2,375 research outputs found

    Productive Corecursion in Logic Programming

    Get PDF
    Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property -- of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no figure

    Extensional and Intensional Strategies

    Full text link
    This paper is a contribution to the theoretical foundations of strategies. We first present a general definition of abstract strategies which is extensional in the sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system. We then move to a more intensional definition supporting the abstract view but more operational in the sense that it describes a means for determining such a set. We characterize the class of extensional strategies that can be defined intensionally. We also give some hints towards a logical characterization of intensional strategies and propose a few challenging perspectives

    Extending Context-Sensitivity in Term Rewriting

    Full text link
    We propose a generalized version of context-sensitivity in term rewriting based on the notion of "forbidden patterns". The basic idea is that a rewrite step should be forbidden if the redex to be contracted has a certain shape and appears in a certain context. This shape and context is expressed through forbidden patterns. In particular we analyze the relationships among this novel approach and the commonly used notion of context-sensitivity in term rewriting, as well as the feasibility of rewriting with forbidden patterns from a computational point of view. The latter feasibility is characterized by demanding that restricting a rewrite relation yields an improved termination behaviour while still being powerful enough to compute meaningful results. Sufficient criteria for both kinds of properties in certain classes of rewrite systems with forbidden patterns are presented

    Feasible reactivity in a synchronous pi-calculus

    Get PDF
    Reactivity is an essential property of a synchronous program. Informally, it guarantees that at each instant the program fed with an input will `react' producing an output. In the present work, we consider a refined property that we call ` feasible reactivity'. Beyond reactivity, this property guarantees that at each instant both the size of the program and its reaction time are bounded by a polynomial in the size of the parameters at the beginning of the computation and the size of the largest input. We propose a method to annotate programs and we develop related static analysis techniques that guarantee feasible reactivity for programs expressed in the S-pi-calculus. The latter is a synchronous version of the pi-calculus based on the SL synchronous programming model

    Liveness Verification in TRSs Using Tree Automata and Termination Analysis

    Get PDF
    This paper considers verification of the liveness property Live(R, I, G) for a term rewrite system (TRS) R, where I (Initial states) and G (Good states) are two sets of ground terms represented by finite tree automata. Considering I and G, we transform R to a new TRS R' such that termination of R' proves the property Live(R, I, G)

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called Λ\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about Λ\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of Λ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    The Parametric Ordinal-Recursive Complexity of Post Embedding Problems

    Full text link
    Post Embedding Problems are a family of decision problems based on the interaction of a rational relation with the subword embedding ordering, and are used in the literature to prove non multiply-recursive complexity lower bounds. We refine the construction of Chambart and Schnoebelen (LICS 2008) and prove parametric lower bounds depending on the size of the alphabet.Comment: 16 + vii page

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page
    corecore