
Under consideration for publication in Theory and Practice of Logic Programming 1

Productive Corecursion in Logic Programming∗
EKATERINA KOMENDANTSKAYA
Heriot-Watt University, Edinburgh, Scotland, UK

(e-mail: ek19@hw.ac.uk)

YUE LI
Heriot-Watt University, Edinburgh, Scotland, UK

(e-mail: yl55@hw.ac.uk)

submitted 2 May 2017; revised 20 June 2017; accepted 4 July 2017

Abstract

Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide
termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a
challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive
soundness of queries in logic programming for regular formulae. Another, less famous, but equally fun-
damental and important undecidable property is productivity. If a derivation is infinite and coinductively
sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it
does, the infinite computation is productive. This intuition was first expressed under the name of compu-
tations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in
connection to infinite data structure processing.

Recently, an algorithm was presented that semi-decides a weaker property – of productivity of logic pro-
grams. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen
these recent results. We propose a method that semi-decides productivity of individual derivations for reg-
ular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations
in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30
years ago. We also present an implementation of this algorithm.

KEYWORDS: Horn Clauses, (Co)Recursion, (Co)Induction, Infinite Term Trees, Productivity.

1 Motivation

The traditional (inductive) approach to Logic Programming (LP) is based on least fixed point
semantics of logic programs, and defines, for every logic program P, the least Herbrand model
for P, i.e., the set of all (finite) ground terms inductively entailed by P.

Example 1.1 (Natural numbers)
The program below defines the set of natural numbers:
0. nat(0) ←
1. nat(s(X)) ← nat(X)

The least Herbrand model comprises the terms nat(0), nat(s(0)), nat(s(s(0))), . . .

∗ This work has been partially supported by EPSRC grant EP/K031864/1-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287498223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 E. Komendantskaya and Y.Li

The clauses of the above program can be viewed as inference rules
nat(0) and nat(X)

nat(s(X)) , and
the least Herbrand model can be seen as the set obtained by the forward closure of these rules.
Some approaches to LP are based on this inductive view (Heintze and Jaffar 1992) of programs.

In addition to viewing logic programs inductively, we can also view them coinductively. The
greatest complete Herbrand model for a program P takes the backward closure of the rules
derived from P’s clauses, thereby producing the largest set of finite and infinite ground terms
coinductively entailed by P. For example, the greatest complete Herbrand model for the above
program is the set containing all of the finite terms in its least Herbrand model, together with the
term nat(s(s(...))) representing the first limit ordinal.

As it turns out, some logic programs have no natural inductive semantics and should instead
be interpreted coinductively:

Example 1.2 (Streams of natural numbers)
The next program comprises the clauses that define the natural numbers and the following addi-
tional one that defines streams of natural numbers:

2. nats(scons(X,Y)) ← nat(X),nats(Y)

No terms defined by nats are contained in the least Herbrand model for this program, but its
greatest complete Herbrand model contains infinite terms representing infinite streams of natural
numbers, like e.g. the infinite term t = nats(scons(0,scons(0, . . .).

Coinductive programs operating on infinite data structures are useful for reasoning about con-
current and non-terminating processes. For example, the program below shows a part of a de-
scription of concurrent behaviour of Internet servers (Davison 2001):

0. resource([get(X)|In], [X|L])← resource(In,L)

1. resource([get(X)|In], [])← signal(novalue(get(X)))

The two clauses above describe how a server receives and processes the input streams of data.
The usual list syntax [|] of Prolog is used to denote the binary stream constructor scons. The
first clause describes the normal behaviour of the server that reads the input data, and the second
allows to raise an exception (by signalling that no value was received).

SLD-resolution (Lloyd 1988) is an algorithm that allows to semi-decide whether a given for-
mula is in the program’s least Herbrand model. In practice, SLD-resolution requires a logic pro-
gram’s derivations to be terminating in order for them to be inductively sound. We might dually
expect a logic program’s non-terminating derivations to compute terms in its greatest complete
Herbrand model. However, non-termination does not play a role for coinduction dual to that
played by termination for induction. In particular, the fact that a logic program admits non-
terminating SLD-derivations does not, on its own, guarantee that the program’s computations
completely capture its greatest complete Herbrand model:

Example 1.3 (Non-productive program)
The following “bad” program gives rise to an infinite SLD-derivation:
0. bad(f(X)) ← bad(f(X))

Although this program does not compute any infinite terms, the infinite term bad(f(f(...))) is in
its greatest complete Herbrand model.

The problem here actually lies in the fact that the “bad” program fails to satisfy the important
property of productivity. The productivity requirement on corecursive programs should reflect the
fact that an infinite computation can only be consistent with its intended coinductive semantics if

Productive Corecursion in Logic Programming 3

it is globally productive, i.e., if it actually produces an infinite object in the limit. This intuition
lies behind the concept of computations at infinity introduced in the 1980s (Lloyd 1988; van
Emden and Abdallah 1985). The operational semantics of a potentially non-terminating logic
program P was then taken to be the set of all infinite ground terms computable by P at infinity.
For example, the infinite ground term t in Example 1.2 is computable at infinity starting with
the query nats(X). In modern terms, we would say that computations at infinity are (globally)
productive computations.

However, the notion of computations at infinity does not by itself give rise to algorithms for
semi-deciding coinductive entailment. Thirty years after the initial investigations into coinductive
computations, coinductive logic programming, implemented as CoLP, was introduced (Gupta
et al. 2007; Simon et al. 2007). CoLP provides practical methods for terminating infinite SLD-
derivations. CoLP’s coinductive proof search is based on a loop detection mechanism and uni-
fication without occurs check. CoLP observes finite fragments of SLD-derivations, checks them
for unifying subgoals, and terminates when loops determined by such subgoals are found.

Example 1.4 (Productive computation by SLD resolution)
The query nats(X) to the program of Example 1.2 gives rise to an SLD-derivation with a se-
quence of subgoals nats(X);X 7→scons(0,Y ′) nats(Y′); Observing that nats(scons(0,Y′))
and nats(Y′) unify (note the absence of occurs check) and thus comprise a loop, CoLP concludes
that nats(X) has been proved and returns the answer X= scons(0,X) in the form of a “circular”
term indicating that this program logically entails the term t in Example 1.2.

CoLP is sound, but incomplete, relative to greatest complete Herbrand models (Gupta et al.
2007; Simon et al. 2007). But, perhaps surprisingly, it is neither sound nor complete relative
to computations at infinity. CoLP is not sound because our “bad” program from Example 1.3
computes no infinite terms at infinity for the query ?← bad(X), whereas CoLP notices a loop
and reports success. CoLP is not complete because not all terms computable at infinity by all
programs can be inferred by CoLP. In fact, CoLP’s loop detection mechanism can only terminate
if the term computable at infinity is a regular term (Courcelle 1983; Jaffar and Stuckey 1986).
Regular terms are terms that can be represented as trees that have a finite number of distinct
subtrees, and can therefore be expressed in a closed finite form computed by circular unification.
The “circular” term X = scons(0,X) in Example 1.4 is so expressed. For irregular terms (e.g.
expressing a stream of Fibonacci numbers, cf. Example 6.1), CoLP simply does not terminate.

The upshot is that the loop detection method of CoLP cannot faithfully capture the operational
meaning of computations at infinity. In this paper, we propose a solution to this problem, by
combining loop detection and productivity within one framework.

2 Results of This Paper by Means of an Example

We return to our “Server” example, but this time take only the clause that describes its normal
execution (without exceptions):
resource([get(X)|In], [X|L])← resource(In,L) (∗)
The second argument of resource is the input stream received by the server, and its first argu-
ment is the stream of successfully received and read data. We can take e.g. the query
resource(X,Y),zeros(Y), asking the server to accept as input the stream of zeros defined as
zeros([0|X])← zeros(X).

Assuming a fair selection of subgoals in a derivation, we will have the following SLD-derivation

4 E. Komendantskaya and Y.Li

resource(X,Y),zeros(Y);X 7→[get(X ′)|In],Y 7→[X ′|L]; resource(In,L),zeros(X′|L);X ′ 7→0;

resource(In,L),zeros(L); . . .

and the substitution X 7→ [get(0)|get(0)| . . .] will be computed at infinity. This regular com-
putation will be processed successfully by the loop detection method of CoLP (relying on a
unification algorithm without occurs check). We underlined the loops above.

There are three cases where CoLP fails to capture the notion of productive computations:
Case 1. The coinductive definition does not contain constructors of the infinite data struc-

ture. Imagine we have the clause resource(In,L)← resource(In,L) instead of (*). This new
clause simply asserts a tautology: a server receives the data when it receives the data. Querying
again resource(X,Y),zeros(Y), we will get an infinite looping SLD-derivation, that however
will not compute an infinite ground term at infinity (the first argument will not be instantiated):
resource(X,Y),zeros(Y);id; resource(X,Y),zeros(Y);Y 7→[0|Y ′];

resource(X, [0|Y′]),zeros(Y′); . . .

Case 2. The coinductive definition contains fresh variables that do not allow to accumulate
composition of substitutions in the course of a derivation. Imagine clause (*) is replaced by:
resource([get(X)|In], [X|L])← resource(Z,L) Then we would still have an infinite looping
derivation, but it will not allow us to meaningfully compose the computed substitutions in the
first argument:
resource(X,Y),zeros(Y);X 7→[get(X ′)|In],Y 7→[X ′|L]; resource(Z,L),zeros(X′|L);X ′ 7→0;

resource(Z,L),zeros(L);Z 7→[get(X ′′)|In′],L 7→[X ′′|L′]; . . .

Note that in the last step the computed substitution for the fresh variable Z does not affect the
substitution X 7→ [get(X ′)|In]. However, the loops will still be detected as shown.

Case 3. The infinite data structure is defined via a circular unification, rather than computed
by an infinite number of derivation steps. Imagine that we force our definition to always produce
an infinite stream in its first argument by defining:
resource([get(X)|In],In, [X|L])← resource(In,In,L).
We can have the following derivation (no need to give a stream of zeros as an input):

resource(X,Y, [0|Z]);X 7→[get(X ′)|In],Y 7→In,Z 7→L,X ′ 7→0; resource(In,In,L);In′ 7→[get(X ′′)|In′]...∞

Here, we will not have an infinite SLD-derivation, as the last step fails the occurs check. But
CoLP’s loop detection without occurs check will terminate successfully, as the underlined loop
is found and the looping terms will unify by circular unification (denoted by ∞).

In all of the above three cases, if the three programs share the common signature of (*), their
greatest complete Herbrand models will contain the term resource([get(0)|get(0)| . . .], [0|0| . . .]).
In fact, the three looping derivations allude to this term when they succeed by the loop detec-
tion without occurs check. However, as we have seen from these examples, in neither of the
three derivations the loop detection actually guarantees that there is a way to continue the SLD-
derivation lazily in order to compute this infinite ground term at infinity. Thus, in all three cases,
the loop detection method is unsound relative to computations at infinity.

The question we ask is: Assuming we can guarantee that none of the three cases will occur in
our derivations, can the loop detection method serve as an algorithm for semi-deciding whether
a derivation is productive, or equivalently, whether an infinite term is computable at infinity?

In this paper, we answer this question in the positive. Case 2 can be eliminated by a simple
syntactic check disallowing fresh (or “existential”) variables in the bodies of the clauses. We call

Productive Corecursion in Logic Programming 5

the resulting programs universal. Case 1 is more subtle. In logic programming setting, unlike
for example functional languages, it is not easy to identify which of the clauses form which
inductive definitions by which constructors. Such properties are usually not decided until run
time. Consider the following example.

Example 2.1 (Difficulty in detection of constructor productivity in LP)
The following program
0. p(s(X1),X2,Y1,Y2) ← q(X2,X2,Y1,Y2)

1. q(X1,X2,s(Y1),Y2) ← p(X1,X2,Y2,Y2)

seemingly defines, by mutual recursion, two coinductive predicates p and q, with constructor s.
However, the SLD-derivation for a query p(s(X),s(Y),s(Z),s(W)) will not produce an infinite
term at infinity. However, it will produce loops that will be found by CoLP!

As a solution, we propose to use the notion of observational productivity suggested recently
by Komendantskaya et al. (2017) or Fu and Komendantskaya (2017). Given a logic program P,
a query A, and an SLD-derivation for P and A, we can analyse the structure of this derivation
and detect which of the unifiers used in its course are most general unifiers (mgus) and which are
most general matchers (mgms). Systematic analysis of such steps is called structural resolution
by Johann et al. (2015). We define a logic program to be observationally productive if it is impos-
sible to construct an infinite derivation only by mgms for it. For “good” coinductive programs
like e.g. the one of Example 1.2, infinite SLD-derivations exist, but not infinite derivations by
mgms: the derivations by mgms terminate as soon as they run out of coinductive constructors to
match against, and then derivations by mgus produce further substitutions and thus produce more
constructors. Examples 3.2, 3.3 and 3.4 will make this intuition clear. In the paper by Komen-
dantskaya et al. (2017), an algorithm for checking observational productivity of logic programs
was introduced. In this paper, we take this algorithm as a sufficient formal check for ruling out
programs giving rise to coinduction without constructors, as described in Case 1 above.

Addressing Case 3 requires modifications to the loop detection algorithm: it should be able to
form circular substitutions for cases like (*), while ruling out cases like Case 3.

This paper thus establishes two results for universal and observationally productive programs:
(1) It shows that non-termination of derivations for such programs guarantees computation of

an infinite term at infinity. In terms of our “Server” example and its clause (*), if computations
continue indefinitely, we know that the server receives and processes an infinite stream of data;

(2) It proposes a novel loop detection algorithm that guarantees production of an infinite term
at infinity. In the “Server” example terms, if the loop detection algorithm succeeds, we know how
the productive computation can proceed infinitely long.

The novelty of these results is three-fold:
– theoretically, it is the first time that non-terminating observationally productive derivations are
proven to be globally productive (i.e. sound relative to computations at infinity);
– practically, it presents the first algorithm for semi-deciding computation of infinite terms at
infinity since the notion was introduced in the 80s;
– methodologically, all proofs employ the methods of structural resolution, which extends the
existing methodological machinery of LP and allows to achieve results that are not directly prov-
able for the SLD-resolution.

The paper proceeds as follows. Section 3 gives all background definitions alongside a modi-
fied version of structural resolution that has not appeared in the literature before. This section
also proves that this variant of structural resolution is sound and complete relative to SLD-

6 E. Komendantskaya and Y.Li

resolution. This allows us to switch freely between SLD- and structural resolution throughout
the paper. Section 4 proves soundness and completeness of infinite structural resolution deriva-
tions relative to computations at infinity, for universal and observationally productive programs.
As a corollary, it gives conditions for soundness of infinite SLD-derivations relative to compu-
tations at infinity. Section 5 introduces the novel loop detection algorithm for structural reso-
lution, and proves its soundness relative to computations at infinity. In Section 6 we conclude
this paper. Detailed proofs can be found in the supplemental document of the paper, henceforth
referred to as Appendix. The implementation is available at https://github.com/coalp/
Productive-Corecursion and it is discussed in Appendix A.6.

3 Background: S-resolution and Observational Productivity

In this section we introduce structural resolution by means of an operational (small-step) se-
mantics. To enable the analysis of infinite terms, we adopt the standard definitions of first-order
terms as trees (Courcelle 1983; Jaffar and Stuckey 1986; Lloyd 1988). But, unlike earlier ap-
proaches (Johann et al. 2015), we avoid analysis of (SLD-)derivation trees in this paper and
work directly with S-resolution reductions.

We write N∗ for the set of all finite words over the set N of natural numbers. The length of
w ∈N∗ is denoted |w|. The empty word ε has length 0; we identify i ∈N and the word i of length
1. A set L⊆N∗ is a (finitely branching) tree language provided: i) for all w ∈N∗ and all i, j ∈N,
if w j ∈ L then w ∈ L and, for all i < j, wi ∈ L; and ii) for all w ∈ L, the set of all i ∈ N such
that wi ∈ L is finite. A non-empty tree language always contains ε , which we call its root. A tree
language is finite if it is a finite subset of N∗, and infinite otherwise.

A signature Σ is a non-empty set of function symbols, each with an associated arity. To define
terms over Σ, we assume a countably infinite set Var of variables disjoint from Σ, each with
arity 0. If L is a non-empty tree language and Σ is a signature, then a term over Σ is a function
t : L→ Σ∪Var such that, for all w ∈ L, arity(t(w)) = | {i | wi ∈ L} |. Terms are finite or infinite
if their domains are finite or infinite. A term t has a depth depth(t) = 1+max{|w| | w ∈ L}.

Example 3.1 (Term tree)
Given L = {ε,0,00,01}, the atom stream(scons(0,Y)) can be seen as the term tree t given by
the map t(ε) = stream, t(0) = scons, t(00) = 0, t(01) = Y.

The set of finite (infinite) terms over a signature Σ is denoted by Term(Σ) (Term∞(Σ)). The set
of all (i.e., finite and infinite) terms over Σ is denoted by Termω(Σ). Terms with no occurrences
of variables are ground. We write GTerm(Σ) (GTerm∞(Σ), GTermω(Σ)) for the set of finite
(infinite, all) ground terms over Σ.

A substitution over Σ is a total function σ : Var→ Termω(Σ). Substitutions are extended from
variables to terms homomorphically. We write id for the identity substitution. Composition of
substitutions is denoted by juxtaposition. Composition is associative, so we write σ3σ2σ1 rather
than (σ3σ2)σ1 or σ3(σ2σ1).

A substitution σ is a unifier for t,u ∈ Term(Σ) if σ(t) = σ(u), and is a matcher for t against
u if σ(t) = u. If t,u ∈ Termω(Σ), then we say that u is an instance of t if σ(t) = u for some σ .
A substitution σ1 is more general than a substitution σ2 if there exists a substitution σ such that
σσ1(X) = σ2(X) for every X ∈ Var. A substitution σ is a most general unifier (mgu) for t and u,
denoted t ∼σ u, if it is a unifier for t and u and is more general than any other such unifier. A
most general matcher (mgm) σ for t against u, denoted t ≺σ u, is defined analogously. Both mgus

Productive Corecursion in Logic Programming 7

and mgms are unique up to variable renaming if they exist. In many unification algorithms, the
occurs check condition is imposed, so that mappings X 7→ t[X], where t[X] is a term containing X,
are disallowed. We will assume that mgus and mgms are computed by any standard unification
algorithm (Lloyd 1988) with occurs check, unless otherwise stated.

A clause C over Σ is given by A← B0, . . . ,Bn where the head A ∈ Term(Σ) and the body
B0, . . .Bn is a list of terms in Term(Σ). Throughout the paper, we refer to standard definitions of
the least and greatest complete Herbrand models and recall them in Appendix A.1.

Following Fu and Komendantskaya (2017), we distinguish several kinds of reductions for LP:

Definition 3.1 (Different kinds of reduction in LP)
If P is a logic program and A1, . . . ,An are atoms, then

• SLD-resolution reduction:
[A1, . . . ,Ai, . . . ,An];P [σ(A1), . . . ,σ(Ai−1),σ(B0), . . . ,σ(Bm),σ(Ai+1), . . . ,σ(An)]

if A← B0, . . . ,Bm ∈ P and Ai ∼σ A.
• rewriting reduction:
[A1, . . . ,Ai, . . . ,An]→P [A1, . . . ,Ai−1,σ(B0), . . . ,σ(Bm),Ai+1, . . . ,An]

if A← B0, . . . ,Bm ∈ P and A≺σ Ai.
• substitution reduction:
[A1, . . . ,Ai, . . . ,An] ↪→P [σ(A1), . . . ,σ(Ai), . . . ,σ(An)]

if A← B0, . . . ,Bm ∈ P and A∼σ Ai but not A≺σ Ai.
In each of the above three cases, we will say that Ai resolves against the clause A←
B0, . . . ,Bm ∈ P.

We may omit explicit mention of P as a subscript on reductions when it is clear from context.
We write→n to denote rewriting by at most n steps of→, where n is a natural number. We use
similar notations for ; and ↪→ as required. We assume, as is standard in LP, that all variables
are standardised apart when terms are matched or unified against the program clauses.

If r is any reduction relation, we will call any (finite or infinite) sequence of r-reduction steps
an r-derivation. An r-derivation is called an r-refutation if its last goal is the empty list. An SLD-
resolution derivation is fair if either it is finite, or it is infinite and, for every atom B appearing
in some goal in the SLD-derivation, (a further instantiated version of) B is chosen within a finite
number of steps.

Example 3.2 (SLD- and rewriting reductions)
The following are SLD-resolution and rewriting derivations, respectively, with respect to the
program of Example 1.2:

• [nats(X)]; [nat(X′),nats(Y)]; [nats(Y)]; [nat(X′′),nats(Y′)]; . . .

• [nats(X)]

The reduction relation ;P models traditional SLD-resolution steps (Lloyd 1988) with respect to
P. Note that for this program, SLD-resolution derivations are infinite, but rewriting derivations
are always finite.

The observation that, for some coinductive programs, → reductions are finite and thus can
serve as measures of finite observation, has led to the following definition of observational pro-
ductivity in LP, first introduced in the paper by Komendantskaya et al. (2016):

8 E. Komendantskaya and Y.Li

Definition 3.2 (Observational productivity)
A program P is observationally productive if every rewriting derivation with respect to P is finite.

Example 3.3 (Observational productivity)
The program from Example 1.2 is observationally productive, whereas the program from Exam-
ple 1.3 – not, as we have a rewriting derivation: bad(f(X))→ bad(f(X))→ bad(f(X))→

Because rewriting derivations are incomplete, they can be combined with substitution reduc-
tions to achieve completeness, which is the main idea behind the structural resolution explored
by Komendantskaya et al. (2016), Johann et al. (2015) and Fu and Komendantskaya (2017).
Below, we present yet another version of combining the two kinds of reductions:

Definition 3.3 (S-resolution reduction)
Given a productive program P, we define S-resolution reduction:
[A1, . . . ,An]→n

P [B1, . . . ,Bi, . . . ,Bm] ↪→P [θ(B1), . . . ,θ(Bi), . . . ,θ(Bm)]→P

[θ(B1), . . . ,θ(Bi−1),θ(C1), . . . ,θ(Ck),θ(Bi+1), . . . ,θ(Bm)],
where C←C1, . . . ,Ck is a clause in P, and C ∼θ Bi. We will denote this reduction by
[A1, . . . ,An];

S
P [θ(B1), . . . ,θ(Bi−1),θ(C1), . . . ,θ(Ck),θ(Bi+1), . . . ,θ(Bm)].

Example 3.4 (S-resolution reduction)
Continuing Example 3.2, S-resolution derivation for that logic program is given by:
[nats(X)] ↪→ [nats(scons(X′,Y))]→ [nat(X′),nats(Y)] ↪→ [nat(0),nats(Y)]

→ [nats(Y)] ↪→ [nats(scons(X′′,Y′))]→ . . .

The initial sequences of the SLD-resolution (see Example 3.2) and S-resolution reductions shown
above each compute the partial answer {X 7→ scons(0,scons(X′′,Y′))} to the query nats(X).

Several formulations of S-resolution exist in the literature (Komendantskaya et al. 2016; Jo-
hann et al. 2015; Fu and Komendantskaya 2017), some of them are incomplete relative to SLD-
resolution. However, the above definition is complete:

Theorem 3.1 (Operational equivalence of terminating S-resolution and SLD-resolution)
Given a logic program P and a goal A, there is an SLD-refutation for P and A iff there is an
S-refutation for P and A.

Proof
Both parts of the proof proceed by induction on the length of the SLD- and S-refutations. The
proofs rely on one-to-one correspondence between SLD- and S-derivations. Suppose D is an
SLD-derivation, then we can construct a corresponding S-derivation D∗ as follows. Some reduc-
tions in D in fact compute mgms, these reductions are modelled by rewriting reductions in D∗

directly. Those reductions that involve proper mgus in D are modelled by composition of two
reduction steps→◦ ↪→ in D∗.

A corollary of this theorem is inductive soundness and completeness of S-refutations relative to
the least Herbrand models.

Productive Corecursion in Logic Programming 9

4 Soundness of Infinite S-Resolution Relative to SLD-Computations at Infinity

A first attempt to give an operational semantics corresponding to greatest complete Herbrand
models of logic programs was captured by the notion of computations at infinity for SLD-
resolution (van Emden and Abdallah 1985; Lloyd 1988). Computations at infinity are usually
given relative to an ultrametric on terms, constructed as follows.

We define the truncation of a term t ∈ Termω(Σ) at depth n ∈ N, denoted by γ ′(n, t). We
introduce a new nullary symbol � to denote the leaves of truncated branches.

Definition 4.1 (Truncation of a term)
A truncation is a mapping γ ′ : N×Termω(Σ)→ Term(Σ∪�) where, for every n ∈ N and t ∈
Termω(Σ), the term γ ′(n, t) is constructed as follows:
(a) the domain dom(γ ′(n, t)) of the term γ ′(n, t) is {m ∈ dom(t) | |m| ≤ n};
(b)

γ
′(n, t) (m) =

{
t(m) if |m|< n

� if |m|= n

For t,s ∈ Termω(Σ), we define γ(s, t) = min{n | γ ′(n,s) 6= γ ′(n, t)}, so that γ(s, t) is the least
depth at which t and s differ. If we further define d(s, t)= 0 if s= t and d(s, t)= 2−γ(s,t) otherwise,
then (Termω(Σ),d) is an ultrametric space.

The definition of SLD-computable at infinity relative to a given ultrametric was first given
by Lloyd (1988), we extend it here and redefine this with respect to an arbitrary infinite term,
rather than a ground infinite term:

Definition 4.2 (Formulae SLD-computable at infinity)
The term tree t∞ ∈ Term∞(Σ) is SLD-computable at infinity with respect to a program P if there
exists a term tree t ∈ Term(Σ) and an infinite fair SLD-resolution derivation G0 = t ; G1 ;

G2 ; . . .Gk ; . . . with mgus θ1,θ2, . . . ,θk, . . . such that d(t∞,θk . . .θ1(t))→ 0 as k→∞. If such
a t exists, we say that t∞ is SLD-computable at infinity with respect to t.

Note the fairness requirement above. Defining CP = {t∞ ∈ GTerm∞(Σ) | t∞ is SLD-computable
at infinity with respect to a program P by some t ∈ Term(Σ)}, we have that CP is a subset of the
greatest complete Herbrand model of P (van Emden and Abdallah 1985; Lloyd 1988).

Example 4.1 (Existential variables and SLD computations at infinity)
Consider the following program that extends Example 1.2.
3. p(Y)← nats(X)

Although an infinite term is SLD-computable at infinity with respect to nats(X), no infinite
instance of p(Y) is SLD-computable at infinity. Nevertheless, p(0) and other instances of p(Y)
are logically entailed by this program and are in its greatest complete Herbrand model.

Our Case 2 of Section 2 is also an example of the same problem.

To avoid such problems, we introduce a restriction on the shape of clauses and work only
with logic programs in which only variables occurring in the heads of clauses can occur in their
bodies. Formally, for each program clause C← C1, . . . ,Cn, we form the set FV (C) of all free
variables in C, and similarly the set FV (C1, . . . ,Cn) of all free variables in C1, . . . ,Cn. We require
that FV (C1, . . . ,Cn)⊆ FV (C) and call such logic programs universal logic programs.

We now establish an important property – that if a program is observationally productive and
universal, then it necessarily gives rise to globally productive S-resolution derivations. We call

10 E. Komendantskaya and Y.Li

a substitution θ for a variable X trivial if it is a renaming or identity mapping, otherwise it is
non-trivial for X . A substitution θ is non-trivial for a term t with variables X1, . . . ,Xn if θ is non-
trivial for at least one variable Xi ∈ {X1, . . . ,Xn}. We will call a composition θn . . .θ1 non-trivial
for t if θ1 is non-trivial for t and for each 1 < k ≤ n, θk is non-trivial for term θk−1 . . .θ1(t).

Lemma 4.1 (Productivity Lemma)
Let P be an observationally productive and universal program and let t ∈ Term(Σ). Let D be an
infinite S-resolution derivation given by G0 = t ;S G1 ;

S G2 ;
S . . ., then for every Gi ∈D, there

is a G j ∈D, with j > i, such that, given computed mgus θi, . . . ,θ1 up to Gi and the computed mgus
θ j, . . . ,θ1 up to G j, d(t∞,θi, . . . ,θ1(t))> d(t∞,θ j, . . . ,θ1(t)), for some term t∞ ∈ Term∞(Σ).

Proof Sketch
The full proof is given in Appendix A.2, and proceeds by showing that universal and produc-
tive programs have to produce non-trivial substitutions in the course of S-resolution derivations.
Non-trivial computed substitutions contribute to construction of the infinite term at the limit.
The construction would have been a mere adaptation of the limit term construction defined by
Lloyd (1988, p. 177), had we not extended the notion of SLD-computable at infinity to all, not
just ground, terms. This extension required us to redefine the limit term construction substan-
tially, and use the properties of observationally productive S-resolution reductions.

Note how both requirements of universality and productivity are crucial in the above lemma.
For non-productive programs as in Example 1.3 or in Case 1 of Section 2, an infinite sequence
of rewriting steps will not produce any substitution. Analysis of Case 2 in Section 2 explains the
importance of the universality condition.

We now state the first major result: that for productive and universal logic programs, S-
resolution derivations are sound and complete relative to SLD-computations at infinity. First,
we extend the notion of a fair derivation to S-resolution. An S-resolution derivation is fair if
either it is finite, or it is infinite and, for every atom B appearing in some goal in the S-resolution
derivation, (a further instantiated version of) B is resolved against some program clause within a
finite number of steps.

Theorem 4.1 (Soundness and completeness of observationally productive S-resolution)
Let P be an observationally productive and universal program, and let t ∈ Term(Σ).

There is an infinite fair S-resolution derivation for t iff there is a t ′ ∈ Term∞(Σ), such that t ′ is
SLD-computable at infinity with respect to t.

Proof Sketch
The full proof is in Appendix A.3. It first proceeds by coinduction to show a one-to-one corre-
spondence between an infinite SLD-derivation and an infinite S-derivation. The argument is very
similar to the proof of Theorem 3.1. The rest of the proof uses Productivity Lemma 4.1 to show
that an infinite derivation must produce an infinite term as a result.

The practical significance of the above theorem is in setting the necessary and sufficient con-
ditions for guaranteeing that, given an infinite fair S-resolution reduction, we are guaranteed that
it will compute an infinite term at infinity. We emphasise this consequence in a corollary:

Productive Corecursion in Logic Programming 11

Corollary 4.1 (Global productivity of infinite S-resolution derivations)
Let P be an observationally productive and universal program, and let t ∈ Term(Σ).

If there is an infinite fair S-resolution derivation G0 = t ;S G1 ;
S G2 ;

S . . .Gk ;
S . . . with

mgus θ1,θ2, . . .θk . . . then there exists t∞ ∈ Term∞(Σ) such that d(t∞,θk . . .θ1(t))→ 0 as k→∞.

As a corollary of soundness of SLD-computations at infinity (Lloyd 1988) and the above re-
sult, we obtain that fair and infinite S-resolution derivations are sound relative to complete Her-
brand models, given an observationally productive and universal program P. Another important
corollary that follows from the construction of the proof above guarantees that, if a program is
observationally productive and universal, then any infinite fair SLD-resolution derivation for it
will result in computation of an infinite term at infinity:

Corollary 4.2 (Global productivity of infinite SLD-resolution derivations)
Let P be an observationally productive and universal program, and let t ∈ Term(Σ).

If there is an infinite fair SLD-resolution derivation for t then there is a t∞ ∈ Term∞(Σ), such
that t∞ is SLD-computable at infinity with respect to t.

This section has established that infinite derivations for universal and observationally produc-
tive programs “cannot go wrong”, in the sense that they are guaranteed to be globally productive
and compute infinite terms. This is the first time a result of this kind is proven in LP literature.
Although sound, infinite S- or SLD-resolution derivations do not provide an implementable pro-
cedure for semi-deciding coinductive entailment. We address this problem in the next section.

5 Co-S-resolution

In this section we embed a loop detection algorithm in S-resolution derivations, and thus obtain
an algorithm of co-S-resolution that can semi-decide whether an infinite term is SLD-computable
at infinity for observationally productive and universal programs. To achieve this, we refine the
loop detection method of co-SLD resolution (Gupta et al. 2007; Simon et al. 2007; Ancona and
Dovier 2015) which we recall in Appendix A.4 for convenience.

We use ≈ to denote unification without occurs check, see e.g. Colmerauer (1982) for the
algorithm. We use the notational style defined by Ancona and Dovier (2015) and introduce a
set Si for each predicate Ai in a goal, where Si records the atoms from previous goals whose
derivation depends on the derivation of Ai. We call Si the ancestors set for Ai.

Definition 5.1 (Algorithm of Co-S-Resolution)
• rewriting reduction (G→ G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If B0 ≺θ Ak for some pro-

gram clause B0← B1, . . . ,Bm and some k, then let S′ = Sk ∪{Ak}. Then we derive

G′ = [(A1,S1), . . . ,(Ak−1,Sk−1),(θ(B1),S′), . . . ,(θ(Bm),S′),(Ak+1,Sk+1), . . . ,(An,Sn)]

• substitution reduction (G ↪→ G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If B0 ∼θ Ak but not
B0 ≺θ Ak for some program clause B0← B1, . . . ,Bm and some k. Then we derive

G′ = θ
(
[(A1,S1), . . . ,(An,Sn)]

)
• S-reduction (G ;S G′): G→n [(A1,S1), . . . ,(An,Sn)] ↪→ θ

(
[(A1,S1), . . . ,(An,Sn)]

)
→

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(B1,S′), . . . ,(Bm,S′),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
where B0 ∼θ Ak for some program clause B0← B1, . . . ,Bm and some k, S′ = Sk ∪{Ak}.

12 E. Komendantskaya and Y.Li

• co-SLD loop detection (G→∞ G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If Ak ≈θ B for some k
and some B ∈ Sk. Then we derive

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
• restricted loop detection (G→co G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If Ak ≈θ B for some

k and some B ∈ Sk, and B′ is an instance of Ak, where B′ is a fresh-variable variant of B.
Then we derive

G′ = [(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)]

• co-S-reduction (G ;S
co G′): G ;S

co G′ if G ;S G′ or G→co G′.

Note that, unlike CoLP that uses no occurs check at all, our definition of co-S-reduction still
relies on occurs check within S-reductions. The next difference to notice is our use of the “re-
stricted loop detection” rule instead of the “co-SLD loop detection” rule defined by Ancona and
Dovier (2015), Gupta et al. (2007), and Simon et al. (2007). The below examples explain the
motivation behind the introduced restriction:

Example 5.1 (Undesirable effect of circular unification without occurs check)
Consider the following universal and observationally productive program that resembles the one
in Case 3 of Section 2:
0. p(X,s(X))← q(X)

1. q(s(X))← p(X,X)

If we use the co-SLD loop detection rule instead of the restricted loop detection rule in the
definition of co-S-reduction, we would have the following co-S-refutation:
[
(

p(X ,s(X)), /0
)
]→ [

(
q(X),{p(X ,s(X))}

)
] ↪→X 7→s(X1) [

(
q(s(X1)),{p(s(X1),s2(X1))}

)
]→

[
(

p(X1,X1),{q(s(X1)), p(s(X1),s2(X1))}
)
]→X1 7→s(X1)

∞ []

The answer would be given by composition {X 7→ s(X1)}{X1 7→ s(X1)}= {X 7→ sω ,X1 7→ sω}.
However, as Case 3 of Section 2 explains, this derivation in CoLP style does not correspond to
any SLD-computation at infinity: both SLD- and S-derivations fail at the underlined goal because
the subgoal p(X1,X1) does not unify with any program clause (recall that unification with occurs
check is used in SLD- and S-derivations). The restricted loop detection rule will also fail at the
underlined goal, because there is no matcher for p(X1,X1) and p(s(X ′),s2(X ′)).

The next example presents another case where our restriction to the loop detection is necessary:

Example 5.2 (Ensuring precision of the answers by co-S-resolution)
Consider the following universal and observationally productive program:
p(Y,s(X))← p(f(Y),X)

Again, if we use the co-SLD loop detection rule instead of the restricted loop detection rule,
we would have the following co-S-refutation:
[
(

p(Y,s(X)), /0
)
]→ [

(
p(f (Y),X),{p(Y,s(X))}

)
] ↪→X 7→s(X1) [

(
p(f (Y),s(X1)),{p(Y,s2(X1))}

)
]→

[
(

p(f 2(Y),X1),{p(f (Y),s(X1)), p(Y,s2(X1))}
)
]→Y 7→ f (Y),X1 7→s(X1)

∞ []

The answer is given by composition {X 7→ s(X1)}{Y 7→ f (Y),X1 7→ s(X1)} which instantiates
goal p(Y,s(X)) to the infinite term t1 = p(f ω ,sω).

Now consider the infinite fair S-derivation for the same goal:
[p(Y,s(X))]→ [p(f (Y),X)] ↪→X 7→s(X1) [p(f (Y),s(X1))]→ [p(f 2(Y),X1)] ↪→X1 7→s(X2)

[p(f 2(Y),s(X2))]→[p(f 3(Y),X2)]↪→ ·· ·
By the discussion of the previous section, we can construct a corresponding infinite SLD-derivation,

Productive Corecursion in Logic Programming 13

which computes at infinity the infinite term t2 = p(Y,sω). Thus, in this case, there is an SLD-
computation at infinity that corresponds to our proof by co-SLD loop detection rule, but it does
not approximate t1 = p(f ω ,sω).

In contrast, the restricted loop detection rule will fail at the underlined goal because neither
p(Y ′,s2(X ′1)) nor p(f (Y ′),s(X ′1)) is an instance of p(f 2(Y),X1).

The next theorem is our main result:

Theorem 5.1 (Soundness of co-S-resolution relative to SLD-computations at infinity)
Let P be an observationally productive and universal logic program, and t ∈ Term(Σ) be an
atomic goal. If there exists a co-S-refutation for P and t that involves the restricted loop detection
reduction, and computes the substitution θ then
1) there exists an infinite fair S-derivation for P and t, and
2) there is a term t∞ ∈ Term∞(Σ) SLD-computed at infinity that is a variant of θ(t).

Proof Sketch
The full proof is given in Appendix A.5, it develops a method of “decircularization”, or infinite
unfolding, of circular substitutions computed by the restricted loop detection of co-S-resolution.
We then show how an infinite number of S-resolution steps corresponds to computation of the
infinite term resulting from applying decircularization. Similarly to related work, e.g. Ancona
and Dovier (2015), we relate the use of loop detection to the existence of an infinite derivation.
However, our proof does not restrict the shape of corecursion to some simple form, e.g. mutual
recursion as by Ancona and Dovier (2015). This opens a possibility for future extension of this
proof method.

Similarly to any other loop detection method, co-S-resolution is incomplete relative to SLD-
computations at infinity. Taking any logic program that defines irregular streams (cf. Exam-
ple 6.1) will result in S-derivations with loops where subgoals do not unify.

Because the restricted loop detection is an instance of the co-SLD loop detection, and because
there is a one-to-one correspondence between SLD- and S-resolution reductions, we can prove
that co-S-resolution is sound relative to the greatest complete Herbrand models, by adapting the
proof by Ancona and Dovier (2015), Gupta et al. (2007), and Simon et al. (2007), see Appendix
A.4.

6 Conclusions, Discussion, Related and Future Work

Conclusions We have given a computational characterisation to the SLD-computations at infin-
ity (Lloyd 1988; van Emden and Abdallah 1985) introduced in the 1980s. Relying on the recently
proposed notion of observational productivity of logic programs, we have shown that infinite ob-
servationally productive derivations are sound and complete relative to the SLD-computations at
infinity. This paper thus confirmed the conjecture made by Komendantskaya et al. (2017) that
the weaker notion of observational productivity of logic programs implies the much stronger no-
tion of global productivity of individual derivations. This result only holds on extra condition –
universality of logic programs in question. This fact has not been known prior to this paper.

We have introduced co-S-resolution that gives the first algorithmic characterization of the
SLD-computations at infinity. We proved that co-S-resolution is sound relative to the SLD-
computations at infinity for universal and observationally productive programs. Appendix A.6
discusses its implementation. Structural resolution, seen as a method of systematic separation of
SLD-resolution to mgu and mgm steps, has played an instrumental role in the proofs.

14 E. Komendantskaya and Y.Li

Discussion Imposing the conditions of observational productivity and universality allowed us
to study the operational properties of infinite productive SLD-derivations without introducing
any additional modifications to the resolution algorithm. These results can be directly applied in
any already existing Prolog implementation: ensuring that a program satisfies these conditions
ensures that all infinite computations for it are productive. The results can similarly be reused in
any other inference algorithm based on resolution; this paper showed its adaptation to CoLP.

As a trade-off, both conditions exclude logic programs that may give rise to globally productive
SLD derivations for certain queries. For example, a non-productive logic program that joins
clauses of examples 1.2 and 1.3 will still result in productive derivations for a query nats(X),
as computations calling the bad clause would not interfere in such derivations. The universality
condition excludes two cases of globally productive derivations:

(1) Existential variables in the clause body have no effect on the arguments in which the infinite
term is computed. E.g., taking a coinductive definition p(s(X),Y)← p(X,Z) and a goal p(X,Y),
an infinite term will be produced in the first argument, and the existential variable occurring in
the second argument plays no role in this computation.

(2) Existential variables play a role in SLD-computations of infinite terms at infinity. In such
cases, they usually depend on other variables in the coinductive definition, and their productive
instantiation is guaranteed by other clauses in the program.

The famous definition of the stream of Fibonacci numbers is an example:

Example 6.1 (Fibonacci Numbers)
0. add(0,Y,Y)←
1. add(s(X),Y,s(Z))← add(X,Y,Z)

2. fibs(X,Y, [X|S])← add(X,Y,Z),fibs(Y,Z,S)

The goal fibs(0,s(0),F) computes the infinite substitution F 7→ [0,s(0),s(0),s2(0), . . .] at in-
finity. The existential variable Z in the body of clause (2.) is instantiated by the add predicate, as
Z in fact functionally depends on X and Y (all three variables contribute to construction of the
infinite term in the third argument of fibs).

In the future, these classes of programs may be admitted by following either of the two directions:
(I) Using program transformation methods to ensure that every logic program is transformed

into observationally productive and universal form. An example of the observationally productive
transformation is given by Fu and Komendantskaya (2017), and of the universal transformation –
by Senni et al. (2008), and by Proietti and Pettorossi (1995). This approach may have drawbacks,
such as changing the coinductive models of the programs.

(II) Refining the resolution algorithm and/or the loop detection method. For example, the re-
strictions imposed on the loop detection in Definition 5.1 can be further refined. Another solution
is to use the notion of local productivity (Fu and Komendantskaya 2017) instead of the obser-
vational productivity. A derivation is locally productive if it computes an infinite term only at a
certain argument. Both examples given in this section are locally productive. In the paper by Fu
and Komendantskaya (2017), local productivity required technical modifications to the unifica-
tion algorithm (involving labelling of variables), and establishing its soundness is still an open
problem.

Related Work The related paper by Li (2017) shows that an algorithm embedding the CoLP loop
detection rule into S-resolution is sound relative to greatest complete Herbrand models. However,
that work does not consider conditions on which such embedding would be sound relative to

Productive Corecursion in Logic Programming 15

SLD-computations at infinity. In fact, as this paper shows, simply embedding the CoLP loop
detection rule into S-resolution does not make the resulting coinductive proofs sound relative
to SLD-computations at infinity, as the three undesirable cases of Section 2 may still occur.
The construction of the proof of Theorem 5.1 in this paper agrees with a similar construction
for non-terminating SLDNF derivation (Shen et al. 2003). We show that the use of restricted
loop detection corresponds to infinite S-derivation characterized by infinitely repeating subgoal
variants, while Shen et al. (2003) show that a non-terminating SLDNF derivation admits an
infinite sequence of subgoals that are either variants or increasing in size.

Future Work Similarly to other existing loop detection methods, co-S-resolution is incomplete,
as it only captures regular infinite terms. Future work will be to introduce heuristics extending
our methods to irregular structures. Another direction for future work is to investigate practi-
cal applications of co-S-resolution in Internet programming and type inference in programming
languages, as was done by Fu et al. (2016).

References

ACZEL, P. 1977. An introduction to inductive definitions. Studies in Logic and the Foundations of Mathe-
matics 90, 739 – 782.

ANCONA, D. AND DOVIER, A. 2015. A theoretical perspective of coinductive logic programming. Fun-
dam. Inform. 140, 3-4, 221–246.

COLMERAUER, A. 1982. Prolog and Infinite Trees. Academic Press.
COURCELLE, B. 1983. Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–169.
DAVISON, A. 2001. Logic programming languages for the internet. In Computational Logic: From Logic

Programming into the Future. Springer.
FU, P. AND KOMENDANTSKAYA, E. 2017. Operational semantics of resolution and productivity in Horn

Clause logic. J. Formal Aspects of Computing 29, 3, 453–474.
FU, P., KOMENDANTSKAYA, E., SCHRIJVERS, T., AND POND, A. 2016. Proof relevant corecursive reso-

lution. In FLOPS’16. LNCS, vol. 9613. Springer, 126–143.
GUPTA, G., BANSAL, A., MIN, R., SIMON, L., AND MALLYA, A. 2007. Coinductive logic programming

and its applications. In ICLP. 27–44.
HEINTZE, N. AND JAFFAR, J. 1992. Semantic types for logic programs. In Types in Logic Programming.

141–155.
JAFFAR, J. AND STUCKEY, P. J. 1986. Semantics of infinite tree logic programming. Theoretical Computer

Science 46, 3, 141–158.
JOHANN, P., KOMENDANTSKAYA, E., AND KOMENDANTSKIY, V. 2015. Structural resolution for logic

programming. In Tech. Comm. of ICLP.
KOMENDANTSKAYA, E., JOHANN, P., AND SCHMIDT, M. 2017. A productivity checker for logic pro-

gramming. In Selected and Revised papers from LOPSTR’16. Springer.
KOMENDANTSKAYA, E., POWER, J., AND SCHMIDT, M. 2016. Coalgebraic logic programming: from

semantics to implementation. Journal of Logic and Computation 26, 2, 745–783.
LI, Y. 2017. Structural resolution with coinductive loop detection. In Post-proceedings of CoALP-Ty’16,

E. Komendantskaya and J. Power, Eds. Open Publishing Association.
LLOYD, J. 1988. Foundations of Logic Programming, 2nd ed. Springer-Verlag.
PROIETTI, M. AND PETTOROSSI, A. 1995. Unfolding-definition-folding, in this order, for avoiding un-

necessary variables in logic programs. Theoretical Computer Science 142, 1, 89 – 124.
SANGIORGI, D. 2011. Introduction to Bisimulation and Coinduction. Cambridge University Press.
SENNI, V., PETTOROSSI, A., AND PROIETTI, M. 2008. A Folding Algorithm for Eliminating Existential

Variables from Constraint Logic Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 284–300.

16 E. Komendantskaya and Y.Li

SHEN, Y.-D., YOU, J.-H., YUAN, L.-Y., SHEN, S. S. P., AND YANG, Q. 2003. A dynamic approach to
characterizing termination of general logic programs. ACM Trans. Comput. Logic 4, 4 (Oct.), 417–430.

SIMON, L., BANSAL, A., MALLYA, A., AND GUPTA, G. 2007. Co-logic programming: Extending logic
programming with coinduction. In ICALP. 472–483.

SIMON, L., MALLYA, A., BANSAL, A., AND GUPTA, G. 2006. Coinductive logic programming. In
ICLP’06. 330–345.

VAN EMDEN, M. H. AND ABDALLAH, M. A. N. 1985. Top-down semantics of fair computations of logic
programs. Journal of Logic Programming 2, 1, 67–75.

1

Online appendix for the paper

Productive Corecursion in Logic Programming
published in Theory and Practice of Logic Programming

EKATERINA KOMENDANTSKAYA
Heriot-Watt University, Edinburgh, Scotland, UK

ek19@hw.ac.uk

YUE LI
Heriot-Watt University, Edinburgh, Scotland, UK

yl55@hw.ac.uk

submitted 02 May 2017; revised 20 June 2017; accepted 04 July 2017

Appendix A Supplementary Materials and Full Proofs

A.1 Least and Greatest Complete Herbrand Models

We recall the least and greatest complete Herbrand model constructions for LP (Lloyd
1988). We express the definitions in the form of a big-step semantics for LP, thereby ex-
posing duality of inductive and coinductive semantics for LP in the style of (Sangiorgi
2011). We start by giving inductive interpretations to logic programs. We say that σ is a
grounding substitution for t if σ(t) ∈ GTermω(Σ), and is just a ground substitution if its
codomain is GTermω(Σ).

Definition Appendix A.1
Let P be a logic program. The big-step rule for P is given by

P |= σ(B1), . . . ,P |= σ(Bn)

P |= σ(A)

where A← B1, . . .Bn is a clause in P and σ is a grounding substitution.

Following standard terminology (Aczel 1977; Sangiorgi 2011), we say that an inference
rule is applied forward if it is applied from top to bottom, and that it is applied backward
if it is applied from bottom to top. If a set of terms is closed under forward (backward)
application of an inference rule, we say that it is closed forward (resp., closed backward)
under that rule. If the ith clause of P is involved in an application of the big-step rule for P,
then we may say that we have applied the big-step rule for P(i).

Definition Appendix A.2
The least Herbrand model for a program P is the smallest set MP ⊆ GTerm(Σ) that is
closed forward under the big-step rule for P.

2

Example Appendix A.1
The least Herbrand model for the program of Example 1.1 is {nat(0), nat(s(0)), nat(s2(0), . . .}.
We use s2(0) for s(s(0)), s3(0) for s(s(s(0))) and so on.

The requirement that MP ⊆GTerm(Σ) entails that only ground substitutions are used in
the forward applications of the big-step rule involved in the construction of MP. Next we
give coinductive interpretations to logic programs. For this we do not impose any finiteness
requirement on the codomain terms of σ .

Definition Appendix A.3
The greatest complete Herbrand model for a program P is the largest set Mω

P ⊆GTermω(Σ)

that is closed backward under the big-step rule for P.

Example Appendix A.2 (Complete Herbrand model)
The greatest complete Herbrand model for the program of Example 1.1 is {nat(0), nat(s(0)),
nat(s2(0)) . . .}

⋃
{nat(sω)}. Indeed, there is an infinite inference for nat(sω)= nat(s(s(...)))

obtained by repeatedly applying the big-step rule for this program backward.

Definitions Appendix A.2 and Appendix A.3 could alternatively be given in terms of
least and greatest fixed point operators, as in, e.g., (Lloyd 1988). To ensure that GTerm(Σ)

and GTermω(Σ) are non-empty, and thus that the least and greatest Herbrand model con-
structions are as intended, it is standard in the literature to assume that Σ contains at least
one function symbol of arity 0. We will make this assumption throughout the remainder of
this paper.

A.2 Proof of Productivity Lemma 4.1

Let P be an observationally productive and universal program and let t ∈ Term(Σ). Let D
be an infinite S-resolution derivation given by G0 = t ;S G1 ;

S G2 ;
S . . ., then for every

Gi ∈ D, there is a G j ∈ D, with j > i, such that, given computed mgus θi, . . . ,θ1 up to Gi

and the computed mgus θ j, . . . ,θ1 up to G j, d(t∞,θi, . . . ,θ1(t)) > d(t∞,θ j, . . . ,θ1(t)), for
some term t∞ ∈ Term∞(Σ).

The proof has two parts, as follows. Part 1 shows that, under the imposed productivity
and universality conditions, no infinite sequence of trivial unifiers is possible for infinite
S-resolution derivations. Therefore, an infinite S-resolution derivation must contain an in-
finite number of non-trivial substitutions. Part 2 uses this fact and shows that a composition
of an infinite number of non-trivial substitutions must result in an infinite term (this holds
under universality condition only).

Proof
Recall that, by definition of S-resolution reductions, each step Gk ;

S Gk+1 is a combi-
nation of a finite number of steps Gk →n [A1, . . . ,An] and one substitution+rewriting step
[A1, . . . ,A j, . . . ,An]→ ◦ ↪→ Gk+1, this final step involves computation of an mgu (but not
mgm) θk+1 of some clause C←C1, . . . ,Cn and some A j. So in fact

Gk+1 = [θk+1(A1), . . . ,θk+1(A j−1),θk+1(C1), . . . ,θk+1(Cn),θk+1(A j+1), . . . ,θk+1(An)]

Moreover, since θk+1 is not an mgm, we have that:
θk+1 is a non-trivial substitution for at least one variable X in A j. (**)

3

We will use the above facts implicitly in the proof below.
To proceed with our proof, first we need to show that
(1) For all k > 1 in G0 = t ;S G1 ;

S G2 ;
S . . .;S Gk ;

S . . ., the composition θk . . .θ1

is non-trivial for t.
We prove this by induction.
Base case. By (∗∗), θ1 is necessarily non-trivial for initial goal t.

Inductive case. If θk is non-trivial for term θk−1 . . .θ1(t), then by universality of P and (∗∗),
θk+1 is non-trivial for term θk . . .θ1(t). Then by induction, for all k > 1, the composition
θk . . .θ1 is non-trivial for t.

Next, we need to show that the property (1) implies that

(2) we can define the limit term t∞ using the infinite sequence

t, θ1(t), θ2θ1(t), θ3θ2θ1(t), . . .

To prove (2), we prove the following property:
(2.1) For each n ∈ N, there exists θkn , so that for all k, if k > kn, then truncation of

θk . . .θ1(t) at depth n is the same as the truncation of θkn . . .θ1(t) at depth n.
We prove this fact by contradiction. Assume the negation of our proposition, which says

there exists depth value n such that for all substitution subscript k, there exists some kn,
so that kn > k and truncation of θkn . . .θ1(t) at depth n is different from the truncation of
θk . . .θ1(t) at depth n. This is impossible because this implies that non-trivial substitution
can be infinitely applied within the truncation at depth n but no finitely branching tree can
accommodate infinite amount of variables up to any fixed depth.

This gives us a way to prove (2):
We build t∞ inductively, for each depth n of t∞. For depth n = 0, we let t∞ have as its

root symbol the predicate symbol t(ε) of initial atomic goal t. If t∞ is defined up till depth
n≥ 0, then, by (2.1) we know that there is some kn such that for all k > kn,

γ
′(n,θk . . .θ1(t)) = γ

′(n,θkn . . .θ1(t))

We also know by (2.1) that there is some kn+1 such that for all k > kn+1,

γ
′((n+1),θk . . .θ1(t)) = γ

′((n+1),θkn+1 . . .θ1(t))

Then we find the greater value κ in {kn,kn+1}, or set κ = kn if kn = kn+1, and define the
nodes at depth n+1 for t∞ in the same way as θκ . . .θ1(t).

A.3 Proof of Theorem 4.1 Soundness and Completeness of Infinite S-resolution
Relative to SLD-computations at Infinity

Let P be an observationally productive and universal program, and let t ∈Term(Σ). There
is an infinite fair S-resolution derivation for t iff there is a t ′ ∈ Term∞(Σ), such that t ′ is
SLD-computable at infinity by t.

Proofs in both directions start with establishing operational equivalence of infinite S-
resolution and SLD-resolution derivations. Coinductive proof principle is employed in this
part of the proof. The proof in the left-to-right direction proceeds by using this equivalence,

4

and by applying Lemma 4.1 to show that an infinite fair S-resolution derivation must result
in an SLD-computation of an infinite term at infinity. The other direction is proven trivially
from the operational equivalence of infinite S-resolution and SLD-resolution derivations.

Proof
1. Suppose D = t ;S G1 ;S G2 ;S . . . is an infinite fair S-derivation. It is easy to

construct a corresponding SLD-resolution derivation D∗, we prove this fact by coin-
duction. Consider t ;S G1, which in fact can be given by one of two cases:

(a) t ↪→ θ(t)→G1, i.e. if t does not match, but is unifiable with some clause P(i) via
a substitution θ . In this case, the first step in D∗ will be to apply SLD-resolution
reduction to t and P(i): t ; G1.

(b) t→n [A1, . . . ,A j, . . . ,An] ↪→ [θ(A1), . . . ,θ(A j), . . . ,θ(An)]→G1; obtained by re-
solving A j with a clause P(i) and computing a substitution θ . Then, in D∗, we
will have n steps by SLD-resolution reductions involving exactly the resolvents
of goal atoms and clauses used in t→n [A1, . . . ,An] (note that mgms used in→n

are also mgus by definition). These n steps in D∗ will be followed by one step of
SLD-resolution reduction, resolving A j with P(i) using substitution θ .
We can proceed coinductively to construct D∗ from D starting with G1 ∈ D.

We now need to show that such D∗ is fair and non-failing. By definition, t ;S G1 ;
S

G2 ;
S . . . should contain atoms which are resolved against finitely often. This means

that corresponding derivation D∗ will be fair. Because D is non-terminating and non-
failing, D∗ using the same resolvents will be non-terminating and non-failing, too.
Finally, we need to show that D∗ = t ; G∗1 ; G∗2 ; . . . constructed as described
above involves computation of an infinite term t ′ at infinity. This can only happen if,
for every G∗i ∈ D∗, there is a G∗j ∈ D∗, with j > i, such that, given computed mgus
θi, . . . ,θ1 up to G∗i and the computed mgus θ j, . . . ,θ1 up to G∗j , d(t ′,θi, . . . ,θ1(t))>
d(t ′,θ j, . . . ,θ1(t)). For this to hold, the S-resolution derivation D should satisfy the
same property, but this follows from Lemma 4.1.

2. The proof proceeds by coinduction. Consider the SLD-resolution derivation D∗ =
t ; G∗1 ; G∗2 ; . . . that computes an infinite term t ′ at infinity. Consider the substi-
tution θ associated with t ; G∗1. If it is an mgm of t and some clause P(i), then we
can construct the first step of S-resolution reduction using the rewriting reduction:
t → G∗1. If θ is not an mgm, i.e. it is an mgu, then we can construct first two steps
of the S-resolution reduction: t ↪→ θ(t)→ G∗1. We can proceed building D from D∗

in the same way, now starting from G∗1. We only need to show that D is fair and
non-failing, but that follows trivially from properties of D∗.

A.4 Standard co-SLD-resolution and Proof of Soundness of Co-S-resolution

In this subsection, we introduce the standard definition of co-SLD-derivations (Ancona and
Dovier 2015), and re-use the proof of their soundness with respect to the greatest complete
Herbrand models to establish a similar result for co-S-resolution.

Definition Appendix A.4 (Co-SLD-reductions (Ancona and Dovier 2015))

5

Given a logic program P, we distinguish the following reductions in the context of co-
inductive logic programming.

• SLD reduction (G ; G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If B0 ≈θ Ak for some pro-
gram clause B0← B1, . . . ,Bm and some k, then let S′ = Sk ∪{Ak}, we derive

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(B1,S′), . . . ,(Bm,S′),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
• loop detection (G→∞ G′): Let G = [(A1,S1), . . . ,(An,Sn)]. If Ak ≈θ B for some k

and some B ∈ Sk, we derive

G′ = θ
(
[(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)]

)
• co-SLD reduction (G ;co G′): G ;co G′ if G ; G′ or G→∞ G′.

Co-SLD-resolution is proven sound in (Ancona and Dovier 2015; Simon et al. 2006), i.e.
if a logic program P and an atomic goal G have a co-SLD-refutation with computed answer
substitution θ , then all ground instances of θ(G) are in the greatest complete Herbrand
model of P.

An important property of co-S-resolution is coinductive soundness.

Proposition Appendix A.1 (Soundness of co-S-resolution)
If a logic program P and an atomic initial goal G have a co-S-refutation with computed
answer substitution θ , then all ground instances of θ(G) are in the greatest complete Her-
brand model of P.

We will base the proof on the soundness of co-SLD resolution (Ancona and Dovier 2015;
Simon et al. 2006).

Proof
If loop detection is not used at all in the co-S-refutation, then the co-S-refutation reduces
to a S-refutation, which is sound w.r.t to least Herbrand model, thus also being sound w.r.t
the greatest complete Herbrand model.

Let us assume loop detection is used for at least once. We show that for any co-S-
refutation there exists a corresponding co-SLD refutation. Any substitution+rewriting step
Gi ↪→ Gi+1 → Gi+2 corresponds to one step of SLD reduction (in co-SLD setting) Gi ;

Gi+2. Any rewriting reduction step Gi→Gi+1 that does not follow a substitution reduction
step also constitutes a SLD-reduction step Gi ; Gi+1. In this way any co-S-refutation can
be converted to a refutation that only involves SLD-reduction and loop detection, thus con-
stituting a co-SLD refutation, which is sound w.r.t the greatest complete Herbrand model.

A.5 Proof of Theorem 5.1 of Soundness of Co-S-resolution Relative to
SLD-Computations at Infinity

Let P be an observationally productive and universal logic program, and t ∈ Term(Σ) be
an atomic goal. If there exists a co-S-refutation for P and t that involves the restricted loop
detection rule, and computes the substitution θ then

1. there exists an infinite fair S-derivation for P and t, and

6

2. there is a term t∞ ∈ Term∞(Σ) SLD-computed at infinity that is a variant of θ(t).

The proof will proceed according to the following scheme. For the sake of the argu-
ment, we take some arbitrary logic program that satisfies the productivity and universality
conditions. We first show that the use of (any) loop detection necessarily results in com-
putation of circular substitutions. Next, we analyse the effect of the restriction that was
introduced to loop detection in Definition 5.1 and build the infinite regular S-derivation
starting at the point where the restricted loop detection was once used. Finally, we show
that the sequence of (non-circular) unifiers computed by the infinite S-derivation is equiv-
alent to the single (circular) unifier computed by the restricted loop detection of Definition
5.1. If there are several uses of the restricted loop detection rule, then each implies a sep-
arate infinite derivation, and they can be interleaved to form an infinite fair S-derivation.
This argument relies only on the observational productivity, leading to the conclusion that
for an observationally productive program, if it has a co-S-refutation then there exists an
infinite fair S-derivation in which a sequence of computed unifiers “unfolds” the circular
unifier. A program that is also universal is a special case, where (by Theorem 4.1) the in-
finite sequence of unifiers instantiates the initial goal into an infinite formula, which shall
be a variant of the formula computed by co-S-refutation.

Before proceeding with the full proof, we first need to introduce the method of decir-
cularization. A circular substitution means a substitution of infinite regular terms for vari-
ables. For e.g. {X 7→ s(X)} is equivalent to {X 7→ sω}, where sω is obtained by continued
substitution of s(X) for X , which can further be regarded as applying an infinite succession
of non-circular substitutions s(X1) for X , s(X2) for X1, s(X3) for X2, and so on. We coin the
term decircularization for the process of obtaining from a circular substitution σ an equiv-
alent infinite succession of non-circular substitutions σ1,σ2, In the following proof we
relate co-S-resolution’s answers to terms SLD-computable at infinity by showing that the
circular substitutions computed by co-S-refutation have decircularization computed by in-
finite S-derivation. Formal definition of decircularization (with motivating examples) is
given below.

Definition Appendix A.5 (Decircularization)
Let σ = {. . . ,Xk 7→ t, . . .} be a circular substitution where Xk 7→ t a circular component
and FV (t) = {X1, . . . ,Xk, . . . ,Xm}. Xk 7→ t can be decircularized into an infinite set R =

{Xk 7→ t(1),Xk(1) 7→ t(2),Xk(2) 7→ t(3), . . .} where t(n) is a variant of t obtained by applying
renaming {Xi 7→ Xi(n) | ∀i ∈ [1,m]} to t. We call the set R a decircularization of Xk 7→
t. The decircularization of σ is the union of all decircularizations of individual circular
components of σ .

Example Appendix A.3 (Decircularization)
Let σ = {A1 7→ f (A1,B1,C1),B1 7→ s(B1)}. The decircularization of σ is RA ∪RB where
RA = {A1 7→ f (A1(1) ,B1(1) ,C1(1)),A1(1) 7→ f (A1(2) ,B1(2) ,C1(2)),A1(2) 7→ f (A1(3) ,B1(3) ,C1(3)), . . .}.
and RB = {B1 7→ s(B1(1)),B1(1) 7→ s(B1(2)),B1(2) 7→ s(B1(3)), . . .}. With the understanding
that subscriptions merely serve the purpose of distinguishing names, we can simplify the
decircularization into RA = {A1 7→ f (A2,B2,C2),A2 7→ f (A3,B3,C3),A3 7→ f (A4,B4,C4), . . .}
and RB = {B1 7→ s(B2),B2 7→ s(B3),B3 7→ s(B4), . . .}. Note the way A’s and B’s interact in
the decircularization.

7

Example Appendix A.4
Consider program:
r(f(A,B,C), s(B))← r(A,B).

A co-S-refutation D is:
[
(
r(X ,Y), /0

)
] ↪→X 7→ f (A1,B1,C1),Y 7→s(B1) [

(
r(f (A1,B1,C1),s(B1)), /0

)
]→

[
(
r(A1,B1),{r(f (A1,B1,C1),s(B1))}

)
]→A1 7→ f (A1,B1,C1),B1 7→s(B1)

co []

If we continue the derivation from the underlined goal in D, but now use S-resolution,
we have an infinite S-derivation D∗ as follows:
[r(X ,Y)] ↪→X 7→ f (A1,B1,C1),Y 7→s(B1) [r(f (A1,B1,C1),s(B1))]→
[r(A1,B1)] ↪→A1 7→ f (A2,B2,C2),B1 7→s(B2) [r(f (A2,B2,C2),s(B2))]→
[r(A2,B2)] ↪→A2 7→ f (A3,B3,C3),B2 7→s(B3) [r(f (A3,B3,C3),s(B3))]→
[r(A3,B3)] · · ·

Note that the mgu’s computed by infinite S-derivation starting from the underlined goal
in D∗ is a decircularization of the circular substitution computed by co-S-resolution from
the corresponding goal in D. The details of computing decircularization for the circular
substitution of this example is given in Example Appendix A.3. We see that in this example
co-S-resolution is a perfect finite model for corresponding infinite S-resolution.

Proof
We first take an arbitrary coinductive logic program that satisfies our productivity and
universality conditions.

1. We first show that the use of loop detection (no matter restricted or not) necessarily
results in creation of circular substitutions.
Generally, consider some subgoal of the form (A,{A1, . . .An}) where for all Ai in the
ancestors set of A, Ai is added to the ancestors set later than Ai+1. By definition of
co-S-derivation, there exists some program clause instances (or variants)

An← . . . ,An−1, . . .
...
A2← . . . ,A1, . . .

A1← . . . ,A, . . .
where all A and Ak (1≤ k≤ n) are finite, so are the omitted atoms (which are repre-
sented by “. . .”) in the above set of clauses.
Assume restricted loop detection is applicable for the subgoal under consideration.
This means that A unifies with some Ai (occurs check switched off) under mgu σ ,
and A ≺ A′i where A′i is a fresh-variable variant of Ai. Each of the two conditions
A≈σ Ai and A≺ A′i has implication.
Note that σ is a circular substitution: if σ is not a circular substitution, then we have
the set of program clause instances (or variants)

σ(Ai)← . . . ,σ(Ai−1), . . .
...
σ(A2)← . . . ,σ(A1), . . .

σ(A1)← . . . ,σ(A), . . .
where σ(A) = σ(Ai) (because A ≈σ Ai) and all atoms are finite. Then there exists

8

non-terminating rewriting reduction steps for σ(Ai) and thus breaks the observa-
tional productivity condition. Therefore σ is circular.

2. Next we construct the general form of the repeating derivation pattern by analysing
the effect of the restricted loop detection. This pattern is then used to build the infinite
regular derivation that can start at the point where the restricted loop detection was
once used.
An infinite sequence {γn}n≥0 of trivial substitutions is defined as follows. Let γ0 be
the empty substitution and γ1 be a variable renaming substitution for Ai with fresh
names. Let {γn}n≥1 be an infinite sequence of renaming substitutions, such that,
for all n ≥ 2, the domain of γn equals to the image of γn−1, while the image of γn is
disjoint from the set of all variables that occur in the domain of one of γk (1≤ k≤ n).
For example, if γ1 = {X1 7→ X2}, then the sequence of renaming substitutions {X1 7→
X2},{X2 7→ X3},{X3 7→ X4}, . . . conforms to the above description for {γn}n≥1.
For all n ≥ 0, γn+1 · · ·γ0(Ai) is an instance of γn · · ·γ0(A), as is implied by A ≺ A′i.
Let σn+1 denote the matcher for the pair γn · · ·γ0(A) and γn+1 · · ·γ0(Ai), we have the
important equation

σn+1γn . . .γ0(A) = γn+1 . . .γ0(Ai), for all n≥ 0

We also have a set of program clause instances (or variants) for all n≥ 0:
γn+1 . . .γ0(Ai) ← . . . , γn+1 . . .γ0(Ai−1), . . .
...
γn+1 . . .γ0(A2) ← . . . , γn+1 . . .γ0(A1), . . .

γn+1 . . .γ0(A1) ← . . . , γn+1 . . .γ0(A), . . .
Using the above clauses for rewriting reductions, we have that for all n ≥ 0, there
exists the repeating S-derivation pattern:

[. . . , γn · · ·γ0(A), . . .] ↪→ [. . . , σn+1γn . . .γ0(A), . . .]→i [. . . , γn+1 . . .γ0(A), . . .]

Therefore an infinite S-derivation starting from goal [. . . ,A, . . .] can be given in the
form
[. . . , γ0(A), . . .] ↪→ [. . . , σ1γ0(A), . . .]→i

[. . . , γ1γ0(A), . . .] ↪→ [. . . , σ2γ1γ0(A), . . .]→i

[. . . , γ2γ1γ0(A), . . .] ↪→ ·· ·
3. Finally we show that the collection of (non-circular) unifiers computed by the infinite

derivation is equivalent to the single (circular) unifier computed by restricted loop
detection.
Consider a circular component X 7→ t[X] of σ . This circular component corresponds
to a mapping Xn 7→ t[Xn+1] in each matcher σn+1 (n ≥ 0) . Therefore the collection
of all such Xn 7→ t[Xn+1] constitutes a decircularization of X 7→ t[X], and all other
circular components of σ are similarly decircularized. Therefore σ has the decircu-
larization

⋃
∞
n=1 σn.

If there are several use of restricted loop detection, then each implies a separate infinite
derivation, which can be interleaved to form an infinite fair S-derivation.

So far only the observational productivity condition has been used, and the conclusion
is that

9

For observationally productive programs, if there is a co-S-refutation involving restricted
loop detection and a circular unifier θ , then 1) there exists an infinite fair co-S-derivation
that 2) computes an infinite sequence of unifiers equivalent to the circular unifier θ . (?)

A program that is also universal is a special case of (?), which, by 1) of (?), has an
infinite fair S-derivation whose unifiers, instantiate the initial goal into an infinite formula
(by Theorem 4.1). But then by 2) of (?), a composition of these unifiers must compute a
variant of the formula computed by co-S-refutation.

A.6 Implementation of Co-S-resolution

The co-S-resolution meta-interpreter is written in SWI-Prolog, and is available at
https://github.com/coalp/Productive-Corecursion. It adopts left first computa-
tion rule and depth first search rule in the SLD tree.

The entry procedure requires a unary predicate named clause tree, which takes a
conjunctive goal or an atomic goal as an input. After assignment of an empty ancestors set
to the goal, a case analysis on the shape of the goal passes an atomic goal to procedures
corresponding to reduction rules, or disassembles a conjunctive goal into its head and tail,
and processes the head and the tail separately and recursively, starting with a case analysis
on their shape.

Three kinds of reduction rule: rewriting reduction, substitution reduction and restricted
loop detection are coded separately as three alternative procedures to process an atomic
goal. Since object programs to be processed by the meta-interpreter are intended to be
non-terminating, and given the execution model of Prolog, it is necessary to put the loop
detection rule ahead of other rules, otherwise in a non-terminating derivation it will never
be called. The rewriting reduction is put at the second place, and the substitution reduction
is tried only when both the loop detection and the rewriting reduction are not applicable.
The ordering of the rules, therefore, also makes sure that rewriting happens after each sub-
stitution reduction, because if a sub-goal cannot be reduced by loop detection, an instance
of this sub-goal from substitution reduction still cannot be reduced by loop detection.

References

ACZEL, P. 1977. An introduction to inductive definitions. Studies in Logic and the Foundations of
Mathematics 90, 739 – 782.

ANCONA, D. AND DOVIER, A. 2015. A theoretical perspective of coinductive logic programming.
Fundam. Inform. 140, 3-4, 221–246.

LLOYD, J. 1988. Foundations of Logic Programming, 2nd ed. Springer-Verlag.
SANGIORGI, D. 2011. Introduction to Bisimulation and Coinduction. Cambridge University Press.
SIMON, L., MALLYA, A., BANSAL, A., AND GUPTA, G. 2006. Coinductive logic programming. In

ICLP’06. 330–345.

