4,795 research outputs found

    On the optimality of ternary arithmetic for compactness and hardware design

    Full text link
    In this paper, the optimality of ternary arithmetic is investigated under strict mathematical formulation. The arithmetic systems are presented in generic form, as the means to encode numeric values, and the choice of radix is asserted as the main parameter to assess the efficiency of the representation, in terms of information compactness and estimated implementation cost in hardware. Using proper formulations for the optimization task, the universal constant 'e' (base of natural logarithms) is proven as the most efficient radix and ternary is asserted as the closest integer choice.Comment: 10 pages, 3 figure

    Efficient Unified Arithmetic for Hardware Cryptography

    Get PDF
    The basic arithmetic operations (i.e. addition, multiplication, and inversion) in finite fields, GF(q), where q = pk and p is a prime integer, have several applications in cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1], the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4], and also recently identity based cryptography [5, 6]. Most popular finite fields that are heavily used in cryptographic applications due to elliptic curve based schemes are prime fields GF(p) and binary extension fields GF(2n). Recently, identity based cryptography based on pairing operations defined over elliptic curve points has stimulated a significant level of interest in the arithmetic of ternary extension fields, GF(3^n)

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer

    Novel Ternary Logic Gates Design in Nanoelectronics

    Get PDF
    In this paper, standard ternary logic gates are initially designed to considerably reduce static power consumption. This study proposes novel ternary gates based on two supply voltages in which the direct current is eliminated and the leakage current is reduced considerably. In addition, ST-OR and ST-AND are generated directly instead of ST-NAND and ST-NOR. The proposed gates have a high noise margin near V_(DD)/4. The simulation results indicated that the power consumption and PDP underwent a~sharp decrease and noise margin showed a considerable increase in comparison to both one supply and two supply based designs in previous works. PDP is improved in the proposed OR, as compared to one supply and two supply based previous works about 83% and 63%, respectively. Also, a memory cell is designed using the proposed STI logic gate, which has a considerably lower static power to store logic ‘1’ and the static noise margin, as compared to other designs

    A versatile Montgomery multiplier architecture with characteristic three support

    Get PDF
    We present a novel unified core design which is extended to realize Montgomery multiplication in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic curve schemes, as well as the identity-based encryption which requires a pairing computation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit representation to reduce the critical path delay. While the carry-save representation used in classical unified architectures is only good for addition and multiplication operations, the redundant signed digit representation also facilitates efficient computation of comparison and subtraction operations besides addition and multiplication. Thus, there is no need for a transformation between the redundant and the non-redundant representations of field elements, which would be required in the classical unified architectures to realize the subtraction and comparison operations. We also quantify the benefits of the unified architectures in terms of area and critical path delay. We provide detailed implementation results. The metric shows that the new unified architecture provides an improvement over a hypothetical non-unified architecture of at least 24.88%, while the improvement over a classical unified architecture is at least 32.07%
    • …
    corecore