67 research outputs found

    Multi-dimensional Resistivity Models of the Shallow Coal Seams at the Opencast Mine 'Garzweiler I' (Northwest of Cologne) inferred from Radiomagnetotelluric, Transient Electromagnetic and Laboratory Data

    Get PDF
    The entire Cenozoic unconsolidated fill of the Lower Rhine Embayment in Germany hosts the largest single lignite, or brown coal, deposit in Europe which covers an area of some 2,500 km2 to the northwest of Cologne. Rhineland brown coal is mined in large-scale opencast mining and accounts for around one-quarter of the public electricity supply in Germany. The present study was devoted to carrying out radiomagnetotelluric (RMT) and transient electromagnetic (TEM) investigations over the shallow coal seams at the opencast mine 'Garzweiler I.' The main objectives of the survey were to highlight the applicability and efficiency of RMT and TEM methods in an area like brown coal exploration, and to image the vertical electrical resistivity structure of these coal seams. Therefore, the vertical and lateral resolution capabilities of such methods were as necessary as the ability to cover large areas. Consequently, a total of 86 azimuthal RMT and 33 in-loop TEM soundings were carried out along six separate profiles over two opencast benches at the 'Garzweiler I' mine. The local stratigraphy at the survey areas comprises a layer-cake sequence, from top to bottom, of Garzweiler, Frimmersdorf and Morken coal seams embedded in a sand background, consisting of Surface, Neurath, Frimmersdorf and Morken Sands. A considerable amount of clay and silt intervenes the whole succession. The data were interpreted extensively and consistently in terms of one-dimensional (1D) RMT and TEM resistivity models, without using any complex multi-dimensional interpretation. However, the presence of thin, surficial clay masses (or lenses) broke down such interpretation scheme. In this case, to greatly improve the resistivity resolution for these surficial masses and the underlying coal seams, two-dimensional (2D) RMT and three-dimensional (3D) TEM interpretations have been carried out. They could be used effectively to study the local EM distortion on the measured data, where these surficial masses were found, as well as to cross-check the nearby-topography effect. Because the RMT data are usually skin-depth limited, they only provided a resolution depth between 25 and 30 m for the shallow resistivity structures. Whereas, the TEM data still have sufficiently early- to late-time information, and therefore resulted in a better resolution depth of about 100 m for the shallow to sufficiently-deep resistivity structures. The final 1D/2D RMT and 1D/3D TEM resistivity models displayed a satisfied correlation with both thicknesses derived from the stratigraphic-control boreholes and resistivities measured from direct-current (DC) and spectral induced polarization (SIP) laboratory techniques on 16 rock samples. As demonstrated, the integrated use of azimuthal RMT and in-loop TEM soundings was highly successful and effective at mapping the major stratigraphic units at the survey areas, i.e. the shallowest conductive Garzweiler and Frimmersdorf Coals within their fairly resistive sand background. They could not distinguish between Neurath Sand and the underlying sand/silt or between Frimmersdorf Coal and the underlying organic clay. The deepest Morken Coal was beyond the depth-of-investigation of the present measurements. Finally, the resistivity models revealed that both coal seams gently dip in the southwesterly direction. This should be in fairly good agreement with the regional structural makeup of the Rhineland brown coal. However, they showed that Garzweiler Coal is gradually thinned northeastwards, while Frimmersdorf Coal still has almost a regular thickness

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Photonic Sensors Based on Integrated Ring Resonators

    Get PDF
    This thesis investigates the application of integrated ring resonators to different sensing applications. The sensors proposed here rely on the principle of optical whispering gallery mode (WGM) resonance shifts of the resonators. Three distinct sensing applications are investigated to demonstrate the concept: a photonic seismometer, an evanescent field sensor, and a zero-drift Doppler velocimeter. These concepts can be helpful in developing lightweight, compact, and highly sensitive sensors. Successful implementation of these sensors could potentially address sensing requirements for both space and Earth-bound applications. The feasibility of this class of sensors is assessed for seismic, proximity, and vibrational measurements

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 154

    Get PDF
    This bibliography lists 511 reports, articles and other documents introduced into the NASA scientific and technical information system in October 1982

    NASA Patent Abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 20)

    Get PDF
    Entries for approximately 4000 citations for the period May 1969 through December 1981 are listed. Subject, invention, source, number, and accession number indexes are included

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 19)

    Get PDF
    Citations of approximately 4,000 patents and patent applications for the period May 1969 through July 1981 are indexed according to subject, invention, source, number, and accession number
    corecore