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Abstract

Maude i s a  h igh-level l anguage a nd a  h igh-performance s ystem s upporting e xecutable 
speci$-cation a nd d eclarative p rogramming i n r ewriting l ogic. S ince r ewriting l ogic 
contains e quational l ogic, Maude a lso s upports e quational s peci$cation a nd p rogramming i n 
its s ublanguage o f f unc-tional modules a nd t heories. T he u nderlying e quational l ogic 
chosen f or Maude i s membership e quational l ogic, t hat h as s orts, s ubsorts, o perator 
overloading, a nd p artiality d e$nable b y mem-bership a nd e quality c onditions. Rewriting l ogic 
is r e:ective, i n t he s ense o f b eing a ble t o e xpress i ts o wn metalevel a t t he o bject l evel. 
Re:ection i s s ystematically e xploited i n Maude e ndowing t he l anguage with p owerful 
metaprogramming c apabilities, i ncluding b oth u ser-de$nable module o perations a nd 
declarative s trategies t o g uide t he d eduction p rocess. T his p aper e xplains a nd i llustrates 
with e xamples t he main c oncepts o f Maude’s l anguage d esign, i ncluding i ts u nder-lying 
logic, f unctional, s ystem a nd o bject-oriented modules, a s well a s p arameterized modules, 
theories, a nd v iews. We a lso e xplain h ow Maude s upports r e:ection, metaprogramming a nd 
in-ternal s trategies. The p aper o utlines t he p rinciples u nderlying t he Maude s ystem 
implementation, i ncluding i ts s emicompilation t echniques. We c onclude with s ome r emarks 
about a pplications, work o n a  f ormal e nvironment f or Maude, a nd a  mobile l anguage 
extension o f Maude. 
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1. Introduction

Maude [14,15] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications. Maude
has been in:uenced in important ways by OBJ3 [37]; in particular, Maude’s equa-
tional logic sublanguage essentially contains OBJ3 as a sublanguage. The main dif-
ferences from OBJ3 at the equational level are a much greater performance, and a
richer equational logic, namely, membership equational logic [48], that extends OBJ3’s
order-sorted equational logic [36].

The key novelty of Maude is that — besides eFciently supporting equational com-
putation and algebraic speci$cation in the OBJ style — it also supports rewriting logic
computation. Rewriting logic [43] is a logic of concurrent change that can naturally
deal with state and with highly nondeterministic concurrent computations. It has good
properties as a :exible and general semantic framework for giving semantics to a wide
range of languages and models of concurrency [47,35,11,53]. In particular, it supports
very well concurrent object-oriented computation. This is re:ected in Maude’s design
by providing special syntax for object-oriented modules. Since the computational and
logical interpretations of rewriting logic are like two sides of the same coin, the same
reasons making it a good semantic framework at the computational level make it also
a good logical framework at the logical level, that is, a metalogic in which many
other logics can be naturally represented and implemented [41]. Consequently, some
of the most interesting applications of Maude are metalanguage applications, in which
Maude is used to create executable environments for diMerent logics, theorem provers,
languages, and models of computation.

Maude’s functional modules are theories in membership equational logic [9,48], a
Horn logic whose atomic sentences are equalities t = t′ and membership assertions of
the form t : s, stating that a term t has sort s. Such a logic extends order-sorted equa-
tional logic [36], and supports sorts, subsort relations, subsort polymorphic overloading
of operators, and de$nition of partial functions with equationally de$ned domains.
Maude’s functional modules are assumed to be Church–Rosser and terminating; they
are executed by the Maude engine according to the rewriting techniques and operational
semantics developed in [9].

Membership equational logic is a sublogic of rewriting logic [43]. A rewrite theory
is a pair (T; R) with T a membership equational theory, and R a collection of labelled
and possibly conditional rewrite rules involving terms in the signature of T . Maude’s
system modules are rewrite theories in exactly this sense. The rewrite rules r : t → t′

in R are not equations. Computationally, they are interpreted as local transition rules
in a possibly concurrent system. Logically, they are interpreted as inference rules in a
logical system.

Rewriting in (T; R) happens modulo the equational axioms in T . Maude supports
rewriting modulo all combinations of associativity, commutativity, and identity. The
rules in R need not be Church–Rosser and need not be terminating. Many diMerent
rewriting paths are then possible; therefore, the choice of appropriate strategies is
crucial for executing rewrite theories. In Maude, such strategies are not an extralogical
part of the language. They are instead internal strategies de$ned by rewrite theories



at the metalevel. This is because rewriting logic is re<ective [12,20] in the precise
sense of having a -nitely presented universal theory U that can simulate any $nitely
presented rewrite theory. Since U is representable in itself, we can then achieve a
“re:ective tower” with an arbitrary number of levels of re:ection.

Maude eFciently supports this re:ective tower through its META-LEVEL module,
which makes possible not only the declarative de$nition and execution of user-de$nable
rewriting strategies, but also many other metaprogramming applications. In particular,
it is possible to de$ne and execute within the logic an extensible module algebra sup-
porting the OBJ style of parameterized programming [37], with highly generic and
reusable modules. The basic idea is that META-LEVEL is extended with new data types
for: parameterized modules; theories, with loose semantics, to state formal require-
ments in parameters; views, to bind parameter theories to their instances; and module
expressions, instantiating, transforming, and composing parameterized modules. All
such new types and operations are de$ned in Maude itself. This, together with the
explicit access to modules as terms provided by re:ection, makes the corresponding
module algebra completely open, and easily extensible by new module operations and
transformations [28]. Maude also supports object-oriented modules, with convenient
syntax for object-oriented applications.

All applications typical of equational programming and algebraic speci$cation are
conveniently and eFciently supported through Maude’s sublanguage of functional mod-
ules. In fact, the paper [48] argues that Maude’s equational logic, namely, membership
equational logic, is so expressive — yet eFciently implementable — as to oMer very
good advantages as a logical framework for a very wide range of algebraic speci$ca-
tion languages based on both total and partial equational logic formalisms. However,
many Maude applications go beyond equational logic. System modules support general
rewriting logic applications. The important area of concurrent and distributed object-
based system speci$cation and prototyping is supported by object-oriented modules.
In addition, re:ection makes possible many novel metaprogramming and metalanguage
applications, and is extremely valuable in the use of rewriting logic as a logical and
semantic framework [41].

The rewriting logic research program has shown good signs of vitality, including
three international workshops [46,39,34], over 200 research papers (see the references
in [47,49,51,50]), and three language implementation eMorts, namely ELAN [40,8,7]
in France, CafeOBJ [23,24,25] in Japan, and Maude. Therefore, Maude should be
seen as our contribution to the broader collective eMort of building good language
implementations for rewriting logic. In this regard, a key distinguishing feature of
Maude is its systematic and eFcient use of re<ection, exploiting the fact that rewriting
logic is re:ective, a feature that makes Maude remarkably extensible and powerful,
and that allows many advanced metaprogramming and metalanguage applications.

This paper constitutes a revised and extended presentation of concepts and ideas
previously introduced in several conference papers [19,13,30,16,31]. Those papers have
provided snapshots of the language versions at diMerent moments, while this journal
version focuses on the main concepts in a (mostly) version-independent way. However,
we do not develop here complete presentations of the underlying logics, providing
instead bibliographic references where the reader can $nd more details.



The reader is assumed to have some knowledge of algebraic speci$cation concepts
(as surveyed for example in the recent book [1]). For a more introductory presentation
of Maude, the reader is advised to read the Maude tutorial [15], where the main
features of the language are introduced in an incremental way by means of a sequence
of detailed examples. More language details can also be found in the Maude manual
[14], which has large amounts of version-dependent information. We plan to keep the
manual as an evolving online document re:ecting new versions of the language as they
are developed.

The Maude system, the just mentioned tutorial and manual, a collection of exam-
ples and case studies, and a list of related papers are available (free of charge) at
http:==maude.csl.sri.com.

2. Membership equational logic and functional modules

Maude is a declarative language based on rewriting logic, but rewriting logic has its
underlying equational logic as a parameter. There are, for example, unsorted, many-
sorted, and order-sorted versions of rewriting logic, each containing the previous version
as a special case. In particular, the underlying equational logic chosen for Maude is
membership equational logic, a conservative extension of both order-sorted equational
logic and partial equational logic with existence equations [48,9]. It supports partiality,
subsort relations, operator overloading, and error speci$cation.

2.1. Membership equational logic

A signature in membership equational logic is a triple 	= (K; �; S) with K a set of
kinds, (K; �) a many-sorted (although it is better to say “many-kinded”) signature, and
S = {Sk}k∈K a K-kinded set of sorts. An 	-algebra is then a (K; �)-algebra A together
with the assignment to each sort s ∈ Sk of a subset As⊆Ak . Intuitively, the elements in
sorts are the good, or correct, or non-error, or de$ned, elements, whereas the elements
without a sort are error or unde$ned elements. In general, a total function at the kind
level restricts only to a partial function at the level of sorts.

Atomic formulas are either �-equations, or memberships of the form t : s, where
the term t has kind k and s ∈ Sk . General sentences are Horn clauses on these atomic
formulas, quanti$ed by $nite sets of K-kinded variables. That is, they are either con-
ditional equations

(∀X ) t = t′ if
(∧

i
ui = vi

)
∧
(∧

j
wj : sj

)

or conditional memberships of the form

(∀X ) t : s if
(∧

i
ui = vi

)
∧
(∧

j
wj : sj

)
:



Such memberships are a generalization of sort constraints [52] and can be used to
specify partial functions, that become de$ned when their arguments satisfy certain
equational and membership conditions.

Order-sorted notation can also be used for convenience, and we do so in
Maude. Thus, a subsort declaration s¡ s′ abbreviates the conditional membership axiom
(∀x) x : s′ if x : s. Similarly, an operator declaration f : s1 : : : sn→ s0 at the sort
level corresponds to an operator declaration at the kind level together with the
conditional membership axiom (∀x1; : : : ; xn)f(x1; : : : ; xn): s0 if x1 : s1 ∧ · · · ∧
xn : sn.

Membership equational logic has all the usual good properties: soundness and com-
pleteness of appropriate rules of deduction, initial and free algebras, relatively free
algebras along theory morphisms, and so on [48].

2.2. Functional modules

In Maude, functional modules are equational theories in membership equational logic
satisfying some additional requirements. Computation in a functional module is ac-
complished by using the equations as rewrite rules until a canonical form is found.
This is the reason why the equations must satisfy the additional requirements of
being Church–Rosser, terminating, and sort decreasing [9]. This guarantees that all
terms in an equivalence class modulo the equations will rewrite to a unique canon-
ical form, and that this canonical form can be assigned a sort that is smaller than
all other sorts assignable to terms in the class. Since Maude supports rewriting mod-
ulo equational theories such as associativity, commutativity, and identity, all
that we say has to be understood for equational rewriting modulo such axioms
[22].

We explain now the syntactic treatment in Maude of kinds, variables, and conditions
in conditional equations and membership axioms.

With respect to kinds, Maude does automatic kind inference from the sorts de-
clared by the user and their subsort relations, but kinds are not explicitly named;
instead, a kind k is identi$ed with the set Sk of its sorts, interpreted as an equiv-
alence class modulo the equivalence relation generated by the subsort ordering, that
is, two sorts are in this equivalence relation if and only if they belong to the same
connected component in the poset of sorts. Therefore, for any s ∈ Sk ; [s] denotes the
kind k = Sk , understood as the connected component of the poset of sorts to which s
belongs.

As an example that will be developed step by step in this section, let us consider
as given a graph speci$cation

sorts Node Edge .
ops source target : Edge -> Node .

with operations giving the source and target nodes of each edge, as well as speci$c edge
and node constants that need not concern us here. Then, we extend such a speci$cation
by declaring a sort Path of paths over the graph, together with a partial concatenation
operator, and appropriate source and target functions over paths as follows, where the



subsort declaration states that edges are “unitary” paths.

sort Path .
subsort Edge < Path .
op _;_ : [Path] [Path] -> [Path] .
ops source target : Path -> Node .

This illustrates the idea that in Maude sorts are user-de$ned, while kinds are implicitly
associated with connected components of sorts and are considered as “error supersorts”.
The Maude system also lifts automatically to kinds all the operators involving sorts
of the corresponding connected components to form error expressions. Such error
expressions allow us to give expressions to be evaluated the bene$t of the doubt: if,
when they are simpli$ed, they have a legal sort, then they are ok; otherwise, the fully
simpli$ed error expression is returned as an error message.

Variables in a Maude module do not have to be declared in variable declarations; they
can appear directly in terms. A variable consists of an identi$er composed of a name,
followed by a colon, followed by either a sort or a kind name. For example, P : Path
is a variable of sort Path. Variable declarations are still allowed for convenience; for
example, the declaration var P : Path allows using the name P as an abbreviation for
the variable P : Path.
Equational conditions in conditional equations and memberships are made up of

individual equations t = t′ and memberships t : s by a binary conjunction connective
/\ which is assumed associative. Furthermore, the concrete syntax of equations in
conditions has two variants, namely, ordinary equations t = t’, and matching equations
t := t’.

For example, the following axioms express the condition de$ning path concatenation
and the associativity of this operator:

var E : Edge .
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P) .
ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

The conditional membership axiom (introduced by the keyword cmb) states that an edge
concatenated with a path is also a path when the target node of the edge coincides
with the source node of the path. This has the eMect of de$ning path concatenation
as a partial function on paths, although it is total on the kind [Path] of “confused
paths”. Instead of giving the above associativity equation explicitly (by means of the
conditional equation introduced by the keyword ceq), if we wanted to apply the axioms
modulo associativity, we could have declared an associativity equational attribute in
the declaration of the operator:

op _;_ : [Path] [Path] -> [Path] [assoc] .

Assuming variables P, E, and S declared as above, source and target functions
over paths are de$ned by means of matching equations in conditions as



follows:

ceq source(P) = source(E) if E ; S := P .
ceq target(P) = target(S) if E ; S := P .

Matching equations are mathematically interpreted as ordinary equations; however,
operationally they are treated in a special way and they must satisfy special require-
ments. Note that the variables E and S in the above matching equation do not appear
in the left-hand sides of the corresponding conditional equations. In the execution of
these equations, these new variables become instantiated by matching the term E ; S
against the subject term bound to the variable P. In order for this match to decide the
equality with the ground term bound to P, the term E ; S must be a pattern. Given a
functional module M , we call a term t an M -pattern if for any well-formed substitu-
tion � such that for each variable x in its domain the term �(x) is in canonical form
with respect to the equations in M , then �(t) is also in canonical form. A suFcient
condition for t to be an M -pattern is the absence of uni$ers between its nonvariable
subterms and left-hand sides of equations in M .

Ordinary equations t = t′ in conditions have instead the usual operational interpre-
tation, that is, for the given substitution �, �(t) and �(t′) are both reduced to canon-
ical form and compared for equality, modulo the equational axioms speci$ed in the
module’s operator declarations such as associativity, commutativity, and identity.

All conditional equations t = t′ if C1 ∧ · · · ∧Cn in a functional module M have to
satisfy the following admissibility requirements, 1 ensuring that all the extra variables
will become instantiated by matching:
(1)

vars(t′) ⊆ vars(t) ∪
n⋃

j=1
vars(Cj):

(2) If Ci is an equation ui = u′i or a membership ui : s, then

vars(Ci) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj):

(3) If Ci is a matching equation ui := u′i , then ui is an M -pattern and

vars(u′i) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj):

The satisfaction of the conditions is attempted sequentially from left to right. Since
matching takes place modulo equational attributes, in general many diMerent matches
may have to be tried until a match of all the variables satisfying the condition is found.

As mentioned before, we expect functional modules to be Church–Rosser and termi-
nating membership equational logic speci$cations in the sense of [9, Section 10:1]. The

1 These requirements include as a special case what are called properly oriented and right stable 3-CTRSs
in [61], when each equation si = ti in their conditions is expressed as a matching equation ti := si .



above admissibility requirements and the Church–Rosser and termination assumptions
are dropped for functional theories (see Section 4.2) which support the full generality
of the logic.

In membership equational logic the Church–Rosser property of terminating and sort-
decreasing equations is indeed equivalent to the con:uence of their critical pairs in an
appropriately generalized sense [9]. Furthermore, both equality and membership of a
term in a sort are then decidable properties [9]. That is, the equality and membership
predicates are computable functions. We can then use the metatheorem of Bergstra
and Tucker [3] to conclude that such predicates are themselves speci$able by Church–
Rosser and terminating equations as Boolean-valued functions. This has the pleasant
consequence of allowing us to include inequalities t 
= t′ and negations of membership
assertions not(t : s) in conditions of equations and of membership axioms, since such
seemingly negative predicates can also be axiomatized inside the logic in a positive
way, provided that we have a subspeci$cation of (not necessarily free) constructors in
which to do it, and that the speci$cation is indeed Church–Rosser, terminating, and
sort decreasing. Of course, in practice they do not have to be explicitly axiomatized,
since they are built into the implementation of rewriting deduction in a much more
eFcient way.

Indeed, by default, Maude modules implicitly import a prede$ned BOOL module
providing Boolean values true and false, and operators _and_, _or_, and not_.
In addition, this imported prede$ned module provides the semantic equality operator
_==_ checked by equational simpli$cation, its negation _=/=_, a conditional operator
if_then_else_fi, and a membership predicate _::_. For example, the associativity
property could also be speci$ed as

ceq (P ; Q) ; R = P ; (Q ; R)
if target(P) == source(Q) and target(Q) == source(R) .

More generally, a Boolean expression b is allowed to appear as a conjunct in an
equational condition as a shorthand for the equation b = true.

If a collection of (conditional) equations is Church–Rosser and terminating, given
an expression, no matter how the equations are used from left to right as simpli$cation
rules, any reduction strategy will reach a normal form and moreover we will always
reach the same $nal result. However, even though the $nal result may be the same,
some orders of evaluation can be considerably more eFcient than others. It may there-
fore be useful to have some way of controlling the way in which equations are applied
by means of strategies.

Typically, a functional language is either eager, or lazy with some strictness analy-
sis added for eFciency, and the user has to live with whatever the language provides.
Maude adopts OBJ3’s :exible method of user-speci$ed evaluation strategies on an
operator-by-operator basis [37], adding some improvements to the OBJ3 approach to
ensure a correct implementation [33]. For an n-ary operator f such strategies are spec-
i$ed as lists i1 : : : im of numbers, with im = 0, and 06ij6n, for j= 1; : : : ; m − 1. For
example, the default bottom-up eager strategy given in Maude to an n-ary operator
f, when no strategy is explicitly declared by the user, is (1 : : : n 0), stating that in



evaluating a term f(t1; : : : ; tn), the subterms t1; : : : ; tn are evaluated in this order be-
fore applying the equations for f to the whole term. Similarly, the strategy given to
if_then_else_fi is (1 0 2 3 0), stating that it is enough to evaluate the Boolean
condition in the $rst argument before trying the evaluation of the whole term. In addi-
tion to improving eFciency, operator strategies allow us to compute with in$nite data
structures which are evaluated on demand; for example, a lazy “cons” list constructor
may have strategy (0). The paper [33] documents in detail the operational semantics
and the implementation techniques for Maude’s operator evaluation strategies; their
concrete syntax as attributes in operator declarations is explained in [14].

As in the OBJ family of languages [37], functional modules can be unparameter-
ized, or they can be parameterized with functional theories as their parameters (see
Section 4 for more details). Functional theories are also membership equational logic
theories, but they do not need to be Church–Rosser and terminating. They have a loose
interpretation, in the sense that any algebra satisfying the equations and membership
axioms in the theory is an acceptable model. On the other hand, the semantics of an
unparameterized functional module is the initial algebra speci$ed by its theory. The
semantics of a parameterized functional module is the free functor associated to the
inclusion of the parameter theory into the body of the parameterized module [48,27].
For example, the semantics of a list module LIST(X :: TRIV) parameterized over
the simple parameter theory TRIV with only one sort Elt (see Section 4.3) is the
functor sending each set to the algebra of lists over this set. Similarly, the semantics
of a sorting module SORTING(Y :: POSET) parameterized over the POSET functional
theory (see Section 4.2) is the functor sending each poset to the algebra of lists for
that poset with a sorting function.

2.3. Example: arrays as lists of pairs

We $nish this section with a functional module illustrating Maude’s support for
mix$x user-de$nable syntax and for module hierarchies (see Section 4.1).

An array of integers is represented as a list of pairs of integers, where the $rst
component of each pair corresponds to the array position and the second to the value
in that position. A list of pairs of this kind is the representation of an array if either
it is empty, or the $rst components of the pairs are all diMerent and the positions of
consecutive pairs are consecutive numbers.

The $rst module imports the prede$ned module MACHINE-INT, providing integers
and usual arithmetic operations on them. Then, it de$nes a sort IntPair for pairs of
integers with (_,_) as only constructor 2 (notice the ctor attribute specifying that
this operator is a constructor of the sort). These pairs are used as components of lists,
de$ned with the concatenation operator __ as the main constructor, declared with both
an attribute assoc for associativity, and an attribute id: nil for the empty list nil

2 Since parentheses are normally used for disambiguation, in order to correctly declare this operation, it
is necessary to write (( , )).



as two-sided identity. Unitary lists are obtained with a subsort declaration.

fmod INT-PAIR-LIST is
protecting MACHINE-INT .
sort IntPair .
op ((_,_)) : MachineInt MachineInt -> IntPair [ctor] .
sort IntPairList .
subsort IntPair < IntPairList .
op nil : -> IntPairList [ctor] .
op __ : IntPairList IntPairList -> IntPairList

[ctor assoc id: nil] .
endfm

The following module INT-ARRAY imports the previous one, and then uses (condi-
tional) memberships to specify the subsort IntArray of lists representing arrays. The
sort NeIntArray is the subsort of nonempty such lists. The module INT-ARRAY de$nes
two usual partial operators on arrays: _[_] to obtain the value stored in the array at a
given position, and _[_->_] to modify the value at a particular position. Notice that
the partiality of such operators is re:ected in their declarations as returning values in
a kind instead of a sort. Finally, the operators low and high return, respectively, the
$rst and last positions of a given nonempty array.

fmod INT-ARRAY is
protecting INT-PAIR-LIST .
sorts NeIntArray IntArray .
subsorts IntPair < NeIntArray < IntArray < IntPairList .

op _[_] : NeIntArray MachineInt -> [MachineInt] .
op _[_->_] : NeIntArray MachineInt MachineInt -> [IntArray] .
ops low high : NeIntArray -> MachineInt .

vars I J X Y : MachineInt .
vars L L’ : IntPairList .

mb nil : IntArray .
cmb (I, X) (J, Y) L : NeIntArray

if I + 1 = J /\ (J, Y) L : NeIntArray .

ceq (L (I, X) L’)[I] = X if L (I, X) L’ : NeIntArray .
ceq (L (I, X) L’)[I -> Y] = (L (I, Y) L’)

if L (I, X) L’ : NeIntArray .

ceq low((I, X) L) = I if (I, X) L : NeIntArray .
ceq high(L (I, X)) = I if L (I, X) : NeIntArray .

endfm



We remark that in all the conditional equations above there are memberships in
the conditions, making sure that the arguments belong to the appropriate sorts. These
checks guarantee that the equations are applied only to terms having a sort (in addition
to having a kind, which is checked at parsing time) and therefore that computation
takes place over “good” terms, since terms that fail to have a sort are considered
“error” terms. Equations intended for error and exception recovery should not include
such memberships in conditions.

3. Rewriting logic and system modules

The type of rewriting typical of functional modules terminates with a single value as
its outcome. In such modules, each step of rewriting is a step of replacement of equals
by equals, until we $nd the equivalent, fully evaluated value. In general, however, a set
of rewrite rules need not be terminating, and need not be Church–Rosser. That is, not
only can we have in$nite chains of rewriting, but we may also have highly divergent
rewriting paths, that could never cross each other by further rewriting.

The essential idea of rewriting logic [43] is that the semantics of rewriting can
be drastically changed in a very fruitful way. We no longer interpret a term t as a
functional expression, but as a state of a system; and we no longer interpret a rewrite
rule t→ t′ as an equality, but as a local state transition, stating that if a portion of
a system’s state exhibits the pattern described by t, then that portion of the system
can change to the corresponding instance of t′. Furthermore, such a local state change
can take place independently from, and therefore concurrently with, any other non-
overlapping local state changes. Rewriting logic is therefore a logic of concurrent state
change.

3.1. Rewriting logic

A signature in rewriting logic is an equational theory (	; E), where 	 is an equa-
tional signature and E is a set of 	-equations. Rewriting will operate on equivalence
classes of terms modulo E: for example, string rewriting is obtained by imposing an as-
sociativity axiom; multiset rewriting by imposing associativity and commutativity; and
standard term rewriting is obtained as the particular case in which the set of equations
E is empty. Techniques for rewriting modulo equations have been studied extensively
[22,38,55] and can be used to implement rewriting modulo many equational theories
of interest. This is precisely what Maude does, using the equational attributes given in
operator declarations — such as associativity, commutativity, and identity — to rewrite
modulo such axioms.
Sentences over a signature (	; E) have the form [t]E → [t′]E , where t and t′ are

	-terms possibly involving some variables, and [t]E denotes the equivalence class of
the term t modulo the equations E (usually, we omit the subscript and simply write [t]).
A rewrite theory R is a 4-tuple R = (	; E; L; R) where 	 is an equational signature,
E is a set of 	-equations, L is a set of labels, and R is a set of labelled rewrite rules



either of the unconditional form r : [t]→ [t′], or of the conditional form explained in
Section 3.2.

Rewriting logic is a logic for reasoning about concurrent systems having states,
and evolving by means of transitions. The signature of a rewrite theory describes a
particular structure for the states of a system, and the rewrite rules describe which
elementary local transitions are possible in the distributed state. The inference rules of
rewriting logic [43] allow to deduce general concurrent transitions which are possible
in a system satisfying such a description.

3.2. System modules

The most general Maude modules are system modules. They specify the initial model
TR of a rewrite theory R= (	; E; L; R) in the membership equational logic variant of
rewriting logic (for a detailed construction of TR in the unsorted case see [43]). These
initial models capture nicely the intuitive idea of “rewrite systems” in the sense that
they are transition systems whose states are equivalence classes [t] of ground terms
modulo the equations E in R, and whose transitions are proofs ! : [t]→ [t′] in rewrit-
ing logic, that is, concurrent rewriting computations in the system described by the
rules in R. Such proofs are equated modulo a natural notion of proof equivalence
that computationally corresponds to the “true concurrency” of the computations. By
adopting a logical instead of a computational perspective, we can alternatively view
such models as “logical systems” in which formulas are validly rewritten to other
formulas by concurrent rewritings which correspond to proofs for the logic in ques-
tion. These models have a natural category structure, with states (or formulas) as
objects, transitions (or proofs) as morphisms, and sequential composition as morphism
composition, and in them dynamic behavior exactly corresponds to deduction. In the
parameterized case (see Section 4), the inclusion from the parameter(s) into the mod-
ule then gives rise to a free extension functor [42], which provides the semantics for
the module.

As a $rst example of system module, we consider an extension of the module
de$ning integer arrays in Section 2.3.

mod INT-SORTING is
protecting INT-ARRAY .
vars I J X Y : MachineInt .
var L : IntPairList .
crl [sort] : (I, X) L (J, Y) => (I, Y) L (J, X)

if X > Y /\ (I, X) L (J, Y) : NeIntArray .
endm

For this system module, the corresponding rewrite theory (	; E; L; R) consists of: a
signature 	 given by the sorts, subsort relations, and operator declarations in INT-
ARRAY, along with a set of equations and memberships E also declared in INT-ARRAY;
a label set L that only contains the label sort; and a set of rules R that consists of the
conditional rule (introduced by the keyword crl) on integer arrays that exchanges two



values when they are out of place. The system thus described is highly concurrent,
since the sort rule can be applied concurrently to many diMerent positions in the
array. This speci$cation happens to be con:uent and terminating, but in general these
properties do not hold for other system modules.

Computations need not be con:uent (indeed, they can be highly nondeterministic)
and need not be terminating. Therefore, the issue of executing rewriting logic speci$ca-
tions of system modules in general is considerably more subtle than executing expres-
sions in a functional module, for which the termination and Church–Rosser properties
guarantee a unique $nal result regardless of the order in which equations are applied
as simpli$cation rules. Hence, we need to have good ways of controlling the rewriting
inference process — which in principle could go in many undesired directions — by
means of adequate strategies. As we explain in Section 6, using re:ection the rewriting
inference process can be controlled with great :exibility in Maude by means of strate-
gies that are de$ned by rewrite rules at the metalevel. However, the Maude interpreter
provides a default strategy for executing expressions in system modules (see the end
of this subsection).

At the equational level, system modules satisfy the same equational requirements
already described for functional modules, including the requirement that the equa-
tions are Church–Rosser and terminating modulo the given equational axioms. Fur-
thermore, rewrite rules can take the most general possible form in the variant of
rewriting logic built on top of membership equational logic, that is, they are of the
form

t → t′ if
(∧

i
ui = vi

)
∧
(∧

j
wj : sj

)
∧
(∧

k
pk → qk

)

with no restriction on which new variables may appear in the right-hand side or the
condition. That is, conditions in rules are also formed by an associative conjunc-
tion connective /\, but they generalize conditions in equations and memberships by
allowing also rewrite expressions, for which the concrete syntax t => t’ is used.
Furthermore, equations, memberships, and rewrites can be intermixed in any order,
and, as for functional modules, some of the equations in conditions can be matching
equations.

Of course, in that full generality the execution of a system module will require
strategies that control at the metalevel the instantiation of the extra variables in the
condition and in the right-hand side [12,66]. However, a quite general class of system
modules, called admissible modules, are executable by Maude’s default interpreter.
As already mentioned, the equational part of a system module must always satisfy
the same requirements given in Section 2.2 for functional modules; furthermore, as
explained later in this section, its rules must be coherent with respect to its equations.
A system module M is called admissible if, in addition to the above requirements,
each of its rewrite rules

t → t′ if C1 ∧ · · · ∧ Cn



satis$es the admissibility requirements (1)–(3) in Section 2.2 plus the additional
requirement
(4) If Ci is a rewrite ui → u′i , then

vars(ui) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj);

and u′i is an E(M)-pattern, for E(M) the equational theory underlying the mod-
ule M .

Operationally, we try to satisfy such a rewrite condition by reducing the instance �(ui)
to canonical form vi with respect to the equations, and then trying to $nd a rewrite
proof vi →wi with wi in canonical form with respect to the equations and such that wi

is a substitution instance of u′i .
As for functional modules, when executing a conditional rule in an admissible

system module, the satisfaction of all its conditions is attempted sequentially from
left to right; but notice that now, besides the fact that many matches for the equa-
tional conditions may be possible due to the presence of equational axioms, we also
have to deal with the fact that solving rewrite conditions requires search, includ-
ing searching for new solutions when previous ones fail to satisfy subsequent con-
ditions. The default interpreter supports search computations, in which the search
is controlled by means of several parameters. In general, the conditions solved by
the default interpreter may be conjunctions of rewrites, memberships, and equations,
with appropriate restrictions on the occurrence of new variables in the
conjuncts.

We illustrate Maude’s syntax for system modules by means of an admissible module
from [41] that de$nes the transition system semantics for Milner’s CCS [54] in such
a way that transitions correspond to rewrites; that is, a rewrite P => {A}Q means that
process P has performed action A becoming process Q, which is usually written as
P

A→ Q. Full CCS is represented, including possibly recursive process de$nitions by
means of contexts. The reader can $nd the modules de$ning the missing pieces of the
syntax in Appendix A.1.

mod CCS-SEMANTICS-TRANS is
protecting CCS-CONTEXT .
sort ActProcess .
subsort Process < ActProcess .
op {_}_ : Act ActProcess -> ActProcess [ctor] .
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .

*** Prefix
rl [pref] : A . P => {A}P .

*** Summation
crl [sum] : P + Q => {A}P’ if P => {A}P’ .



*** Composition
crl [par] : P | Q => {A}(P’ | Q) if P => {A}P’ .
crl [par] : P | Q => {tau}(P’ | Q’)

if P => {L}P’ /\ Q => {~ L}Q’ .

*** Restriction
crl [res] : P \ L => {A}(P’ \ L)

if P => {A}P’ /\ (A =/= L) /\ (A =/= ~ L) .

*** Relabelling
crl [rel] : P[M / L] => {M}(P’[M / L]) if P => {L}P’ .
crl [rel] : P[M / L] => {~ M}(P’[M / L]) if P => {~ L}P’ .
crl [rel] : P[M / L] => {A}(P’[M / L])

if P => {A}P’ /\ (A =/= L) /\ (A =/= ~ L) .

*** Definition
crl [def] X => {A}P’

if (X definedIn context) /\ def(X, context) => {A}P’ .
endm

This representation of CCS in Maude is semantically correct in the sense that given a
CCS process P, there are processes P1; : : : ; Pk−1 such that

P a1→P1
a2→· · · ak−1→ Pk−1

ak→P′

if and only if P can be rewritten into {a1}...{ak}P’ (see [41]).
A rewrite theory has both rules and equations, so that rewriting is performed modulo

such equations. However, this does not mean that the Maude implementation must have
a matching algorithm for each equational theory that a user might specify. In fact, this
is impossible, since matching modulo an arbitrary theory is undecidable. The proposed
solution is to divide the equations E into a set A of axioms, for which matching
algorithms exist in the Maude implementation,3 and a set E′ of equations that are
Church–Rosser, terminating, and sort decreasing modulo A; that is, the equational part
must satisfy the same requirements as a functional module.

Moreover, we require that the rules R in the module are coherent [67] (or at least
what might be called “weakly coherent” [44,68]) with the equations E′ modulo A. This
means that appropriate critical pairs between rules and equations are joinable, allowing
us to intermix rewriting with rules and rewriting with equations without losing rewrite
computations by failing to perform a rewrite that would have been possible before an
equational deduction step was taken. In this way, we get the eMect of rewriting modulo
E′ ∪ A with just a matching algorithm for A.

3 Maude’s rewrite engine has an extensible design, so that matching algorithms for new theories can be
added and can be combined with existing ones [32]. As already mentioned, matching modulo associativity,
commutativity, and (left-, right- or two-sided) identity, and combinations of these attributes are supported.



Under these circumstances, the default strategy in the Maude interpreter applies
the rules in a top-down rule fair way, 4 always reducing to canonical form using E′

before applying any rule in R. More speci$cally, before the application of each rewrite
rule, the expression is simpli$ed to its canonical form by applying the equations E′

modulo A; then, the rule is applied to such a simpli$ed expression modulo the axioms
A according to the default strategy.

3.3. Example: blocks world

As another example of a system module, we specify a simple concurrent system, the
blocks world, a typical example in arti$cial intelligence circles. In this version there is
a table on top of which we have the blocks, which can be moved by means of three
actions. A block is represented as a record with three $elds: a label identifying the
block (given by a quoted identi$er, as provided in the prede$ned module QID), the
label of the block on top (or the constant clear if there is none), and the label of
the block below (or the constant table if there is none because the block is on the
table). A state of the blocks world is then represented as a set of such blocks that is
consistent in the sense that each block has a diMerent label, and that for each pair of
blocks a and b, if a is on top of b, then b is below a. In the module below we only
make explicit the $rst part of the consistency check (all block labels are diMerent).

mod BLOCKS-WORLD is
protecting QID .
sorts Up Down .
subsorts Qid < Up Down .
op clear : -> Up [ctor] .
op table : -> Down [ctor] .
sort Block .
op {label:_, under:_, on:_} : Qid Up Down -> Block [ctor] .

sort State .
subsort Block < State .
op empty : -> State [ctor] .
op __ : State State -> [State] [ctor assoc comm id: empty] .
op free : Qid State -> Bool .

vars X Y Z : Qid . vars S S’ : State .
var U U’ : Up . vars O O’ : Down .

cmb {label: X, under: U, on: O} S : State if free(X, S) .
eq free(X, empty) = true .

4 “Top-down” means that each rewrite is attempted beginning at the top of the term, so that any position
rewritten does not have a position above it that could also have been rewritten. A limited form of fairness
is achieved by keeping the rules in a circular list, and moving a rule to the end of the list after it has been
applied.



Fig. 1. Initial and $nal states in a world with three blocks.

ceq free(X, S) = X =/= Y and free(X, S’)
if {label: Y, under: U, on: O} S’ := S .

rl [move] : {label: X, under: clear, on: Z}
{label: Z, under: X, on: O}
{label: Y, under: clear, on: O’}

=> {label: X, under: clear, on: Y}
{label: Z, under: clear, on: O}
{label: Y, under: X, on: O’} .

rl [unstack] : {label: X, under: clear, on: Z}
{label: Z, under: X, on: O}

=> {label: X, under: clear, on: table}
{label: Z, under: clear, on: O} .

rl [stack] : {label: X, under: clear, on: table}
{label: Z, under: clear, on: O}

=> {label: X, under: clear, on: Z}
{label: Z, under: X, on: O} .

endm

The rule move moves a block X sitting on top of another block Z to the top of block
Y. The rule unstack moves a block X sitting on top of another block Z to the table,
whereas the rule stack does the reverse action.

Consider for example the states described in Fig. 1. The initial state I on the left
and the $nal state F on the right are, respectively, described by the following two
terms of sort State:

{label: ’a, under: ’c, on: table}
{label: ’c, under: clear, on: ’a}
{label: ’b, under: clear, on: table}

{label: ’c, under: ’b, on: table}
{label: ’b, under: ’a, on: ’c}
{label: ’a, under: clear, on: ’b}



The fact that the “sequential plan” (in a self-explanatory intuitive notation)
unstack(c; a); stack(b; c); stack(a; b) moves the blocks from state I to state F corre-
sponds directly to a sequence of computational rewrite steps applying the corresponding
rewrite rules.

3.4. Object-oriented modules

Among the many concurrent systems that we can specify as system modules in
Maude, concurrent object-oriented systems are an important subclass [44]. In a concur-
rent object-oriented system the concurrent state, which is usually called a con-guration,
has typically the structure of a multiset made up of objects and messages that evolves
by concurrent rewriting modulo associativity, commutativity and identity, using rules
that describe the eMects of communication events between objects and messages.

An object in a given state is represented in Maude as a term

< O :C | a1 : v1, : : : , an : vn>

where O is the object’s name or identi$er, C is its class identi$er, the ai’s are the
names of the object’s attribute identi-ers, and the vi’s are the corresponding values.
Messages do not have a $xed syntactic form; such syntactic form is de$ned by the user
for each application. The concurrent state of an object-oriented system is then a multiset
of objects and messages, called a Configuration, with multiset union described with
empty syntax .

The following module CONFIGURATION de$nes the basic concepts of concurrent
object systems. Note that the sorts Msg and Attribute, as well as the sorts Oid and
Cid of object and class identi$ers, are left unspeci$ed. They will become fully de$ned
when the CONFIGURATION module is extended by speci$c object-oriented de$nitions
in a given object-oriented module.

fmod CONFIGURATION is
sorts Oid Cid Attribute AttributeSet

Object Msg Configuration .
subsorts Object Msg < Configuration .
subsort Attribute < AttributeSet .
op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: none] .
op <_:_|_> : Oid Cid AttributeSet -> Object [ctor] .
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none] .
endfm

Concurrent object-oriented systems are de$ned in Maude by means of object-oriented
modules — introduced by the keyword omod — using a syntax more convenient than
that of system modules because it assumes acquaintance with the basic entities, such as
objects, messages, and con$gurations, and supports linguistic distinctions appropriate



for the object-oriented case. In particular, all object-oriented modules implicitly include
the above CONFIGURATION module and assume its syntax.

Classes are de$ned with the keyword class, followed by the name of the class
C, and by a list of attribute declarations separated by commas. Each attribute dec-
laration has the form a : S, where a is an attribute identi$er and S is the sort in
which the values of the attribute range; that is, class declarations have the form
class C | a1 : S1, : : : ,an : Sn .

The rewrite rules in an object-oriented module specify in a declarative way the
behavior associated with the messages. The multiset structure of the con$guration pro-
vides the top-level distributed structure of the system and allows concurrent application
of the rules [44].

By convention, the only object attributes made explicit in a rule are those relevant
for that rule. In particular, the attributes mentioned only on the left-hand side of the
rule are preserved unchanged, the original values of attributes mentioned only on the
right-hand side of the rule do not matter, and all attributes not explicitly mentioned
are left unchanged.

The following object-oriented module gives an object-oriented speci$cation of the
blocks world described in Section 3.3. A block is now represented as an object with
two attributes, under, saying whether it is under another block or it is clear, and on,
saying whether the block is on top of another block or is on the table.

omod OO-BLOCKS-WORLD is
protecting QID .
sorts BlockId Up Down .
subsorts Qid < BlockId < Oid .
subsorts BlockId < Up Down .
op clear : -> Up [ctor] .
op table : -> Down [ctor] .
class Block | under : Up, on : Down .
vars X Y Z : BlockId .

rl [move] : < X : Block | under : clear, on : Z >
< Z : Block | under : X >
< Y : Block | under : clear >

=> < X : Block | on : Y >
< Z : Block | under : clear >
< Y : Block | under : X > .

rl [unstack] : < X : Block | under : clear, on : Z >
< Z : Block | under : X >

=> < X : Block | on : table >
< Z : Block | under : clear > .

rl [stack] : < X : Block | under : clear, on : table >
< Z : Block | under : clear >



=> < X : Block | on : Z >
< Z : Block | under : X > .

endom

The states I and F in Fig. 1 are, respectively, described now by the following two
con$gurations:

< ’a : Block | under : ’c, on : table >
< ’c : Block | under : clear, on : ’a >
< ’b : Block | under : clear, on : table >

< ’c : Block | under : ’b, on : table >
< ’b : Block | under : ’a, on : ’c >
< ’a : Block | under : clear, on : ’b >

Class inheritance is directly supported by Maude’s order-sorted type structure.
A subclass declaration C < C’ in an object-oriented module is just a particular case of a
subsort declaration. The eMect of a subclass declaration is that the attributes, messages,
and rules of all the superclasses as well as the newly de$ned attributes, messages,
and rules of the subclass characterize the structure and behavior of the objects in the
subclass.

Suppose that the blocks world is further re$ned so that now blocks can have colors,
but we still want the rules for manipulating blocks to remain the same. This is trivially
achieved by class inheritance as illustrated by the following module.

omod OO-BLOCKS-WORLD+COLOR is
including OO-BLOCKS-WORLD .
sort Color .
ops red blue yellow : -> Color [ctor] .
class ColoredBlock | color : Color .
subclass ColoredBlock < Block .

endom

In this example, there is only one class immediately above ColoredBlock, namely,
Block, but a class may in general be de$ned as a subclass of several classes, i.e.,
multiple inheritance is also supported. If an attribute and its sort have already been
declared in a superclass, they should not be declared again in the subclass; indeed,
all such attributes are inherited. In the case of multiple inheritance, when an attribute
occurs in two diMerent superclasses, then the sort associated to it in each of those
superclasses must be the same. Then, a class inherits all the attributes, messages, and
rules from all its superclasses. An object in the subclass behaves exactly as any object
in any of the superclasses, but it may exhibit additional behavior due to the introduction
of new attributes, messages, and rules in the subclass.

The semantics of object-oriented modules is entirely reducible to that of system mod-
ules, in the sense that each object-oriented module can be translated into a correspond-
ing system module whose semantics is by de$nition that of the original object-oriented
module [44,27]. In particular, rewrite rules are modi$ed to make them applicable to all



objects of the given classes and of their subclasses, that is, not only to objects whose
class identi$ers are those explicitly given.

However, although Maude’s object-oriented modules are in this way reduced to
system modules, there are of course important conceptual advantages provided by the
syntax of object-oriented modules. This syntax allows the user to think and express
his or her thoughts in object-oriented terms whenever such a viewpoint seems best
suited for the problem at hand. Those conceptual advantages would be lost if only
system modules were provided. For example, in an object-oriented con$guration we
have objects that maintain their identity across their state changes, and the notions of
fairness adequate for them are more specialized than those appropriate for arbitrary
system modules. This is because, since each object has an individual identity, fairness
should now be localized to individual objects and messages, which should not be
starved even when other similar objects and messages are rewritten.

In summary, the approach taken in Maude is to provide a logical semantics for
concurrent object-oriented programming by taking rewriting logic as its foundation,
and then de$ning in a rigorous way higher-level object-oriented concepts above such a
foundation. The papers [44,45] provide good background on such foundations. Talcott’s
papers [62–65] give rewriting logic foundations for actors from a somewhat diMerent
viewpoint. The paper [53] shows how, for object-oriented modules satisfying some
simple requirements, their initial model semantics coincides with a very natural truly
concurrent semantics based on a partial order of events.

One important strength of the object-oriented viewpoint is that all kinds of entities
in the external world can be conceptualized as objects and can be interacted with
from a computation by message passing. Built-in objects extend Maude with interfaces
allowing interaction with external entities such as internet sockets, $le systems, window
systems, and so on. In this way, the computation can be connected with the external
world and with other Maude computations in diMerent machines in a distributed way.
Interfaces to external entities are speci$ed by means of built-in object-oriented modules
de$ning built-in objects.

Such built-in object-oriented modules can be imported by ordinary object-oriented
modules so that, in general, the object-oriented state of a computation consists of two
parts: a con$guration of ordinary objects and messages that is represented in Maude
as a multiset of terms representing such objects and messages, and a set of built-in
objects, together with messages to and from those objects. Conceptually we can think
of these two parts as a single bigger con$guration of objects and messages. However,
built-in objects are not themselves visible in the con$guration of ordinary objects and
messages, except indirectly, through the messages that they send. In particular, the
internal structure of built-in objects is hidden, so that they can only be interacted with
by asynchronous message passing.

4. Module operations and parameterized programming

Speci$cations and code should be structured in modules of relatively small size to
facilitate understandability of large systems, increase reusability of components, and



localize the eMects of system changes. Maude fully supports these goals by means
of a rich and extensible module algebra supporting, in particular, parameterized pro-
gramming techniques in the OBJ3 style [37]. Moreover, Maude provides useful basic
support for modularity by allowing the de$nition of module hierarchies, that is, acyclic
graphs of module importations.

Parameterized modules, theories, and views are the basic building blocks of param-
eterized programming [10,37,26,23]. As in OBJ, a theory 5 de$nes the interface of a
parameterized module, that is, the structure and properties required of an actual param-
eter. The instantiation of the formal parameters of a parameterized module with actual
parameter modules requires a view from the formal interface theory to the correspond-
ing actual module. That is, views provide the interpretation of the actual parameters.
For more details on parameterized modules in Maude, the reader is advised to con-
sult [27].

4.1. Module hierarchies

Mathematically, we can think of module hierarchies as partial orders of rewrite
theory inclusions, that is, the theory of the importing module contains the theories of its
submodules as subtheories. Recall that a rewrite theory is a four-tuple R= (	; E; L; R),
where (	; E) is a theory in membership equational logic. As already explained in
Section 3.2, a system module is a rewrite theory with initial semantics. Note that
we can use the inclusion of membership equational logic into rewriting logic to view
a functional module specifying an equational theory (	; E) as a degenerate case of
a rewrite theory, namely the rewrite theory (	; E; ∅; ∅). In fact the initial algebra of
(	; E) and the initial model of (	; E; ∅; ∅) coincide [43]. Therefore, in essence we can
view all modules as rewrite theories.

The most general form of module inclusion is provided by the including keyword,
followed by the name of the imported module. The protecting keyword is a more
restricted form of inclusion, in the sense that it makes a semantic assertion about the
relationship between the initial models of the two theories. Let R= (	; E; L; R) be the
rewrite theory speci$ed by a system module, and let R′ = (	′; E′; L′; R′) be the theory
of a supermodule, so that we have a theory inclusion R⊆R′. Then, we can view
each model M′ of R′ as a model M′|R of R, simply by disregarding the extra sorts,
operators, equations, membership axioms, and rules in R′ −R. Since, as explained in
Section 3.2, the rewrite theories R and R′ have respective initial models TR and TR′ ,
by initiality of TR we always have a unique R-homomorphism h :TR →TR′ |R.

In the models of a rewrite theory the sorts are interpreted as categories. Then, the
protecting importation asserts that for each sort s in the signature 	 of R the
function hs is an isomorphism of categories. Intuitively, this means that the initial
model of the supermodule does not add any “junk” or any “confusion” to the initial
model of the submodule. Note that the expected condition would have been to require
h to be an R-isomorphism. However, due to the presence of error elements at the kind
level, the isomorphism condition would be too strong, since in general, when enlarging

5 The reader should be careful in not confusing the diMerent uses of the word “theory” in this section.



a signature, there will be new error terms that cannot be proved equal to old ones.
See [9] for a detailed discussion of, and proof techniques for, protecting extensions in
membership equational logic.

Of course, the protecting assertion cannot be checked by Maude at runtime.
It requires inductive theorem proving. Using the proof techniques in [9] together with
an inductive theorem prover for membership equational logic and a Church–Rosser
checker such as those described in [17], this can be done for functional modules; and
it seems natural to expect that these techniques and tools will extend to similar ones
for rewrite theories.

By contrast, the including assertion does not make such requirements on h. It does,
however, make some requirements. Namely, if the subtheory R does itself contain a
proper subtheory R0 that it imports in protecting mode, then the inclusion R0 ⊆R′

is still assumed to be protecting. For such an inclusion to become an including
assertion, we have to say so by explicitly listing the module de$ning R0 in the list of
modules imported in including mode.

4.2. Theories

Theories are used to declare module interfaces, namely the syntactic and semantic
properties to be satis$ed by the actual parameter modules used in an instantiation.
As for modules, Maude supports three diMerent types of theories: functional theories,
system theories, and object-oriented theories. Their structure is the same as that of their
module counterparts.

Theories are rewriting logic theories with a loose interpretation, as opposed to mod-
ules that have an initial semantics. Therefore, theories are allowed to contain more
general sentences that need not satisfy all the requirements described for modules.

Let us begin by introducing the functional theory TRIV, which requires just a sort.

fth TRIV is
sort Elt .

endfth

The theory of partially ordered sets with an antire:exive and transitive binary operator
is expressed in the following way. 6

fth POSET is
protecting BOOL .
sort Elt .
op _<_ : Elt Elt -> Bool .
vars X Y Z : Elt .
eq X < X = false .
ceq X < Z = true if X < Y and Y < Z .

endfth

6 As with modules, theories implicitly import the prede$ned module BOOL, and therefore the protecting
BOOL declaration is unnecessary.



The theory of totally ordered sets, that is, posets in which all pairs of distinct elements
have to be related, is speci$ed as follows:

fth TOSET is
including POSET .
vars X Y : Elt .
eq X < Y or Y < X or X == Y = true .

endfth

The including importation of a theory into another theory keeps its loose semantics.
However, if the imported theory contains a module, which therefore must be interpreted
with an initial semantics, 7 then that initial semantics is maintained by the importation.
For example, in the de$nition of the POSET theory, the declaration protecting BOOL
ensures that the initial semantics of the functional module for the Booleans is preserved,
which is in fact a crucial requirement. This requirement is then preserved by TOSET
when POSET is included.

4.3. Parameterized modules

Theories are used to declare the interface requirements for parameterized modules.
Modules can be parameterized by one or more theories. All theories appearing in the
interface must be labelled in such a way that their sorts can be uniquely identi$ed.
The general form for the interface of a parameterized module is (X1 :: T1, : : : ,Xn
:: Tn) where X1; : : : ; Xn are the labels and T1; : : : ; Tn are the names of the respective
parameter theories.

All the sorts coming from theories in the interface must be quali$ed by their labels,
even if there is no ambiguity. If Z is the label of a parameter theory T , then each
sort S in T has to be quali$ed as Z .S (the reason for this will be explained below).
Moreover, there cannot be subsort overloading between an operator declared in a theory
being used as parameter of a parameterized module and an operator declared in the
body of the parameterized module, or between operators declared in two parameter
theories of the same module.

In the body of a parameterized module M(X1 :: T1, : : :,Xn :: Tn), any parameter-
ized sort S is written in the form S(X1, : : :,Xn). When the module is instantiated with
views V1; : : : ; Vn then this sort becomes S(V1, : : :,Vn). Thus, a simple parameterized
module for lists is de$ned as follows:

fmod LIST(X :: TRIV) is
sort List(X) .
subsort X.Elt < List(X) .
op nil : -> List(X) [ctor] .
op __ : List(X) List(X) -> List(X) [ctor assoc id: nil] .

endfm

7 In Maude, the importation of a module into a theory is supported only in protecting mode.



The module LIST has only one parameter. In general, as already mentioned, param-
eterized modules can have several parameters. It can furthermore happen that sev-
eral parameters are declared with the same parameter theory. Therefore, parameters
cannot be treated as normal submodules, since we do not want them to be shared
when their labels are diMerent. We regard the relationship between the body of a pa-
rameterized module and the interface of its parameters not as an inclusion, but as
a module constructor which is evaluated generating renamed copies of the parame-
ters, which are then included. In such copies of parameter theories sorts are renamed
as follows: If Z is the label of a parameter theory T, then each sort S in T is re-
named to Z.S. This is the reason why all occurrences of these sorts in the body of
the parameterized module must mention their corresponding renaming, as explained
before.

Let us consider as an example the following module TUPLE[2]. Notice the use of
the quali$cations for the sorts coming from each of the parameters, and notice also the
form of the sort Tuple(C1, C2).

fmod TUPLE[2](C1 :: TRIV, C2 :: TRIV) is
sort Tuple(C1, C2) .
op ((_,_)) : C1.Elt C2.Elt -> Tuple(C1, C2) [ctor] .
op p1_ : Tuple(C1, C2) -> C1.Elt .
op p2_ : Tuple(C1, C2) -> C2.Elt .
var E1 : C1.Elt .
var E2 : C2.Elt .
eq p1 (E1, E2) = E1 .
eq p2 (E1, E2) = E2 .

endfm

In Maude, the module expression TUPLE[n], for n a nonzero natural number, generates
a parameterized module specifying a tuple of the corresponding size. For example, for
n equal to 2, the system generates automatically the parameterized module TUPLE[2]
given above.

4.4. Views

Views are used to assert how a particular target module or theory is claimed to satisfy
a source theory. In general, there may be several ways in which such requirements
might be satis$ed, if at all, by the target module or theory; that is, there can be many
diMerent views, each specifying a particular interpretation of the source theory in the
target. Each view declaration has an associated set of proof obligations, namely, for
each axiom in the source theory it should be the case that the axiom’s translation by
the view holds in the target. Since the target can be a module interpreted initially,
verifying such proof obligations may in general require inductive proof techniques of
the style supported for Maude’s logic in [17].

All views have to be de$ned explicitly, and all of them must have a name. As
any theory or module, views should have been de$ned before they are used. In the



de$nition of a view we have to indicate its name, the source theory, the target module
or theory, and the mapping of each sort, operator, class, and message in the source
theory, although it is possible to simplify such mappings (see [27]).

The following view shows how MACHINE-INT satis$es the theory TRIV:

view Int from TRIV to MACHINE-INT is
sort Elt to MachineInt .

endv

We can also have views between theories, such as the following:

view Toset from TRIV to TOSET is
sort Elt to Elt .

endv

Moreover, views can be parameterized:

view Tuple(X :: TRIV, Y :: TRIV) from TRIV to TUPLE[2](X, Y) is
sort Elt to Tuple(X, Y) .

endv

Note that the view Tuple is parameterized by two diMerent instances of the theory
TRIV. Parameterized views of this kind allow us to keep the parameter part of the
target uninstantiated. The paper [31] discusses the use of parameterized theories and
views in Maude.

4.5. Module instantiation

Instantiation is the process by which actual parameters are bound to the parameters
of a parameterized module and a new module is created as a result. This can be seen
in fact as the evaluation of a module expression. The instantiation requires a view
from each formal parameter to its corresponding actual parameter. Each such view is
then used to bind the names of sorts, operators, etc. in the formal parameters to the
corresponding sorts, operators (or expressions), etc. in the target.

A parameterized module is instantiated with views explicitly de$ned previously. For
example, we can de$ne a module providing $nite lists of pairs, whose $rst components
are machine integers and whose second components are still parameterized by means
of the module expression LIST(Tuple(Int, X)), which uses the view Int as well
as an instance of the parameterized view Tuple, both de$ned in Section 4.4. This
expression is used in the following module, which is a general parameterized version
of the array representation module in Section 2.3.

fmod ARRAY(X :: TRIV) is
protecting LIST(Tuple(Int, X)) .
sorts NeArray(X) Array(X) .
subsorts Tuple(Int, X) < NeArray(X)

< Array(X) < List(Tuple(Int, X)) .
op _[_] : NeArray(X) MachineInt -> [X.Elt] .



op _[_->_] : NeArray(X) MachineInt X.Elt -> [Array(X)] .
ops low high : NeArray(X) -> MachineInt .

vars I J : MachineInt .
vars Z Y : X.Elt .
vars L L’ : List(Tuple(Int, X)) .

mb nil : Array(X) .
cmb (I, Z) (J, Y) L : NeArray(X)

if (I + 1 = J) /\ (J, Y) L : NeArray(X) .

ceq (L (I, Z) L’)[I] = Z if L (I, Z) L’ : NeArray(X) .
ceq (L (I, Z) L’)[I -> Y] = (L (I, Y) L’)

if L (I, Z) L’ : NeArray(X) .

ceq low((I, Z) L) = I if (I, Z) L : NeArray(X) .
ceq high(L (I, Z)) = I if L (I, Z) : NeArray(X) .

endfm

As mentioned in Section 4.4, we can de$ne views from theories to theories and can
use such views to de$ne new parameterized modules. For example, we can de$ne
a parameterized system module specifying a sorting rule on arrays whose elements
belong to a totally ordered set as follows:

mod SORTING(X :: TOSET) is
protecting ARRAY(Toset)(X) .
vars I J : MachineInt .
vars Z Y : X.Elt .
var L : List(Tuple(Int, Toset))(X) .
crl [sort] : (I, Z) L (J, Y) => (I, Y) L (J, Z)

if Z > Y /\ (I, Z) L (J, Y) : NeArray(Toset)(X) .
endm

The module INT-SORTING in Section 3.2 can be obtained as the module expression
SORTING(IntAsToset) where

view IntAsToset from TOSET to MACHINE-INT is
sort Elt to MachineInt .
vars X Y : Elt .
op X < Y to term X <= Y and X =/= Y .

endv

Note that an operator can be mapped to a term. In the IntAsToset view, for illustration
purposes, the ¡ relation of a toset is mapped to an expression using the “less than
or equal” operator ¡= and the inequality operator it = = = in MACHINE-INT,
instead of using directly the operator ¡ in MACHINE-INT.



5. Re!ection and the META-LEVEL

Informally, a re:ective logic is a logic in which important aspects of its metatheory
can be represented at the object level in a consistent way, so that the object-level
representation correctly simulates the relevant metatheoretic aspects. In other words,
a re:ective logic is a logic which can be faithfully represented in itself. Maude’s
language design and implementation make systematic use of the fact that rewriting
logic is re:ective [12,20]. This makes the metatheory of rewriting logic accessible
to the user in a clear and principled way. However, since a naive implementation
of re:ection can be computationally expensive, a good implementation must provide
eFcient ways of performing re:ective computations. This section explains how this is
achieved in Maude through its prede$ned META-LEVEL module.

5.1. Re<ection and metalevel computation

Rewriting logic is re:ective in a precise mathematical way, namely, there is a $nitely
presented rewrite theory U that is universal in the sense that we can represent in U
any $nitely presented rewrite theory R (including U itself) as a term SR, any terms
t; t′ in R as terms St; t′, and any pair (R; t) as a term 〈 SR; St 〉, in such a way that we
have the following equivalence:

(†) R � t → t′ ⇔ U � 〈 SR; St〉 → 〈 SR; t′〉:

Since U is representable in itself, we can achieve a “re:ective tower” with an arbitrary
number of levels of re:ection, because we have

R � t → t′ ⇔ U � 〈 SR; St〉 → 〈 SR; t′〉 ⇔ U � 〈 SU; 〈 SR; St〉〉 → 〈 SU; 〈 SR; t′〉〉 : : : :

In this chain of equivalences we say that the $rst rewriting computation takes place at
level 0, the second at level 1, and so on. In a naive implementation, each step up the
re:ective tower comes at considerable computational cost, because simulating a single
step of rewriting at one level involves many rewriting steps one level up. It is therefore
important to have systematic ways of lowering the levels of re:ective computations as
much as possible — so that a rewriting subcomputation happens at a higher level in
the tower only when this is strictly necessary.

To achieve a systematic descent into equivalent rewriting computations at lower
levels, the key idea is to exploit the equivalence (†). Detailed proofs of this equiva-
lence have been given for unsorted unconditional theories [12] and for unsorted and
many-sorted conditional theories [20]. The extension to the case of interest for Maude
— namely to conditional rewrite theories with membership equational logic as the
underlying equational logic — although nontrivial, is essentially unproblematic. We
therefore assume a universal theory U for this more general class of $nitely presented
rewrite theories. In particular, the signature �U of U has sorts Term, Module, and
Kind, whose respective elements St :Term, SR :Module, and SK :Kind represent terms,
rewrite theories, and kinds in a signature, respectively. We assume that there is also an



equationally de$ned Boolean predicate parse :Module × Kind × Term→Bool so that
parse( SR; SK; St ) = true if t is an R-term of kind K , and parse( SR; SK; St ) = false
otherwise.

We can exploit the equivalence (†) by introducing the notion of descent function,
that is, a function that, given metalevel representations for a rewrite theory R and
a term t in it, rewrites such a term in R according to a given strategy and returns
the metarepresentation of the resulting term. Such functions can be simply expressed
in terms of a general sequential interpreter function I for rewriting logic. This is
a partial function that takes three arguments: a $nitely presented rewrite theory R,
a term t, and a deterministic strategy S. In case of termination it returns either the
term t′ to which t was rewritten according to S, or an error message that is not a
term in R. The function is unde$ned in case the strategy does not terminate. For
any $nitely presented rewrite theory R, terms t; t′ in it, and admissible determinis-
tic strategy S, any such interpreter function must of course satisfy the correctness
requirement

([) I(R; t; S) = t′ ⇒ R � t → t′:

The point is that, regardless of the particular details of I , we can always equationally
axiomatize any such eMective interpreter function by means of a Church–Rosser, but in
general nonterminating, $nitary equational theory I. This can be done in a signature
that we can assume contains �U as a subsignature. By extending our universal theory U
with the new sorts, operators, and equations of I, we obtain an extended rewrite theory
U∪I. A descent function is then a function d :Module×Term×Parameters→Term
such that there is a deterministic strategy expression Sd with a single free variable of
sort Parameters satisfying the equality d( SR; St; p) = I(R; t; Sd(p)):

Such descent functions are de$nable equationally as de$nitional extensions
of the theory U∪I. Note that, since we have only added some new equations,
the only rewrite rules in U∪I are exactly those in U. But, given a descent function
d, we can now exploit the equivalence (†) by adding to U∪I a decent
rule

d : 〈M; x〉 → 〈M; y〉

if parse (M;K; x) = true ∧ parse (M;K; y) = true ∧ d(M; x; p) = y;

where M :Module; x; y :Term; K :Kind , and p :Parameters. The equivalence (†) can
be exploited for eFciency reasons with such a rule, because the sequential interpreter
I can be a built-in function such as the Maude interpreter; therefore, instantiating M
with SR, we can use eFcient deduction in R to perform deduction in U. Let M denote
a rewrite theory of the form M=U∪I∪D, where D is the addition of several
descent functions and of their associated descent rules. We shall call M a metalevel
theory.

The addition of descent rules to U is of course conservative, in the sense of not
adding any rewrites that could not be performed, albeit less eFciently, in U itself,



since for any descent rule d we have

M � 〈 SR; St〉 d→〈 SR; t′〉⇒ I(R; t; Sd(p))=t′

[⇒R � t → t′

†⇔U � 〈 SR; St〉 → 〈 SR; t′〉:

Note that, by applying several descent functions, we can descend several levels in the
re:ective tower; that is, a meta-metalevel computation can be eFciently carried out at
the object level. More generally, we should view descent functions as basic strategies,
that can be used as fundamental building blocks to de$ne internal strategy languages,
in which they can be combined with each other and with more complex strategies at
several levels of re:ection to perform eFciently sophisticated metalevel computations
(see Section 6).

5.2. The module META-LEVEL

In Maude, key functionality of a metalevel theory M with several descent functions
has been eFciently implemented in a functional module META-LEVEL, by using as
the interpreter function I Maude’s own interpreter. Furthermore, several other useful
functions of the universal theory U are also built-in for eFciency reasons. In the
module META-LEVEL:
• Maude terms are rei$ed as elements of a data type Term of terms;
• Maude modules are rei$ed as terms in a data type Module of modules;
• the processes of reducing a term to normal form in a functional module and of

$nding whether such a normal form has a given sort are rei$ed by a descent function
metaReduce;

• the process of applying a rule of a system module to a subject term is rei$ed by
descent functions metaApply and metaXapply;

• the process of rewriting a term in a system module using Maude’s default interpreter
is rei$ed by a descent function metaRewrite;

• the process of matching a pattern to a subject term is rei$ed by descent functions
metaMatch and metaXmatch; and

• parsing and pretty printing of a term in a module, as well as key sort operations
such as comparing sorts in the subsort ordering of a signature, are also rei$ed by
corresponding metalevel functions.

Sorts and kinds are represented as speci$c subsorts of the sort Qid of quoted identi$ers.
Since operator declarations can use both sorts and kinds, we denote by Type the union
of Sort and Kind.

subsorts Sort Kind < Type < Qid.
subsort Type < TypeList .



5.3. Representing terms

Terms are rei$ed as elements of the data type Term of terms. The basic cases in
the representation of terms are obtained by subsorts Constant and Variable of the
sort Qid. Constants are quoted identi$ers that contain the constant’s name and its type
separated by a “.”, e.g., ’0.Nat. Similarly, variables contain their name and type
separated by a “:”, e.g., ’N:Nat. Appropriate selectors extract their names and types.

subsorts Constant Variable < Qid .
op getName : Constant -> Qid . op getName : Variable -> Qid .
op getType : Constant -> Type . op getType : Variable -> Type .

Then a term is constructed in the usual way, by applying an operator symbol to a list
of terms.

subsorts Constant Variable < Term .
op _[_] : Qid TermList -> Term [ctor] .
subsort Term < TermList .
op _,_ : TermList TermList -> TermList [ctor assoc] .

Since terms in the module META-LEVEL can be metarepresented just as terms in any
other module, the representation of terms can be iterated. For example, the term
s (N:Nat) + 0 in the module NAT in Section 5.4, specifying natural numbers in
Peano notation, is metarepresented by

’_+_[’s_[’N:Nat], ’0.Nat],

and meta-metarepresented by

’_‘[_‘][’’_+_.Qid, ’_‘,_[’_‘[_‘][’’s_.Qid, ’’N:Nat.Variable],
’’0.Nat.Constant]] .

5.4. Representing modules

Functional and system modules are metarepresented in a syntax very similar to their
original user syntax. The main diMerences are that: (1) terms in equations, member-
ship axioms, and rules are now metarepresented as we have already explained in the
previous section; (2) in the metarepresentation of modules we follow a $xed order
in introducing the diMerent kinds of declarations for sorts, subsort relations, equations,
etc., whereas in the user syntax there is considerable :exibility for introducing such
diMerent declarations in an interleaved and piecemeal way; (3) there is no need for
variable declarations; and (4) sets of identi$ers — used in declarations of sorts —
are represented as sets of quoted identi$ers built with an associative and commutative
operator _;_.

The syntax for the top-level operators representing functional and system modules
is as follows:

sorts FModule Module .
subsort FModule < Module .



op fmod_is_sorts_.____endfm:Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet -> FModule [ctor] .

op mod_is_sorts_._____endm:Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet RuleSet -> Module [ctor] .

Without going into all the syntactic details, we show only the operators used to repre-
sent conditions, equations, and rules.

sorts EqCondition Condition .
subsort EqCondition < Condition .
ops (_=_) (_:=_) : Term Term -> EqCondition [ctor] .
op _:_ : Term Sort -> EqCondition [ctor] .
op _=>_ : Term Term -> Condition [ctor] .
op _/\_ : EqCondition EqCondition -> EqCondition [ctor assoc] .
op _/\_ : Condition Condition -> Condition [ctor assoc] .

sorts Equation EquationSet .
subsort Equation < EquationSet .
op eq_=_. : Term Term -> Equation [ctor] .
op ceq_=_if_. : Term Term EqCondition -> Equation [ctor] .
op none : -> EquationSet [ctor] .
op __ : EquationSet EquationSet -> EquationSet

[ctor assoc comm id: none] .

sorts Rule RuleSet .
subsort Rule < RuleSet .
op rl[_]:_=>_. : Qid Term Term -> Rule [ctor] .
op crl[_]:_=>_if_. : Qid Term Term Condition -> Rule [ctor] .
op none : -> RuleSet [ctor] .
op __ : RuleSet RuleSet -> RuleSet [ctor assoc comm id: none] .

As a simple example, the metarepresentation of the module on the left is the term
displayed on the right, so that the reader can appreciate the similarity between both
notations:

fmod NAT is fmod ’NAT is
nil

sorts Zero Nat . sorts ’Zero ; ’Nat .
subsort Zero < Nat . subsort ’Zero < ’Nat .
op 0 : -> Zero [ctor] . op ’0 : nil -> ’Zero [ctor] .
op s_ : Nat -> Nat [ctor] . op ’s_ : ’Nat -> ’Nat [ctor] .
op _+_ : Nat Nat -> Nat op ’_+_ : ’Nat ’Nat -> ’Nat

[comm] . [comm] .
vars N M : Nat . none



eq 0 + N = N . eq ’_+_[’0.Nat, ’N:Nat] = ’N:Nat .
eq (s N) + M = s (N + M) . eq ’_+_[’s_[’N:Nat], ’M:Nat]

= ’s_[’_+_[’N:Nat, ’M:Nat]] .
endfm endfm

Since NAT has no list of imported submodules and no membership axioms, those $elds
are $lled, respectively, with the constants nil of sort ImportList, and none of sort
MembAxSet.

Note that terms of sort Module can be metarepresented again, yielding then a term of
sort Term, and this can be iterated an arbitrary number of times. This is in fact necessary
when a metalevel computation has to operate at higher levels. A good example is
the inductive theorem prover described in [17], where modules are metarepresented
as terms of sort Module in the inference rules for induction, but they have to be
meta-metarepresented as terms of sort Term when used in strategies that control the
application of the inductive inference rules.

5.5. Descent functions

The module META-LEVEL has several built-in descent functions that provide useful
and eFcient ways of reducing metalevel computations to object-level ones.

The operation metaReduce takes as arguments the representation of a module R
and the representation of a term t in that module.

op metaReduce : Module Term -> [ResultPair] .
op {_,_} : Term Type -> ResultPair [ctor] .

It returns the representation of the fully reduced form of the term t using the equations
in R, together with its corresponding sort or kind.

The interpreter function for metaReduce( SR; St ) rewrites the term t to normal form
using only the equations in R, and does so according to the operator evaluation strate-
gies (see the end of Section 2.2 and [33]) declared for each operator in the signature
of R, which by default is bottom-up for operators with no such strategies declared. In
other words, the interpreter strategy for this function coincides with that of the reduce
command in Maude, that is,

metaReduce( SR; St) = IMaude(R; t; reduce):

The operation metaRewrite has syntax

op metaRewrite : Module Term MachineInt -> [ResultPair] .

It is entirely analogous to metaReduce, but instead of using only the equational part of
a module it now uses both the equations and the rules to rewrite the term using Maude’s
default strategy. Its $rst two arguments are the representations of a module R and of
a term t, and its third argument is a natural number n. Its result is the representation
of the term obtained from t after at most n applications of the rules in R using
the strategy of Maude’s default interpreter, which applies the rules in a top-down rule
fair way. When the value 0 is given as the third argument, no bound is given to the



number of rewrites, and rewriting proceeds to the bitter end. Again, metaRewrite is
a paradigmatic example of a descent function; its corresponding interpreter strategy is
that of the rewrite command in Maude, that is,

metaRewrite( SR; St; n) = IMaude(R; t; rewrite [n]):

The operation metaApply has syntax:

op metaApply : Module Term Qid Substitution MachineInt
-> [ResultTriple] .

The $rst four arguments are representations in META-LEVEL of a module R, a term t
in R, a label l of some rules in R, and a set of assignments (possibly empty) de$ning
a partial substitution � for the variables in those rules. The last argument is a natural
number n used to enumerate all possible matches (due to the presence of structural
axioms for operators or several rules with the same label l). metaApply then returns a
triple of sort ResultTriple consisting of a term, with the corresponding sort or kind,
and a substitution. The syntax for substitutions and for results is

subsort Assignment < Substitution .
op _<-_ : Qid Term -> Assignment [ctor] .
op none : -> Substitution [ctor] .
op _;_ : Substitution Substitution -> Substitution

[ctor assoc comm id: none] .
op {_,_,_} : Term Type Substitution -> ResultTriple [ctor] .

The operation metaApply is evaluated as follows:
(1) the term t is $rst fully reduced using the equations in R;
(2) the resulting term is matched against all rules with label l partially instantiated

with �, with matches that fail to satisfy the condition of their rule discarded;
(3) the $rst n successful matches are discarded; if there is an (n+ 1)th match, its rule

is applied using that match and the steps 4 and 5 below are taken; otherwise an
error is returned;

(4) the term resulting from applying the given rule with the (n + 1)th match is fully
reduced using the equations in R;

(5) the triple formed using the constructor {_,_,_} whose $rst element is the repre-
sentation of the resulting fully reduced term, whose second element is the repre-
sentation of the corresponding type, and whose third element is the representation
of the match used in the reduction is returned.

The interpreter strategy associated to metaApply( SR; St; Sl; S�; n) is not that of a user-
level command in the Maude interpreter. It is instead a built-in strategy internal to the
interpreter that attempts one rewrite at the top as explained above.

The operation metaXapply, with syntax

op metaXapply : Module Term Qid Substitution MachineInt MachineInt
MachineInt -> [Result4Tuple] .

op {_,_,_,_} : Term Type Substitution Context
-> Result4Tuple [ctor] .



works as metaApply but using matching with extension (see [15, Section 5:8]) and
in any possible position, not only at the top. The $rst two integer arguments indicate,
respectively, the minimum and maximum depth in the :attened term (with respect to
its associative or associative–commutative operators) where the application of the rule
can take place. The last integer argument enumerates the solutions, since there can
be diMerent such rewrites with diMerent substitutions and at diMerent positions. The
result has an additional component, giving the context inside the given term, where
the rewriting has taken place. Contexts (terms with a single “hole”) are de$ned as
follows: 8

subsort Context < CTermList .
subsorts TermList CTermList < GTermList .
op [] : -> Context [ctor] .
op _,_ : TermList CTermList -> CTermList [ctor assoc] .
op _,_ : CTermList TermList -> CTermList [ctor assoc] .
op _[_] : Qid CTermList -> Context [ctor] .

The function metaMatch intuitively tries to match at the top two given terms in a
module. The last argument is used to enumerate possible matches. If the matching
attempt is successful, the result is the corresponding substitution. The generalization to
metaXmatch is analogous to the generalization to metaXapply.

op metaMatch : Module Term Term MachineInt -> [Substitution].
op metaXmatch : Module Term Term MachineInt MachineInt

MachineInt -> [MatchPair] .
op {_,_} : Substitution Context -> MatchPair [ctor] .

5.6. Parsing; pretty printing; and sort functions

Besides the descent functions already discussed, META-LEVEL provides several other
functions that naturally belong to the universal theory and could have been equationally
axiomatized in such a theory. However, for eFciency reasons they are provided as built-
in functions. These functions allow parsing and pretty printing a term in a module at
the metalevel, and performing eFciently a number of useful operations on the sorts
declared in a module’s signature.

The function metaParse takes as arguments the representation of a module, the
representation of a list of tokens as a list of quoted identi$ers, and, optionally, a sort
or kind. It returns the metarepresentation of the parsed term of that list of tokens for
the signature of the module, which is assumed to be unambiguous.

The function metaPrettyPrint takes as arguments the representation of a module
M and the representation of a term t. It returns a list of quoted identi$ers that encode
the string of tokens produced by pretty printing t in the syntax given by M . In the
event of an error an empty list is returned.

8 Sort CTermList represents lists of terms with exactly a “hole” in the whole list, and sort GTermList
is only needed for the assoc attribute, which is necessary, to make sense.



The operations on sorts provide commonly needed functions on the poset of sorts
of a module in a built-in way at the metalevel. For example, the function leastSort
takes as arguments the representations of a module and a term and computes the (rep-
resentation of the) least sort of that term in the module, while the Boolean expression
sameKind( SM, Ss, s′) is true if and only if the sorts s and s′ belong to the same kind
in the module M .

5.7. Extensions of META-LEVEL

In metalevel computations it is very convenient to be able to refer by name to the
metarepresentations of modules already entered into the system. To make this possible,
Maude allows importation declarations of the form

protecting META-LEVEL(M1; : : : ; Mn) :

where M1; : : : ; Mn is a list of names of user-de$ned modules. With this declaration,
new constants M1; : : : ; Mn of sort Module are declared, and new equations making each
constant Mi equal to the metalevel representation of the module with name Mi (declared
previously by the user) are added, for i= 1 : : : n. Thus, after entering the module NAT
in Section 5.4 above, we can declare a module that protects META-LEVEL(NAT) and
de$nes a function to extract the set of operator declarations of a functional module as
follows:

fmod META-NAT is
protecting META-LEVEL(NAT) .
op getOpDeclSet : FModule -> OpDeclSet .
var QI : Qid . var IL : ImportList .
var SS : QidSet . var SSDS : SubsortDeclSet .
var ODS : OpDeclSet . var MAS : MembAxSet .
var EqS : EquationSet .
eq getOpDeclSet(fmod QI is IL sorts SS . SSDS ODS MAS EqS endfm)
= ODS .

endfm

Then we can apply this function to the constant NAT, which in META-NAT has been
declared to be equal to the metarepresentation of the user-de$ned module NAT, as
follows:

Maude> red getOpDeclSet(NAT) .
Result OpDeclSet :

op ’0 : nil -> ’Zero [ctor] .
op ’s_ : ’Nat -> ’Nat [ctor] .
op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .

In Maude, we can use the up function to avoid the cumbersome task of explicitly
writing the metarepresentation of a term or of a module. For example, to obtain the



metarepresentation of the term s 0 in the module NAT, mathematically denoted s 0,
we can write

Maude> red up(NAT, s 0) .
Result Term : ’s_[’0.Nat]

Note that the module name is the $rst argument of the up function, with the term
of that module to be metarepresented as the second argument. Since the same term
can be parsed in diMerent ways in diMerent modules, and therefore can have diMerent
metarepresentations depending on the module in which it is considered, the module
to which the term belongs has to be used to obtain the correct metarepresentation.
Note also that the above reduction only makes sense at the metalevel, that is, in
a module importing the module META-LEVEL. Moreover, by evaluating in any mod-
ule importing the module META-LEVEL the up function with the name of any pre-
viously declared module as argument, we obtain the metarepresentation of such a
module.

The result of a metalevel computation that may use several levels of re:ection can
be a term or module metarepresented one or more times, which may be hard to read.
To display the output in a more readable form we can use the down command, which
is in a sense inverse to up, since it gives us back the term from its metarepresentation.
The down command takes two arguments. The $rst argument is the name of the module
to which the term to be returned belongs. The metarepresentation of the desired output
term should be the result of the command given as second argument. Thus, we can
give the following command:

Maude> down NAT :
red-in META-NAT : metaReduce(NAT, up(NAT, 0 + s 0)) .

Result Nat : s 0

The use of up and down can be iterated with as many levels of re:ection as we
wish.

6. Internal strategies

As already explained, system modules in Maude are rewrite theories that do not
need to be Church–Rosser and terminating. Therefore, we need to have good ways of
controlling the rewriting inference process — which in principle could not terminate or
could go in many undesired directions — by means of adequate strategies. This need
has been addressed in other languages; for example, the ELAN language provides a
strategy language to guide the rewrites and allows user extensions for such a language
[4–6]. In Maude, thanks to its re:ective capabilities, strategies are made internal to
the logic, that is, they are de$ned by rewrite rules in a normal module in Maude, and
can be reasoned about as with rules in any other module.

In fact, there is great freedom for de$ning many diMerent types of strategies, or even
many diMerent strategy languages inside Maude. This can be done in a completely user-
de$nable way, so that users are not limited by a $xed and closed particular strategy



language. A general methodology for de$ning internal strategy languages for re:ective
logics is introduced in [12]. In general, strategies for controlling the application of the
rules are de$ned by using metaReduce, metaApply, etc., as building blocks, which
are then combined to obtain more complex strategies.

Let us illustrate some of the possibilities with some strategies controlling the exe-
cution of the rule labelled switch in the following module SWITCH. 9

mod SWITCH is
protecting ARRAY(Int) .
vars I J X Y : MachineInt .
var L : List(Tuple(Int, Int)) .
crl [switch] : (I, X) L (J, Y) => (I, Y) L (J, X)

if (I, X) L (J, Y) : NeArray(Int) .
endm

The switch rule rewrites a term of sort Array(Int) in the module ARRAY(Int) to
another term in which two of the elements in it have been interchanged. Note that the
condition in the rule ensures that it is only applied to valid integer arrays, resulting
in another valid integer array; however, this rule is diMerent from the rule sort in
Sections 3.2 and 4.5, because it does not check whether the elements are out of place
or not.

The system thus described is highly concurrent, because the switch rule may be
applied concurrently to many diMerent positions in an array. Moreover, this rule gives
rise to nondeterministic and nonterminating computations, and therefore we need to
control by means of strategies the way in which it is applied.

Let us begin by illustrating the use of metaApply for rewriting a term of sort
Array(Int) by applying the rule switch once at the top of the term without any
speci$c substitution (argument none representing the empty substitution) and using
the $rst possible match (last argument 0). The operation getTerm is the selector ex-
tracting the $rst component from either a pair of sort ResultPair or a triple of sort
ResultTriple (see Section 5.5).

Maude> red getTerm(metaApply(SWITCH,
(1, 5)(2, 4)(3, 3)), ’switch, none, 0)) .

result Term : (1, 3)(2, 4)(3, 5)

This simple application of the rule does not have much interest by itself, but shows
how it can be used for building more interesting strategies. For example, in this case
we see how an array can be rewritten in several diMerent ways, even considering a
single rule and rewriting only at the top of the term. The function findAllRews in
the module ALL-ONE-STEP-REWRITES below $nds all possible one-step rewrites of a

9 The reader should compare this module with the modules INT-SORTING in Section 3.2 and SORTING(X
:: TOSET) in Section 4.5. In particular, the imported module ARRAY(Int) is obtained as an instantiation of
the parameterized module ARRAY(X) in Section 4.5, and is equivalent to the module INT-ARRAY discussed
in Section 2.3.



term using a given rule. More precisely, findAllRews(M,T,L), with M a term of
sort Module, T a term of sort Term metarepresenting a term of a sort in the module
metarepresented by M , and L the label of a rule in M , returns the set of terms resulting
from the application of the rule L in all possible diMerent ways on term T in M by
using metaXapply. 10

fmod SET(X :: TRIV) is
sort Set(X) .
subsort X.Elt < Set(X) .
op mt : -> Set(X) [ctor] .
op _&_ : Set(X) Set(X) -> Set(X) [ctor assoc comm id: mt] .
var E : X.Elt .
eq E & E = E .

endfm

view Term from TRIV to META-LEVEL is
sort Elt to Term .

endv

fmod ALL-ONE-STEP-REWRITES is
protecting SET(Term) .

op findAllRews : Module Term Qid -> Set(Term) .
op findAllRewsAux : Module Term Qid MachineInt -> Set(Term) .

var T : Term . var M : Module .
var L : Qid . var N : MachineInt .

eq findAllRews(M, T, L) = findAllRewsAux(M, T, L, 0) .

eq findAllRewsAux(M, T, L, N)
= if metaXapply(M, T, L, none, 0, maxMachineInt, N)

:: Result4Tuple
then getTerm(metaXapply(M, T, L, none, 0, maxMachineInt, N))

& findAllRewsAux(M, T, L, N + 1)
else mt
fi .

endfm

A call to function findAllRews with the metarepresentations of the SWITCH module,
of an array, and of the rule label switch gives back all the terms resulting from the

10 The constant maxMachineInt is the largest integer in a given Maude implementation. It is guaranteed
(due to virtual memory=address space limitations) that in a nondistributed implementation of Maude a term
of depth greater than maxMachineInt cannot be built without running out of swap space.



application of such a rule in all possible ways on the term.

Maude> red findAllRews(SWITCH; (1, 5)(2, 4)(3, 3); switch) .
result Set(Term) :

(1, 3)(2, 4)(3, 5) & (1, 4)(2, 5)(3, 3) & (1, 5)(2, 3)(3, 4)

It is easy to extend this speci$cation in order to get not only the one-step rewrites, but
also to get all rewrites, perhaps up to a given depth, and not only by the application
of a single rule, but by considering any rule in a given module. We can even carry
on some kind of model checking analysis. This is precisely the idea used by Denker,
Meseguer, and Talcott in [21] for analyzing diMerent communication protocols by means
of exhaustive execution strategies that achieve a form of model checking analysis of
the state space.

Another way of controlling the application of the rules consists in choosing some of
the possible rewriting paths that can be followed by the application of the rules to a
term. For example, we can consider diMerent strategies for the controlled application of
the rule switch above for sorting integer arrays. In this case, such strategies correspond
to the speci$cation of diMerent sorting algorithms guiding where the switch rule
should be applied at each point of the computation.

In the module INSERT-STRATEGY below, we give a strategy for sorting integer arrays
by following the insertion sort algorithm. This strategy consists in partitioning the
array in two regions: a $rst part which is sorted, and a second one which is unsorted.
Initially, the entire array is unsorted, and, at each step, the strategy takes the $rst
element of the unsorted part and places it into its correct position in the sorted region.
This insertion requires the shifting of elements to make room for the element being
inserted.

The function insert takes a term metarepresenting the nonempty array to be sorted,
and calls an auxiliary function, named insertAux, which takes in addition the positions
of the $rst and last elements of the array. Its second and third arguments are indexes
used to refer to particular elements in the array. More precisely, the second argument
represents the position of the $rst element in the unsorted region, that is, the element
to be inserted next, and the third argument is used to go through the sorted region
looking for the correct position for such an item.

The function metaReduce is used for reducing several expressions at the metalevel.
For example, the term T being rewritten is used in insert for computing the range
of the positions of the array, which are passed as arguments in the initial call to the
insertAux function, or for evaluating the Boolean condition in which two elements in
diMerent positions are compared in order to decide whether it is worth to interchange
them or not.

Note the form of the arguments of metaReduce in these calls. We use a combi-
nation of the overline notation with the actual metarepresentation of a term in order
to simplify the text of the speci$cation as much as possible. For example, the term
’ + [’low[T], S1] is a simpli$ed representation of the term ’ + [’low[T], ’1.
MachineInt], where T is a variable of sort Term with value the metarepresentation



of an array. Such a term is the metarepresentation of low(A) + 1, with A the array
metarepresented by T, which is used for calculating the successor of the $rst position
of the array being sorted.

The function metaXapply is called with an explicit substitution as its fourth
argument in order to appropriately instantiate the variables I and J used in
the switch rule, corresponding to the positions whose values must be inter-
changed.

fmod INSERT-STRATEGY is
protecting META-LEVEL(SWITCH) .

op insert : Term -> Term .
op insertAux : Term Term Term Term Term -> Term .

vars T K1 K2 L H : Term .

eq insert(T)
= insertAux(T, ’ + [’low[T],S1], ’ + [’low[T],S1],

’low[T], ’high[T]) .

eq insertAux(T, K2, K1, L, H)
= if getTerm(metaReduce(SWITCH, ’ > [K1, L])) == true
then if getTerm(

metaReduce(SWITCH,
’ > [’ ‘[ ‘][T, ’ - [K1,S1]], ’ ‘[ ‘][T, K1]]))
=/= true
then insertAux(T, K2, ’ - [K1, S1], L, H)
else insertAux(

getTerm(
metaXapply(SWITCH, T, ’switch,

((’J:MachineInt <-
getTerm(metaReduce(SWITCH, K1)));

(’I:MachineInt <-
getTerm(metaReduce(SWITCH, ’ - [K1, S1])))),
0, maxMachineInt, 0)),

K2, ’ - [K1, S1], L, H)
fi

else if getTerm(metaReduce(SWITCH, ’ < [K2, H])) == true
then insertAux(T, ’ + [K2, S1], ’ + [K2, S1], L, H)
else T
fi

fi .
endfm

Notice that, although the rule switch in module SWITCH gives rise to nondeterministic
and nonterminating computations, its controlled application by means of the strategy



insert in the module INSERT-STRATEGY is deterministic and terminating.

Maude> red insert((1,5)(2,4)(3,3)(4,2)(5,1)) .
result Term : (1,1)(2,2)(3,3)(4,4)(5,5)

We can specify other sorting algorithms following the same approach. For exam-
ple, the module QUICKSORT-STRATEGY in Appendix A.2 de$nes the strategy function
quicksort following the classical quicksort algorithm. Given a function partition,
which partitions the array in those elements smaller than a chosen pivot and those
greater than or equal to the pivot, the quicksort algorithm consists in calling partition
with the fragment of the array being considered at that point, and then making recur-
sive calls to itself with each of the fragments in which the selected pivot has divided
the array.

7. Implementation

The Maude system is built around the Core Maude interpreter, which accepts module
hierarchies of (unparameterized) functional and system modules with user-de$nable
mix$x syntax. It is implemented in C++ and consists of two parts: the rewrite engine
(Section 7.1) and the mix$x front end (Section 7.2). Two additional key components
are the MSCP parser (Section 7.3) and the Full Maude language extension built on
top of the Core Maude interpreter (Section 7.4).

7.1. The rewrite engine

The design of Maude’s rewrite engine has a number of objectives. Speci$cally it
should:
• look and feel like an interpreter;
• be capable of supporting user interrupts and source level tracing;
• be extensible with new equational theories and new built-in operators;
• be general purpose and not contain Maude-speci$c code or features.
The $rst three objectives all but rule out a number of performance enhancing techniques
such as:
• compilation to native machine code (or C=C++);
• compilation to a $xed architecture abstract machine;
• program transformations and partial evaluation; and
• tight coupling between the matching=replacement=normalization code for diMerent

equational theories.
The design chosen is essentially a highly modular semicompiler where the most time
consuming run-time tasks are compiled into a system of decision diagrams and automata
which are interpreted at run time. It is realized as a C++ class library.

To enhance maintainability and extensibility, the rewrite engine is highly structured,
with its classes being grouped into 10 modules which themselves are organized into



Fig. 2. Architecture of Maude’s rewrite engine.

four layers, with inner layers having no knowledge of, or dependency on, classes in
outer layers. The overall architecture is shown in Fig. 2, where the arrows represent
class derivation.

Layer 1 consists of a single module Utility, containing classes and class templates
which provide a number of general-purpose data types such as vectors, maps, sets,
graphs, and digraphs, together with some more specialized data types such as Dio-
phantine equations and Tarjan’s union-$nd data structure.

Layer 2 consists of three modules. The Theory Interface module provides ab-
stract interfaces to basic objects whose concrete realization will diMer for diMerent
equational theories such as: symbols, term and DAG nodes, left-hand side automata
(for matching), right-hand side automata (for constructing and normalizing right-hand
side and condition instances), matching subproblems, and matching extension infor-
mation. The Core module contains classes for basic objects that are independent of
the diMerent equational theories such as: sorts, connected sort components, equations,
membership axioms, rules, conjunctions and disjunctions of matching subproblems, and
substitutions. The Variable module contains classes derived from those in the Theory
Interface. Variables are treated as a very special equational theory in that classes in
most other modules are permitted to know about and depend on their special properties.

Layer 3 consists of modules that implement particular equational theories. Each con-
sists of classes derived from those in the Theory Interface. Currently there are $ve



such modules: The Free Theory module implements the free theory whose operators
have no equational attributes; this is the only theory that currently supports many-
to-one matching via discrimination nets. The ACU Theory module implements the
associative–commutative and associative–commutative–identity theories. The AU The-
ory module implements the theories that contain associativity and possibly left and=or
right identity. The CUI Theory module implements all theories that are formed by
nonempty combinations of commutativity, left identity, right identity, and idempotence.
The purpose of the NA Theory is to provide a convenient interface for plugging in
data types such as machine integers, strings, and :oating point numbers which have
special machine level representations for performance reasons.

Layer 4 consists of a single module Builtin which contains classes for symbols with
special built-in semantics, and for term and DAG nodes which have special inter-
nal representations. In keeping with our objective of having a general-purpose rewrite
engine, this module provides operators and data types that are of general use in
rewriting logic such as equality, sort tests, machine integers, strings, and :oating point
numbers.

7.1.1. Performance
Although our design emphasizes generality, transparency, extensibility, and maintain-

ability, performance is not neglected. At the time of writing, typical equational rewrit-
ing speeds are 0.69–2:98 M free-theory rewrites=second and 93–319 K AC rewrites per
second on a highend Linux PC (667 MHz Xeon with 256 MB 133 MHz SDRAM).
The $gure for AC rewriting is highly dependent on the complexity of the AC patterns
(AC matching is NP-complete) and the size of the AC subjects. These results were
obtained using fairly simple linear and nonlinear patterns and large (hundreds of nested
AC operators) subjects. In mixed free=AC systems we have obtained speeds of more
than 1M rewrites=second.

Performance enhancing techniques used in the implementation include:
• Fixed size DAG nodes for in-place replacement.
• Full indexing for the topmost free function symbol layer of patterns; where the pat-

terns for some free symbol only contain free symbols this is equivalent to matching
a subject against all the patterns simultaneously.

• Use of greedy matching algorithms which attempt to generate a single matching
substitution as fast as possible for patterns and subpatterns that are simple enough and
whose variables satisfy certain requirements (such as not appearing in a condition).
If a greedy matching algorithm fails it may be able to report that no match exists; but
it is also allowed to report “undecided”, in which case the full matching algorithm
must be used.

• Use of special-purpose matching automata to catch common subpatterns and handle
them in a particularly eFcient way.

• Use of a carefully chosen normal form for the AC(U) theory, together with sophis-
ticated renormalization algorithms that make use of extra information saved by the
matcher to avoid costly comparisons and sorting where possible.

• Use of a Boyer–Moore style algorithm for matching under A(U) function
symbols.



• Parse time analysis of sort information to avoid needless searching during A(U) and
AC(U) matching.

• Parse time analysis of nonlinear variables in patterns in order to propagate constraints
on those variables in an “optimal” way and reduce the search space.

• Global sort analysis to avoid unnecessary sort computations and tests.
• Compilation of sort information into ordered decision diagrams for fast incremental

computation of sorts at run time.
• EFcient handling of matching with extension through a theory independent mecha-

nism that avoids the need for extension variables or equations.

7.2. The mix-x frontend

The mix$x frontend contains all of the Maude-speci$c code in the system. It contains:
• A bison=:ex-based parser for Maude’s surface syntax.
• A grammar generator which generates the context-free grammar (CFG) for the mix$x

parts of Maude over the user’s signature.
• The MSCP parser for 2-extended CFGs (discussed in Section 7.3 below).
• A mix$x pretty printer which is aware of precedences, gather patterns, and various

kinds of overloading.
• A module system with lazy :attening and lazy reparsing (for when a module with

dependents is replaced).
• A fully reentrant debugger.
• Maude-speci$c built-in data types, such as those in the QID and META-LEVEL mod-

ules.
• File, directory, and line number management.

7.3. The MSCP parser

The intrinsic characteristics of Maude — mainly, its metalanguage functionality, its
re:ective nature, and its logical and semantic framework applications — pose very
strong requirements on the design of a parsing algorithm for the language, since it has
to ful$ll the following constraints [60]:
• Interpreted parsing is required, since the syntax of modules is user-de$nable.
• Full context-free grammars must be used, and not only LALR models.
• A disambiguation mechanism, as the use of precedence values and gathering patterns,

that modify the grammatical power of nonterminal symbols, must be available.
• Grammars are extended to incorporate bubbles [60]. Bubbles are the key notion to

implement syntactic re:ection. Furthermore, bubble sorts are user-de$nable.
• Techniques for error detection and error recovery must be supported.
• EFciency is a main goal, as the parser is the surface of the rest of the system,

especially in metalevel computations.
The logical kernel of the current version of the parser is based on the SCP parsing

algorithm [59]. SCP is a bidirectional, bottom-up and event-driven parser for unre-
stricted context-free grammars. The soundness and completeness of SCP guarantees
that the Maude version of SCP (MSCP) will generate all the possible grammatical



analyses for each term in a given signature. This avoids some completeness problems
detected in the OBJ3 parser.

MSCP is able to analyze 2-extended CFGs (CFGs extended with bubbles and
precedence=gathering patterns) [60]. The MSCP parsing algorithm incorporates sophis-
ticated error detection and error recovery mechanisms based on the notions of partial
derivability and adjacency, originally developed in SCP.

7.4. Full Maude

The full syntax of Maude explained and illustrated in this paper is not directly
supported by the Core Maude interpreter. Instead, it is supported by a system extension
called Full Maude [30,27] that is entirely written in Maude and makes crucial use of
Maude’s re:ective capabilities. Speci$cally, all object-oriented features, as well as all
parameterized modules, theories, views, and module expressions are supported in Full
Maude. Essentially, Full Maude provides a rich and extensible module algebra of
parameterized modules and module composition in the Clear=OBJ style with important
extensions to support object-oriented modules. The key idea of its re:ective design is to
extend the sort Module in META-LEVEL with new sorts corresponding to more general
kinds of modules and other constructs such as object-oriented modules, parameterized
modules, theories, views, and so on. Then, all operations in the module algebra are
de$ned by equations and rewrite rules at the metelevel.

As mentioned above, all of Full Maude — including its grammar, user interface,
and internal functionality — has been formally speci$ed in Maude using re:ection.
This formal speci$cation is in fact its implementation. Our experience in this regard is
very encouraging in several respects. Firstly, because of how quickly it was possible to
develop Full Maude. Secondly, because of how easy it will be to maintain it, modify it,
and extend it with new features and new module operations [28]. Thirdly, because of
the competitive performance with which it can carry out complex module composition
and module transformation operations, that makes the user interaction quite reasonable.

8. Methodology, tools, applications, and future

We $rst explain how Maude, together with an environment of formal analysis and
reasoning tools, can support a :exible range of formal methods. Then, after giving
a brief summary of the diMerent kinds of applications developed so far, we describe
some near-future development concerning Mobile Maude.

8.1. Formal methodology and tools

The fact that rewriting logic speci$cations are executable allows us to have a :exible
range of increasingly stronger formal methods, to which a system speci$cation can be
subjected, including the following:
(1) Formal speci-cation. This process results in a $rst formal model of the sys-

tem, in which many ambiguities and hidden assumptions present in an informal



speci$cation are clari$ed. A rewriting logic speci$cation provides a formal model
in exactly this sense.

(2) Execution of the speci-cation. Executable rewriting logic speci$cations can be
used directly for simulation and debugging purposes, leading to increasingly better
designs.

(3) Model-checking analysis. Errors in highly distributed and nondeterministic systems
not revealed by a particular execution can be found by a model-checking analysis
that considers all behaviors of a system from an initial state, up to some level or
condition.

(4) Narrowing analysis. By using symbolic expressions with logical variables, one can
carry out a symbolic model-checking analysis in which all behaviors not only from
a single initial state, but also from the possibly in$nite set of states described by
a symbolic expression are analyzed.

(5) Formal proof. For highly critical properties it is also possible to carry out a formal
proof of correctness, which can be assisted by formal tools such as those described
below. Such properties can be expressed in rewriting logic itself, or in an adequate
modal or temporal logic.

The above methodology can be supported by formal tools. First of all, Maude itself is
a very versatile formal tool supporting methods 1–2 through its default interpreter, and
method 3 through re:ective rewriting strategies that can analyze the diMerent concur-
rent computations from a given initial state checking for desired properties. Method’s 4
narrowing analysis can be supported by strategies and a rewriting speci$cation of uni$-
cation, but in the future it will be more eFcient to support uni$cation in a built-in way.

In addition to the formal methods directly supported by Maude, one can use Maude
as a formal metatool [18] to build other formal tools supporting other kinds of analysis
and proof. As explained in [17,18,51], re:ection and the :exible uses of rewriting
logic as a logical framework [41] are the key features making it easy to develop such
formal tools and their user interfaces. The papers [18,57] give detailed accounts of
a wide range of formal tools that have been de$ned in Maude by diMerent authors
for diMerent formalisms. We focus here on Maude-speci$c tools, applicable to large
classes of Maude speci$cations, or extensions of such speci$cations; they include the
following:
An inductive theorem prover. Using the re:ective features of Maude, we have built

an inductive theorem prover for equational logic speci$cations [17] that can be used
to prove inductive properties of both CafeOBJ speci$cations [23] and of functional
modules in Maude. This tool can be extended with re:ective reasoning principles to
reason about the metalogical properties of a logic represented in rewriting logic or,
more generally, to prove metalevel properties [2].
A Church–Rosser checker. We have also built a Church–Rosser checker tool [17]

that analyzes equational speci$cations to check whether they satisfy the Church–Rosser
property. This tool can be used to analyze order-sorted equational speci$cations [36]
in CafeOBJ and in Maude. The tool outputs a collection of proof obligations that can
be used to either modify the speci$cation or to prove them. Extensions of this tool to
perform equational completion and to check coherence of rewrite theories are currently
under development.



Real-Time Maude. Based on a notion of real-time rewrite theory that can natu-
rally represent many existing models of real-time and hybrid systems, and that has
a straightforward translation into an ordinary rewrite theory [58,56], WOlveczky and
Meseguer have developed an execution and analysis environment for speci$cations of
real-time and hybrid systems called Real-Time Maude [57]. This tool translates real-
time rewrite theories into Maude modules and can execute and analyze such theories
by means of a library of strategies that can be easily extended by the user to perform
other kinds of formal analysis.

8.2. Applications

In general, the applications of Maude exploit the good features of rewriting logic
as a semantic framework and as a logical framework. Often, they use in a crucial
way Maude’s re:ective capabilities. A detailed discussion of diMerent applications is
beyond the scope of this paper; we refer the reader to [47,49,50,51,18,21] for recent
accounts. As already explained in Section 8.1, an important class of logical framework
applications are formal metatool applications that use Maude to generate other formal
tools [18]. Semantic framework applications span a wide range of levels, including:
formal speci$cation of architectural description languages, object-oriented designs, and
distributed middleware [49,50]; formal speci$cation and analysis of network systems
and communication protocols [21,50]; and speci$cation and programming of agent and
mobile systems (see [50,29] and Section 8.3). Of course, given the high performance of
the implementation, Maude is also an attractive very high-level language for a number
of programming applications. As explained below, we expect Mobile Maude to further
extend the range of such applications.

8.3. Mobile Maude

Maude can be used not only for specifying communication systems, but also for
programming them. We are currently advancing the design of Mobile Maude [29].
This is an extension of Maude supporting mobile computation that uses re:ection in a
systematic way to obtain a simple and general declarative mobile language design. The
two key notions are processes and mobile objects. Processes are located computational
environments where mobile objects can reside. Mobile objects can move between dif-
ferent processes in diMerent locations, and can communicate asynchronously with each
other by means of messages. Each mobile object contains its own code — that is a
rewrite theory R — metarepresented as a term SR. In this way, re:ection endows mobile
objects with powerful “higher-order” capabilities within a simple $rst-order framework.

We expect that Mobile Maude will have good support for secure mobile computation
for two reasons. Firstly, mobile objects will communicate with each other and will move
from one location to another using state-of-the-art encryption mechanisms. Secondly,
because of the logical basis of Mobile Maude, we expect to be able to prove critical
properties of applications developed in it with much less eMort than what it would be
required if the same applications were developed in a conventional language such as
Java.



9. Maude versions: past, present, and future

As explained in the introduction, this paper has presented all the main Maude con-
cepts in a version-independent way, without pointing out for each language feature in
which version it was introduced. Table 1 summarizes this information, and also distin-
guishes at the same time between the Core Maude features, and the additional features
provided in Full Maude.

Version 1 of Maude was released in January 1999, while Version 2 was designed
in the summer of 2000; most of its features are already implemented at the time of
writing. The last row in the table summarizes several features that have been discussed
as desirable for future versions, but that are not going to be part of the release of
Version 2 of Maude.

Appendix A. More details of some examples

A.1. CCS Syntax

fmod ACTION is
protecting QID .
sorts Label Act .
subsorts Qid < Label < Act .
op tau : -> Act [ctor] . *** silent action
op ~_ : Label -> Label [ctor] .
var N : Label .
eq ~ ~ N = N .

endfm

fmod PROCESS is
protecting ACTION .
sorts ProcessId Process .
subsorts Qid < ProcessId < Process .
op 0 : -> Process [ctor] .

*** inaction
op _._ : Act Process -> Process [ctor] .

*** prefix
op _+_ : Process Process -> Process [ctor assoc comm] .

*** summation
op _|_ : Process Process -> Process [ctor assoc comm] .

*** parallel composition
op _\_ : Process Label -> Process [ctor] .

*** restriction
op _[_/_] : Process Label Label -> Process [ctor] .

*** relabelling: [b/a] relabels ‘‘a’’ to ‘‘b’’
endfm



Table 1
Language features

Core Maude Full Maude

Version 1 Functional modules Object-oriented modules
System modules Parameterized modules
Conditions: single equation Theories
Module hierarchies Views
Re:ection (metalevel) Module renaming
Internal strategies Tuples

Descent functions




metaReduce
metaRewrite
metaApply

Up=down commands

Prede$ned data types




Boolean values
quoted identi$ers
machine integers

Version 2 Explicit use of kinds Parameterized theories
New variable syntax Parameterized views

General conditions




memberships
equations
matching equations
rewrites

View composition

More descent functions




metaXapply
metaMatch
metaXmatch

View lifting

More prede$ned
data types




natural numbers
:oating point numbers
strings

Built-in object-oriented modules, including
TCP socket and $le system interfaces

Fair rewriting for system and
object-oriented modules

Rewrite search and LTL model-checking
Sublanguage compiler
LaTeX pretty printing

Future Uni$cation
Narrowing
Built-in strategy language
Foreign language interface
User-de$nable lexical syntax
GUI support
Additional operator attributes
Additional compiler support



fmod CCS-CONTEXT is
protecting PROCESS .
sort Context .
op _=def_ : ProcessId Process -> Context [ctor] .
op nil : -> Context [ctor] .
op _&_ : Context Context -> [Context]

[ctor assoc comm id: nil] .
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context -> [Process] .
op not-defined : -> [Process] [ctor] .
op context : -> Context .
vars X X’ : ProcessId . var P : Process .
vars C C’ : Context .

cmb (X =def P) & C : Context if not(X definedIn C) .
eq X definedIn nil = false .
ceq X definedIn C = (X == X’) or (X definedIn C’)

if (X’ =def P) & C’ := C .
eq def(X, nil) = not-defined .
ceq def(X, C) = P if (X =def P) & C’ := C .
ceq def(X, C) = def(X, C’)

if (X’ =def P) & C’ := C /\ X =/= X’ .
endfm

A.2. Quicksort strategy

The following module QUICKSORT-STRATEGY de$nes the quicksort strategy func-
tion, which follows the classical quicksort algorithm for sorting. There is an auxiliary
function quicksortAux taking two additional arguments, namely the positions of the
$rst and last elements to be considered by the function, that is, the limits of the frag-
ment being considered in each call. There is another auxiliary function partition,
which takes as pivot the $rst of the elements in the fragment of the array being consid-
ered, and returns a pair of terms (of sort Tuple(Term, Term)) which metarepresent,
respectively, the resulting array and the position of the pivot element in it, in such a
way that all the elements before such a position are smaller than the pivot, and all
the elements after it are greater than or equal to the pivot. The position of the pivot
in the resulting array is used by the function quicksortAux for making the recursive
calls. Thus, given a fragment with $rst position L and last position H , and with P the
position of the pivot after the call to partition, the recursive calls will be made with
fragments L; P − 1 and P + 1; H . Note that the module expression TUPLE[2](Term,
Term) provides a sort Tuple(Term, Term) with constructor ( , ), and with projec-
tion functions p1 and p2 .



fmod QUICKSORT-STRATEGY is
protecting META-LEVEL(SWITCH) + TUPLE[2](Term, Term) .

op quicksort : Term -> Term .
op quicksortAux : Term Term Term -> Term .
op partition : Term Term Term Term -> Tuple(Term, Term) .

vars T P L H : Term .

eq quicksort(T) = quicksortAux(T, ’low[T], ’high[T]) .

eq quicksortAux(T, L, H)
= if getTerm(metaReduce(SWITCH, ’_>_[L, H])) == true

then nil
else if getTerm(metaReduce(SWITCH, ’_==_[L, H])) == true

then ’‘(_‘,_‘)[
getTerm(metaReduce(SWITCH, ’_‘[_‘][T, L])), L]

else ’__[quicksortAux(p1 partition(T, L, ’_+_[L, 1], H),
L,’_-_[p2 partition(T, L, ’_+_[L, 1], H), 1]),
’‘(_‘,_‘)[p2 partition(T, L, ’_+_[L, 1], H),
’_‘[_‘][p1 partition(T, L, ’_+_[L, 1], H),

p2 partition(T, L, ’_+_[L, 1], H)]],
quicksortAux(
p1 partition(T, L, ’_+_[L, 1], H),
’_+_[p2 partition(T, L, ’_+_[L, 1], H), 1], H)]]

fi
fi .

eq partition(T, P, L, H)
= if getTerm(metaReduce(SWITCH, ’_>_[L, H])) == true

then if getTerm(metaReduce(SWITCH, ’_<_[P, H])) == true
then (getTerm( *** move the pivot to position H

metaXapply(SWITCH, T, ’switch,
((’I:MachineInt <-

getTerm(metaReduce(SWITCH, P)));
(’J:MachineInt <-

getTerm(metaReduce(SWITCH, H)))),
0, maxMachineInt, 0)), H)

else (T, P) *** The pivot is the biggest element
fi

else if getTerm(
metaReduce(SWITCH, ’_>_[’_‘[_‘][T, P],’_‘[_‘][T, L]]))

== true



then *** the element at L is smaller than the pivot
partition(T, P, ’_+_[L, 1], H)

else if getTerm(
metaReduce(SWITCH,
’_<=_[’_‘[_‘][T, P], ’_‘[_‘][T, H]]))

== true
then *** the element at H is greater than the pivot

partition(T, P, L, ’_-_[H, 1])
else partition(

getTerm(
metaXapply(SWITCH, T, ’switch,
((’I:MachineInt <-

getTerm(metaReduce(SWITCH, L)));
(’J:MachineInt <-

getTerm(metaReduce(SWITCH, H)))),
0, maxMachineInt, 0)),

P, ’_+_[L, 1], ’_-_[H, 1])
fi

fi
fi .

endfm
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