
Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate/compeleceng
A versatile Montgomery multiplier architecture with characteristic
three support

E. Öztürk a, B. Sunar a, E. Savas� b,*

a Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
b Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR-34956, Turkey

a r t i c l e i n f o
Article history:
Received 7 July 2007
Received in revised form 3 April 2008
Accepted 8 May 2008
Available online xxxx

Keywords:
Montgomery multiplication
Public key cryptography
Finite fields
Identity-based cryptography
0045-7906/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.compeleceng.2008.05.009

* Corresponding author. Tel.: +90 216 483 9606;
E-mail addresses: erdinc@wpi.edu (E. Öztürk), su

Please cite this article in press as: Öztür
Comput Electr Eng (2008), doi:10.1016/j
a b s t r a c t

We present a novel unified core design which is extended to realize Montgomery multipli-
cation in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic
curve schemes, as well as the identity-based encryption which requires a pairing compu-
tation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified
core utilizes the redundant signed digit representation to reduce the critical path delay.
While the carry-save representation used in classical unified architectures is only good
for addition and multiplication operations, the redundant signed digit representation also
facilitates efficient computation of comparison and subtraction operations besides addition
and multiplication. Thus, there is no need for a transformation between the redundant and
the non-redundant representations of field elements, which would be required in the clas-
sical unified architectures to realize the subtraction and comparison operations. We also
quantify the benefits of the unified architectures in terms of area and critical path delay.
We provide detailed implementation results. The metric shows that the new unified archi-
tecture provides an improvement over a hypothetical non-unified architecture of at least
24.88%, while the improvement over a classical unified architecture is at least 32.07%.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent years there has been an increase in the research activity on pairing-based cryptography such as the identity-
based cryptosystems [5]. Identity-based cryptography was first proposed by Shamir [18] in 1985. Rather than deriving a
public key from a private information, in the identity-based schemes identity of a user plays the role of the public key. This
reduces the computations required for authentication, and simplifies key management.

Elliptic curve and RSA (or Diffie–Hellman) schemes are typically implemented over GF(p) or GF(2n) and over Zn (or GF(p)).
Numerous architectures were proposed to support arithmetic for elliptic curve cryptography and RSA-like schemes [16,3].
Unified architectures for the fields GF(p) and GF(2n) were also proposed [16,8,25,15,21,17,1]. However, the emergence of
pairing-based cryptography has attracted a significant level of interest in arithmetic in GF(3m). Hardware architectures for
arithmetic in the characteristic three have appeared in [13,19,4].

Pairing-based cryptography may utilize all the three kinds of mathematical structures. Moreover, ECC and RSA schemes
are typically implemented over prime or binary fields and integer rings, respectively. Thus, it would be highly desirable to
have a single piece of unified hardware that supports arithmetic in all the three kinds of domains simultaneously. To the best
of our knowledge, such an architecture is still lacking.
. All rights reserved.

fax: +90 216 483 9550.
nar@wpi.edu (B. Sunar), erkays@sabanciuniv.edu (E. Savas�).

k E et al., A versatile Montgomery multiplier architecture with characteristic ...,
.compeleceng.2008.05.009

https://core.ac.uk/display/11740453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:erdinc@wpi.edu
mailto:sunar@wpi.edu
mailto:erkays@sabanciuniv.edu
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng


2 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
While a unified architecture is highly desirable, the scalability and efficiency of the hardware is important. Here, we use
the notion of scalability as introduced in [20]. The design should scale without the redesign of the architecture, by simply
increasing the number of processing units. The scalability feature along with the unified approach would allow the architec-
ture to support a wide spectrum of operating points ranging from low-end and low-power devices to high-end server plat-
forms. For efficiency reasons, we design our architecture around a carry-free architecture. Furthermore, the scalable nature
of the design allows the pipelining techniques to be used to further improve efficiency. Our architecture supports the basic
arithmetic operations (i.e. addition, multiplication and inversion) in the arithmetic extension fields GF(p),1 GF(2n) and GF(3m).
All operations are carried out in the residue space defined by the Montgomery multiplication algorithm [11].

Contributions of this work are outlined as follows:

� We propose a new and more efficient unified multiplier that operates in three fields, namely GF(p), GF(2n), and GF(3m). To
the best of our knowledge, this is the first attempt to combine the arithmetic of these three, cryptographically important,
finite fields in a single datapath.

� We present a metric to quantitatively demonstrate the advantages of the proposed unified multiplier over the classical
unified multiplier that supports arithmetic only in GF(p) and GF(2n). The unified architectures proposed so far
[16,8,17,25] lacked the quantitive analysis of the advantage of using a unified approach. It has only been reported that
unified architecture results in negligible overhead in area and in critical path delay (CPD). In this work, we quantified
the gain in terms of the Area � CPD metric, which showed that the benefits of the new unified architecture far exceed that
of the classical unified architecture.

� We utilize a different carry-free arithmetic that allows efficient comparison and subtraction operations in GF(p)-mode. The
classical unified architectures [16,8,17,25] utilize the carry-save representation in order to eliminate the carry propagation
in GF(p) mode. It is not easy to perform subtraction and comparison operations in the carry-save representation, where field
elements are expressed as the sum of two integers. For instance [25] transforms the elements of GF(p) that are in the carry-
save form to the non-redundant form by adding the number to itself repeatedly in order to perform comparison and
subtraction operations necessary to realize other field operations such as multiplicative inversion. For our carry-free arith-
metic, the field elements are represented as the difference of two field elements, instead of sum. This representation facil-
itates efficient subtraction and comparison operations. Consequently, all arithmetic operations in cryptographic
computations can be performed without the need of transformations between the redundant and the non-redundant forms.

� We computed the execution times of basic operations for three prominent public key cryptography algorithms: ECC scalar
point multiplication, RSA exponentiation, and Tate pairing computations. The results show that the Tate pairing compu-
tations used in the identity-based cryptosystems can be performed by the proposed unified architecture in a comparably
efficient manner.

In addition, a contribution of lesser importance is the introduction of scalable Montgomery algorithm for ternary exten-
sion field, GF(3m). Although it is a straightforward adaptation of the algorithm presented in [20] to ternary extension fields, it
is the first attempt to formulate such an algorithm.

In Section 2, we introduce the traditional RSD representation and our notational conventions. Then, the unified core
design is explained in Section 3. Section 4 presents the Montgomery multiplication algorithms for the three fields. In Section
5, we introduce the Montgomery multiplier design, and describe the relevant system-level architectural details such as pipe-
lining and architectural scaling. We then present the complexity analysis and implementation results in Section 6. We pro-
vide the timing estimates for the particular configurations with varying number of processing units and give a comparative
analysis in Section 7. Section 8 provides a discussion on the side-channel attacks, that is followed by the conclusion.

2. Redundant signed digit (RSD) arithmetic

Although carry-free arithmetic decreases the propagation delay in addition operations, the use of carry-free arithmetic for
the modular subtraction operations introduces significant problems. When two’s complement representation is used for
subtraction, the carry overflow must be ignored. If there is no carry overflow, the result is negative. Since there can be hidden
carry overflow with carry-free representation, it is hard to be sure that the result is positive or negative. It requires additional
operations and additional hardware, which increases both latency and area. The RSD representation was introduced by Avi-
zienis [2] in an effort to overcome this difficulty.

Arithmetic in the RSD representation is quite similar to carry-free arithmetic. An integer is still represented by two po-
sitive numbers; however, the non-redundant form of the representation is the difference between these two numbers, not
the sum. If the number X is represented by xp and xn, then X = xp � xn.

One advantage of using the RSD representation is that it eliminates the need for two’s complement representation to han-
dle negative numbers. It is thus much easier to do both addition and subtraction operations without worrying about the car-
ry and borrow chain. Furthermore, the subtraction operation does not require taking two’s complement of the subtrahend. It
is a more natural representation if both addition and subtraction operations need to be supported. This is indeed the case in
1 Since we do not make use of the field properties in our design, the architecture supports also arithmetic in integer rings Zn and hence supports RSA.

Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
the Montgomery multiplication and inversion algorithms. Also, comparison of two integers is much easier with the RSD rep-
resentation. After subtracting one integer from the other one, which is a simple addition operation, a conventional compar-
ator can be utilized.

2.1. Number representations

As mentioned earlier, the integer X is represented by two integers, xp and xn, and X = xp � xn. For the RSD representation,
we reserve the notation (xp,xn) to represent the number X. The RSD representation for the extension fields is described as
follows:

1. Prime field GF(p): Elements of the prime field GF(p) may be represented as integers in the binary form. In the binary RSD
representation, its digits can have three different values: 1, 0 and �1. These three digit values are represented as
Plea
Com
1! ð1;0Þ;
0! ð0;0Þ;
� 1! ð0;1Þ:
2. Binary extension field GF(2n): Elements of the field GF(2n) may be considered as polynomials with coefficients from GF(2).
This allows one to represent GF(2n) elements by simply ordering its coefficients into a binary string. Since there is no carry
chain in GF(2) arithmetic, a digit can have the values 1 or 0. These values are represented as
1! ð1;0Þ;
0! ð0;0Þ:
3. Ternary extension field GF(3m): Elements of the extension field GF(3m) may be considered as polynomials over GF(3). The
coefficients can take the values �2, �1, 0, 1, and 2. However, since there is no carry propagation in GF(3m) polynomial
arithmetic, the digit values �2 and 2 are congruent to 1 and �1, respectively. The RSD representations for possible coef-
ficient values are given as
2! ð0;1Þ;
1! ð1;0Þ;
0! ð0;0Þ;
� 1! ð0;1Þ;
� 2! ð1;0Þ:
3. Unified arithmetic core

We first build a unified arithmetic core for the basic arithmetic operations (i.e. addition, subtraction and comparison). The
core is unified so that it can perform the arithmetic operations of three extension fields: GF(p), GF(2n) and GF(3m). Since the
elements of the three different fields are represented using a very similar data structure, the algorithms for the basic arith-
metic operations in these fields are structurally identical. We use this fact to our advantage to realize a unified arithmetic
core.

3.1. The architecture

The conventional 1-bit full adder assumes positive weights for all its three binary inputs and two outputs. However, full
adders can be generalized to have both positive- and negative-weight inputs and outputs. This allows us to construct an ad-
der design with both inputs and outputs in the RSD form, since we can have negative-weight numbers as inputs. In our core
design, we used two forms of the generalized full adders as shown in Fig. 1: one negative-weight input (GFA-1) and two neg-
ative-weight inputs (GFA-2). Note that GFA-0 is identical to a common full adder design.

The logic behaviors of a common full adder and two generalized full adders are shown in Fig. 2. As visible from the truth
table, GFA-1 and GFA-2 have the same logical characteristics. The only difference is the order of the inputs and outputs. The
same hardware is used for both types of generalized full adders. However, it should be noted that the decoding of the outputs
is different. For GFA-1, the result is decoded as 2c � s. For GFA-2, the result is decoded as �2c + s.

A single digit unified adder unit is constructed using two of the generalized full adders as shown in Fig. 3b. The unified
adder unit has two digits in the RSD representation as inputs and one digit in the RSD representation as output. The unified
digit adder unit also has carry input and output, which are only used for arithmetic in GF(p). In total, the unit has 5 bits input
and 3 bits output.

We start by designing the hardware for the prime fields (GF(p)) first. Two generalized full adders connected in the con-
figuration shown in Fig. 3a are sufficient to handle the digit arithmetic of GF(p) elements. To make the adder architecture
se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



s c

GFA−0 GFA−1 GFA−2

s c s cx y z

0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

00

1

0

0 0

1 1

0 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

1

0

0

1

1

1

Fig. 2. Logic tables of the three generalized full adders.

cout

yn

cin

yp

zz p n

x xpn

(a) Single RSD adder unit.

cout

yn

cin

yp

x x

zzp n

pn

0

01s1 1 02 [s1,s0]

(b) Unied RSD adder unit.

Fig. 3. RSD adder unit with both inputs and outputs in RSD form.

c s

z

yx

c s

z

yx

c s

z

yx

Logic
symbol

Function

Type

x−+yz=2c+sx−y+z=2c−sx+y+z = 2c+s

GFA−0 GFA−1 GFA− 2

Fig. 1. Generalized full adders.

4 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



xn
n−1 yp

n−1
n
n−1yxp

n−1

nzp

...

xp
0 yp

0xn
0

n
0y

z p zn
0 0

xp
1 yp

1xn
1

n
1y

z p zn
1 1

1’b0

cout

zn−1n−1

RSD
Adder

RSD
Adder

RSD
Adder

Fig. 4. RSD adder.

E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 5

ARTICLE IN PRESS
work for GF(2n) arithmetic, we inhibit the carry chain. Also, since the digits can only have the values (0,0) and (1,0), the neg-
ative-weight inputs of the adder are set to logic 0.

Modifying the adder design to make it also work for GF(3m) is more difficult, since the hardware works for base two and
we need to support base three. The carry-free structure of the GF(3m) arithmetic operations makes our task easier. When
carrying out arithmetic operations in GF(3m), the outputs of the adders have to be decoded. Since the generalized full adder
works in binary form, the output is also in binary. We need to convert this output to base 3 before entering the data into the
second generalized full adder. An XOR gate and an AND gate are sufficient for this conversion as shown in Fig. 3b. There is
also need for multiplexers, where the select inputs of the multiplexers determine the field in which the adder is operating.
The carry bits are only used when the circuit functions in GF(p) mode. In Fig. 3b, s1 and s0 are the select inputs of the mul-
tiplexers. The modes of the hardware are
Plea
Com
½s1; s0� ¼ 0;0! GFðpÞ;

½s1; s0� ¼ 0;1! GFð2nÞ;

½s1; s0� ¼ 1;0! GFð3mÞ:
Now, we need to cascade n single digit RSD units in order to build an n-digit RSD adder. Fig. 4 shows the backbone of the
structure. There are n 1-digit RSD adders and one GFA-1 adder to handle the last carry bit, which is omitted in GF(2n) and
GF(3m).

3.2. Addition

The addition operation is implemented as shown in Fig. 4. The negative and positive parts of the numbers are entered
accordingly, and the select inputs of the multiplexers are set for the desired field operations. There are also two control in-
puts to the adder for selecting the field, sel2 and sel3, which are not shown in Fig. 4. These inputs are decoded accordingly and
they determine the select inputs of the multiplexers. It should be noted that, carry propagation occurs only between neigh-
bouring cells as shown in Fig. 4.

3.3. Subtraction

Subtraction operation is identical to the addition operation. The only difference is that the positive and the negative parts
of the numbers in the RSD form are swapped before the operation. Swapping the positive and negative parts negates the
number:
X ¼ ðxp; xnÞ ¼ xp � xn;

Y ¼ ðyp; ynÞ ¼ yp � yn;

X � Y ¼ ðxp; xnÞ � ðyp; ynÞ ¼ ðxp; xnÞ þ ðyn; ypÞ:
3.4. Comparison

To compare two numbers given in the RSD representation, first one must be subtracted from the second one. After sub-
traction, the positive and negative components of the result are compared. This can be realized using a conventional com-
parator design. If the positive part is larger, the first number is greater than the second one. If the negative part is larger, the
second number is greater than the first one. If both parts are equal, then the numbers being compared are equal.

The comparison operation has two components: RSD adder and comparator. There are already RSD adders in the design
and one of them could be utilized for comparison. Also, a single RSD adder can be instantiated for comparison reasons only,
without a significant area overhead.
se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



Table 1
Implementation results of comparator design with different word sizes

Word length 500 MHz Max. freq.

Area CPD (ns) Area CPD ‘(ns)

8 47 0.72 70 0.39
16 95 0.80 161 0.42
32 191 1.24 391 0.49
64 451 1.35 756 0.55

6 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
Furthermore, a conventional comparator is used for comparing the positive and negative parts of the resultant of the sub-
traction operation. We designed this comparator using Verilog and synthesized with Synopsys Design Compiler with
0.13 lm ASIC library. The results are given in Table 1.

We also implemented a single RSD adder to utilize for comparison. Synthesis results showed that the minimum CPD of a
single RSD adder is 0.66 ns. This shows that the critical path of an adder and a comparator connected back to back will not be
more than the overall circuit, even for the 64-bit case. Thus, the word comparison operation can be performed in a single
clock cycle.

It should be noted that most of the field arithmetic operations require the equality comparison of two numbers. Hence, a
much simpler comparator could be utilized for comparison operations.

4. Montgomery multiplication

The Montgomery multiplication algorithm [11] is an efficient method for performing modular multiplication with an odd
modulus. The algorithm replaces costly division operations with simple shifts, which are particularly suitable for the imple-
mentations on general-purpose computers.

Given two integers A and B, and the odd modulus M, the Montgomery multiplication algorithm computes
Z ¼ MonMulðA;BÞ ¼ A � B � R�1 modM, given A,B < M and R such that gcd(R,M) = 1. Even though the algorithm works for
any R which is relatively prime to M, it is more useful when R = 2n, where n = dlog2(M)e. Since R is chosen to be a power
of 2, the Montgomery algorithm performs divisions by a power of 2, which is basically shift operations in digital computers.
The Montgomery multiplication algorithm for binary extension fields GF(2n) is first introduced in [10]. We describe the
Montgomery multiplication algorithm for ternary extension fields GF(3m) in the subsequent sections.

The proposed adder design is used to build a Montgomery multiplier architecture. Since we want our hardware to support
arithmetic in three different fields, we identify similarities between the arithmetic algorithms and integrate them together
into a single hardware implementation.

4.1. Radix-2 Montgomery multiplication algorithm for GF(p) and GF(2n)

The use of a fixed precision word alleviates the broadcast problem in the circuit implementation. Furthermore, a word-
oriented algorithm allows the design of a scalable unit. For a modulus of n-bit precision, and a word size of w bits,
e = d(n + 1)/wewords are required for storing field elements. Note that an extra bit is used for the variables holding the partial
sum in the Montgomery algorithm for GF(p), since the partial sums can reach (n + 1)-bit precision. The algorithm we used
[20] scans the multiplicand operand B word-by-word, and the multiplier operand A bit-by-bit. The vectors used in the mul-
tiplication operations are expressed as
Plea
Com
B ¼ ðBðe�1Þ; . . . ;Bð1Þ;Bð0ÞÞ;
A ¼ ðan�1; . . . ; a1; a0Þ;
p ¼ ðpðe�1Þ; . . . ;pð1Þ;pð0ÞÞ;
where the words are marked with superscripts and the bits are marked with subscripts. For example, the ith bit of the kth
word of B is represented as BðkÞi . A particular range of bits in a vector B from position i to j where j > i is represented as Bj. . .i.
(xjy) represents the concatenation of two bit sequences. Finally, 0n stands for an all-zero vector of n bits. The algorithm is
shown in Algorithm 1.

Algorithm 1: Montgomery multiplication algorithm for GF(p)
Require: A,B 2 GF(p) and p
Ensure: C = A � B � 2�n 2 GF(p), where n = dlog2pe
1: T :¼ 0n

2: for i from 0 to n � 1 do
3: (CarryjT(0)) :¼ ai � B(0) + T(0)

4: Parity :¼ Tð0Þ0

5: (CarryjT(0)) :¼ Parity � p(0) + (CarryjT(0))
se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
6: for j from 1 to e � 1 do
7: (CarryjT(j)) :¼ ai � B(j) + T(j) + Parity � p(j) + Carry
8: Tðj�1Þ :¼ ðT ðjÞ0 j T

ðj�1Þ
w�1...1Þ

9: end for
10: Te�1 :¼ ðCarry j T ðe�1Þ

w�1...1Þ
11: end for
12: C :¼ T
13: if C > p then C :¼ C � p
14: return C

We use the RSD form for every vector in the multiplication algorithm, so each bit expressed in this algorithm is represented
by two bits in the hardware, positive and negative parts of the numbers. As an example: T0

0 ¼ ðT
0
0;p; T

0
0;nÞ.

The GF(2n) version of the algorithm is structurally identical with only a few minor differences. First of all, the
operands and temporary variable T are represented as polynomials in the algorithm. The modulus is also a polynomial,
P(x). As a result of the polynomial arithmetic, the addition symbols, i.e. ‘+’ represent carry-free addition or bit-wise XOR
operation. Since polynomial addition is a carry-free operation, Carry is ignored in Steps 3, 5, 7 and 9. Also, Step 13 is not
operated.

4.2. Radix-3 Montgomery multiplication algorithm for GF(3m)

Montgomery multiplication algorithms for GF(p) and GF(2n) are similar to each other because they are both implemented
in radix-2. Since the Montgomery multiplication algorithm for GF(3m) is implemented in radix-3, the algorithm needs to be
modified. We already explained the differences for the addition part in RSD representation and we showed that both radix-2
and radix-3 representations can be implemented on a single hardware.

We will use the polynomial basis representation for GF(3m). For a modulus size of m and a word size of w, e = d (m + 1)/we
words are required. Since there is no carry computation in GF(3m) arithmetic, there will be no need for any extra digits used
other than those used for the variable polynomials. Every coefficient of the operands and the modulus is represented by
2 bits in the hardware, one for the positive part and one for the negative part, since the coefficients are in RSD representation.
The algorithm scans the words of operand B(x), and the coefficients of operand A(x). In the radix-3 representation, the poly-
nomials used in the multiplication operation are expressed as
Plea
Com
BðxÞ ¼ bðe�1Þ � xðe�1Þ�w þ � � � þ bð1Þ � xw þ bð0Þ
� �

;

AðxÞ ¼ ðan�1 � xn�1 þ � � � þ a1 � xþ a0Þ;

pðxÞ ¼ pðe�1Þ � xðe�1Þ�w þ � � � þ pð1Þ � xw þ pð0Þ
� �

;

where the words are marked with superscripts and the coefficients are marked with subscripts. For example, the ith coef-
ficient of the kth word of B(x) is represented as BðkÞi . The algorithm is shown in Algorithm 2.

Algorithm 2: Montgomery multiplication algorithm for GF(3m)
Require: A(x),B(x) 2 GF(3m) and p(x)
Ensure: C(x) = A(x) � B(x) � 3�m 2 GF(3m), where m is the degree of p(x)
1: T(x) :¼ 0
2: for i from 0 to m � 1 do
3: T(0) :¼ ai � B(0) + T(0)

4: if Tð0Þ0 ¼ pð0Þ0

5: T(0) :¼ T0 � p(0)

6: for j from 1 to e � 1 do
7: T(j) :¼ ai � B(j) + T(j) � p(j)

8: Tðj�1Þ :¼ ðTðjÞ0 j T
ðj�1Þ
w�1...1Þ

9: end for
10: else
11: T(0) :¼ T0 + p(0)

12: for j from 1 to e � 1 do
13: T(j) :¼ ai � B(j) + T(j) + p(j)

14: Tðj�1Þ :¼ ðTðjÞ0 j T
ðj�1Þ
w�1...1Þ

15: end for
16: end if
17: Te�1 :¼ ðð0;0Þ j Tðe�1Þ

w�1...1Þ
18: end for
19: return T(x)
se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



B

p

T

. . . 

T0 T0

SR−T

SR−B

SR−p

a0 ak−1

SR−A

PU

Stage 1

PU

Stage k

Fig. 5. Pipeline organization for the Montgomery multiplier.

8 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
5. Multiplier architecture

In this section, we explain the multiplier design which implements Algorithms 1 and 2 in a single architecture. We do not
go into the detail of the global control logic path since its function can be inferred easily from the algorithms.

5.1. Pipeline organization

The presented Montgomery multiplication algorithms have the same loop structure: outer and inner loops with the vari-
ables i and j, respectively. Each processor unit (PU)2 is responsible for one step of the outer loop with the variable i. Each PU
receives the ai digit as input. Also, every PU receives B(j), p(j) and T(j) as inputs, according to the inner loop variable j. The pipeline
organization is shown in Fig. 5.

An important aspect of the pipeline is the organization of the registers. The digits ai of the multiplier A are given serially to
the PUs, and are used only for one iteration of the outer loop. So they can be discarded immediately after use. Therefore, a
simple shift register with a load input will be sufficient. Also, rather than storing the multiplier A in a register, we can have a
serial input for every digit and we store only the necessary ai digit inside a register, only when it is needed. This will reduce
the area and power consumption of the architecture. The registers for the modulus p and multiplicand B can also be shift
registers.

The multiplication starts with the first PU by processing the first iteration of the outer loop of the algorithm. As can be
seen from Algorithm 1, the data required for the second iteration will be ready after 2 clock cycles. Therefore, the second
PU has to be delayed from the first PU by 2 clock cycles. This is realized by using two stages of registers in between. Also,
these registers are handling the shift operations for the partial sum (Step 8 of Algorithm 1) as shown in Fig. 5.

When the first PU finishes the operations of an iteration step of the outer loop, it starts working on the next available
iteration loop, and the second PU will be done in 2 clock cycles and will start working on the next available iteration. The
same computation pattern is repeated for the entire pipeline organization.

If there are sufficiently many PUs, the first PU will be done with the first iteration of the loop when the last PU operates on
the last iteration of the same loop. There will be no pipeline stall and no need for intermediate shift registers hold the data.
The pipeline can continue working without stalling. This condition is satisfied if the number of PUs is at least half of the num-
ber of words of the operand. However, if there are not sufficiently many PUs, which means that a pipeline stall occurs, the
modulus and multiplicand words generated at the last stage of the pipeline have to be stored in registers.

The shift registers SR-T, SR-p and SR-B hold these values when there is a pipeline stall. The length of these shift registers is
of crucial importance and is determined by the number of pipeline stages k and the number of words e in the modulus. The
width of the shift registers is equal to w, the word size. The length of these registers can be given as
2 We

Plea
Com
L ¼
e� 2 � ðk� 1Þ if e P 2k;

0 otherwise:

�

5.2. Processing unit

The processing unit consists of two layers of adder blocks or unified arithmetic cores (cf. Section 3). The arithmetic core is
capable of performing addition and subtraction operations in the fields GF(p), GF(2n) and GF(3m). The block diagram of a pro-
cessing unit with word size w = 3 is shown in Fig. 6.
will define the internal structure of the PU in the following section.

se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



a * Bi

a * Bi

a * Bi

a * Bi

a * Bi

a * Bi

Parity*p

Parity*p

Parity*p

0

1

2

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

T1

T1
p

n

T
T2

p

n

1

p
1
n

0

p
0
n

2

p
2
n

2

T0

T0
p

n

T1

T1
p

n

T
T2

p

n
2

T0

T0
p

n

Fig. 6. Processing unit (PU) with w = 3.

E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 9

ARTICLE IN PRESS
As can be seen in the figure, a PU is responsible for performing the operation:
Plea
Com
ai � BðjÞ þ TðjÞ � pðjÞ:
This step is common for all the three fields, so this part of the PU is a very simple combination of the unified arithmetic cores.
The inputs to these adders come from decoders designed to handle arithmetic in three different fields.

We need a simple logic for multiplying a single digit ai of the multiplier A with a word B(j) of the multiplicand B to realize
the first part ai � B(j) of the operation. Since ai can only have the values (0,0), (1,0) or (0,1), the result of ai � B(j) can be 0, B(j) or
�1 � B(j), respectively. Negating an integer is realized by simply swapping the positive and negative bits of its digits. A simple
special encoder would be sufficient for this. We need another logic circuit to determine the parity in each iteration of the
outer loop. We check the right-most digit of the modulus, i.e. pð0Þ0 and the right-most digit of the operation T(0) = a0 � B(0) + T(0),
T ð0Þ0 and determine the parity:
Parity ¼
ð0;0Þ if Tð0Þ0 ¼ ð0;0Þ;
ð0;1Þ if pð0Þ0 ¼ Tð0Þ0 ;

ð1;0Þ otherwise:

8><
>:
This is very similar to the encoder logic we used earlier. One difference is that since the parity is computed only once for
every iteration step, it needs to be stored in a register after being computed by the PU.

6. Complexity analysis

As mentioned earlier, if the number of PUs is at least half of the number of words in the operand, the pipeline will not stall
and every PU will continuously operate. For multiplication, the total computation time, latency (clock cycles), is given as
Latency ¼
2ðm� 1Þ þ e if e P 2k;

m
k

� �� �
eþ 2ððm� 1ÞmodkÞ otherwise:

(
ð1Þ
The graphs given in Fig. 7 illustrate how the latency of Montgomery multiplication changes for various operand lengths and
for a variable number of PUs.

Table 2 shows the estimates for the number of clock cycles required for realizing ECC scalar point multiplication, RSA
exponentiation, and Tate pairing computations with the modified Duursma–Lee algorithm. We pick a word size of 8-digits.
For the implementation of ECC with 160 bits, we assume mixed coordinates and the NAF representation are used to realize
the scalar point multiplication operation. For point doubling we use Jacobian coordinates and for point addition we use
affine + Jacobian coordinates. For RSA, we assume a full 1024-bit exponent and use the square multiply algorithm. The Tate
pairing computation is realized using the modified Duursma–Lee algorithm [9] over the field GF(36�97). (The original Duurs-
ma–Lee algorithm was proposed in [7].) Note that the chosen lengths provide similar levels of security. We are not getting
se cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
put Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



0 5 10 15 20
300

400

500

600

700

800

900

1000

1100

1200
Time for Moderate Precision

Number of Stages

T
im

e(
C

lo
ck

 C
yc

le
s)

m=160
m=192
m=224
m=256

0 20 40 60
1000

1500

2000

2500

3000

3500

4000

4500

5000
Time for High Precision

Number of Stages

T
im

e(
C

lo
ck

 C
yc

le
s)

m=512
m=768
m=1024

Fig. 7. Computation time of Montgomery multiplication for various number of PUs and operand lengths.

Table 2
The execution times for the ECC scalar multiplication, the RSA exponentiation and the modified Duursma–Lee algorithms

Number of PUs 160-bit ECC (clock cycles) 1024-bit RSA (clock cycles) Tate pairing GF(397) (clock cycles)

4 1,507,728 50,340,864 1,211,808
8 772,524 25,187,328 796,220
16 630,708 12,628,992 796,220
32 630,708 6,386,688 796,220

10 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
into the details of the clock cycle computations for the ECC and the RSA cases, since the computations are trivial. For the Tate
pairing case we note that the modified Duursma–Lee algorithm [9] iterates 97 times and works by performing the operations
in the field GF(397). In each iteration, 20 multiplications and 10 cubing operations are carried out in the field GF(397). Each
cube computation may be realized via two multiplications bringing the total number of multiplications to 40 per iteration of
the main loop of the modified Duursma–Lee algorithm. Including the additional four multiplications performed in the ini-
tialization of the algorithm, the total number of multiplications are found as 40 � 97 + 4 = 3884. In the 4 PU case, the latency
of one multiplication is found using Eq. (1) as 312 clock cycles. Hence, the total paring computation requires
3884 � 312 = 1,211,808 cycles. For the 8 PU case, the latency of one multiplication operation is found as 205 clock cycles lead-
ing to a total number of 796,220 clock cycles.

7. Results and comparison

In this section, we provide implementation results of the proposed unified architecture to demonstrate its advantage over
classical architectures. We also include the implementation results of unified Montgomery multiplier circuit that operates in
three finite fields. In addition, we present a qualitative comparison of the proposed architecture with the previously defined
architectures.

7.1. PU architecture

The presented architecture was developed into Verilog modules and synthesized using the Synopsys Design Compiler
tool. In the synthesis, we used the TSMC 0.13 lm ASIC library and assumed a word size of 8 bits. The maximum operating
frequency of the design was found as 800 MHz. However, the synthesis tool will try to optimize the circuit for timing if we
Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



Table 3
Execution times at frequency f = 500 MHz (Section 7)

Number of PUs 160-bit ECC (ms) 1024-bit RSA (ms) Tate pairing GF(397) (ms)

4 3.015 100.681 2.424
8 1.545 50.374 1.592
16 1.261 25.258 1.592
32 1.261 12.773 1.592

E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 11

ARTICLE IN PRESS
set the target frequency at 800 MHz. Thus, for the rest of this section, we assume a target frequency of 500 MHz for synthesis
results. The timing results at 500 MHz for three prominent public key operations are given in Table 3. We note that if the
pipeline does not stall, as the number of PUs increases the register space will increase. Otherwise, the register space will stay
constant with the increasing number of PUs.

For proof of concept, we built and synthesized different PUs working on different fields. First category of implementations
are those working on a single field only. The implementations, denoted as A1, A2, and A3, are those working in fields GF(p)-
only, GF(2n)-only, and GF(3m)-only, respectively. In the second category, there are two unified architectures. The implemen-
tation, denoted as A4, is a unified architecture working in both fields GF(p) and GF(2n). And finally, the implementation A5 is
the unified architecture working in all three fields, namely GF(p), GF(2n), and GF(3m). All five architectures are implemented
for three different word sizes: 8, 16, and 32, and the implementation results of these architectures are summarized in Table
4.

From Table 4, the cost of unified architectures compared to GF(p)-only implementation can be captured as overhead both
in the area and in the critical path delay (CPD). However, the figures in Table 4 hardly give an idea about the advantage of the
unified architectures. Apparently, the advantage of the unified architectures is saving in the area without too much adverse
effect on the critical path delay. In order to measure the advantage of the unified architecture, we used (Area � CPD) as the
metric. We first investigated the first unified architecture A4 that has a single datapath for GF(p) and GF(2n) and compared it
against the implementation results of a hypothetical architecture, denoted as A1 + A2, that has two separate datapaths for
GF(p) and GF(2n). For the hypothetical architecture A1 + A2, the area is the sum of areas of A1 and A2 architectures, while
the critical path delay is the maximum CPD of these two architectures. The implementation results are summarized in Table
5. The improvement of the architecture is found to be about 7–8.5% in terms of the Area � CPD metric.

Similarly, we also investigated the advantage of the unified architecture, A5 over a hypothetical architecture, A1 + A2 + A3,
that has three separate datapaths for the fields GF(p), GF(2n), and GF(3m). The results summarized in Table 6 shows that the
advantage of using the unified architecture A5 is at least 34.83% in terms of the metric (Area � CPD). The improvement fig-
ures in Table 6 clearly demonstrate that the unified architecture A5 provides far superior performance compared to the clas-
sical unified architectures working for only the fields GF(p) and GF(2n).
Table 4
Implementation results of a PU with different word sizes

Word length A1 A2 A3 A4 A5

Area CPD (ns) Area CPD (ns) Area CPD (ns) Area CPD (ns) Area CPD (ns)

8 516 1.91 91 0.77 656 1.92 576 1.87 795 1.91
16 963 1.90 168 0.79 1257 1.92 1034 1.90 1556 1.92
32 1980 1.89 329 0.84 2534 1.92 2132 1.90 3013 1.92

Table 5
The advantage of the unified architecture A4, for GF(p) and GF(2n)

Word length Area CPD Area � CPD Improvement (%)

A1 A2 A1 + A2 A4 A1 A2 A1 + A2 A4 A1 + A2 A4

8 516 91 607 576 1.91 0.77 1.91 1.87 1159 1077 7.07
16 963 168 1131 1034 1.90 0.79 1.90 1.90 2149 1965 8.56
32 1980 329 2309 2132 1.89 0.84 1.89 1.90 4364 4051 7.17

Table 6
The advantage of unified architecture A5, for GF(p), GF(2n), and GF(3m)

Word length Area CPD Area � CPD Improvement (%)

A3 A1 + A2 + A3 A5 A3 A1 + A2 + A3 A5 A1 + A2 + A3 A5

8 656 1263 795 1.92 1.92 1.91 2425 1518 37.40
16 1257 2388 1556 1.92 1.92 1.92 4585 2988 34.83
32 2534 4843 3013 1.92 1.92 1.92 9299 5785 37.78

Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



Table 7
The advantage of the new unified architecture A5 over the classical unified architecture A4

Word length Area CPD Area � CPD Improvement (%)

A4 + A3 A5 A4 + A3 A5 A4 + A3 A5

8 1232 795 1.92 1.91 2365 1518 35.81
16 2291 1556 1.92 1.92 4399 2988 32.07
32 4666 3013 1.92 1.92 8959 5785 35.43

Table 8
Synthesis results for Montgomery multiplier architectures, with unified and separate datapaths

# of PUs Area CPD Area � CPD Improvement (%)

Separate paths Unified Separate paths Unified Separate paths Unified

4 10,644 8372 2 1.91 21,288 15,991 24.88
8 15,672 12,128 2 1.91 31,344 23,164 26.10

12 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
In order to see more clearly what one can gain with the new unified architecture A5 over the classical one, A4, we also
compared the two unified architectures in terms of the Area � CPD metric. The results summarized in Table 7 highlight
the advantage of the new unified architecture over the classical one, which is at least 32%.

7.2. Montgomery multiplier architecture

The Montgomery multiplier architecture presented in Section 5 was developed into Verilog modules and synthesized
using the Synopsys Design Compiler. In the synthesis, we used the TSMC 0.13 lm ASIC library and assumed a word size
of 8 bits. The maximum operating frequency of the multiplier architecture was found as 800 MHz. This shows that the PU
constitutes the critical path of the entire design. The synthesis results showed that the area of the multiplier for 4 PUs
and 8 PUs was 11,512 and 15,361 two-input NAND equivalent gates, respectively. We note that as the number of PUs in-
creases, the register space will increase if the pipeline does not stall. Otherwise, the register space will stay constant with
the increasing number of PUs.

Similarly, we also investigated the advantage of the unified Montgomery multiplier architecture over a hypothetical
architecture that has three separate datapaths for the fields GF(p), GF(2n), and GF(3m). The results, summarized in Table 8,
show that the advantage of using the unified architecture is at least about 25% in terms of the metric (Area � CPD). The
improvement figures in Table 8 clearly demonstrate that the unified multiplier architecture provides far superior perfor-
mance compared to the classical unified architectures working for only the fields GF(p) and GF(2n).

For our architecture, the final results are in the RSD form. After the field operations are completed, the results need to be
converted back to the more conventional form before being sent to the adversary. For example, if we are using our multiplier
in a Diffie–Hellman protocol, we need to perform an exponentiation operation first. During the exponentiation operation, the
intermediate results will stay in the RSD form. After completing the exponentiation operation, the final result has to be con-
verted back to the desired form, depending on the protocol. This conversion can be performed serially utilizing an 8-bit rip-
ple carry adder. Since this is done only once, the latency overhead it produces is negligible, we could even use a bit-serial
adder. However, we built an 8-bit ripple carry adder using Verilog and synthesized it with Synopsys Design Compiler, with
0.13 lm library with a target frequency of 500 MHz. Synthesis results showed that the critical path of this adder is 1.34 ns,
which is in the range of our multiplier circuit. The area of this adder is 66 gates equivalent. Thus, a word-serial addition oper-
ation can be performed without a significant area or a latency overhead.

7.3. Comparison with the previous unified architectures

In this section, we compare the new architecture against the previously proposed unified architectures in [1,8,15–
17,21,25] to put it in a perspective in relation to other unified architectures. The architecture in [16] is the first and perhaps
the most basic unified architecture, whose simplified processing unit (PU) for three bits is shown in Fig. 8. It basically con-
sists of two layers of dual-field adders (that add with or without carry) and assumes that all inputs are in the non-redundant
form. It keeps a temporary result in the redundant form, and therefore the final result is produced in the redundant form as
well. Consequently, the result must be converted back to non-redundant form if further computation is needed, which is the
case with all public key cryptography algorithms. For instance, a scalar point multiplication in ECC with moderate security
level (e.g. 160 bit) requires hundreds of multiplications,3 which results in as many conversion operations.

The redundant representation used in the previous unified architectures is the carry-save form, where an integer is rep-
resented as the sum of two other integers. The disadvantages of carry-save form are that (i) two integers in carry-save form
3 More than a thousand multiplications are required for the same security level if the projective coordinates are used.

Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



Adder

Adder AdderAdder

Adder
Dual-field

Adder
FSEL

   Shift &
 Alignment
    Layer

TC2(j) TS2(j) TC1(j) TS1(j) TC0(j) TS0(j)

TC2(j-1)    TS0(j) TC1(j-1)    TS1(j-1) TC0(j-1)    TS0(j-1)

B2(j) B1(j) B0(j)p2(j) p1(j) p0(j)

c

a i

Dual-field Dual-field

Dual-field Dual-field Dual-field

Fig. 8. Processing unit (PU) of the original unified architecture with w = 3.

E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 13

ARTICLE IN PRESS
cannot be compared and (ii) subtraction is costly. Therefore, the partial results during the computations of cryptographic
operations (i.e. elliptic curve scalar point multiplication RSA exponentiation, etc.) must be converted back to the non-redun-
dant form after every multiplication operation. The cost of the back transformation is twofold: (i) area for converter circuit
and (ii) time overhead (clock cycles) for reverse transformation. At the expense of extra overhead in time, the need for an
extra inverter circuit can be eliminated as suggested in [25], where conversion is achieved by repeated carry-save addition.

In summary, all the previously proposed unified architectures are designed to efficiently perform a single field multipli-
cation operation. They offer different properties to be appealing from various perspectives. The original unified architecture
[16] utilizes single-radix, where the multiplier is scanned one bit at a time. Au and Burgess [1] and Tenca et al. [21] proposes
unified multipliers that scan the multiplier two or three bits at a time in order to reduce the cycle count without too much
adverse effect on the critical path delay. The multiplier in [17] scans higher number of multiplier bits in GF(2n) mode than in
GF(p) mode in order to speedup the GF(2n) multiplication. The multipliers in [8,25] are not scalable (i.e. work for a fixed pre-
cision) while the architecture in [25] is suitable for performing other field operations with the aid of conversion between the
redundant and the non-redundant representations. Finally, Satoh and Takano [15] introduces a word-level (i.e. r-bit � r-bit)
unified multiplier to be used in a ECC processor. An extensive comparison of all the unified architectures and the proposed
one is summarized in Table 9.
Table 9
Comparison of unified architectures

Architecture GF(3) support Scalable Conversion
necessary?

High-radix
possible?

Dual-radix
possible?

Support for comparison and subtraction

[1] No Yes Yes High-radix No No
[8] No No Yes No No No
[15] No No Yes No No No
[16] No Yes Yes Extensible Extensible No
[17] No Yes Yes High-radix Dual-radix No
[21] No Yes Yes High-radix No No
[25] No No Yes No No Yes
Proposed Yes Yes No Extensible Extensible Yes

Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



14 E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx

ARTICLE IN PRESS
The proposed unified architecture is currently a single-radix implementation. However, it can easily be modified to work
in higher radix or dual radices by applying the design techniques in [1,21,17]. There is support for other arithmetic opera-
tions such as comparison and subtraction in GF(p)-mode due to the new redundant signed representation. This support also
exist in [25] at the expense of conversion operations from the redundant representation to the non-redundant
representation.

8. A note on side-channel attacks

In this section, we would like to briefly comment on the side-channel characteristics of the proposed RSD multiplier as it is
crucial to prevent information leakage through, so-called side-channels (i.e. execution time, power consumption, EM and
temperature profiles, etc.) in cryptographic applications. We would like to note that most of the side-channel countermea-
sures are typically applied at either the algorithm or the circuit levels. For instance, an effective DPA counter-measure imple-
mented at the algorithm layer is the randomized exponentiation [6]. On the other hand, at the circuit level masking
techniques may be applied [12]. At even lower levels, the so-called power balanced cell libraries [22,23,14] which provide
IC primitives that (ideally) have power consumption which is independent of the input bits, may be utilized. Any one of these
techniques can be used alongside with the proposed multiplier. For instance, the presented architecture may be re-synthe-
sized using a power balanced library at the cost of growing the area by roughly 2–3 times. On the other hand, a similar in-
crease in area would be expected if the (non-unified) multiplier units are separately re-synthesized with the same cell library.

As far as the side-channel performance of the individual components at the arithmetic level are concerned we could iden-
tify very little work in the literature. In [24], Walter and Samyde demonstrated a direct correlation between the Hamming
weights of the operands, and the power traces obtained during their multiplication. The authors conclude that it would be
possible to gain useful side-channel information from a parallel multiplier built using Wallace trees. The processing element
used in the multiplier proposed in this paper utilizes a redundant representation which will significantly reduce (if not elim-
inate) the correlation between the power traces from the Hamming weight of the operands. We can clearly claim that the
proposed multiplier will be more resilient from this perspective than the more traditional multipliers to side-channel at-
tacks. Furthermore, the same Ref. [24] considers pipelining to be an effective countermeasure to power attacks as multiple
words of the operands are processed together. This will make the task of discerning operand bits from the power traces more
difficult. The proposed architecture, therefore, has an additional level of protection against side-channel attacks due to its
highly pipelined design.

9. Conclusion

We presented a scalable and unified architecture to support arithmetic in GF(2n), GF(3m), and GF(p). Our design makes use
of the redundant signed digit representation (RSD), which reduces the critical path delay and simplifies the support for the
characteristic three arithmetic. Previous unified architectures are exclusively designed to implement field multiplication
operations and thus carry-save representation they utilized makes it very difficult to perform other operations such as com-
parison and subtraction. Consequently, classical unified architectures have to transform the redundant representation to the
non-redundant representation to perform these operations. However, these operations benefit from the proposed architec-
ture. For instance, a subtraction operation results in no overhead compared to addition since it can be done by wiring in
hardware.

Although there has been a consensus on the benefits of the unified architectures, no attempt has been reported in the
literature to this date to quantify this benefit. We, for the first time, characterized and compared our unified architecture
in terms of the {Area � CPD} metric and provided extensive implementation results to concretely establish the value of
the proposed architecture. We have found out that the proposed unified architecture provides at least 24.88% and 32.07%
improvement over non-unified architectures and classical unified architectures, respectively.

Our design is pipelined for improved efficiency and is scalable. Hence, different precisions can be easily supported with-
out the redesign of the core. The number of processing units can be adjusted to given silicon area and/or the desired perfor-
mance. We believe that this highly versatile architecture will fulfill a critical need in supporting elliptic curve cryptography,
RSA/DH schemes, and identity-based cryptography using a single architecture in an efficient manner.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments. The work of Berk Sunar is supported
by the National Science Foundation under Grant No. ANI-0133297 (NSF CAREER Award). The work of Erkay Savas� is sup-
ported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 105E089 (TUBITAK
Career Award).

References

[1] Au Lai-Sze, Burgess Neil. Unified radix-4 multiplier for GF(p) and GF(2n). In: ASAP; 2003. p. 226–36.
[2] Avizienis A. Signed-digit number representations for fast parallel arithmetic. IRE Trans Electron Comput, EC 1961(10):389–400.
Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009



E. Öztürk et al. / Computers and Electrical Engineering xxx (2008) xxx–xxx 15

ARTICLE IN PRESS
[3] Bajard Jean-Claude, Imbert Laurent, Nègre Christophe, Plantard Thomas. Efficient multiplication in GF(pk) for elliptic curve cryptography. In: IEEE
symposium on computer arithmetic; 2003. p. 181–7.

[4] Bertoni G, Guajardo J, Kumar SS, Orlando G, Paar C, Wollinger TJ. Efficient GF(pm) arithmetic architectures for cryptographic applications. In: Joye M,
editor. Topics in Cryptology – CT RSA 2003. Lecture notes in computer science, vol. 2612. Springer-Verlag; 2003. p. 158–75.

[5] Boneh D, Franklin MK. Identity-based encryption from the Weil pairing. In: Kilian J, editor. Advances in Cryptology – CRYPTO 2001. Lecture notes in
computer science, vol. 2139. Springer-Verlag; 2001. p. 213–29.

[6] Coron J-S. Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç ÇK, Paar C, editors. CHES 1999. Lecture notes in
computer science, vol. 1717. Springer-Verlag; 1999. p. 292–302.

[7] Duursma IM, Lee H-S. Tate pairing implementation for hyperelliptic curves y2 = xp � x + d. In: Laih C-S, editor. Advances in Cryptology – Asiacrypt 2003.
Lecture notes in computer science, vol. 2894. Springer-Verlag; 2003. p. 111–23.

[8] Großschädl J. A bit-serial unified multiplier architecture for finite fields GF(p) and GF(2m). In: Koç ÇK, Naccache D, Paar C, editors. CHES 2001. Lecture
notes in computer science, vol. 2162. Springer-Verlag; 2001. p. 202–19.

[9] Kerins T, Marnane WP, Popovici EM, Barreto PSLM. Efficient hardware for the tate pairing calculation in characteristic three. In: Rao JR, Sunar B, editors.
CHES 2005. Lecture notes in computer science, vol. 3659. Springer-Verlag; 2005. p. 412–26.

[10] Koç ÇK, Acar T. Montgomery multiplication in GF(2k). In: Proceedings of third annual workshop on selected areas in cryptography. Kingston, Ontario,
Canada: Queen’s University; 1996. p. 95–106. August 15–16.

[11] Montgomery PL. Modular multiplication without trial division. Math Comput 1985;44(170):519–21.
[12] Oswald E, Mangard S, Pramstaller N. Secure and efficient masking of AESA mission impossible. Technical report, Technical Report IAIK-TR 2003/11/1.

<http://eprint.iacr.org/>; 2004.
[13] Page D, Smart NP. Hardware implementation of finite fields of characteristic three. In: Kaliski Jr BS, Koç ÇK, Paar C, editors. Cryptographic hardware and

embedded systems — CHES 2002. Lecture notes in computer science, vol. 2523. Berlin: Springer-Verlag; 2002. p. 529–39.
[14] Regazzoni F, Badel S, Eisenbarth T, Grobschadl J, Poschmann A, Toprak Z, et al. A simulation-based methodology for evaluating the DPA-resistance of

cryptographic functional units with application to CMOS and MCML technologies. In: International conference on embedded computer systems:
architectures, modeling and simulation 2007 – IC-SAMOS 2007; 2007. p. 209–14.

[15] Satoh A, Takano K. A scalable dual-field elliptic curve cryptographic processor. IEEE Trans Comput 2003;52(4):449–60.
[16] Savas� E, Tenca AF, Koç ÇK. A scalable and unified multiplier architecture for finite fields GF(p) and GF(2m). In: Koç ÇK, Paar C, editors. Cryptographic

hardware and embedded systems – CHES 2000. Lecture notes in computer science, vol. 1965. Springer-Verlag; 2000. p. 277–92.
[17] Savas� E, Tenca AF, Çifçibas�i ME, Koç ÇK. Multiplier architectures for GF(p) and GF(2n). IEE Proc Comput Digital Tech 2004;151(2):147–60.
[18] Shamir A. Identity-based cryptosystems and signature schemes. In: Advances in cryptology – CRYPTO 1985. Lecture notes in computer science, vol.

196. Springer-Verlag; 1985. p. 47–53.
[19] Kerins T, Popovici E, Marnane WP. Algorithms and architectures for use in FPGA implementations of identity based encryption schemes. In: Field

Programmable logic and applications. Lecture notes in computer science, vol. 3203. Springer-Verlag; 2004. p. 74–83.
[20] Tenca AF, Koç ÇK. A scalable architecture for Montgomery multiplication. In: Koç ÇK, Paar C, editors. Cryptographic hardware and embedded systems.

Lecture notes in computer science, vol. 1717. Berlin, Germany: Springer; 1999. p. 94–108.
[21] Tenca AF, Savas� E, Koç ÇK. A design framework for scalable and unified multipliers in GF(p) and GF(2m). Int J Comput Res 2004;13(1):68–83.
[22] Tiri K, Akmal M, Verbauwhede I. A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power

analysis on smart cards. In: Proceedings of the 28th European solid-state circuits conference 2002 – ESSCIRC 2002; 2002. p. 403–6.
[23] Toprak Z, Leblebici Y. Low-power current mode logic for improved DPA-resistance in embedded systems. In: IEEE international symposium on circuits

and systems 2005 – ISCAS 2005; 2005. p. 1059–62.
[24] Walter Colin D, Samyde David. Data dependent power use in multipliers. In: ARITH’05: Proceedings of the 17th IEEE symposium on computer

arithmetic. Washington (DC), USA: IEEE Computer Society; 2005. p. 4–12.
[25] Wolkerstorfer Johannes. Dual-field arithmetic unit for GF(p) and GF(2m). In: Kaliski Jr BS, Koç ÇK, Paar C, editors. Cryptographic hardware and

embedded systems. Lecture notes in computer science, vol. 2523. Berlin, Germany: Springer; 2002. p. 500–14.
Please cite this article in press as: Öztürk E et al., A versatile Montgomery multiplier architecture with characteristic ...,
Comput Electr Eng (2008), doi:10.1016/j.compeleceng.2008.05.009

http://eprint.iacr.org/

	A versatile montgomery Montgomery multiplier architecture with characteristic three support
	Introduction
	Redundant Signed Digit signed digit (RSD) arithmetic
	Number representations

	Unified arithmetic core
	The architecture
	Addition
	Subtraction
	Comparison

	Montgomery multiplication
	Radix-2 Montgomery Multiplication Algorithm multiplication algorithm for GF(p) and GF(2n)
	Radix-3 Montgomery Multiplication Algorithm multiplication algorithm for GF(3m)

	Multiplier Architecturearchitecture
	Pipeline organization
	Processing unit

	Complexity analysis
	Results and comparison
	PU architecture
	Montgomery multiplier architecture
	Comparison with the previous unified architectures

	A note on side-channel attacks
	Conclusion
	AcknowledgementAcknowledgements
	References


