦𝑦2𝑙𝑙𝑝𝑝. Since the 

BR in the upper block and the RC in the left block are the most adjacent pixels to the 

block being processed, they have similar values to this block in the pixel domain. By 

projecting 𝐴𝐴𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 and 𝐴𝐴𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 to the measurement matrix, the corresponding two 

measurements generated would be close to the original measurements and thus could 

be regarded as measurement predictor candidates. The average values 𝐴𝐴𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 and 

𝐴𝐴𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 are transformed into measurements 𝑌𝑌𝐶𝐶𝑝𝑝  and 𝑌𝑌𝑙𝑙𝑝𝑝  by multiplying the 

measurement matrix Φ as the follows: 
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 𝑋𝑋𝐶𝐶𝑝𝑝   =  �𝑎𝑎𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 . . .𝑎𝑎𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢�
𝐶𝐶
 (17) 

 𝑌𝑌𝐶𝐶𝑝𝑝  = Φ𝑋𝑋𝐶𝐶𝑝𝑝 (18) 

 𝑋𝑋𝑙𝑙𝑝𝑝   =  �𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 . . .𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏�
𝐶𝐶
 (19) 

 𝑌𝑌𝑙𝑙𝑝𝑝  = Φ𝑋𝑋𝑙𝑙𝑝𝑝 (20) 

where 𝑋𝑋𝐶𝐶𝑝𝑝,𝑋𝑋𝑙𝑙𝑝𝑝 ∈ 𝑟𝑟𝐶𝐶×1 . It is noted that the calculation of (18) and (20) has a low 

computational complexity. Since the measurement matrix Φ is known and fixed, it 

could be achieved by shift operation and addition. The original measurements Y can be 

treated as the sum of a constant value (e.g. 128) and residuals. 

 𝑌𝑌𝐶𝐶   =  Φ[𝑟𝑟. . .𝑟𝑟]𝐶𝐶 (21) 

By comparing the sum and difference (SAD) of the original measurements Y and 

measurements in the three modes, 𝑌𝑌𝐶𝐶𝑝𝑝,𝑌𝑌𝑙𝑙𝑝𝑝  and 𝑌𝑌𝐶𝐶 , the measurements with the 

minimum SAD are chosen as predicted measurements 𝑌𝑌𝑃𝑃. 

 𝑠𝑠 =  𝑎𝑎𝑟𝑟𝑟𝑟𝑆𝑆𝑎𝑎𝑛𝑛𝑓𝑓𝐶𝐶𝑠𝑠𝑝𝑝  𝑆𝑆𝐴𝐴𝐷𝐷(𝑌𝑌,𝑌𝑌𝑓𝑓𝐶𝐶𝑠𝑠𝑝𝑝 ) (22) 

 𝑌𝑌𝑝𝑝 = 𝑌𝑌 − 𝑌𝑌𝑝𝑝 (23) 

After the prediction, the residual 𝑌𝑌𝑝𝑝  is calculated, before being scalar-quantized as 

follows. The quantized residuals are entropy-coded before being transferred to the 

channel. 

 𝑌𝑌𝑄𝑄𝑝𝑝 = 𝑌𝑌𝑝𝑝 ≫ 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 (24) 
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Fig. 35 VLSI architecture for the proposed measurement-domain intra prediction 

framework.  
The dashed boxes are marked by numbers in parentheses, corresponding to the 

equations in Section 4.3.2. The matrix multiplication is simplified into the shift-add 
operation in the dashed box on the right. 
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Fig. 36 Example of random binary matrix of N = 4. 
Proposed artificially structured rows are the first two rows in bold. The number of 

1’s in each row is shown next to the matrix. 

4.4 VLSI implementation of the proposed intra coding 

framework 

The proposed measurement-domain intra prediction framework above is 

implemented into VLSI architecture, as shown in Fig. 35. The system takes the 

measurements of block size N = 4 [55] as input, with sample rate (SR) of 0.25, 0.5, and 

0.75. Hence, the supported numbers of measurements m as input are 4, 8, and 12, 

respectively. The output is the quantized residuals 𝑌𝑌𝑄𝑄𝑝𝑝. A 4 × 4 block is processed every 



Algorithm and VLSI architecture of intra prediction in Compressed Sensing using 
reduced measurements 

71 
 

cycle. It is noted that the low complexity of the proposed coding framework allow the 

hardware be achieved at low cost, as shown in the following two aspects. 

First, it could reduce the logic gates used in the calculation, since the multiplication 

in (18), (20), and (27) could be simplified into the shift and add operation. Taking a 

block size N = 4 and number of measurements m = 12 as an example, the matrix is 

shown in Fig. 36. The calculation of the two key measurements 𝑦𝑦1,𝑦𝑦2  could be 

achieved by a shift operation. The rest of the rows contain other constant numbers of 

1’s, such as 7, 11, 12, 13, and 14. Since they are fixed in a matrix for any CS-CIS and 

all the elements of 𝑋𝑋 in (17) or (19) are the same, the matrix multiplication in (18) or 

(20) could be efficiently implemented by shared adders, as in the structure in the right-

hand dashed box of Fig. 35. Though the variation of Φ in different CS-CIS requires the 

shared adders structure above to be designed specifically, the underlying idea of the 

shift-add operation could be uniformly applied. 

Furthermore, the proposed framework could reduce the size of memory bandwidth 

and storage for the neighboring information. In the previous works, such as [57] [58], 

all the measurements of the upper block and left block are required to be stored for the 

prediction. The number of measurements in a block grows quadratically with N and 

linearly with sample rate (SR), as (25). The number of measurements overall to be 

stored M grows linearly with the frame size, block size, and sample rate, as (26). 

 𝑀𝑀𝐶𝐶𝑙𝑙𝑘𝑘   =  𝑁𝑁2  ×  𝑆𝑆𝑟𝑟 (25) 

𝑀𝑀 =  𝑀𝑀𝑙𝑙𝑖𝑖𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝑓𝑓. + 𝑀𝑀𝑙𝑙𝑝𝑝𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓. 

=  𝑁𝑁𝐶𝐶𝑆𝑆𝐶𝐶𝑙𝑙𝑘𝑘  ×  𝑀𝑀𝐶𝐶𝑙𝑙𝑘𝑘  +  𝑀𝑀𝐶𝐶𝑙𝑙𝑘𝑘 

              =  𝑤𝑤𝑎𝑎𝑑𝑑𝑡𝑡ℎ ×  𝑁𝑁 ×  𝑆𝑆𝑟𝑟 +  𝑁𝑁2 ×  𝑆𝑆𝑟𝑟 (26) 

The proposed prediction, requiring two measurements for each block (𝑀𝑀′ = 2), 

could significantly reduce the number of measurements to be stored to 𝑀𝑀′. 

 𝑀𝑀′ =  𝑀𝑀𝑙𝑙𝑖𝑖𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝑓𝑓.
′   +  𝑀𝑀𝑙𝑙𝑝𝑝𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓.

′ = 2𝑙𝑙𝑖𝑖𝑠𝑠𝐶𝐶ℎ
𝑁𝑁

 +  2 (27) 

The comparison is depicted in Fig. 37. As shown in (a), the measurements stored for 

prediction are inversely proportional to the block size, since the number of block is 

getting less while only two measurements are required in each block for prediction. 
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Meanwhile, as shown in (b), the measurements stored grow linearly with the size of the 

block in [57]. Since the data width of each measurement ranges from 12 bits to 18 bits 

when block size ranging from 4 to 32, this proposed prediction could significantly 

reduce the size of memory bandwidth and storage. 
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Fig. 37 Comparison of the number of measurements stored in the memory for intra 

prediction. 
 When SR ranging from 0.25 to 0.75. (a) This work. (b) SDPC [57]. 

4.5 Experimental results 

The comparison is made among three algorithms, constant prediction (CP) as in  

[54] [55], SDPC [57] and our proposed algorithm. It is noted that the random binary 

[0/1] matrix is used as the measurement matrix in the first two methods. Based on this 
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matrix, we modified the first two rows as we proposed in Section 4.3. Since the LSMM 

[59] does not apply the random [0/1] matrix, it is excluded in the comparison. Fourteen 

grayscale test images of size 512×512 are evaluated. The reconstruction algorithm is 

L1 primal– dual (PD) interior–point [51] with DCT. 

First, the mean square error (MSE) is evaluated. The results with N = 4 and N = 16 

are shown in the left three columns and right three columns, respectively, in Fig. 38. 

The MSE of each processing block in the proposed method is smaller and closer to zero 

compared with SDPC and CP. Moreover, the reduction in MSE between Prop. and CP 

is more significant for N = 4 than that for N = 16. Second, the bit rate is evaluated by 

entropy and the coding efficiency is evaluated by BD-PSNR [62], with the same method 

as in [57]. The BD-PSNR curves of four images are plotted in Fig. 39. 

 The results of coding efficiency of all images are shown in Table 13. Compared 

with CP, our proposed algorithm increases the coding efficiency by 2.33, 1.35, and 1.56 

dB in BD-PSNR when N = 4, 8, and 16, respectively, equivalent to 46.6%, 27%, and 

31.2% BD-rate reduction. Compared with SDPC, it also achieves increases in coding 

efficiency by 0.43, 0.44, and 0.29 dB in BD-PSNR when N = 4, 8, and 16 respectively, 

equivalent to 8.6%, 8.8%, and 5.8% BD-rate reduction. In accordance with the 

reduction in MSE, the reduction in bit rate shows that the small block has a higher 

compression ratio than the large block. 

Since the measurement matrix is randomly generated, the occurrence of 1’s in the 

measurement matrix has a great influence on the reconstruction quality. I find the 

optimal image quality can be achieved when occurrences of 1’s are 74%, 23%, 4.305%, 

and 0.74% when N= 4, 8, 16, and 32, respectively. Moreover, we have tried other 

reconstruction algorithms, such as Total Variation minimization [51], which can also 

recover the image with similar image quality compared to the L1-PD algorithm. 

Furthermore, the visual quality comparison is shown in Fig. 40. There is no image 

quality degradation from the proposed algorithm. Meanwhile, it achieves bit rate 

reductions of 3% and 32% compared with SDPC and CP, respectively. 

The performance of the proposed hardware is shown in Table 16. The total area is 
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9.1K, which includes 5.1K for SAD modules, 3.7K for intra prediction, and 0.3K for 

the finite state machine. For frame sizes of 4320 × 2160, the size of memory is 12 KB , 

growing linearly with the frame size. Since this is the first VLSI architecture for the 

measurement- domain intra prediction, there is no previous work to compare with. I 

roughly estimate that the SDPC would require 10.5K in area with 73.8KB SRAM, 

because the SDPC would require twice as many logic gates for SAD modules, six times 

as much memory to store the measurements and as much memory bandwidth to support 

the same throughput. 
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Fig. 38 Comparison of MSE of residuals in each block among three algorithms.  

With N = 4, 16 SR = 0.5, and 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 =4 of lena (top row), barbara (middle row), 
and mandrill (bottom row) 

Table 13 (a) BD-PSNR (BD-Rate) comparison.  
(Anchor is CP, with 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 ∈ [0,6] and N=4. Reconstruction algorithm is L1-PD with 
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DCT) 

BD-PSNR (BD-Rate) 

N=4 

 
SR=0.75 SR=0.50 SR=0.25 

Test Images Prop SDPC Prop SDPC Prop SDPC 

Lena 6.116 5.581 2.699 2.043 0.469 0.825 

Barbara 2.989 3.324 1.116 1.041 0.078 0.426 

Mandrill 2.588 2.690 0.953 0.727 0.989 0.331 

Peppers 2.452 1.684 1.445 0.321 0.032 0.122 

house 6.937 6.015 4.779 1.547 0.086 0.443 

F16 5.210 4.762 2.818 1.742 0.935 0.722 

goldhill 5.516 5.197 2.485 1.739 0.752 0.841 

pentagon 2.663 2.231 1.309 0.803 0.611 0.412 

boat 4.163 3.786 2.035 1.243 0.467 0.534 

bike 1.512 1.509 0.855 0.329 0.303 0.143 

sailboat 3.772 3.447 1.907 1.011 0.769 0.444 

milkdrop 8.761 8.173 4.081 2.493 1.133 1.588 

elaine 6.185 5.656 3.160 2.232 1.330 1.051 

Aver. 4.528 4.158 2.280 1.329 0.612 0.606 

       

 
Prop SDPC 

Aver. in all sample rate 2.4733 (-33%) 2.0310 (-26%) 
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Table 14 (b) BD-PSNR (BD-Rate) comparison.  
(Anchor is CP, with 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 ∈ [0,6] and N=8. Reconstruction algorithm is L1-PD with 

DCT) 

BD-PSNR (BD-Rate) 

N=8 

 
SR=0.75 SR=0.50 SR=0.25 

Test Images Prop SDPC Prop SDPC Prop SDPC 

Lena 2.806 2.384 1.181 0.555 0.941 0.161 

Barbara 1.916 1.679 0.799 0.378 0.511 0.107 

Mandrill 1.098 1.372 0.709 0.336 0.328 0.093 

Peppers 1.460 0.907 0.590 0.190 0.888 0.056 

house 6.713 6.420 2.403 1.589 1.445 0.432 

F16 2.807 2.339 1.107 0.532 0.730 0.162 

goldhill 2.731 2.196 1.105 0.611 0.758 0.207 

pentagon 1.163 0.908 0.617 0.290 0.403 0.107 

boat 1.976 1.630 0.906 0.408 0.756 0.136 

bike 0.882 0.529 0.437 0.125 0.344 0.027 

sailboat 1.683 1.385 0.824 0.320 0.652 0.100 

milkdrop 4.914 4.711 1.315 1.166 1.056 0.310 

elaine 2.645 2.113 1.154 0.619 0.756 0.232 

Aver. 2.523 2.198 1.011 0.548 0.736 0.164 

       

 
Prop SDPC 

Aver. in all sample rate 2.4733 (-28%) 2.0310 (-19%) 
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Table 15 (c) BD-PSNR (BD-Rate) comparison.  
(Anchor is CP, with 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 ∈ [0,6] and N= 16. Reconstruction algorithm is L1-PD 

with DCT) 

BD-PSNR (BD-Rate) 

N=16 

 
SR=0.75 SR=0.50 SR=0.25 

Test Images Prop SDPC Prop SDPC Prop SDPC 

Lena 3.526 2.952 1.143 0.796 0.750 0.221 

Barbara 2.493 2.001 0.838 0.555 0.542 0.151 

Mandrill 2.295 2.000 0.597 0.464 0.243 0.121 

Peppers 2.843 2.432 0.963 0.630 0.696 0.173 

house 8.354 8.136 2.902 2.458 1.279 0.656 

F16 3.845 3.410 1.130 0.812 0.533 0.213 

goldhill 3.110 2.873 1.009 0.854 0.550 0.270 

pentagon 1.084 0.781 0.436 0.257 0.305 0.092 

boat 2.303 2.026 0.776 0.574 0.490 0.174 

bike 0.864 0.757 0.249 0.171 0.150 0.053 

sailboat 2.203 1.953 0.667 0.477 0.468 0.117 

milkdrop 6.279 6.286 1.931 1.810 0.876 0.440 

elaine 2.872 2.478 1.067 0.774 0.788 0.259 

Aver. 3.236 2.930 1.054 0.818 0.590 0.226 

       

 
Prop SDPC 

Aver. in all sample rate 1.6269 (-49%) 1.3245 (-41%) 

Table 16 Performance of the architecture. 

Process SMIC 40nm 
Area (Gates) 9.1K 
Specification 4320p@240fps 
Freq. (MHz) 200 

SRAM 12 KB 
Throughput (samples/Cycle) 16 
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Fig. 39 BD-rate curve of three test images.  
Lena (first row), goldhill (second row), mandrill (third row), and pentagon (fourth 

row) with N = 4 (a), 8 (b), and 16 (c), SR = 0.5, and 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 varying from 0 to 6. 
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29.22dB 2.50bpp  29.22dB 4.01bpp29.91dB  2.46bpp

30.14dB 2.44bpp 30.15dB 4.01bpp30.62dB  2.34bpp

 26.05dB  3.85bpp26.05dB 2.94bpp26.22dB  2.87bpp

27.59dB  2.74bpp  27.59dB   3.48bpp 28.03dB  2.64bpp  
Fig. 40 Visual comparison among Prop., SDPC, and CP (left, middle, right). 

Four test images: lena, goldhill, mandrill, and pentagon with N = 4 and 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 =4. 
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4.6 Summary 

I proposed a measurements-domain intra prediction framework that is compatible 

with CS-based CMOS image sensors and shows low computational complexity. By 

artificially structuring two rows of the measurement matrix, the boundary information 

of neighboring blocks is embedded for intra prediction. Next, a low-cost VLSI 

architecture of the proposed framework was further proposed and implemented, by 

substituting the matrix multiplication with shared adders and shifter. The experimental 

results demonstrated that the VLSI architecture is 9.1K gates in area, and 12 KB dual-

port SRAM memory. Working at 200 MHz, the architecture could support 

4320p@240fps real-time encoding. The proposed framework could compress the 

measurements and increase coding efficiency, by 34.9% BD-rate reduction, and save 

up to 83% of the memory bandwidth and storage for line buffer and left neighboring 

buffer. It could significantly reduce both the energy consumption and the bandwidth in 

communication. The demerit of the proposed method is that two proposed predictors 

not always have good performance in all textures. The more precise intra predictor 

would be a future work. 
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5. Row-Operation-Based Intra prediction under 

Approximate-DCT measurement matrices and its VLSI 

Architecture implementation 

5.1 Introduction 

 
Fig. 41 A brief architecture of a processing block in CS-CIS [71] (Component A in 

Fig. 42). Outputs are digital measurements Y. 
CMOS image sensor (CIS) has attracted a huge number of researches for the last 

decades. As most of the CIS applied in the mobile systems, the power consumption 

becomes a main concern. CIS first converts the analog luminance signal acquired into 

a digital one pixel by pixel, then compresses the image to reduce the data amount for 

the storage or for the further transmission, which is a capture (pixel)compress (pixel) 

process. With the increase of resolution and frame rate in the recent years, however, the 

low-power design becomes a challenge. Since it is found that the Analog-to-Digital 

(A/D) conversions followed by the output readout is the main power consumption in 
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CMOS image sensor, increases linearly as least in resolution and frame rate. [54] With 

the advent of a recently proposed sampling theory, Compressed Sensing (CS) [51], an 

image could be acquired by capturing a significantly reduced number of measurements 

(the linear combination of pixels), instead of by capturing pixel by pixel. Such image 

sensors are called CS-based CIS (CS-CIS). The luminance signals are linearly 

combined into a measurement in analog domain, followed by the A/D conversion. Thus, 

the throughput of A/D conversion could be reduced, which results into a significant 

reduction in power consumption, as shown in the recent CS-CIS [54], [55], [71]. The 

output of CS-CIS – measurements are further compressed before the transmission. This 

is a capture (measurements) compress (measurements) process. In this measurement-

based process, there’re two issues to concern: how to increase the image quality and 

how to reduce the size of measurements. For the image quality, the measurement matrix 

plays a major role. It decides how pixels get combined into measurements. The 

binary/ternary measurement matrix is frequently used due to its simplicity in 

controlling the linear combination, which is achieved by the sum of current in in analog 

domain, as shown in Fig. 41. The binary/ternary matrix controls the switches to tell 

whether a pixel to be added or subtracted so that measurements are calculated by analog 

addition and differential integration [54], [55], [71]. However, the image quality of the 

binary/ternary measurement matrix being used is not satisfied, comparing with the 

Gaussian matrix. But the Gaussian matrix is not suitable for real implementation, 

because floating point elements in the matrix makes linear combinations hard to 

implement, requiring complex and energy-consuming analog multiplier. Moreover, 

several binary/ ternary measurement matrices proposed in [65] could outperform the 

Gaussian matrix a little bit, however, they can only be applied to sparse signals instead 

of directly to natural images, which means extra transform in CIS is required. Thus, a 

binary/ternary matrix could achieve high image quality is wanted. 

To reduce the size of measurements, several previous works exploited the spatial 

redundancy to compress measurements. In [56], measurements in previous blocks were 

directly subtracted and used for prediction. Nevertheless, it only partly utilizes the 
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horizontal correlation. In [57][58], the intra prediction occurs by the measurement-wise 

subtraction from the neighboring measurements, similar to pixel-wise subtraction inter 

prediction. In these works, however, the measurements for prediction contain irrelevant 

information, such as the 

nonadjacent pixels, so that the prediction precision decreases. In [59], a local 

structural measurement matrix providing more precise prediction is proposed for the 

measurement-domain prediction by extracting the local features within a block. 

However, it has high computational complexity for a brute-force search among all the 

local predictor candidates, and it requires a floating-point measurement matrix that 

cannot be applied to the image sensor. Another issue in [57][58][59] is that they require 

all the measurements of a block for prediction. It requires a large memory bandwidth 

to fetch / load the data, as well as a large memory storage used for line buffer to store 

all the measurements of neighboring blocks, which would be a problem for a power-

limited and a storage-limited wireless camera system. In [60][66], an intra prediction 

framework for measurement compression is proposed. It requires few memory storage 

and bandwidth, however, it needs to modify two rows of a random matrix, which might 

be not suitable to all matrices. Overall, these works could improve the coding efficiency, 

but the image quality still has spaces to improve. 

In this paper, we therefore propose ternary measurement matrices to improve image 

quality and measurements compression algorithm as well as VLSI architecture to 

reduce the size of measurements. Main contributions of the paper are outlined as 

follows. 

1) We proposed an algorithm to generate a series of deterministic and ternary 

measurement matrices, compatible to the current CS-CIS architecture [54], 

[55], [71]. The proposed matrices are derived from approximated DCT and 

capable to preserve the energy compact property as DCT. Comparing with 

random binary/ternary matrix, the proposed matrices achieve a significant 

improvement in image recovery quality and certain degree of bit rate saving. 

2) We propose matrix row operations adaptive to the proposed matrix above for 
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measurements compression. It is able to generate the intra prediction pattern as 

our previous work [60][66], without constructing new rows, so that 

measurements could be further compressed without any image quality loss. 

3) We implement hardware architecture of the proposed intra prediction for 

measurements compression presented above. The proposed matrices could 

simplified the architecture resulting into low hardware cost and low power 

consumption 

 

5.2 Approximate DCT and Compressed Sensing (CS) 

5.2.1 Approximated DCT: 

DCT is a tool widely used in image compression due to its strong energy 

compaction property. However, it requires fast algorithm to reduce the computational 

complexity. Approximate DCT is one of the fast algorithm that offers a close result to 

exact DCT with hardware-friendly implementation. 

The 2D-DCT of an image Ro = 𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝐶𝐶is approximated by  R�o = �̂�𝑟𝑟𝑟𝑖𝑖�̂�𝑟𝐶𝐶 where 

�̂�𝑟 = 𝑆𝑆𝑃𝑃  is an approximate matrix (𝑟𝑟𝐶𝐶,𝑟𝑟𝑖𝑖 ,𝑟𝑟, �̂�𝑟, 𝑆𝑆,𝑃𝑃 ∈ 𝑟𝑟𝑁𝑁×𝑁𝑁) .  𝑆𝑆 = �(PPT)−1  is a 

diagonal matrix to orthogonalize �̂�𝑟. P is a coarse approximate DCT matrix with low-

complexity that can even only consists of ternary numbers as 0/1/-1. Several works 

relate to the design of 4/8/16-point approximate DCT in [68],[69],[70]. A 4-point 

approximate matrix (𝑁𝑁 = 4) in [68] is shown as an example. 

 P = �

1 1 1 1
1 0 0 −1
1 −1 −1 1
0 −1 1 0

�      (28) 

5.2.2 Concept of CS: 

The CS theory [51] asserts that only a few measurements are enough to recover the 

signals, as long as the signals are sparse in some transform domain. Suppose the image 
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signal X =  [x1 . . . x𝐶𝐶 ]𝐶𝐶can also be represented in the transform domain Ψ, as 

 X =  ΨS (29) 

where S =  [s1 . . . s𝐶𝐶 ]𝐶𝐶 is the signal represented in Ψ transform domain and Ψ is an 

n × n transform matrix. The signal X is said to be k-sparse if it has only k non-zero 

coefficients. 

I would like to recover signals X =  [x1 . . . x𝐶𝐶 ]𝐶𝐶  from m ≪ n  linear and non-

adaptive measurements Y  = [y1 . . . y𝑓𝑓 ]𝐶𝐶, which are taken from the random projection 

as 

 Y =  ΦX (30) 

where Φ is an m × n measurement matrix. I know that the system is under-determined 

since m < n. The CS theory asserts that the signal 𝑆𝑆′  can be recovered with high 

probability using only m = cklog(n
k
) measurements for some constant C, by solving 

the L1-norm minimization problem (3) 

 min ‖𝑆𝑆′‖1  s. t Y =  ΘS′ (31) 

where Θ = ΦΨ and the measurement matrix Φ must be in- coherent with transform 

matrix Ψ to preserve the Restricted isometry property (RIP) [51]. The CS theory shows 

that Φ can even be a random 1/−1 or 0/1 matrix, while Ψ could be a discrete cosine 

transform (DCT), discrete wavelet transform (DWT), contourlet transform and so forth. 

The problem (31) can be solved by basis pursuit [51]. To a noise environment, (31)  

can be extended to Y′ = ΘS′ + Z, where Z represents the noise. It could be solved by 

basis pursuit denoising [51]. After the recovery of S′ , the signal X′  can thus be 

calculated by (29). 
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Fig. 42 The process of CS based image sensing, encoding and decoding. 
The proposed measurement matrix is the gray box in component A. The 
proposedmeasurementsintrapredictionanditsarchitectureisincomponent 

B, C, shown in Fig. 8. 

5.2.3 Process of CS image sensing and image reconstruction: 

Considering the infeasibility and scalability of the image sensor implementation 

and the complexity of image recovery, the pixel array is divided into blocks as Fig. 43 

(a) to perform the sampling [54][55]. For each block: 1) The analog signals of n pixels 

are acquired by the pixel array inside the sensor, X = [x1 … xn]T. The measurements 

are calculated through (30) in the analog domain and digitalized into Y = [y1 … ym]T . 

2) Measurements are predicted, quantized, followed by the entropy coding and the 

transmission 3) The bitstream obtained from the channel are dequantized and then 

reconstructed into measurements. 4) The reconstructed signal X’ are recovered from the 

decoded measurements Y’ by solving (31) and (29). The process is shown in Fig. 42. 
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5.3 Proposed measurement matrix 

 
Fig. 43 (a) An image is separated block by block. (b) A 2D-DCT transform, N=4. The 
blue dashed line shows the Z-scan order, ascending frequency response. (c) The 1D 
representation of (b). (d) An example of N = 4, m = 4 measurements are taken in the 

Z-scan order.. 
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5.3.1 The main idea 

Because of the energy compact property of DCT, we propose a measurement 

matrix Φt that performs an approximated DCT to generate the measurements in (30). 

Measurements generated by the proposed matrix represent the frequency response of 

input signals, unlike the usual case that measurements are linear combination of input 

signals randomly taken. As is known, the low-frequency components in an image play 

the majority role in the determining the image quality. It gives us an intuition that 

measurements representing the lower frequency response would be more important 

than the ones representing the higher frequency response, if 𝑆𝑆 ≪ 𝑁𝑁2 measurements 

are taken for image reconstruction. 

Given any image signal 𝑋𝑋 ∈ 𝑟𝑟𝑁𝑁2, it could be represented by a 2D matrix 𝑋𝑋2 ∈

𝑟𝑟𝑁𝑁×𝑁𝑁 or an 1D matrix 𝑋𝑋1 ∈ 𝑟𝑟𝑁𝑁
2×1. To perform the DCT on 𝑋𝑋, it can be a 2D-DCT 

as (32) in Fig. 43 (b), that sequentially performs 1D-DCT twice (vertically and 

horizontally), or can be a the projection to Φ𝑠𝑠, as (33) in Fig. 43 (c) ,such that 𝑌𝑌1, 𝑌𝑌2 

represents the same output. 

 𝑌𝑌2 = 𝑃𝑃𝑋𝑋2𝑃𝑃𝐶𝐶  (32) 

 𝑌𝑌1 = 𝛷𝛷𝑠𝑠𝑋𝑋1  (33) 

where 𝑃𝑃,𝑌𝑌2 ∈ 𝑟𝑟𝑁𝑁×𝑁𝑁,𝑌𝑌1 ∈ 𝑟𝑟𝑁𝑁
2×1  and Φ𝑠𝑠 ∈ 𝑟𝑟𝑁𝑁

2×𝑁𝑁2 . The relationship between 

𝑋𝑋1,𝑋𝑋2 and 𝑌𝑌1,𝑌𝑌2 can be represented by 𝑋𝑋1 = 𝑓𝑓(𝑋𝑋2) and 𝑌𝑌1 = 𝑓𝑓(𝑌𝑌2). The function 𝑓𝑓 

denotes a mapping from a 2D matrix 𝑀𝑀2 to a 1D matrix 𝑀𝑀1 , 𝑓𝑓:𝑀𝑀2𝑖𝑖,𝑗𝑗 → 𝑀𝑀1(𝑖𝑖−1)𝑁𝑁+𝑗𝑗. 

In matrix 𝑌𝑌2 in Fig. 43 (b), the low frequency components are on the upper-left 

corner and the frequency increases according to the zigzag scan (Z-scan) order (blue 

dash line). Taking the lowest 4 frequency components (deep gray to light gray) as 

example, their corresponding locations in 𝑌𝑌1  are shown in Fig. 43 (c). Obviously, 

given any frequency component in 𝑌𝑌2, the corresponding measurements in 𝑌𝑌1 can 

always be located. Whenever to take 𝑆𝑆 ≪ 𝑁𝑁2  measurements for image 

reconstruction, e.g 𝑆𝑆 = 4  in this case, we can find the lowest m frequency 
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components in 𝑌𝑌2 according the Z-scan order, and know which measurements to be 

kept in 𝑌𝑌1 . Since each measurement in 𝑌𝑌1 is determined by the corresponding row 

in Φ𝑠𝑠, as the gray area in Fig. 43 (c), we know which row to keep or given the number 

of measurement m. The final measurement matrix is shown in Fig. 43 (d). 

Overall, there are two steps to generate the measurement matrix Φ𝐶𝐶 : 1) Calculate 

the matrix Φ𝑠𝑠 according to (34), where 𝑎𝑎, 𝑗𝑗, 𝑘𝑘, 𝑓𝑓 ∈ [1,𝑁𝑁], p is an element of matrix 

P. 2) Trim the matrix Φ𝑠𝑠 into the matrix Φ𝐶𝐶 , by keeping the lowest m frequency 

components, which are the first m element in Z-scan order. It is noted that Φ𝑠𝑠 is a 

ternary matrix, since the element p is ternary number. 

 𝜙𝜙(𝑖𝑖−1)𝑁𝑁+𝑗𝑗,(𝑘𝑘−1)𝑁𝑁+𝑞𝑞 = 𝑠𝑠𝑖𝑖,𝑘𝑘𝑠𝑠𝑗𝑗,𝑞𝑞  (34) 

5.3.2 Derivation of proposed matrix Φ𝑠𝑠 

Suppose there are matrices 𝐷𝐷,𝑋𝑋,𝐸𝐸,𝐺𝐺,𝑌𝑌 ∈ 𝑟𝑟𝑁𝑁×𝑁𝑁 , such that 𝐺𝐺𝑖𝑖,𝑗𝑗 = (𝐷𝐷𝑋𝑋)𝑖𝑖,𝑗𝑗  and  

𝑌𝑌𝑖𝑖,𝑗𝑗 = (𝐺𝐺𝐸𝐸)𝑖𝑖,𝑗𝑗 = (𝐷𝐷𝑋𝑋𝐸𝐸)𝑖𝑖,𝑗𝑗 . According to the definition of matrix multiplication, 𝐺𝐺𝑖𝑖,𝑗𝑗 

and 𝑌𝑌𝑖𝑖,𝑗𝑗 can be expanded as (35) and (36) 

 𝐺𝐺𝑖𝑖,𝑗𝑗 = � di,r𝑥𝑥𝑝𝑝,𝑗𝑗 =
𝑁𝑁

𝑝𝑝=1
𝑑𝑑𝑖𝑖,1𝑥𝑥1,𝑗𝑗 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,𝑗𝑗 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑗𝑗  (35) 

 𝑌𝑌𝑖𝑖,𝑗𝑗 = � gi,r𝑠𝑠𝑝𝑝,𝑗𝑗 =
𝑁𝑁

𝑝𝑝=1
𝑟𝑟𝑖𝑖,1𝑠𝑠1,𝑗𝑗 + 𝑟𝑟𝑖𝑖,2𝑠𝑠2,𝑗𝑗 + ⋯+ 𝑟𝑟𝑖𝑖,𝑁𝑁𝑠𝑠𝑁𝑁,𝑗𝑗  (36) 

By observing some of the terms in (8) as follows, we expand (36) 

 𝑟𝑟𝑖𝑖,1 = � di,r𝑥𝑥𝑝𝑝,1 =𝑁𝑁
𝑝𝑝=1 𝑑𝑑𝑖𝑖,1𝑥𝑥1,1 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,1 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁  

 𝑟𝑟𝑖𝑖,2 = � di,r𝑥𝑥𝑝𝑝,2 =𝑁𝑁
𝑝𝑝=1 𝑑𝑑𝑖𝑖,1𝑥𝑥1,2 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,2 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁  

 … 

 𝑟𝑟𝑖𝑖,𝑁𝑁 = � di,r𝑥𝑥𝑝𝑝,𝑁𝑁 =𝑁𝑁
𝑝𝑝=1 𝑑𝑑𝑖𝑖,1𝑥𝑥1,𝑁𝑁 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,𝑁𝑁 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁  

𝑌𝑌𝑖𝑖,𝑗𝑗 = � gi,r𝑠𝑠𝑝𝑝,𝑗𝑗 =
𝑁𝑁

𝑝𝑝=1

𝑟𝑟𝑖𝑖,1𝑠𝑠1,𝑗𝑗 + 𝑟𝑟𝑖𝑖,2𝑠𝑠2,𝑗𝑗 + ⋯+ 𝑟𝑟𝑖𝑖,𝑁𝑁𝑠𝑠𝑁𝑁,𝑗𝑗   

 = (𝑑𝑑𝑖𝑖,1𝑥𝑥1,1 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,1 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁) +  �𝑑𝑑𝑖𝑖,1𝑥𝑥1,1 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,1 +

⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁� + ⋯+ (𝑑𝑑𝑖𝑖,1𝑥𝑥1,1 + 𝑑𝑑𝑖𝑖,2𝑥𝑥2,1 + ⋯+ 𝑑𝑑𝑖𝑖,𝑁𝑁𝑥𝑥𝑁𝑁,𝑁𝑁)  (37) 
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By observing (37), we know each element in 𝑌𝑌 is a linear combination of 𝑥𝑥1,1 … 𝑥𝑥𝑁𝑁,𝑁𝑁.  

Thus (37) could be simplified into 

 𝑌𝑌𝑖𝑖,𝑗𝑗 = � �𝑑𝑑𝑖𝑖,𝑘𝑘𝑠𝑠𝑞𝑞,𝑗𝑗�𝑥𝑥𝑘𝑘,𝑞𝑞

𝑁𝑁

𝑘𝑘,𝑞𝑞=1
   (38) 

Let matrix �̇�𝑋, �̇�𝑌 ∈ 𝑟𝑟𝑁𝑁2×1  represent 𝑋𝑋𝑖𝑖,𝑗𝑗  and 𝑌𝑌𝑖𝑖,𝑗𝑗 where �̇�𝑋 = 𝑓𝑓(𝑋𝑋)  and �̇�𝑌 = 𝑓𝑓(𝑌𝑌) . 

Suppose  

 �̇�𝑌 = Φ�̇�𝑋  (39) 

The element �̇�𝑦(𝑖𝑖−1)𝑁𝑁+𝑗𝑗 is determined by the [(i − 1)N + j]𝐶𝐶ℎ row of Φ and �̇�𝑋. For a 

given row in Φ, the element in each column determines the linear combination of �̇�𝑋, 

which is 𝑑𝑑𝑖𝑖,𝑘𝑘𝑠𝑠𝑞𝑞,𝑗𝑗 in (38). Therefore, (38) could be represented as follows 

 �̇�𝑌(𝑖𝑖−1)𝑁𝑁+𝑗𝑗 = � �𝜙𝜙(𝑖𝑖−1)𝑁𝑁+𝑗𝑗,(𝑘𝑘−1)𝑁𝑁+𝑞𝑞��̇�𝑥(𝑘𝑘−1)𝑁𝑁+𝑞𝑞

𝑁𝑁

𝑘𝑘,𝑞𝑞=1
   (40) 

 𝜙𝜙(𝑖𝑖−1)𝑁𝑁+𝑗𝑗,(𝑘𝑘−1)𝑁𝑁+𝑞𝑞 =   𝑑𝑑𝑖𝑖,𝑘𝑘𝑠𝑠𝑞𝑞,𝑗𝑗    (41) 

where 𝜙𝜙𝑓𝑓,𝑏𝑏 represents the element in row a and column b in Φ. By replacing 𝐷𝐷,𝐸𝐸 

with ,𝑃𝑃𝐶𝐶 , (41) becomes (34), and Φ d is the proposed matrix we want. By replacing 

�̇�𝑋, �̇�𝑌  with 𝑋𝑋1,𝑌𝑌1 , (39) becomes (33). We show Φd , Φt  generated from (28) as an 

example. When 𝑆𝑆 = 4, the 1𝑝𝑝𝐶𝐶, 2𝐶𝐶𝑠𝑠, 5𝐶𝐶ℎ, 9𝐶𝐶ℎ rows (bold) are kept. 

 (42)  

  (43) 
 

5.3.3 The performance comparison 

We compare the performance of two methods of trimming the measurement matrix, 
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between Z-scan order (measurement index: 1,2,5,9 ...) as Fig. 43 (b) and normal-scan 

order (measurement index: 1,2,3,4 ...). From both graphs in Fig. 51, we can find that 

green curves occur in the lefter and upper region than the blue curves, showing that Z-

scan order outperforms the N-scan order in different sizes of approximate matrix. The 

results verify our intuition that the preference for measurements of lowest m frequency 

response improves the image quality. 

 
Fig. 44 The BD curve comparison between proposed measurement matrix with Z-scan 

and N-scan, using two images, mandrill (left) and F16 (right). Sample rate (SR) of 
0.25 (first row) and 0.50 (second row) are evaluated. Matrices are generated the 

approximate DCT from several previous work (N=4: [68], 8: [69] and 16: [70]). The 
marker Circle, Plus and Square represent N=4,8 and 16 respectively. Blue dash line 

represents N-scan and green solid line Z-scan 
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5.4 Proposed matrix row operation for measurement-based 

intra prediction and its VLSI architecture 

5.4.1 Existing measurement-based intra prediction 

To reduce the data volume for storage and transmission, the measurements are 

further compressed. However, measurements, unlike pixels, could not be compressed 

by traditional intra coding methods, because the spatially correlation between adjacent 

pixels is corrupted during the generation of measurements. Thus, some works for 

measurements compression are proposed [57][58][60]. Among these works, [60] 

achieved the best coding efficiency of 7% BD-rate reduction.  

 
Fig. 45 The predictor candidates (Blue: Bottom row of upper block and 

red: rightmost column of left block) 
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Fig. 46 A 4 × 4 block as input signal X. The target is to extract the sum of the blue 
and red part. (b) In the existing method [60][66], the first two rows in the random 

binary matrix are modified as 𝑟𝑟𝐶𝐶𝑅𝑅 and 𝑟𝑟𝑅𝑅𝐶𝐶 to extract the                information 
(sum of bottom row and sum of rightmost column) 

The basic idea of [60][66] is to extract the information of neighboring blocks 

(bottom row in upper block and rightmost column in left block) for predicting the 

current block, as shown in Fig. 45. Comparing with using pixels for prediction far away, 

using pixels nearby could improve the prediction accuracy. Thus, as shown in Fig. 46 

(a), local information of a block (the sum of bottom row and sum of rightmost column) 

is extracted and stored when processing this block, so that next block could use them 

for prediction. To extract these local information, the first two rows of the random 

binary matrix are modified as 𝑟𝑟𝐶𝐶𝑅𝑅 and 𝑟𝑟𝑅𝑅𝐶𝐶 are shown in (44) and (45) when block size 

𝑁𝑁 = 4. In 𝑟𝑟𝐶𝐶𝑅𝑅, the last 𝑁𝑁 values are set to 1's, while the rest are set to 0's. In 𝑟𝑟𝑅𝑅𝐶𝐶 every 

𝑁𝑁𝐶𝐶ℎ values are set to 1's, while the rest are set to 0's. 

 𝑟𝑟𝐶𝐶𝑅𝑅 = [0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]   (44) 

 𝑟𝑟𝑅𝑅𝐶𝐶 = [0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1]   (45) 

When input signal X projects on these two modified row (the 1st and 2nd row), the 

resulted first two measurements y1,𝑦𝑦2  would represent the sum of bottom row 

(𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑅𝑅) and sum of rightmost column (𝑆𝑆𝐶𝐶𝑆𝑆𝑅𝑅𝐶𝐶), which are the key information to be 

stored for future prediction. 
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5.4.2 Proposed matrix row operation for measurement-based intra 

prediction 

However, the above approach [60][66] could not be applied to the proposed 

matrices in Section 3 without degrading the image quality, because it requires to modify 

two rows in the matrix to extract the information. As shown in (42) and (43), each row 

in the matrix is special, selected according to the frequency response. Changing a row 

could significantly degrades the image quality. Thus, our intuition is to find a way to 

extract the information of neighboring blocks as [60][66] without modifying proposed 

matrices. Two rows 𝑟𝑟𝐶𝐶𝑅𝑅 and 𝑟𝑟𝑅𝑅𝐶𝐶 are the keys to extract information of the bottom row 

and the rightmost column. According to our observation, we propose to use matrix row 

operation in the proposed matrices to calculate the target rows, as shown in Fig. 47. 

 
Fig. 47 The proposed matrix row operation performed on the proposed matrix Φ𝐶𝐶 to 

generate 𝑟𝑟𝐶𝐶𝑅𝑅 and 𝑟𝑟𝑅𝑅𝐶𝐶 to extract the sum of bottom row and the sum of rightmost 
column 

Still using N=4 as an example, we generate a proposed matrix Φ𝐶𝐶6with m=6 in Z-

scan order from Φ𝑠𝑠 in (42), by taking the 1st, 2nd, 5th, 9th 6th and 3rd rows of Φ𝑠𝑠  

as the followings. 
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  (46) 
We observe that the key row 𝑟𝑟𝐶𝐶𝑅𝑅 in (44) could be obtained by matrix row operation 

from three rows, 𝑟𝑟1, 𝑟𝑟3, 𝑟𝑟4 in the measurement matrix Φ𝐶𝐶6, as (47). 

 𝑟𝑟1 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]    

 𝑟𝑟3 = [1 1 1 1 0 0 0 0 0 0 0 0 − 1 − 1 − 1 − 1]    

 𝑟𝑟3 = [1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1]    

 (𝑟𝑟1 + r4 − 2 ∗ r3) = 4 ∗ rBR     

 rBR = (𝑟𝑟1 + r4 − 2 ∗ r3) ≫ 2   (47)  

Similarly, from matrix row operation from three rows, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟6 in the measurement 

matrix Φ𝐶𝐶6 , the key row 𝑟𝑟𝑅𝑅𝐶𝐶 in (45) could be obtained as (48) 

 𝑟𝑟2 = [1 0 0 − 1 1 0 0 − 1 1 0 0 − 1 1 0 0 − 1]    

 𝑟𝑟6 = [1 − 1 − 1 1 1 − 1 − 1 1  1 − 1 − 1 1 1 − 1 − 1 1 ]    

 (𝑟𝑟1 + r6 − 2 ∗ r2) = 4 ∗ rRC     

 rRC = (𝑟𝑟1 + r6 − 2 ∗ r2) ≫ 2   (48)  

The discover above makes it possible to construct the key rows rBR and rRC without 

modifying the proposed measurement matrix Φ𝐶𝐶6 . Since each measurement is the 

projection of one row in the measurement matrix on the input signal, as mentioned in 

Section 4.1, the same matrix row operation performing on the measurements could 

obtain the neighboring information (the sum of bottom row and rightmost column) as 

the followings. 

  SumBR = (𝑦𝑦1 + y4 − 2 ∗ y3) ≫ 2   (49)  

  SumRC = (𝑦𝑦1 + r6 − 2 ∗ y2) ≫ 2   (50)  

We have verified that the proposed matrix row operation could be applied to other 

approximate-DCT measurement matrices deriving from 8/16-point approximate-DCT 

matrix [69][70][70]. Since the proposed measurement matrix is determined, which rows 

to combine and how to combine to get the rows rBR, rRC could be obtained by offline 

calculation. 
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5.4.3 Measurement-based intra prediction framework and its VLSI 

implementation 

After getting the 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑅𝑅  and 𝑆𝑆𝐶𝐶𝑆𝑆𝑅𝑅𝐶𝐶 , the process of measurement-based 

prediction is the same as the one in [60][66], which could be divided into 4 steps. 1) 

Obtain the average of bottom row of upper block, 𝑎𝑎𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢and obtain the average of 

rightmost column of left block, 𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 , from 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑅𝑅  and 𝑆𝑆𝐶𝐶𝑆𝑆𝑅𝑅𝐶𝐶 , respectively. 2) 

Use 𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 , 𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏and DC (eg. DC=128) to generate the predictor candidates 𝑌𝑌𝐶𝐶𝑝𝑝, 

𝑌𝑌𝑙𝑙𝑝𝑝, 𝑌𝑌𝑃𝑃𝐶𝐶 respectively, by performing the projection to the measurement matrix as (51), 

(52). 

 𝑋𝑋𝐶𝐶𝑝𝑝   =  �𝑎𝑎𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢 . . .𝑎𝑎𝐴𝐴𝑠𝑠𝐶𝐶𝑅𝑅𝑢𝑢𝑢𝑢�
𝐶𝐶
  

 𝑌𝑌𝐶𝐶𝑝𝑝  = Φt𝑋𝑋𝐶𝐶𝑝𝑝 (51) 

 𝑋𝑋𝑙𝑙𝑝𝑝   =  �𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏 . . .𝑎𝑎𝐴𝐴𝑠𝑠𝑅𝑅𝐶𝐶𝑙𝑙𝑏𝑏�
𝐶𝐶
  

 𝑌𝑌𝑙𝑙𝑝𝑝  = Φt𝑋𝑋𝑙𝑙𝑝𝑝 (52) 

 𝑌𝑌𝑃𝑃𝐶𝐶  = Φt[𝐷𝐷𝑟𝑟 …𝐷𝐷𝑟𝑟]𝐶𝐶  

3)  Compare the sum and difference (SAD) of the original measurements Y and 

predictor candidates 𝑌𝑌𝐶𝐶𝑝𝑝 , 𝑌𝑌𝑙𝑙𝑝𝑝 , 𝑌𝑌𝑃𝑃𝐶𝐶 , find the one with the minimum SAD as the 

predictor as (26) and use the original measurements to subtract it to get the residual as 

(54). 

 𝑠𝑠 = argminCAND SAD (Y, Y𝐶𝐶𝐶𝐶𝑁𝑁𝑃𝑃) (53) 

 𝑌𝑌𝑝𝑝 = 𝑌𝑌 − 𝑌𝑌𝑝𝑝 (54) 

4) Quantize the residual by 𝑌𝑌𝑄𝑄𝑝𝑝 = 𝑌𝑌𝑝𝑝 ≫ 𝑄𝑄𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝, followed by the entropy coding. 

The VLSI architecture of the above measurement prediction is shown in Fig. 48. It 

is to compress measurements from CS-CIS (component A in Fig. 42) and then produces 

the quantized residuals 𝑌𝑌𝑄𝑄𝑝𝑝 to entropy coder. It takes measurements of the block size 

𝑁𝑁 = 4  [55] as input, with sample rate (SR) of 0.25, 0.5, and 0.75 (numbers of 

measurements m  are 4, 8 and 12, respectively). A 4 × 4  block is processed every 
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cycle. The major difference between [66] and the proposed architecture is that the 

matrix multiplication (the blue dash boxes) in this work has a significant lower 

hardware cost, because of the property of the proposed matrix Φ𝑠𝑠 and Φ𝐶𝐶 in (42) and 

(43). It could be observed that, the sum of element in each row of Φ𝑠𝑠 and Φ𝐶𝐶 is zero, 

expect for the first row (sum is 16, with sixteen 1's). Because the elements are identical 

in 𝑋𝑋𝐶𝐶𝑝𝑝 and 𝑋𝑋𝑙𝑙𝑝𝑝   respectively, when Φ𝐶𝐶  multiplies the signal 𝑋𝑋𝐶𝐶𝑝𝑝 , 𝑋𝑋𝑙𝑙𝑝𝑝 ,  this property 

makes all measurements (except for the first one) equal to zeros. Thus, the matrix 

multiplication in (51) and (52) has not any computation, except for the first 

measurements (equal to 16*aves) requiring shift operation. Thus the matrix 

multiplication} nearly has no hardware cost, not even an adder. Besides, the property 

also reduces the calculations for the residual in (54), since only the first measurement 

needs subtraction, rather than all measurements. Though the proposed matrix row 

operation introduces the overhead in the red box at the bottom of Fig. 48, it has a low 

hardware cost, consisting of only 4 adders. 

 
Fig. 48 VLSI architecture (Component B and C in Fig. 42) for the measurement-based 
intra prediction with proposed matrix row operation. The dashed boxes are marked by 

numbers in parentheses, corresponding to the equations (49)–(54) in Section 4. The 
matrix multiplication in the gray solid box could be simplified into the shift operation. 
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5.5 Experiment Results 

 
Fig. 49 The BD curve of lena, barbara, mandrill and F16 (top to bottom) with N=4 

and N=8, SR =0.5, with various Q step ∈ [0, 6]. The proposed measurement matrix 
in Prop. and Prop.+ are trimmed by Z-scan. 

 
The direct (Dir.) way [54],[55] and MIP [66], which use the random binary matrix 

(RBM), are compared with Prop. And Prop.+ in this work. In Dir., measurements are 

not compressed by any prediction method. In MIP, measurements are compressed by 

intra prediction. We define Prop. as the proposed matrix with Z-scan order in Section 

5.3 but without any prediction. We define Prop.+ as the algorithm combining Prop. with 

the proposed matrix row operation for measurement intra prediction in Section 5.4.2. 

The performance of each method is evaluated under fourteen gray-scale test images 

(512 × 512), which are reconstructed by the algorithm, L1 primal-dual (PD) interior-

point [51] with DCT. 

First, the mean square error (MSE) is evaluated, as shown in Fig. 51. The results 

of block size 𝑁𝑁 = 4  and 𝑁𝑁 = 8 are in the left three columns and right three columns, 
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respectively. The MSE of each processing block in Prop. are smaller and closer to zero 

than that in Dir. Prop.+ further decreases the MSE from Prop.. Moreover, the reduction 

in MSE between Prop. and Dir. more significant for 𝑁𝑁 = 4 than that for 𝑁𝑁 = 8. Next, 

we evaluate the BD-PSNR and BD-curve. Since the occurrence of 1's in the RBM used 

in MIP and Dir. influences the reconstruction quality. We find the optimal image quality 

can be achieved when occurrences of 1's are 74% when N=4 and 23% when N=8. From 

Fig. 49, we find that Prop. could significantly improve the image quality and reduce the 

size of measurements comparing with Dir., which is consistent with the result shown in 

Fig. 51. Prop.+ could reduce further reduce bit rate without introducing any image 

quality loss comparing with Prop. The result in Table 17 shows that Prop. could increase 

the BD-PSNR by 4.2 dB at average comparing with Dir., and 2.2 dB comparing with 

MIP. Prop.+ could further increase the BD-PSNR by 0.24 dB at average (equivalent to 

5% BD-rate reduction) comparing with Prop. Finally, Fig. 50 shows an obvious 

improvement in image quality as well as in bit saving in Prop.+ on the left. 

The performance of the hardware of Prop.+ (Component B in Fig. 42) and MIP are 

compared in Table 18. The total area of Prop.+ is 4.3 K gates, which includes 2.8 K 

gates for SAD modules, 1.2 K gates for intra prediction, 0.3 K gates for the finite state 

machine and the memory of 1 KB is for storing predictors. The area reduction is 

contributed by property of proposed matrix. It makes the matrix multiplication in intra 

prediction simpler. Its power consumption is 0.3 mW at 200MHz in typical condition 

(1.1 V, 25 𝐶𝐶C). It is omittable (only 1%) comparing with the power consumption of the 

current CS-CIS [54][71], (28 mW to 100 mW). The throughput of our design is 

processing 12 measurements per cycle (a 4 × 4  block with SR = 0.75 has 12 

measurements). The architecture could support 2160p@240fps. 

Because of the proposed measurement matrix and measurement-based intra 

prediction, Prop.+ compresses measurements by 88% BD-Rate reduction comparing 

with Dir., with extra area of 4.3K gate and power consumption of 0.3 mW from the 

architecture. Comparing with MIP, Prop.+ also achieves compression of 49% BD-Rate 

reduction. Because we exploited the property of matrix to optimize the architecture, the 
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area and power consumption of Prop.+ is 52% and 50% less than MIP, respectively.  

 
Fig. 50 The visual quality comparison. Left :Prop.+ Right: Dir. 

 
Fig. 51 Comparison of MSE of residuals in each block among three algorithms, with 
N = 4 and 8, SR = 0.5, and Q𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝 =4 of lena (first row) and mandrill (second row). 
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Table 17 BD-PSNR Comparison.  
(Anchor is Dir., with  𝐐𝐐𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ∈ [0,6], N=4 [13] and N=8 [69]. Reconstruction algorithm is 

L1-PD with DCT) 

 
 

Table 18 Performance of VLSI architecture. 
 Prop.+  MIP [66] 

Process SMIC 40nm 
Area (NAND Gates) 4.3 K 9.1 K 

Specification 2160p @ 240fps 
Freq. (MHz) 200 

SRAM 1 KB 
Throughput (measurements/Cyc.) 12 

Power Consumption 0.3 mW 0.6 mW 
 
 

5.6 Summary 

We proposed an algorithm to generate a series of deterministic and ternary matrices, 

which are compatible with the CS-CIS. The proposed matrices are derived from the 

approximate DCT, hence preserving the energy compaction property as DCT does. The 

proposed measurement matrix significantly improves the coding efficiency by BD-

PSNR increase of 4.2 dB, comparing with the random binary matrix used in the-state-

of-art CS-CIS. We further proposed matrix row operations adaptive to the proposed 

matrix to compress measurement by 4.8% BD-rate without any image quality loss. 

Lastly, a low-cost and low-power VLSI architecture of the proposed measurements 

intra prediction is implemented, with only 4.3 K gates in area, 0.3 mW in power 

consumption and supporting 2160p@240fps. 
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6. Conclusions and future work 

This dissertation discusses the high-performance VLSI architecture of HEVC SAO 

Estimation, intra prediction for encoder and its extension in Compressed Sensing, by 

using the proposed concept “reduced video data”. Only by taking the necessary video 

data, including pixels and measurements, it is possible to reduce the parallel degree in 

hardware while keeping the performance during the data processing. The whole 

dissertation is organized into four parts, where the first two parts are intra prediction 

and SAO in HEVC, while the third and fourth are the HEVC intra prediction’s 

application to CS.  

Firstly, in Chapter 2, the high-performance VLSI architecture for HEVC intra 

prediction is presented. Intra prediction uses neighboring pixels from different 

directions to predict pixels of a block (4x4~32x32). As the block size increases from 16 

to 32 in HEVC, it takes 3x more neighboring pixels for prediction. Instead of loading 

all neighboring pixels as previous work, only on-demand pixels are loaded. This 

proposed idea reduces the two-third of reference pixels, thus reducing the area and 

increasing the throughput. It is achieved by LUT generated by software to tell which 

pixels are demanded in each prediction mode and location. Another proposal is the 

Hybrid Block Reordering and Data Forwarding, minimizing the idle time and 

eliminating the dependency between blocks by creating 3 Data Forwarding paths. It 

achieves the hardware utilization of 94%. The proposed VLSI architecture has a gate 

count of 217.8K, able to support 4320p@120fps HEVC intra prediction. The demerit 

of the proposal is that the bandwidth of SRAM is increased, as multiple loadings of 

reference samples are required for a block larger than 4x4. This would be a problem to 

be solved in the future work. 

Next, in Chapter 3, the VLSI Architecture for SAO estimation is proposed. SAO 

estimation consists of two processes, statistics collection (SC) and parameter decision 

(PD), each of which demands different frequency. After investigating the optimal 

frequency, a dual-clock architecture is proposed to deal with SC and PD with different 
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speed of clocks. Such a strategy reduces the overall area by 56%. To further improve 

the area and power efficiency, algorithm-architecture co-optimizations are applied 

including a coarse range selection (CRS) and an accumulator bit width reduction (ABR). 

CRS shrinks the range of fine processed bands for the band offset estimation. ABR 

further reduces the area by narrowing the accumulators of SC. They together achieve 

another 25% area reduction. The proposed VLSI design is capable of processing 

8K@120fps encoding. It occupies 51K logic gates, only one-third of the circuit area of 

the state-of-the-art design. The demerit of the proposal is that the local heat problem 

would exist due to the high frequency clock. 

Furthermore, in Chapter 4, a measurement intra prediction framework and its VLSI 

architecture are presented. Instead of using all measurements for prediction, 

measurements for prediction are reduced to two. These two measurements embed the 

block boundary information of closest area. They are obtained by modifying two rows 

in the random 0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is 

implemented for the proposed framework, by substituting the matrix multiplication 

with shared adders and shifters. The experimental results show that our proposed 

framework can compress the measurements and increase coding efficiency, with 34.9% 

BD-rate reduction compared to the direct output of CS-based sensors. The VLSI 

architecture of the proposed framework is 9.1K in area, and it achieves the 83% 

reduction in size of memory bandwidth and storage for the line buffer. This could 

significantly reduce both the energy consumption and bandwidth in communication of 

wireless camera systems. The demerit of the proposed method is that two proposed 

predictors not always have good performance in all textures.  

At last, in Chapter 5, a series of deterministic and ternary matrices derived from 

approximated-DCT are proposed, which could be used as measurements matrices. They 

significantly increase the coding efficiency comparing with the random binary matrix 

in previous work. Furthermore, an algorithm using the row-operation to perform the 

intra prediction on the approximate-DCT measurement matrices is proposed. Without 

modifying the measurement matrix to structure the specific row as previous work in 
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Chapter 4, similar effects could be achieved by the row-operation of specific 

measurements. Lastly, a low-cost VLSI architecture of measurements compression with 

proposed matrix row operations is proposed. Experiment results show the proposed 

matrix improve the coding efficiency by BD-PSNR increase of 4.2 dB. The proposed 

row operations increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI 

architecture is only 4.3 K gates in area and 0.3 mW in power consumption. The demerit 

is that some of the row-operations are not available in low sampling rate, because it 

relies on the measurements which do not exist in the low sampling rate.  

The future work includes the following aspects. First is how to design a more 

efficient reference samples loading and storing scheme, that could further reduce 

bandwidth of SRAM. Second is how to further explore the possibility to implant the 

HEVC intra prediction to CS to further improve its coding efficiency. At last, there’s 

lots of spaces for studying the extension of HEVC inter prediction to CS.  
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