151 research outputs found

    Termination Proofs Using gpo Ordering Constraints : Extended Version

    Get PDF
    We present here an algorithm for proving termination of term rewriting systems by \gpo ordering constraint solving. The algorithm gives, as automatically as possible, an appropriate instance of the gpo generic ordering proving termination of a given system. Constraint solving is done efficiently thanks to a DAG shared term data structure

    A Unifying Theory for Graph Transformation

    Get PDF
    The field of graph transformation studies the rule-based transformation of graphs. An important branch is the algebraic graph transformation tradition, in which approaches are defined and studied using the language of category theory. Most algebraic graph transformation approaches (such as DPO, SPO, SqPO, and AGREE) are opinionated about the local contexts that are allowed around matches for rules, and about how replacement in context should work exactly. The approaches also differ considerably in their underlying formal theories and their general expressiveness (e.g., not all frameworks allow duplication). This dissertation proposes an expressive algebraic graph transformation approach, called PBPO+, which is an adaptation of PBPO by Corradini et al. The central contribution is a proof that PBPO+ subsumes (under mild restrictions) DPO, SqPO, AGREE, and PBPO in the important categorical setting of quasitoposes. This result allows for a more unified study of graph transformation metatheory, methods, and tools. A concrete example of this is found in the second major contribution of this dissertation: a graph transformation termination method for PBPO+, based on decreasing interpretations, and defined for general categories. By applying the proposed encodings into PBPO+, this method can also be applied for DPO, SqPO, AGREE, and PBPO

    Polynomial function intervals for floating-point software verification

    Get PDF
    The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs

    Verification of floating point programs

    Get PDF
    In this thesis we present an approach to automated verification of floating point programs. Existing techniques for automated generation of correctness theorems are extended to produce proof obligations for accuracy guarantees and absence of floating point exceptions. A prototype automated real number theorem prover is presented, demonstrating a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The prototype is tested on correctness theorems for two simple yet nontrivial programs, proving exception freedom and tight accuracy guarantees automatically. The prover demonstrates a novel application of function interval arithmetic in the context of subdivision-based numerical theorem proving. The experiments show how function intervals can be used to combat the information loss problems that limit the applicability of traditional interval arithmetic in the context of hard real number theorem proving

    Special Libraries, April 1983

    Get PDF
    Volume 74, Issue 2https://scholarworks.sjsu.edu/sla_sl_1983/1001/thumbnail.jp

    Special Libraries, Summer 1988

    Get PDF
    Volume 79, Issue 3https://scholarworks.sjsu.edu/sla_sl_1988/1002/thumbnail.jp

    Researches in optimal and suboptimal control theory

    Get PDF
    Regret function derived for variational methods of Pontryagin and Bellman, and its application in representation of known optimal control policie

    A tree traversal algorithm for decision problems in knot theory and 3-manifold topology

    Get PDF
    In low-dimensional topology, many important decision algorithms are based on normal surface enumeration, which is a form of vertex enumeration over a high-dimensional and highly degenerate polytope. Because this enumeration is subject to extra combinatorial constraints, the only practical algorithms to date have been variants of the classical double description method. In this paper we present the first practical normal surface enumeration algorithm that breaks out of the double description paradigm. This new algorithm is based on a tree traversal with feasibility and domination tests, and it enjoys a number of advantages over the double description method: incremental output, significantly lower time and space complexity, and a natural suitability for parallelisation. Experimental comparisons of running times are included
    corecore