526 research outputs found

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Morphology-based cerebrovascular atlas

    Get PDF
    International audienceCerebrovascular atlases can be used to improve medical tasks requiring the analysis of 3D angiographic data. The generation of such atlases remains however a complex and infrequently considered issue. The existing approaches rely on information exclusively related to the vessels. We alternatively investigate a new way, consisting of using both vascular and morphological information (i.e., cerebral structures) to improve the accuracy and relevance of the obtained vascular atlases. Experiments emphasise improvements in the main steps of the atlas generation process impacted by the use of morphological information. An example of cerebrovascular atlas obtained from a dataset of 56 MRAs acquired from several acquisition devices is finally provided

    An Automated Liver Vasculature Segmentation from CT Scans for Hepatic Surgical Planning

    Get PDF
    Liver vasculature segmentation is a crucial step for liver surgical planning. Segmentation of liver vasculature is an important part of the 3D visualisation of the liver anatomy. The spatial relationship between vessels and other liver structures, like tumors and liver anatomic segments, helps in reducing the surgical treatment risks. However, liver vessels segmentation is a challenging task, that is due to low contrast with neighboring parenchyma, the complex anatomy, the very thin branches and very small vessels. This paper introduces a fully automated framework consist of four steps to segment the vessels inside the liver organ. Firstly, in the preprocessing step, a combination of two filtering techniques are used to extract and enhance vessels inside the liver region, first the vesselness filter is used to extract the vessels structure, and then the anisotropic coherence enhancing diffusion (CED) filter is used to enhance the intensity within the tubular vessels structure. This step is followed by a smart multiple thresholding to extract the initial vasculature segmentation. The liver vasculature structures, including hepatic veins connected to the inferior vena cava and the portal veins, are extracted. Finally, the inferior vena cava is segmented and excluded from the vessels segmentation, as it is not considered as part of the liver vasculature structure. The liver vessel segmentation method is validated on the publically available 3DIRCAD datasets. Dice coefficient (DSC) is used to evaluate the method, the average DSC score achieved a score 68.5%. The proposed approach succeeded to segment liver vasculature from the liver envelope accurately, which makes it as potential tool for clinical preoperative planning

    Breast Ultrasound Image Segmentation Based on Uncertainty Reduction and Context Information

    Get PDF
    Breast cancer frequently occurs in women over the world. It was one of the most serious diseases and the second common cancer among women in 2019. The survival rate of stages 0 and 1 of breast cancer is closed to 100%. It is urgent to develop an approach that can detect breast cancer in the early stages. Breast ultrasound (BUS) imaging is low-cost, portable, and effective; therefore, it becomes the most crucial approach for breast cancer diagnosis. However, BUS images are of poor quality, low contrast, and uncertain. The computer-aided diagnosis (CAD) system is developed for breast cancer to prevent misdiagnosis. There have been many types of research for BUS image segmentation based on classic machine learning and computer vision methods, e.g., clustering methods, thresholding methods, level set, active contour, and graph cut. Since deep neural networks have been widely utilized in nature image semantic segmentation and achieved good results, deep learning approaches are also applied to BUS image segmentation. However, the previous methods still suffer some shortcomings. Firstly, the previous non-deep learning approaches highly depend on the manually selected features, such as texture, frequency, and intensity. Secondly, the previous deep learning approaches do not solve the uncertainty and noise in BUS images and deep learning architectures. Meanwhile, the previous methods also do not involve context information such as medical knowledge about breast cancer. In this work, three approaches are proposed to measure and reduce uncertainty and noise in deep neural networks. Also, three approaches are designed to involve medical knowledge and long-range distance context information in machine learning algorithms. The proposed methods are applied to breast ultrasound image segmentation. In the first part, three fuzzy uncertainty reduction architectures are designed to measure the uncertainty degree for pixels and channels in the convolutional feature maps. Then, medical knowledge constrained conditional random fields are proposed to reflect the breast layer structure and refine the segmentation results. A novel shape-adaptive convolutional operator is proposed to provide long-distance context information in the convolutional layer. Finally, a fuzzy generative adversarial network is proposed to reduce uncertainty. The new approaches are applied to 4 breast ultrasound image datasets: one multi-category dataset and three public datasets with pixel-wise ground truths for tumor and background. The proposed methods achieve the best performance among 15 BUS image segmentation methods on the four datasets

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    REGISTRATION AND SEGMENTATION OF BRAIN MR IMAGES FROM ELDERLY INDIVIDUALS

    Get PDF
    Quantitative analysis of the MRI structural and functional images is a fundamental component in the assessment of brain anatomical abnormalities, in mapping functional activation onto human anatomy, in longitudinal evaluation of disease progression, and in computer-assisted neurosurgery or surgical planning. Image registration and segmentation is central in analyzing structural and functional MR brain images. However, due to increased variability in brain morphology and age-related atrophy, traditional methods for image registration and segmentation are not suitable for analyzing MR brain images from elderly individuals. The overall goal of this dissertation is to develop algorithms to improve the registration and segmentation accuracy in the geriatric population. The specific aims of this work includes 1) to implement a fully deformable registration pipeline to allow a higher degree of spatial deformation and produce more accurate deformation field, 2) to propose and validate an optimum template selection method for atlas-based segmentation, 3) to propose and validate a multi-template strategy for image normalization, which characterizes brain structural variations in the elderly, 4) to develop an automated segmentation and localization method to access white matter integrity (WMH) in the elderly population, and finally 5) to study the default-mode network (DMN) connectivity and white matter hyperintensity in late-life depression (LLD) with the developed registration and segmentation methods. Through a series of experiments, we have shown that the deformable registration pipeline and the template selection strategies lead to improved accuracy in the brain MR image registration and segmentation, and the automated WMH segmentation and localization method provides more specific and more accurate information about volume and spatial distribution of WMH than traditional visual grading methods. Using the developed methods, our clinical study provides evidence for altered DMN connectivity in LLD. The correlation between WMH volume and DMN connectivity emphasizes the role of vascular changes in LLD's etiopathogenesis

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails
    • …
    corecore