9 research outputs found

    Relative Termination via Dependency Pairs

    Full text link
    [EN] A term rewrite system is terminating when no infinite reduction sequences are possible. Relative termination generalizes termination by permitting infinite reductions as long as some distinguished rules are not applied infinitely many times. Relative termination is thus a fundamental notion that has been used in a number of different contexts, like analyzing the confluence of rewrite systems or the termination of narrowing. In this work, we introduce a novel technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. We first present a general approach that is then instantiated to provide a concrete technique for proving relative termination. The practical significance of our method is illustrated by means of an experimental evaluation.Open access funding provided by Austrian Science Fund (FWF). We would like to thank Nao Hirokawa, Keiichirou Kusakari, and the anonymous reviewers for their helpful comments and suggestions in early stages of this work.Iborra, J.; Nishida, N.; Vidal Oriola, G.; Yamada, A. (2017). Relative Termination via Dependency Pairs. Journal of Automated Reasoning. 58(3):391-411. https://doi.org/10.1007/s10817-016-9373-5391411583Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨\vee ∨ C-termination. In: WRLA 2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6, 1–18 (1988)Bonacina, M., Hsiang, J.: On fairness of completion-based theorem proving strategies. In: RTA 1991, LNCS, vol. 488, pp. 348–360. Springer (1991)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Informatik. Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: RTA 2001, LNCS, vol. 2051, pp. 93–107. Springer (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: IJCAR 2006, LNCS, vol. 4130, pp. 281–286. Springer (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency Pairs. J. Autom. Reason. 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: RTA 2004, LNCS, vol. 3091, pp. 249–268. Springer (2004)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: AISC 2004, LNAI, vol. 3249, pp. 185–198. Springer (2004)Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. In: CADE 1980, LNCS, vol. 87, pp. 318–334. Springer (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: LOPSTR 2009, LNCS, vol. 6037, pp. 52–66. Springer (2010)Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Reducing relative termination to dependency pair problems. In: CADE-25, LNAI, vol. 9195, pp. 163–178. Springer (2015)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980). Unpublished noteKlop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A.: TPA: termination proved automatically. In: RTA 2006, LNCS, vol. 4098, pp. 257–266. Springer (2006)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: FroCoS 2005, LNCS, vol. 3717, pp. 232–247. Springer (2005)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: RTA 2009, LNCS, vol. 5595, pp. 295–304. Springer (2009)Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs. IEICE Trans. Inf. Syst. E84–D(5), 439–447 (2001)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. J. Symb. Comput. 38(1), 873–897 (2004)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London (2002)Slagle, J.: Automated theorem-proving for theories with simplifiers commutativity and associativity. J. ACM 21(4), 622–642 (1974)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012, LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: FLOPS 2008, LNCS, vol. 4989, pp. 113–129. Springer (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: RTA-TLCA 2014, LNCS, pp. 466–475. Springer (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. 111, 110–134 (2015)Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inf. 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J. W., de Vrijer, R. (eds.) Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, chap. 6, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    Symbolic execution as a basis for termination analysis

    Full text link
    Program termination is a relevant property that has been extensively studied in the context of many different formalisms and programming languages. Traditional approaches to proving termination are usually based on inspecting the source code. Recently, a new semantics-based approach has emerged, which typically follows a two-stage scheme: first, a finite data structure representing the computation space of the program is built; then, termination is analyzed by inspecting the transitions in this data structure using traditional, syntax-based techniques. Unfortunately, this approach is still specific to a programming language and semantics. In this work, we present instead a general, high-level framework that follows the semanticsbased approach to proving termination. In particular, we focus on the first stage and advocate the use of symbolic execution, together with appropriate subsumption and abstraction operators, for producing a finite representation of the computations of a program. Hopefully, this higher level approach will provide useful insights for designing new semantics-based termination tools for particular programming languages. © 2015 Elsevier B.V. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad (Secretaria de Estado de Investigacion, Desarrollo e Innovacion) under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEO/2011/052.Vidal Oriola, GF. (2015). Symbolic execution as a basis for termination analysis. Science of Computer Programming. 102:142-157. https://doi.org/10.1016/j.scico.2015.01.007S14215710

    Reducing relative termination to dependency pair problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21401-6_11Relative termination, a generalized notion of termination, has been used in a number of different contexts like proving the confluence of rewrite systems or analyzing the termination of narrowing. In this paper, we introduce a new technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. The practical significance of our method is illustrated by means of an experimental evaluation.Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad under grant TIN2013-44742-C4-R and by the Generalitat Valenciana under grant PROMETEOII201/013. Akihisa Yamadais supported by the Austrian Science Fund (FWF): Y757Iborra, J.; Nishida, N.; Vidal Oriola, GF.; Yamada, A. (2015). Reducing relative termination to dependency pair problems. En Automated Deduction - CADE-25. Springer. 163-178. https://doi.org/10.1007/978-3-319-21401-6_11S163178Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨\vee C-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reasoning 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980, unpublished note)Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer, Heidelberg (2005)Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London (2002)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. (2014). doi: 10.1016/j.scico.2014.07.009Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    Termination of Narrowing in Left-Linear Constructor Systems

    No full text
    Narrowing extends rewriting with logic capabilities by allowing logic variables in terms and replacing matching with unification. Narrowing has been widely used in different contexts, ranging from theorem proving (e.g., protocol verification) to language design (e.g., it forms the basis of functional logic languages). Surprisingly, the termination of narrowing has been mostly overlooked. In this paper, we present a new approach for analyzing the termination of narrowing in left-linear constructor systems—a widely accepted class of systems—that allows us to reuse existing methods in the literature on termination of rewriting

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Relative Termination via Dependency Pairs

    No full text
    [EN] A term rewrite system is terminating when no infinite reduction sequences are possible. Relative termination generalizes termination by permitting infinite reductions as long as some distinguished rules are not applied infinitely many times. Relative termination is thus a fundamental notion that has been used in a number of different contexts, like analyzing the confluence of rewrite systems or the termination of narrowing. In this work, we introduce a novel technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. We first present a general approach that is then instantiated to provide a concrete technique for proving relative termination. The practical significance of our method is illustrated by means of an experimental evaluation.Open access funding provided by Austrian Science Fund (FWF). We would like to thank Nao Hirokawa, Keiichirou Kusakari, and the anonymous reviewers for their helpful comments and suggestions in early stages of this work.Iborra, J.; Nishida, N.; Vidal Oriola, G.; Yamada, A. (2017). Relative Termination via Dependency Pairs. Journal of Automated Reasoning. 58(3):391-411. https://doi.org/10.1007/s10817-016-9373-5391411583Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨\vee ∨ C-termination. In: WRLA 2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6, 1–18 (1988)Bonacina, M., Hsiang, J.: On fairness of completion-based theorem proving strategies. In: RTA 1991, LNCS, vol. 488, pp. 348–360. Springer (1991)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Informatik. Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: RTA 2001, LNCS, vol. 2051, pp. 93–107. Springer (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: IJCAR 2006, LNCS, vol. 4130, pp. 281–286. Springer (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency Pairs. J. Autom. Reason. 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: RTA 2004, LNCS, vol. 3091, pp. 249–268. Springer (2004)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: AISC 2004, LNAI, vol. 3249, pp. 185–198. Springer (2004)Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. In: CADE 1980, LNCS, vol. 87, pp. 318–334. Springer (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: LOPSTR 2009, LNCS, vol. 6037, pp. 52–66. Springer (2010)Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Reducing relative termination to dependency pair problems. In: CADE-25, LNAI, vol. 9195, pp. 163–178. Springer (2015)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980). Unpublished noteKlop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A.: TPA: termination proved automatically. In: RTA 2006, LNCS, vol. 4098, pp. 257–266. Springer (2006)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: FroCoS 2005, LNCS, vol. 3717, pp. 232–247. Springer (2005)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: RTA 2009, LNCS, vol. 5595, pp. 295–304. Springer (2009)Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs. IEICE Trans. Inf. Syst. E84–D(5), 439–447 (2001)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. J. Symb. Comput. 38(1), 873–897 (2004)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London (2002)Slagle, J.: Automated theorem-proving for theories with simplifiers commutativity and associativity. J. ACM 21(4), 622–642 (1974)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012, LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: FLOPS 2008, LNCS, vol. 4989, pp. 113–129. Springer (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: RTA-TLCA 2014, LNCS, pp. 466–475. Springer (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. 111, 110–134 (2015)Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inf. 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J. W., de Vrijer, R. (eds.) Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, chap. 6, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003
    corecore