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ABSTRACT

Breast Ultrasound Image Segmentation Based on Uncertainty Reduction and Context

Information

by

Kuan Huang, Doctor of Philosophy

Utah State University, 2021

Major Professor: Heng-Da Cheng, Ph.D.
Department: Computer Science

Breast cancer frequently occurs in women over the world. It was one of the most severe

diseases and the second common cancer after skin cancer among women in the United States

until 2019. Based on the statistical data provided by the American Cancer Society in 2019,

the breast cancer incidence rate increased by 0.3% per year from 2012-2016. In contrast, the

death rate of breast cancer dropped 40% from 1989 to 2017 because of the more attention

to breast cancer. In 2019, the United States was expected to have 268,600 new cases of

invasive breast cancer and 48,100 cases of ductal carcinoma in situ (DCIS). Investigated by

some organizations, the survival rate of stages 0 and 1 of breast cancer during 2007 and

2013 was close to 100%; however, it lacks apparent symptoms in the early stage of breast

cancer. Many patients miss the best chance to cure it because they do not diagnose breast

cancer in the early stages.

Breast ultrasound (BUS) imaging is harmless, low cost, portable and effective; there-

fore, it becomes the most critical approach for breast cancer early detection. However,

breast ultrasound (BUS) images are usually of poor quality and low contrast because they

contain inherent and speckle noise. These characteristics of BUS images affect the accuracy

of diagnosis. Therefore, developing the computer-aided diagnosis (CAD) system for BUS
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imaging is essential. The CAD system is to help doctors diagnose breast cancer accurately.

Breast ultrasound image segmentation is the crucial step in the CAD system. Traditional

breast ultrasound image segmentation approaches only focus on tumor segmentation. The

reasons are: 1) the final target is to classify tumor into benign or malignant for the CAD

systems; therefore, tumor area is important; and 2) detecting other breast tissues is more

challenging than detecting tumor area. However, detecting other tissues in the breast such

as the skin layer, mammary layer, muscle layer is also important for breast cancer diag-

nosis. The semantic segmentation of BUS images which can detect tissues and tumors, is

important for CAD systems of BUS images.

In this research, there are two major research fields in breast ultrasound image seman-

tic segmentation: 1) reducing uncertainty in semantic segmentation using fuzzy logic; 2)

involving context information to optimize segmentation accuracy. The experimental results

demonstrate the new approaches obtain the best performance compared with the previous

BUS segmentation methods on four datasets.

(130 pages)
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PUBLIC ABSTRACT

Breast Ultrasound Image Segmentation Based on Uncertainty Reduction and Context

Information

Kuan Huang

Breast cancer frequently occurs in women over the world. It was one of the most serious

diseases and the second common cancer among women in 2019. The survival rate of stages 0

and 1 of breast cancer is closed to 100%. It is urgent to develop an approach that can detect

breast cancer in the early stages. Breast ultrasound (BUS) imaging is low-cost, portable,

and effective; therefore, it becomes the most crucial approach for breast cancer diagnosis.

However, BUS images are of poor quality, low contrast, and uncertain. The computer-aided

diagnosis (CAD) system is developed for breast cancer to prevent misdiagnosis.

There have been many types of research for BUS image segmentation based on clas-

sic machine learning and computer vision methods, e.g., clustering methods, thresholding

methods, level set, active contour, and graph cut. Since deep neural networks have been

widely utilized in nature image semantic segmentation and achieved good results, deep

learning approaches are also applied to BUS image segmentation. However, the previous

methods still suffer some shortcomings. Firstly, the previous non-deep learning approaches

highly depend on the manually selected features, such as texture, frequency, and intensity.

Secondly, the previous deep learning approaches do not solve the uncertainty and noise in

BUS images and deep learning architectures. Meanwhile, the previous methods also do not

involve context information such as medical knowledge about breast cancer. In this work,

three approaches are proposed to measure and reduce uncertainty and noise in deep neural

networks. Also, three approaches are designed to involve medical knowledge and long-range

distance context information in machine learning algorithms. The proposed methods are

applied to breast ultrasound image segmentation.
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In the first part, three fuzzy uncertainty reduction architectures are designed to measure

the uncertainty degree for pixels and channels in the convolutional feature maps. Then,

medical knowledge constrained conditional random fields are proposed to reflect the breast

layer structure and refine the segmentation results. A novel shape-adaptive convolutional

operator is proposed to provide long-distance context information in the convolutional layer.

Finally, a fuzzy generative adversarial network is proposed to reduce uncertainty. The

new approaches are applied to 4 breast ultrasound image datasets: one multi-category

dataset and three public datasets with pixel-wise groundtruths for tumor and background.

The proposed methods achieve the best performance among 15 BUS image segmentation

methods on the four datasets.
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CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer frequently occurs in women over the world. It was one of the most serious

diseases and the second common cancer among women in 2019 [9]. The survival rate of

stages 0 and 1 of breast cancer is closed to 100% [10]. It is urgent to develop an approach

that can detect breast cancer in the early stages. Breast ultrasound (BUS) imaging is low-

cost, portable, harmless, and effective; therefore, it becomes the most important approach

for breast cancer diagnosis. However, BUS images are of poor quality, low contrast, and

uncertain. The computer-aided diagnosis (CAD) system for BUS image is developed to

assist the doctor in diagnosing breast cancer, especially BUS image segmentation in the

CAD system. There have been many types of research for BUS image segmentation based on

classic machine learning and computer vision methods [11] and deep learning [2]. They have

achieved good results in BUS image segmentation, especially for deep learning approaches.

However, the previous deep learning approaches do not solve the uncertainty and noise in

BUS images and deep learning architectures. Researches [12, 13] show that there exists

epistemic and aleatory uncertainty in deep learning architectures and medical images. The

main causes of uncertainty are: 1) BUS images are of low quality and contrast; 2) BUS

images contain inherent speckle noise and shadows [11]; 3) the BUS images from different

machines during different periods have different contrasts, and image intensity changes

variously; 4) the characteristics of breasts in different people might be various; 5) there

are image patches in BUS images similar to the tumor areas (shown in patches marked

by red rectangles in Figs. 1.1 (a), (b)). Besides the uncertainty and noise, the previous

deep learning-based BUS image segmentation methods do not involve context information.

Here the context information refers to the correlation between pixels such as the breast
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(a) (b) (c)

Fig. 1.1: Weird shape tumor and patches similar as tumor areas in BUS images.

anatomy and the characteristics of the BUS image. As shown in Fig. 1.2, BUS images

have some characteristics, such as the layer structure in Fig. 1.2 (b), that can improve the

segmentation performance.

To handle the problems appearing in the BUS images and increase the performance

of BUS image CAD system, segmentation methods for BUS image based on uncertainty

reduction and context information are proposed. This research has two major portions:

1) reducing uncertainty in deep neural networks using three fuzzy logic approaches and 2)

designing three novel approaches that can reflect context information of BUS image. In

the following part, we first review research in semantic segmentation and deep learning;

then some research to extract context information in deep convolutional neural networks is

listed; finally, existing BUS image segmentation methods are shown.

1.2 Semantic Segmentation Methods and Uncertainty Reduction Methods

Deep learning is widely used in nature image semantic segmentation since Long et al.

adopt fully convolutional networks (FCN) [14]. The reason is that deep learning obtains

better results than traditional methods based on the automatically encoded convolutional

features. FCN is the first end-to-end deep learning architecture for semantic segmentation;

however, it remains several shortcomings, such as blurry boundaries for segmentation results

and mis-segmentation. There are three main research directions for deep learning: 1)

increasing the receptive field of convolutional kernels, 2) adding more convolutional layers,

3) applying attention mechanisms or recurrent neural networks to convolutional neural

networks to extract short-range or long-range context information and reduce uncertainty
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in the feature map. In [15], He et al. develop a residual neural network (ResNet), making the

convolutional network much deeper than previous ones. A deeper convolutional layer can

extract more useful features. In [16,17], dilated convolution/atrous convolution is applied to

avoid the loss of information in the pooling layer. Atrous Spatial Pyramid Pooling (ASPP)

[17] and Pyramid Pooling Module (PPM) [18] use spatial multi-scale pooling operation to

obtain multi-scale information. In [19], different scales of convolutional filters are utilized in

the same convolutional block to obtain multi-scale information and enrich the information

in each convolutional block. In [20], a spatial-wise attention block is applied to U-Net.

In [21], a channel-wise attention mechanism: Squeeze-and-Excitation Networks (SE-Nets),

is proposed and achieved good performance with many network architectures such as ResNet

and VGGNet [22]. The previous deep learning-based semantic segmentation methods focus

on the network structure, pooling layer, and loss function and achieve good results on many

benchmarks. However, few of them discuss reducing uncertainty in feature maps and deep

neural networks.

Attention mechanism in convolutional neural networks is popularly used [23] to reduce

noise and uncertainty. It assigns the weights to pixels or channels of feature maps to express

the importance. In [20], a spatial-wise attention gate is proposed in the decoder of U-Net.

Before concatenating the encoder-feature map and the decoder information, the encoder

and decoder information are combined to calculate a weight tensor. The weight tensor

multiplies with the encoder-feature map. Attention coefficients are bigger in the target

areas than those in the background, and the results are better than that of the original

U-Net. In [21], the SE-Nets propose a channel-wise attention mechanism. A convolutional

operator transforms the feature map in each convolutional block. Then, in each channel, a

global average pooling is performed to calculate the mean value of each channel. The results

are used as the weight values for the channels in the original feature map. The SE block in

SE-Nets is applied to network architectures such as VGG-16, ResNet-101, etc., and achieves

good improvement. In [24], both spatial-wise and channel-wise attention mechanisms are

applied to the image caption. The network structure follows VGG-19 [22] and ResNet-
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152 [15]. In each convolutional block, the weights of spatial-wise attention are based on the

original feature map and last sentence context information. The mean value for each channel

of the original feature map and last sentence context information is used to calculate the

channel-wise attention weights. Another spatial-wise and channel-wise attention FCN [25]

is proposed for crowd counting. The network structure follows VGG-16 [22] architecture.

The spatial-wise and channel-wise attention weights are computed by the original feature

map in the same convolutional block. In spatial-wise attention, the original feature map is

input to three 1× 1 convolutional kernels. Then, reshaping and transposing operators are

applied to the outputs of the 1× 1 convolutional kernels to obtain three new features. For

channel-wise attention weights, only one 1 × 1 convolutional kernel is utilized. Then, the

output of the convolutional kernel is reshaped and transposed to three different sizes. The

attention weights are computed by multiplying and adding three different size features.

The attention mechanism can reduce uncertainty and noise in convolutional feature

maps; however, uncertainties are not caused by randomness only and cannot be handled

by statistics, probabilities, and attention mechanisms well. Fuzzy logic has been applied

to handle the uncertainty successfully. A fuzzy contrast enhancement method is devel-

oped [26]. The maximum entropy principle is utilized to map images from spatial domain

to fuzzy domain. Then, a fuzzy contrast enhancement algorithm is applied. A fuzzy clus-

tering method is utilized for image segmentation [27]. The fuzzy membership is initialized

by k-means clustering. The segmentation cost function is based on the membership of each

pixel and the Euclidean distances from the pixels to the cluster center. The fuzzy clustering

method achieves better performance than the non-fuzzy version. An edge-detection method

based on generalized type-2 fuzzy logic is designed [28]. The membership function is de-

fined using Gaussian generalized type-2 membership functions. In [29], Deng et al. firstly

propose an adaptive membership function fuzzy neural network for data classification. The

memberships are multiplied with the original information. Fuzzy image processing meth-

ods can obtain robust results and handle uncertainty and noise well. However, the existing

fuzzy neural networks contain shortcomings in fuzzification methods and the combination
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(a) (b)

Fig. 1.2: Breast anatomy: (a) BUS image; (b) breast anatomy obtained by deep neural
networks.

of fuzzy information and non-fuzzy information. The physical meanings of fuzzy logic in

neural networks should be discussed deeper. Meanwhile, the fuzzy neural networks do not

discuss the different sizes of the object.

1.3 Context Information Guided Methods

The deep convolutional neural networks can perform BUS image segmentation. How-

ever, the segmentation results are not good because the dataset size is too small, and the

network structure is quite deep. Meanwhile, context information such as the correlation

between pixels can provide vital information to increase the performance of deep neural

networks. Many research discusses the correlation between pixels and channels of feature

maps in deep learning architectures in Euclidean dimension and non-Euclidean dimension

using matrix multiplication or recurrent neural networks. Also, fully connected conditional

random fields (CRFs)/ Markov random fields (MRFs) are often utilized to refine the segmen-

tation results, especially on boundaries, because fully connected CRFs and MRFs discuss

the correlation between pixels and provide higher-order information (information from pix-

els with large Euclidean distance). The correlation between pixels in fully connected CRFs

is calculated based on feature values and physical positions.

In [30], Krahenbuhl et al. provide an approximation algorithm to fully connected CRFs

for multi-object segmentation. The approximation algorithm increases the efficiency of fully

connected CRFs and makes it possible for semantic segmentation. In [16, 17], Chen et al.
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propose the Deeplab structure for nature image semantic segmentation by applying the

atrous convolutional operation and atrous spatial pyramid pooling (ASPP). In addition,

Deeplab also applies fully connected CRFs to the end of the architecture to refine the

segmentation results from deep neural networks. In [31], Zheng et al. use a recurrent neural

network (RNN) to realize fully connected CRFs proposed in [30]. It makes the Deep learning

+ CRFs structure become a deep end-to-end architecture, and this structure is typically

utilized in semantic segmentation tasks. In [32], Liu et al. provide a Markov random

field (MRF) method with the mixture of label context to involve context information in

deep learning. The MRF is realized by Deep Parsing Network (DPN). Besides the feature

values and physical positions, the location relation between objects is utilized to calculate

correlations between pixels. For example, people usually sit on a chair, not under a chair.

If the deep neural networks classify some pixels under chairs to people, the MRF can avoid

this situation.

Besides using CRFs/MRF, many deep learning models can directly provide context

information between pixels. In [33], Zhuang et al. propose a novel dense related module

in deep convolutional neural networks which uses RNN with different skip lengths in spa-

tial directions to aggregate global and local contextual information. In [34], Zhang et al.

transform the correlation computation method from natural language processing to image

processing, called the self-attention mechanism. The self-attention mechanism can provide

long-range relations between pixels. In [35], Huang et al. continue the research of long-

range correlations between pixels based on self-attention. A novel network structure based

on RNN is proposed to calculate self-attention coefficients between pixels and reduce com-

plexity compared with the method [34]. In [36], novel context information between pixels

rather than self-attention coefficients is proposed, called the direction-aware spatial context

(DSC) feature. The DSC feature can measure context information better in the shadow

detection task. In [37], the deformable convolution is proposed to obtain non-local infor-

mation using a weird shape convolutional kernel. Pixels in feature maps are shifted to new

locations, and then the standard convolutional operator is applied to the new feature maps.
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The pixels used in convolution are not the original neighbor pixels. The deformable convolu-

tional operator can extract context information between pixels not in the Euclidean domain

in convolution. These architectures are general for nature images or specific tasks (such as

shadow detection tasks in [36]). They do not provide the breast anatomy, which means

they cannot perform well for BUS image segmentation. Meanwhile, these architectures

contain shortcomings. For example, there are shortcomings for deformable convolution: 1)

the shift of each pixel is controlled in a small distance, and the deformability is weak, i.e.,

the distance of the non-local information is quite small; 2) if the distance of shifting is not

controlled, two pixels might overlap or are moved outside of the feature map which causes

missing information; 3) it cannot select the number of pixels effectively, and the pixels in

convolution are still based on the standard convolutional kernel.

1.4 Breast Ultrasound Image Segmentation

Many approaches have been proposed for BUS image segmentation in the past two

decades. Early BUS image segmentation methods utilize classic machine learning and com-

puter vision methods, such as thresholding algorithms, region-growing algorithms, water-

shed algorithms, graph-based algorithms. There are more and more BUS image segmenta-

tion researches based on deep neural network-based algorithms [11,38,39].

Classic methods: Xian et al. [7] propose a fully automatic breast segmentation

method based on graph cut and using the frequency and spatial domain as constraints.

In [40], a seeded region growing (SRG) algorithm is proposed which uses an iterative

quadtree decomposition and a gradual equipartition algorithm to automatically segment

tumor regions. In [41], Bafna et al. develop a watershed algorithm including noise re-

moval, binarization, extraction of the region of interests (ROI), and boundary detection

using a watershed algorithm. Ilesanmi et al. [42] propose a multi-scale superpixel method

including a boundary efficient superpixel decomposition and a boundary graph cut segmen-

tation algorithm. Gray level thresholding method and area growing lesion contour detecting

method are studied in [43, 44]. The region of interest (ROI) is determined by threshold-

ing, and then a maximization utility function is applied to ROI for obtaining the lesion
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contour. Moon et al. propose a clustering-based breast cancer segmentation method [45].

The method consists of three parts. The first part is quantitative tissue clustering. The

tissue within the tumor is different from other tissues. A 3-D mean-shift clustering is used

for selecting tumor tissues according to the echogenicities. The fuzzy c-means clustering

method divides the segmented regions into four clusters. The morphology and echogenicity

features are extracted, and logistic regression is used to classify the benign and malignant

tumors. Shan et al. propose a fully automatic breast cancer segmentation method based on

neutrosophic-l-means clustering [46]. It uses an automatic seed point selection algorithm

to generate the ROI and then proposes a novel contrast enhancement method based on the

frequency and spatial domain. A clustering method combined with neutrosophic logic, the

neutrosophic-l-means (NLM) clustering, is utilized to segment BUS images.

Deep learning-based methods: Deep neural network-based methods have received

increasing attention in recent years. LeNet [47] is initially designed for handwritten charac-

ter recognition and later proved suitable for BUS image segmentation because BUS images

are in gray-scale and tumor sizes are relatively small. In [2], patch-based LeNet, U-Net [48],

and FCN with AlexNet [49] perform well for BUS image segmentation on two BUS datasets.

Shareef et al. [50] propose a small tumor-aware network to better segment breast tumors

with different sizes by using kernels with three different sizes at each convolutional layer.

Lei et al. [51] propose a boundary regularized convolutional encoder-decoder network to seg-

mentation anatomical breast layers that are robust to speckle noise and posterior acoustic

shadows. They further design a self-co-attention neural network that employs both spa-

tial and channel attention modules to explore contextual relationships in BUS images and

achieves better segmentation results [52]. In [53], a medical knowledge constrained deep

learn + conditional random fields method is proposed for three-layer BUS image semantic

segmentation. In [54], Lee et al. propose a deep learning-based BUS image segmentation

method using a novel channel attention module with multi-scale grid average pooling. The

novel module can extract better global contextual information.

Although most deep learning methods for BUS image segmentation transform existing
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approaches in nature image segmentation to BUS image segmentation and achieve good

results, they do not discuss the uncertainty and the context information in BUS images.

Inspired by the success of previous approaches in nature image processing that can use

context information to improve image segmentation performance, medical knowledge is

involved in BUS image segmentation to improve BUS image segmentation results. As shown

in Figs. 1.2 (a) and (b), the BUS images have the following layer structure: 1) on the top

is the skin layer; 2) the subcutaneous fat layer is beneath the skin layer; 3) the mammary

layer is below the fat layer and followed by the muscle layer. Meanwhile, breast cancer

is usually ellipse-shaped and begins from the cells in the mammary layer. In most cases,

breast cancer stays inside the mammary layer [55]. In this research, several fuzzy logic-

based methods are proposed to reduce uncertainty in convolutional neural networks and

BUS images. The breast anatomy is utilized to refine BUS image segmentation; meanwhile,

a novel convolutional operator is proposed to solve shortcomings in deformable convolution

operator and provide non-local context information in image segmentation.

Fig. 1.3: Organization structure of this dissertation.
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1.5 Outline

The rest of the dissertation is organized as follows: in Chapter 2, we firstly propose a

fuzzy fully convolutional network for BUS image segmentation; in Chapter 3, we improve

the fuzzy fully convolutional network by using a novel membership function and an un-

certainty representation method; meanwhile, we apply the fuzzy operators to pixels and

channels of the feature maps; in Chapter 4, we extend the fuzzy convolutional network in

Chapter 3 to a pyramid fuzzy uncertainty reduction network with direction-connectedness

feature which can provide breast horizontal layer structure; in Chapter 5, we propose the

medical knowledge constrained conditional random fields which can reflect breast anatomy;

in Chapters 6, a novel convolutional operator, shape-adaptive convolutional (SAC) operator

is proposed, which can provide non-Euclidean domain context information; in Chapter 7,

a fuzzy generative adversarial network (GAN) is designed to reduce the uncertainty in the

output of the segmentation network and using the adversarial network to help to generate

better segmentation result. The future work and conclusion are discussed in Chapter 8.

The relation between chapters is shown in Fig. 1.3.
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CHAPTER 2

FUZZY SEMANTIC SEGMENTATION FOR BREAST ULTRASOUND IMAGE

In this chapter, we combine fuzzy logic and deep neural network. Inspired by the

success of fuzzy logic in image processing, we try to use fuzzy logic to detect and measure

uncertainty in feature maps. A trainable membership function is designed to transform

BUS images into the fuzzy domain. The uncertainty in the BUS image can be handled well

by a novel uncertainty mapping function, and a better semantic segmentation result can be

obtained.

2.1 Overview of the Proposed Architecture

The proposed architecture is based on a well-known U-Net [48] with VGG-16 [22]. The

flowchart of the proposed approach is shown in Fig. 2.1. We propose a novel fuzzy block

(fuzzy block in Fig. 2.1) to refine the input image and the first convolutional feature map.

There are two strategies: (1) In Fig. 2.1 (a), the input image is preprocessed by contrast en-

hancement. Then, wavelet transform is applied. The original image and wavelet information

are transformed to the fuzzy domain by membership functions to deal with the uncertainty.

Results after reducing uncertainty are input into the first convolutional layer. The obtained

feature maps are transformed into the fuzzy domain as well, and the uncertainty is reduced

by multiplying uncertainty maps and the corresponding feature maps. (2) In Fig. 2.1 (b),

wavelet transform is not utilized. After reducing uncertainty in gray-level intensity and the

first convolutional layer, the network can achieve similar performance to that of Fig. 2.1 (a).

Two approaches are evaluated by segmentation accuracies and compared with the original

fully convolutional network. The details of the proposed architecture are introduced in the

following subsections.
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(a) (b)

Fig. 2.1: Flowchart of the two strategies of the fuzzy U-Net: (a) using wavelet; (b) without
using wavelet.

2.2 Preprocessing

Histogram equalization: The original images are captured in different periods which

have different ranges of intensities. It will affect the segmentation results. The histogram

equalization is modified to make the input image have the intensity range from 0 to 255 and

to conduct contrast enhancement. Histogram equalization is performed on both the training

set and testing set. In histogram equalization, the probability of a pixel with intensity θ,

pz(θ) is computed by Eq. (2.1) [56]:

pz(θ) = p(z = θ) =
nθ
n
, 0 ≤ θ ≤ Lz − 1 (2.1)

where nθ represents the number of pixels with intensity θ; Lz is the upper bound of the

intensity levels of the image; n represents the total number of pixels. The cumulative
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distribution function of pz(θ) is defined as:

cdfz(θ) =
θ∑

u=0

pz(θ) (2.2)

The new intensity h(θ) is computed by:

h(θ) =

⌊
cdfz(θ)− cdfzmin

1− cdfzmin
× 255

⌋
(2.3)

where θ represents the original intensity, and cdfzmin is the minimum non-zero value in the

cumulative distribution function. The original images and processed images are shown in

Fig. 2.2. After histogram equalization, the images contain higher contrast.

Fig. 2.2: Histogram equalization: (a) original images; (b) images after histogram equaliza-
tion.

Wavelet transform: To overcome the small dataset size problem, high-pass filter H
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and low-pass filter G of wavelet transform are used to obtain the high frequency and low-

frequency information. In this research, one level Haar wavelet transformation is applied,

and the input image becomes a 3-channel image. The first channel is the original image, the

second channel contains the low-frequency coefficients, and the third channel contains the

high-frequency coefficients. Fig. 2.3 shows the original images and the augmented images,

respectively.

Fig. 2.3: Wavelet transform: (a) original images; (b) augmented 3-channel images.

2.3 The Proposed Fuzzy Block

The proposed fuzzy block is introduced in this subsection. Similar to the previous

fuzzy logic-based image processing methods [26–29], the proposed fuzzy logic contains a

fuzzification layer to transform the feature map into the fuzzy domain. Besides the fuzzifi-

cation layer, the proposed fuzzy block contains an uncertainty representation layer and an

uncertainty reduction layer.
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Fuzzification layer: The input feature map of the fuzzy block is transformed into the

fuzzy domain. Two membership functions are employed: trainable Sigmoid and trainable

Gaussian membership functions. Each input node (a pixel in the input feature map) is

transformed by the membership function. Let xi ∈ RD be the input node; i represents the

ith pixel; D represents the dimension of the feature. Here the gray-level channel is used as

an example to show the membership and uncertainty intuitively. ori represents the output

node and r represents the category index. The trainable Sigmoid membership function for

the fuzzification layer is computed by Eq. (2.4):

ori =
1

1 + exp(ari (xi − bri ))
, i = 1, 2, 3, ..., n; r = 0, 1, 2, 3, 4 (2.4)

where n represents the number of pixels in the image; r has 5 values: 0 represents the

background; 1 represents the tumor; 2 represents the fat layer; 3 represents the mammary

layer; 4 represents the muscle layer. ari ∈ RD and bri ∈ RD represent the parameters of

the membership function for pixel i. For every category, different pairs of parameters are

obtained during training, and the membership of the category is calculated using these pa-

rameters. In BUS images, tumor areas have low intensities in the spatial domain, but other

layers, such as the mammary layer, have higher intensities. By changing the parameters

ari and bri , trainable Sigmoid function can represent the membership of each category. The

trainable Gaussian membership function is also used to compare with the trainable Sigmoid

membership function to demonstrate the usefulness of fuzzy logic in handling uncertainty.

The trainable Gaussian membership function is computed by Eq. (2.5):

ori = exp(−1

2
(xi − µri )

Tσri
−1(xi − µri )), i = 1, 2, 3, . . . , n; r = 0, 1, 2, 3, 4 (2.5)

where µri∈ RD and σri∈ RD×D represent the mean and covariance matrix of category r,

which are utilized to obtain the memberships of different categories.
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The fuzzy memberships are normalized by Eq. (2.6). It makes the summation of

memberships in different categories of a pixel become one:

πri =
ori∑4
r=0 o

r
i

(2.6)

where πri represents the membership for pixel i of category r after normalization.

Heatmaps in Fig. 2.4 are utilized to represent the membership values on gray-level in-

tensity; blue represents low membership value, and red represents high membership value.

In Figs. 2.4 (a)-(e), the memberships are computed by the trainable Gaussian member-

ship function on gray-level intensity; and in (f)-(j), the memberships are computed by the

trainable Sigmoid membership function on gray-level intensity.

The parameter bri in the trainable Sigmoid membership function is initialized by the

mean of the intensities of all training samples in category r. The parameter ari is initialized

by 0. The parameter µri is initialized by the mean of the intensities of all training samples

in category r, and σri is initialized by the covariance of the samples in the same category.

All the channels of the input feature map are transformed to the fuzzy domain.

Fig. 2.4: The membership maps: (a)-(e) the memberships of tumor, fat layer, mammary
layer, muscle layer, and background computed by the trainable Gaussian function; (f)-(j)
the corresponding memberships computed by the trainable Sigmoid function.

Uncertainty representation layer: If the membership of a pixel is close to 1 or close

to 0, the uncertainty of the pixel is low. If the membership is around 0.5, the uncertainty
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is high. It is hard to determine whether the pixel belongs to which category. The inputs of

this layer are the fuzzy memberships, and the uncertainties in corresponding categories are

computed using Eq. (2.7):

uri =


2× πri if πri < 0.5, r = 0, 1, 2, 3, 4

2× (1− πri ) if πri > 0.5, r = 0, 1, 2, 3, 4

(2.7)

where πri is the membership of pixel i in the rth category, which is the output of Eq. (2.6).

uri represents the uncertainty degree of pixel i in the rth category. The heatmaps of the

uncertainty maps on gray-level intensities are generated as shown in Fig. 2.5.

Fig. 2.5: Uncertainty maps: (a)-(e) are the uncertainty maps of tumor, fat layer, mam-
mary layer, muscle layer, and background, which are generated by the trainable Sigmoid
membership function; (f)-(j) are generated by the trainable Gaussian membership function.

Heatmaps in Fig. 2.5 show the uncertainty on gray-level intensity in different cate-

gories. The red areas have high uncertainties, and blue areas have low uncertainties in

corresponding categories. To compute the overall uncertainty, a minimum operation is

applied to uri as shown in Eq. (2.8):

ui = minru
r
i , r = 0, 1, 2, 3, 4 (2.8)

where ui represents the overall uncertainty degree for pixel i. uri is calculated by Eq. (2.7).

The overall categories uncertainty maps on gray-level intensities are shown as the heatmaps
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in Fig. 2.6.

From Fig. 2.6, it can be observed that the pixels on the boundaries between categories

have high uncertainties. After applying the Gaussian membership function, uncertainty in

the mammary layer, muscle layer, and fat area can appear clearly. The boundary, mammary

layer, and muscle layer have high uncertainties. After applying the Sigmoid membership

function, similar results can be obtained.

Fig. 2.6: Overall uncertainty maps: (a) original images; (b) overall categories uncertainty
maps generated by using the trainable Sigmoid membership function; (c) overall categories
uncertainty maps generated by using the trainable Gaussian membership function.

Uncertainty reduction layer: To reduce the uncertainty on the original channel,

the overall categories uncertainty maps are fused with the corresponding original channels

as shown in Eq. (2.9):

x′i = (1− ui) · xi (2.9)

where ui is the overall categories uncertainty maps obtained by Eq. (2.8), and xi is the

original channels of the input. x′i the feature after reducing uncertainty. This equation

demonstrates if a pixel has high uncertainty, its weight should be reduced.

The results after reducing uncertainty for the input images are shown in Fig. 2.7. The

boundary areas in Figs. 2.7 (c) and (d) are more distinct than that in Fig. 2.7 (a).
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The resulted image is input to the convolutional layer for obtaining the convolutional

feature maps. The base network structure is U-Net with VGG-16. The proposed fuzzy

block is applied to the first convolutional feature map as well.

Fig. 2.7: The fusion of uncertainty maps and input images: (a) original images; (b) 3-
channel images with gray-level intensity and wavelet information; (c) resulted images by
the Sigmoid function and Eq. (2.9); (d) resulted images by the Gaussian function and Eq.
(2.9).

2.4 Training Strategy for U-Net with Fuzzy Block

The uncertainty maps are multiplied with the input images, and the results are input

to the first convolutional layer. The entire network structure is shown in Fig. 2.8. The

output is processed by pixel-wised soft-max, which is defined as [48]:

p(x) = exp(a(x))/
4∑
r=0

exp(ar(x)) (2.10)

where a(x) is the output of the neural network, r represents the class index, and x represents

the input pixel. The cross-entropy loss function is computed by the output probability and

the label of each pixel:

C = −
∑

q(x) log (p(x)) (2.11)

where q (x) is the pixel label which is background, or tumor area, or fat layer, mammary
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layer or muscle layer with one-hot encoding. The original parameters in U-Net are initialized

randomly. If using trainable Sigmoid membership function, parameter bri in Eq. (2.4) is

initialized by the mean of all training samples in category r. Parameter ari in Eq. (2.4) is

initialized by 0. The parameters µri and σri in Eq. (2.5) are initialized by the mean and

covariance of the intensities of all training samples in category r. The training strategy

is based on the back-propagation algorithm. All of the functions should be differentiable.

Functions in the fuzzy layer using either fuzzy membership functions (trainable Sigmoid

function and trainable Gaussian function) are all differentiable. The training strategy is

shown in Algorithm 1.

Fig. 2.8: Structure of the proposed U-Net with fuzzy block.

The U-Net with fuzzy block deals with the following issues: 1) it can reduce the

uncertainty, and 2) it can solve small sample size problem, and it can even replace the

information extension process in [53] (experimental details will be discussed in next section).

2.5 Experiment Results

2.5.1 Dataset

The performance of the proposed U-Net with fuzzy is evaluated by a dataset of 325

cases. Case 1 to 141 are collected over 10 years by the Second Affiliated Hospital of Harbin

Medical University using VIVID 7 (GE) and EUB-6500 (Hitachi) imaging systems. Case 142

to Case 325 are collected in recent 3 years by the First Affiliated Hospital of Harbin Medical

University using Aixplorer Ultrasound system (SuperSonic Imagine). The resolution of the

first 141 cases is 550×450, and the rest 184 images have the resolution of 787×526. Informed
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Algorithm 1 Training Strategy for U-Net with Fuzzy Block

Input: M training images: each is resized to 256 × 256; pixel-wise labels of the M samples;
category number r ; input channel number D; learning rate η, training epoch number
S ; batch size P ; learning decay rate ε; and the parameters β1, β2 for Adam method.

Initialization: Parameters in fuzzy layer use the mean and variance of the training samples
in each category to initialize. Other parameters are initialized randomly.

1: for t = 1, 2, . . . , S do
2: for m = 1, 2, . . . , MP do
3: Input a batch of images to the network and obtain the error of loss function in Eq.

(2.11).
4: Compute the weight changing rate ∇ω using the back-propagation algorithm and

the error of loss function for all the parameters in fuzzy layer and original U-Net.
Then, compute the new parameters using Adam method and η, β1, and β2.

5: end for
6: Update the learning rate by the learning decay rate ε.
7: end for

Output: Weight vector of the neural network

consent to the protocol from all patients are acquired. The privacy of the patients is well

protected.

An experienced radiologist from the First Affiliated Hospital of Harbin Medical Uni-

versity delineated the boundaries of the layers and tumors. The pixel-wise groundtruths

are generated according to the manually delineated boundaries. The proposed U-Net with

the fuzzy block is applied and compared with U-Net [48], FCN-8s [14], and [53]. Three

state-of-the-art deep learing semantic segmentation methods [15,17,18] are also involved in

the comparison.

2.5.2 Evaluation Metrics

Three area metrics are used to evaluate the performance: True Positive Rate (TPR),

False Positive Rate (FPR), and Intersection over Union (IoU) [38, 57]. The IoU for every

category is computed, and the mean over 5 categories IoU is used as the overall performance.

The TPR and FPR for the tumor are used to compare the previous tumor segmentation

method. Due to the limitation of the number of samples, 10-fold validation is used. The

samples are randomly divided into 10 subsets. Each time, 9 of them are used for training,
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and 1 subset is used for testing. The metrics are computed by Eq. (2.12):

TPR =|Ar ∩Am|/|Am|

FPR =|Ar ∪Am −Am|/|Am|

IoU =|Ar ∩Am|/|Ar ∪Am|

(2.12)

where Ar is the region generated by the proposed method or existing methods, and Am is

the region of the groundtruth.

2.5.3 Experiment Details

The proposed fuzzy U-Net is not pre-trained using other datasets. All other compared

networks except FCN-8s are not pre-trained on other datasets as well. FCN-8s uses the pre-

trained weight parameters on ImageNet [58]. All networks are trained on a computer with

Ubuntu 18.04 system, Intel(R) Xeon(R) CPU E5-2620 2.10GHz and 2 NVIDIA GeForce

1080 graphics cards. The batch size is 11. The optimizing method is Adam [59], with an

initial learning rate 10−4. The learning decay rate is 5× 10−4. The parameter β1 for Adam

method is 0.9, and the parameter β2 for Adam’s method is 0.999. The network weights

are initialized randomly. The initialization for parameters in the trainable Sigmoid and

Gaussian membership function is introduced in Section 2.4. The implementation is based

on the Keras platform with the TensorFlow backend.

Table 2.1: Evaluation results on 325 cases dataset. Evaluation metric is IoU (%).

Fat Mammary Muscle Background Tumor Mean
U-Net [48] with original images 70.34 66.72 66.17 65.91 74.66 68.76
U-Net with 3-channel images [53] 84.05 75.92 74.89 78.35 74.88 77.62
FCN-8s [14] with original images using
pretrained model

82.57 75.47 75.53 78.59 74.42 77.32

ResNet-101 [15] with original images 81.50 73.41 72.07 74.47 75.29 75.35
PSPNet [18] with original images 82.07 74.40 74.49 77.36 74.75 76.61
Deeplab [17] with original images 78.91 68.71 67.33 73.94 69.04 71.58
Fuzzy U-Net with 3-channel images
and Sigmoid membership function

84.07 76.01 74.62 78.39 78.53 78.32

Fuzzy U-Net with 3-channel images
and Gaussian membership function

83.47 74.73 73.95 77.51 75.32 70.00

Fuzzy U-Net with original images and
Sigmoid membership function

82.56 76.14 74.64 75.98 77.56 77.38
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Fig. 2.9: The semantic segmentation results: (a) original images; (b) groundtruths; (c)
results of U-Net with gray-level images as the inputs; (d) results of U-Net with 3-channel
images as inputs; (e) results of PSPNet; (f) results of Deeplab; (g) results of ResNet-101;
(h) results of the proposed fuzzy U-Net with trainable Gaussian membership function and
3-channel images; (i) results of the proposed fuzzy U-Net with trainable Sigmoid member-
ship function and 3-channel images; (j) results of the proposed fuzzy U-Net with trainable
Sigmoid membership function and gray-level images.

2.5.4 Segmentation Result of U-Net with Fuzzy Block

To show the effectiveness of the fuzzy logic, the proposed fuzzy operations are applied

to U-Net. 3-channel images are defined as images that are augmented by our proposed

method (histogram equalization and wavelet transform) in this research. Nine networks

are trained: 1) U-Net with gray-level images as inputs; 2) U-Net with 3-channel images as

inputs; 3) the proposed fuzzy U-Net with 3-channel images as inputs; trainable Sigmoid

membership function is used; 4) the proposed fuzzy U-Net with 3-channel images as inputs;

trainable Gaussian membership function is used; 5) to demonstrate the existence of the

uncertainty in BUS images and the effectiveness of the fuzzy layer; augmentation on the

input images is removed, and the proposed fuzzy U-Net is trained using a gray-level image;

only trainable Sigmoid membership function is used; 6) FCN-8s using the original gray-level

image as input and pre-trained weight parameters by nature images; 7) PSPNet with gray-

level images as inputs; 8) U-shape network with ResNet-101 structure; the input image is

gray-level images; 9) Deeplab with gray-level images as inputs.
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Fig. 2.9 (b) shows the pixel-wise groundtruths. The black area is the background;

the green area is the fat layer; the yellow area is the mammary layer; the blue area is the

muscle layer; the red area is the tumor. Fig. 2.9 (c) shows the results of the U-Net with

original gray-level images as the inputs, which are the worst. Adding wavelet information

can make the segmentation results better in some cases. For example, some misclassified

image patches in Fig. 2.9 c3 fat layer (red patches in the green area) are corrected in

Fig. 2.9 d3. Comparing Fig. 2.9 c4 and Fig. 2.9 d4, the misclassified patches in the fat

layer are corrected as well. The same situation happens in Figs. 2.9 c5 and d5. These

experimental results demonstrate that the original gray-level intensity does not work well

in the segmentation of BUS images. Adding new features such as the wavelet feature can

increase the dimension of the feature, and the segmentation results become better. However,

sometimes adding wavelet information can make the results worse. For example, if using

gray-level images as inputs, the original U-Net can segment the tumor well in Figs. 2.9

c1 and c3; however, using wavelet transform on input images, the segmentation results

become worse in Figs. 2.9 d1 and d3. These results also prove that there exists uncertainty

in features, and adding new features can avoid uncertainty in some cases. Meanwhile, our

dataset is small. The information is not enough for classification if just using gray-level

intensity. Adding wavelet information increases information used in classification because

the dimension of the feature increases, and there might be less noise than the gray-level

feature. However, new features might cause new uncertainty as well. If adding fuzzy

processing and reducing uncertainty in the 3-channel input images, the uncertainty in both

gray-level feature and wavelet feature is reduced. The results are better (Figs. 2.9 (g) and

(h)). Even if not applying wavelet transform and pre-processing, the fuzzy U-Net can still

achieve good results because we reduce the uncertainty in gray-level intensities. In Table

2.1, the evaluation results of all networks are listed. Bold numbers are the corresponding

best results. The proposed methods can improve BUS image semantic segmentation. The

IoU on the tumor is 78.53% by using fuzzy U-Net with 3-channel images and trainable

Sigmoid membership function. It achieves a 4% improvement than that of non-fuzzy U-
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Net. The overall IoU over the 5 categories is 78.32% using fuzzy U-Net with 3-channel

images and trainable Sigmoid membership function and has a 0.7% improvement than that

of the non-fuzzy U-Net. The state-of-the-art methods: Deeplab, PSPNet, and U-Net with

ResNet-101, do not achieve good results. The possible reason is lacking training images.

2.6 Conclusion

In this chapter, a novel BUS image semantic segmentation method is proposed. It

can achieve good semantic segmentation results. A novel fuzzy block is proposed and

applied to U-Net with VGG-16. The fuzzy block can detect and measure the uncertainty of

pixels in the input image and the first convolutional feature map. The experimental results

demonstrate that the proposed fuzzy U-Net can handle the uncertainty well. The robustness

and accuracy of the fuzzy U-Net are better than that of the non-fuzzy U-Net. The proposed

method solves the following issues to achieve much better results: 1) it uses fuzzy logic to

handle the uncertainty in the original image and feature maps of the convolutional layers;

2) fuzzy approach can provide more information; 3) a novel membership function, trainable

Sigmoid function is utilized and achieve better results; 4) uncertainty mapping function is

designed and make the combination of fuzzy information and non-fuzzy information more

reasonable. There are still three potential improvements: 1) designing better uncertainty

representation methods, and 2) applying the fuzzy operators to more convolutional blocks,

and 3) reducing uncertainty in channels of the feature map.
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CHAPTER 3

SPATIAL AND CHANNEL-WISE FUZZY UNCERTAINTY REDUCTION BLOCKS IN

DEEP NEURAL NETWORKS

In the previous chapter, we firstly define the fuzzy block and apply the fuzzy block to

the input image and the first convolutional feature map of U-Net with VGG-16. We also

conduct experiments on a dataset of 325 BUS images. Here in this chapter, the performance

of the fuzzy block is improved. Two novel fuzzy attention mechanisms: the spatial-wise

and channel-wise fuzzy blocks, are added to the classic U-shape network with a ResNet-101

network structure. The Spatial and Channel-wise Fuzzy Uncertainty Reduction Network

(SCFURNet) is proposed to reduce uncertainty and noise in BUS images and conduct

semantic segmentation. The major contributions of this research are: (1) Spatial-wise fuzzy

blocks are applied to measure and reduce the spatial uncertainties (spatial dimension),

and channel-wise fuzzy blocks are proposed to handle the channel uncertainty (channel

dimension); (2) Membership functions in fuzzy blocks are defined by two layers of 1 × 1

convolutional operator with Sigmoid activation function to increase the non-linearity; the

trainable Sigmoid and Gaussian membership functions in Chapter 2 are not used; (3) Fuzzy

entropy [60–63] calculated by the memberships of different categories is utilized to measure

the uncertainties for pixels and channels instead of the uncertainty map function in Chapter

2, which are defined as the uncertainty degrees. Uncertain pixel and channel are the pixel

and channel with higher fuzzy entropies. We conduct more experiments on four datasets:

1) a five-category BUS image dataset with 325 images, and 2) three BUS image datasets

with only tumor category (1830 images in total). The proposed approach compares state-

of-the-art methods such as U-Net with VGG-16, ResNet-50/ResNet-101, Deeplab, FCN-8s,

PSPNet, U-Net with information extension, attention U-Net, and U-Net with the self-

attention mechanism.
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(a)

(b) (c)

Fig. 3.1: The proposed SCFURNet: (a) the entire structure; (b) the spatial-wise fuzzy
block; (c) the channel-wise fuzzy block.

3.1 Overview of the Proposed Network Structure

The proposed SCFURNet contains two major components: 1) the spatial-wise fuzzy

uncertainty reduction block and 2) the channel-wise fuzzy uncertainty reduction block.

Two fuzzy blocks are applied to the convolutional blocks. The entire network structure is

shown in Fig. 3.1 (a). The network is based on U-Net. VGG-16 [22] and ResNet-101 [15]

network structures in the convolutional blocks are utilized for comparison. The spatial-wise

fuzzy block consists of fuzzification, uncertainty representation, pixel-wise multiplication,

and summation. The channel-wise fuzzy block contains reshaping, fuzzification, uncertainty

representation, and assigning a weight of each channel.

3.2 Spatial-wise Fuzzy Uncertainty Representation and Reduction

A spatial-wise fuzzy block is utilized to calculate the uncertainty of each pixel and re-

duce the uncertainty in each convolutional feature map. There are three major components

in the spatial-wise fuzzy block: fuzzification, uncertainty representation, and uncertainty

reduction. The flowchart of the spatial-wise fuzzy block is shown in Fig. 3.1 (b).
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Fuzzification: Each input node from the original feature map is mapped to the fuzzy

domain by membership function f(·):

µi = f(xi) (3.1)

where f(·) represents the membership function; xi represents the input node i (here it is a

pixel in the input feature map X ∈ RH×W×Ch. H, W , and Ch represent the height, width,

and the number of channels of the feature map, respectively); and µi represents the mem-

berships of the input node. In some researches [26,29], f(·) is an S-shape function, Sigmoid

function, or Gaussian function. In this research, the original features are transformed into

fuzzy domain by the trainable Sigmoid membership function:

µir =
1

1 + exp(αirxi + βir)
(3.2)

where xi ∈ RCh is the ith pixel in the input feature map. αir ∈ RCh and βir ∈ R are

two trainable parameters for the trainable Sigmoid function, and µir ∈ R represents the

membership in the rth category.

A 1×1 convolutional operation can perform the Sigmoid membership function. In this

research, two layers of 1× 1 convolutional operator are used as the membership function:

µi = Conv1× 1(Conv1× 1(xi)) (3.3)

where µi is the membership vector and µi = [µi1, µi2, ..., µiC ]; Conv1× 1 represents the 1×1

convolutional operator; both convolutional operators contain C kernels. Here, two-layer 1×1

convolution is utilized, and it can enable the membership to fit different categories. C is

the number of categories. The outputs are normalized by the Soft-max function.

Uncertainty representation: Fuzzy logic is used to handle uncertainty. The mem-

berships express the degrees that the pixel belongs to the categories and can be used to

measure the uncertainty. There is an observation for uncertain pixels: if a pixel contains

similar memberships of different categories, it is hard to assign to a category. Fuzzy entropy
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is utilized to reflect such observation, i.e., an uncertain pixel is defined as a pixel with high

fuzzy entropy (close to 1); and a certain pixel is defined as a pixel with low fuzzy entropy

(close to 0).

For membership vector µi, the fuzzy entropy is defined as below [60]:

H(µi) = − 1

logC
×

C∑
r=1

µirlogµir (3.4)

where C represents category number; and µir represents the membership of category r. If

the memberships for all categories are the same, i.e., µir = 1/C, the entropy is the highest,

i.e., H (µi) = 1. In the spatial-wise fuzzy block, the memberships computed in Eq. (3.3)

are utilized to calculate the fuzzy entropy as Eq. (3.5):

ui = H(µi) (3.5)

where µi represents the memberships from Eq. (3.3); and ui is the uncertainty degree of pixel

i, which is in [0, 1], where 0 represents low uncertainty and 1 represents high uncertainty.

Every pixel in the input feature map contains the corresponding uncertainty degree. The

uncertainty degrees for all pixels consist of the uncertainty map. The uncertainty map has

the same size as the input feature map.

Uncertainty reduction: If the uncertainty degree ui is close to 1, the feature for pixel

i generated in the convolutional block is uncertain. If the uncertain degree ui is close to 0,

the feature for pixel i obtained in the convolutional block is useful for the final decision. The

features of uncertain pixels should reduce weight in the novel feature map. The features

will replace the uncertain pixels to reduce the uncertainty.

As shown in Fig. 3.1 (b), the uncertainty map (u) which consists of uncertainty degrees

(ui) in Eq. (3.5) is utilized as the weight in the combination of the input feature map and

a novel feature map:

X ′ = (Conv2D(X)⊗ u)⊕X ⊗ (1− u) (3.6)

where X ′ represents the novel feature map after reducing uncertainty; Conv2D represents
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a 2-dimensional 3 × 3 convolutional operator; ⊗ represents the pixel-wise multiplication

of matrices, and ⊕ represents the pixel-wise summation of matrices. This uncertainty

reduction operator indicates that if u is close to 0, i.e., X has low uncertainty, the weights

of original features remain high. If u is close to 1, i.e., X has high uncertainty, the weights of

original features are reduced and should be replaced. Therefore, a novel feature is extracted

by a 3× 3 convolutional operator. The new feature map X ′ is passed to the next operator.

In this section, a novel fuzzification method is utilized to transform the original con-

volutional feature map into the fuzzy domain. Then, uncertainty is computed using fuzzy

entropy. New convolutional features and original features are combined to reduce uncer-

tainties

3.3 Channel-wise Fuzzy Uncertainty Representation and Reduction

The proposed channel-wise fuzzy blocks process the uncertainty in channels after reduc-

ing the uncertainty in pixels. Motivated by the channel-wise attention mechanisms [20,21]

and fuzzy logic, the channel-wise fuzzy block utilizes fuzzy entropy to measure the uncer-

tainty degree of the channels of feature maps. An uncertain channel is a channel with higher

fuzzy entropy (close to 1). There are also three major components in the channel-wise fuzzy

block: fuzzification, uncertainty representation, and uncertainty reduction (Fig. 3.1 (c) and

Fig. 3.2).

Fuzzification: Let X ∈ RH×W×Ch be the input feature map. H and W represent

the height and width of the feature map, respectively, and Ch is the number of channels.

To calculate the uncertainty degree of each channel, it firstly transforms the input feature

map into the fuzzy domain in the channel dimension. It reshapes X to V ∈ RHW×Ch =

[v1, v2, ..., vCh], where vj ∈ RHW is the feature vector of channel j. For each vj , a trainable

Sigmoid membership function is utilized to transfer each feature vector vj to the fuzzy

domain:

µjr =
1

1 + exp(αjrvj + βjr)
(3.7)

where µjr ∈ R represents the membership of category r for channel j; αjr ∈ RHW and
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Fig. 3.2: Channel-wise fuzzy block.

βj ∈ R are parameters of channel j. The membership is also performed by using two 1× 1

convolutional operators with C kernels:

µj = Conv1× 1(Conv1× 1(vj)) (3.8)

where µj ∈ RC represents the membership vector and µj = [µj1, µj2, ..., µjC ], and C repre-

sents the number of categories. For each channel, there is a membership vector.

Uncertainty representation: After obtaining the memberships, the fuzzy entropy

is computed:

hj = − 1

logC
×

C∑
r=1

µjrlogµjr (3.9)

where hj ∈ R represents the fuzzy entropy of channel j, which measures the uncertainty

degree of channel j. Finally, the uncertainty degrees hj of all channels in the feature map

consist of the uncertainty vector h ∈ RCh = [h1, h2, h3, ..., hj , ..., hCh].

Uncertainty reduction: Like the spatial-wise fuzzy block, the uncertainty vector h

is utilized as the weight vector for the combination of the input feature map and a novel

feature map. A 3×3 convolutional operator generates the novel feature map. Each element
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in h is the weight value of the corresponding channel:

XCh = Conv2D(X)� h⊕X � (1− h) (3.10)

where XCh is the feature map after applying the channel-wise fuzzy block; and � represents

the channel-wise multiplication. The channel-wise uncertainty reduction operator indicates

if h is close to 0, the corresponding channels in the input feature map have low uncertainties,

and these channels should contain high weights. If h is close to 1, i.e., the corresponding

channels have high uncertainties. The weights of these channels are reduced, and a new

feature should replace the input feature.

3.4 Experiment Results

3.4.1 Datasets

To show the effectiveness of the proposed SCFURNet in BUS image semantic seg-

mentation, two kinds of experiments are designed: 1) multi-object (multi-layer) semantic

segmentation and 2) binary semantic segmentation (tumor and background). The multi-

object semantic segmentation is performed on a dataset having 325 BUS images. The

dataset is collected by the Second Affiliated Hospital of Harbin Medical University and the

First Affiliated Hospital of Harbin Medical University. An experienced radiologist from

the First Affiliated Hospital of Harbin Medical University delineates the boundaries of the

four breast layers and tumors. This dataset is the same dataset mentioned in Chapter 2.

The pixel-wise groundtruths for five categories: fat layer, mammary layer, muscle layer,

tumor, and background are generated according to the manually delineated boundaries. In

multi-object semantic segmentation task, the proposed method is compared with state-of-

the-art deep learning segmentation methods such as U-Net with VGG-16 [22], U-Net with

ResNet-50/ResNet-101 [15], Deeplab V3+ [64], FCN-8s [14], PSPNet [18], and U-Net with

information extension [53]. We also compared the proposed methods with some spatial and

channel-wise attention modules such as attention U-Net [20], SE-Net [21], and self-attention
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mechanism [34].

The binary semantic segmentation is performed on three public BUS image datasets

[1–3]. Dataset [2] contains 163 BUS images, including 109 benign samples and 54 malignant

samples. Dataset [3] contains 780 BUS images, including 437 benign, 210 malignant, and

133 no tumor images. Reference [1] is a BUS image benchmark with 562 images and lists

five non-deep learning methods [4–8] for BUS image segmentation. In this task, state-of-the-

art semantic segmentation network structures are also applied for comparison. Also, five

traditional tumor segmentation methods [4–8] are utilized for comparison. The summary

of the four datasets used in experiments is listed in Table 3.1.

Table 3.1: Dataset properties.

Image Number Ground Truths

Dataset 1 [2] 163 Tumor/Background

Dataset 2 [3] 780 Tumor/Background

Dataset 3 [1] 562 Tumor/Background

Multi-layer Dataset 325 Fat/Mammary/Muscle/Tumor/Background

3.4.2 Experiment Details

Preprocessing and augmentation: Because of the number limitation of samples,

the training samples are augmented by horizontal flip, horizontal shift, vertical shift, ro-

tation, zooming, and shear mapping. The input images are all gray-level images, and

intensities are mapped into [-1, 1] by (x/127.5 − 1) [65], where x represents the original

intensity. No other augmentation methods are used except U-Net with information ex-

tension [53]. The input images are firstly preprocessed by histogram equalization. Then,

images are transformed into the wavelet domain. New three-channel images with grey-level

intensity in the first channel, wavelet approximation coefficients in the second channel, and

wavelet detail coefficients in the third channel are utilized for training the original U-Net.

Experiment environment: All the networks in this chapter are not pre-trained using

other datasets. The network weights are initialized randomly. The input image is resized
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to 128 × 128. The batch size is 12. The optimizing method is the SGD method [66],

with a learning rate of 0.001 and momentum of 0.99. All the comparison networks and

the proposed method are trained using a computer with Ubuntu 18.04 system, Intel(R)

Xeon(R) CPU E5-2620 2.10GHz and 2 NVIDIA GeForce 1080 graphics cards, and each one

has 8 Gigabyte memory. The implementation uses PyTorch 1.6.0.

Loss function: The entire network structure is shown in Fig. 3.1 (a). The proposed

spatial-wise fuzzy block and channel-wise fuzzy block are applied to five encoders of a

U-shape network since the original network has five encoders. For comparing purposes,

this paper uses the same number of encoders. The convolutional feature maps from five

convolutional blocks are processed by the proposed spatial-wise fuzzy block and channel-

wise fuzzy block, sequentially. The encoder of the U-shape network uses VGG-16 and

ResNet-101 for comparison. The final layer is the pixel-wised Soft-max:

pr(x) =
exp(ar(x))∑C
k=1 exp(ak(x))

(3.11)

where x is the input of the network; ar(x) represents the output of the network; r represents

the class index, and C represents the number of categories. The loss function is defined as

the summation of category cross entropy loss, and fuzzy entropies from spatial and channel

fuzzy blocks:

L = Lc + Ls + LCh (3.12)

where the Lc is the classic cross entropy loss function:

Lc = −
∑
r

lr(x)log(pr(x)) (3.13)

where l(x) ∈ RC is the label of x in one-hot encoding. If x is in the rth category, the

corresponding rth element in l(x) is 1, and other elements are 0. Ls is computed by the

fuzzy entropy (ui) in the spatial-wise fuzzy blocks in Eq. (3.5). Because the spatial-wise

fuzzy block is applied to five convolutional blocks, there are five fuzzy entropy maps from



35

the five convolutional blocks and Ls is defined by the summation of fuzzy entropy maps:

Ls =
∑
l

∑
i

uli (3.14)

where i represents the pixel index, and l represents the index of convolutional blocks. LCh

is computed by the fuzzy entropy (hj in Eq. (3.9)) in channel-wise fuzzy blocks:

LCh =
∑
l

∑
j

hlj (3.15)

where j represents the channel index.

3.4.3 Metrics

In binary semantic segmentation task, it utilizes metrics in [1] to evaluate the perfor-

mance. There are five area metrics: True Positive Ratio (TPR), False Positive Ratio (FPR),

Jaccard Index (JI), Dice’s Coefficient (DS), and Area Error Ratio (AER). The area metrics

are defined in the following equation:

TPR =|Ar ∩Am|/|Am|

FPR =|Ar ∪Am −Am|/|Am|

JI =|Ar ∩Am|/|Ar ∪Am|

DS =2|Ar ∩Am|/|Ar|+ |Am|

AER =(|Ar ∪Am| − |Ar ∩Am|)/|Am|

(3.16)

where Ar is the set of pixels generated by the proposed method or existing methods, and

Am is the set of pixels in the groundtruths.

In the multi-object semantic segmentation task, Intersection over Union (IoU, also

known as the Jaccard Index in the binary task) is a typical metric in semantic segmentation

and chosen as the metric. It is computed by:

IoU = |Ar ∩Am|/|Ar ∪Am| (3.17)
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where Ar and Am are the sets of pixels generated by the algorithms and groundtruths,

respectively. Mean IoU (mIoU =
∑

IoU/C, and C represents the number of categories)

over five categories to evaluate the overall performance.

3.4.4 Multi-object Semantic Segmentation of BUS Images

A dataset with 325 BUS images is utilized, and each of them contains pixel-wise

groundtruths of five categories. 10-fold validation is also utilized. The proposed spatial-wise

fuzzy blocks and channel-wise fuzzy blocks are applied to U-Net with VGG-16/ResNet-101

as the encoder.

Segmentation Performance and The Number of Fuzzy Blocks: In this subsec-

tion, we discuss the relation between the number of fuzzy blocks used in the network and

the performance of the segmentation. The U-Net with ResNet-101 is utilized in this re-

search. The proposed spatial-wise fuzzy block and the channel-wise fuzzy block are applied

to the encoder of the U-Net with ResNet-101. The ResNet-101 contains 5 convolutional

blocks; therefore, we use 5 fuzzy blocks as the maximum number to conduct experiments

for comparison. In the first experiment, there is no fuzzy block applied to the U-Net with

ResNet-101. In the second experiment, the proposed spatial and channel-wise fuzzy blocks

are applied to the first convolutional block. We continue adding the spatial and channel-

wise fuzzy blocks to the second, third, fourth, and fifth convolutional blocks and keeping

the fuzzy blocks in the previous convolutional blocks.

Fig. 3.3 shows IoU results vs. the number of convolutional blocks. When we apply the

spatial and channel-wise fuzzy blocks to all five convolutional blocks, the proposed network

achieves the best performance on both tumor category and the overall performance. Since

the existing structures only have 5 blocks, for comparison purposes, it has a maximum of

five fuzzy blocks as well.

To show the increasing performance in Fig. 3.3 is caused by the former fuzzy blocks

in deeper convolutional blocks or the combination of the fuzzy blocks and the newly added

fuzzy blocks, another experiment is conducted. In this experiment, the fuzzy blocks are

added to the five convolutional blocks of ResNet-101 individually. For example, the fuzzy
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Fig. 3.3: The relation between the number of fuzzy blocks and the segmentation perfor-
mance. Block number = 1: the fuzzy blocks are applied to the first convolutional block;
block number = 2: the fuzzy blocks are applied to the first and second convolutional blocks
together; block number = 3: the fuzzy blocks are applied to the convolutional blocks 1, 2,
and 3; block number = 4: the fuzzy blocks are applied to the convolutional blocks 1, 2, 3,
and 4; block number = 5: the fuzzy blocks are applied to the convolutional blocks 1, 2, 3,
4, and 5.

blocks are added to the second convolutional block of ResNet-101. There is no fuzzy block in

convolutional blocks 1, 3, 4, and 5. The experiment results in Fig. 3.4 show a slight increase

in performance when applying fuzzy blocks to convolutional blocks 1 to 5. However, the

performance cannot outperform the performance of using fuzzy blocks in five convolutional

blocks together. When we only add a fuzzy block to the fourth convolutional block, the IoU

for tumor is the highest, which is 77.56%. However, when we add fuzzy blocks to all five

convolutional blocks, the IoU for tumor is 82.40%. Therefore, the spatial and channel-wise

fuzzy blocks are applied to five convolutional blocks in the following experiments.

Ablation Study for Fuzzy Blocks: We employed the spatial-wise fuzzy block (SFB)

and the channel-wise fuzzy block (CFB) in five convolutional blocks to reduce the uncer-

tainty in the feature maps. To verify the performance of each fuzzy block, we conduct

experiments with different settings in Table 3.2.

As shown in Table 3.2, it compared two convolutional structures: VGG-16 and ResNet-

101. Meanwhile, it adopts the spatial-wise fuzzy block and the channel-wise fuzzy block

individually in each network. Compared with the U-Net with VGG-16, employing the
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Fig. 3.4: The relation between the number of fuzzy blocks and the segmentation perfor-
mance. The fuzzy blocks are applied to the convolutional blocks individually.

spatial-wise fuzzy block brings a 1.94% increase in tumor IoU and 2.41% in mean IoU.

Meanwhile, employing the channel-wise fuzzy block in U-Net with VGG-16 outperforms

the baseline by 0.97% in tumor IoU and 3.68% in mean IoU. When the two fuzzy blocks

are used together to the U-Net with VGG-16, the performance further improved to 78.34%

in tumor IoU and 79.36% in mean IoU. When changing the convolutional structure to

ResNet-101, the performance of using two fuzzy blocks together becomes 82.40% in tumor

IoU and 81.67% in mean IoU. The experiment results show that each fuzzy block can reduce

uncertainty in the feature maps and increase the tumor segmentation results.

Table 3.2: Ablation study on multi-object dataset. SFB: Spatial-wise fuzzy block, CFB:
Channel-wise fuzzy block.

Method Encoder SFB CFB Tumor IoU Mean IoU

U-Net VGG-16 74.66% 75.13%

SCFRNet VGG-16 X 76.60% 77.54%

SCFRNet VGG-16 X 75.63% 78.81%

SCFRNet VGG-16 X X 78.34% 79.36%

U-Net ResNet-101 75.68% 77.35%

SCFRNet ResNet-101 X 79.12% 78.67%

SCFRNet ResNet-101 X 80.43% 80.12%

SCFRNet ResNet-101 X X 82.40% 81.67%
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Fig. 3.5: Segmentation results of U-Net with ResNet-101 and channel-wise fuzzy block on
multi-object dataset.

Fig. 3.6: Segmentation results of U-Net with ResNet-101 and spatial-wise fuzzy block on
multi-object dataset.

The effectiveness of the proposed spatial and channel-wise fuzzy blocks can be shown

in Fig. 3.5 and Fig. 3.6, respectively. The most common misclassification is the tumor area

and the background area because both areas contain low intensities. Red rectangles mark

the misclassification patches in Fig. 3.5 and Fig. 3.6. They are correctly classified when

applied the spatial-wise fuzzy block or channel-wise fuzzy block individually.

Visualization of Fuzzy Blocks: In this part, the uncertainty maps obtained by the

spatial-wise fuzzy block and selected channels in the processed feature maps are visualized

to help to understand the spatial-wise fuzzy block and the channel-wise fuzzy block.

The spatial-wise fuzzy block is utilized to measure the uncertainty degree of pixels

in the input feature map and reduce the effect of the uncertain pixels. Therefore, the

uncertainty map generated in the spatial-wise fuzzy block can show the uncertain pixels

and corresponding uncertainty degrees (refer to Fig. 3.7). For example, in the first row,
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the areas marked by red rectangles are background and tumor areas. They have similar

intensities. In the uncertainty map, these areas are high uncertainty areas. The original U-

Net misclassifies the background area; however, the proposed method can correct it (shown

in columns 5 and 6). In the second row and third row, the tumor areas are also marked

as the uncertain areas, i.e., the original U-Net cannot handle these areas. The heatmaps

indicate that the proposed spatial-wise fuzzy block can find uncertain areas of the input

feature maps, and it can also measure the uncertainty degree of the pixels.

For channel-wise fuzzy block, it is hard to give an understandable visualization about

the uncertainty map directly because each channel of the input feature map only contains an

uncertainty value. Instead, we show some processed channels to see whether they highlight

clear semantic areas. In Fig. 3.7, we display the 39th and 21st channels of each feature

map after employing a channel-wise fuzzy block. We can see that in the 21st channel of

the feature map, the highlighted areas are in the mammary layers. The 39th channel of

the feature map highlights the area of the tumor. However, some areas in other categories

contain high response in the 39th channel of the feature maps (such as the muscle layer in

the first and third rows and the fat layer in the second row). These results indicate that the

proposed fuzzy blocks can help to generate feature maps with clear semantic information;

however, there still exists uncertain areas.

Semantic Segmentation Results on Dataset with 325 Images: The segmentation results

on the multi-object dataset are in Fig. 3.8. Fig. 3.8 (b) shows the pixel-wise groundtruths:

the green areas are fat layers; the yellow areas are mammary layers; the blue areas are muscle

layers; the red areas are tumors, and the black areas are background areas. The results in

Fig. 3.8 (i) are obtained when the input images are the three-channel images. The three-

channel images are with gray-level intensity in the first channel, wavelet approximation

coefficients in the second channel, and wavelet detail coefficients in the third channel. The

network structure is the U-shape network with ResNet-101. The results in Fig. 3.8 (f) are

obtained when the images are the original gray-level images and the network structure is

the same as the network used in Fig. 3.8 (i). Comparing Figs. 3.8 (i) and (f), the tumor
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Fig. 3.7: Visualization results of fuzzy blocks on the multi-object dataset. For each row, we
show an input image, an uncertainty map from the spatial-wise fuzzy block; red represents
a high value and blue represents a low value in the heatmap. We also provide two channel
maps from the outputs of the channel-wise fuzzy block, the results of the original U-Net
and the proposed method, and the groundtruths.

segmentation results in Figs. 3.8 i2 and i4 are better than that in Figs. 3.8 f2 and f4.

However, the results in Figs. 3.8 i1 and i3 are not improved. The experiment results of

using wavelet feature in the input layer prove that involving wavelet feature cannot handle

some misclassification such as the background area and tumor area because they contain

similar feature value in both wavelet domain and space domain.

SCFURNet generated new convolutional features. New convolutional features and orig-

inal convolutional features are combined according to the uncertainty degrees in pixels and

channels. It reduces the effect of uncertain pixels and uncertain channels. This mechanism

overcomes the drawback in Fig. 3.8 (i). For example, in Fig. 3.8 f3, the original U-Net

with ResNet-101 can segment the tumor. In Fig. 3.8 i3, when adding wavelet features,

the segmentation results of tumors and the mammary layer become worse. Other network

structures also do not handle these images well. The performances are shown in Table

3.3. Bold numbers represent the corresponding best results. The IoU increases 6.72% in

tumor segmentation compared with that of the original U-Net with ResNet-101. It achieves

a 7.52% improvement in IoU in tumor segmentation compared with that of the U-Net

with ResNet-101 and wavelet transform. The proposed method achieves 4.27% and 4.05%
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Fig. 3.8: Multi-object semantic segmentation of BUS images: (a) original images; (b)
groundtruths; (c) results of ResNet-101 + self-attention mechanism; (d) results of atten-
tion U-Net; (e) results of ResNet-50; (f) results of ResNet-101; (g) results of Deeplab; (h)
results of PSPNet; (i) results of U-Net with wavelet transform; and (j) results of FCN-8s;
(k) results of SE-Net (ResNet-101); (l) results of the proposed SCFURNet.

improvements in overall mIoU compared with that of the U-Net with gray-level intensity

and wavelet transform, respectively. The proposed method achieves the best performance

in tumor segmentation and the best overall performance among all methods. The overall

performance indicates that the proposed SCFURNet can handle misclassification caused

by similar feature values of different layers because the proposed method can reduce the

weights of the similar features of different layers and add novel features.

Table 3.3: Results of multi-object semantic segmentation. Evaluation metric is IoU (%).

Fat Mammary Muscle Background Tumor Mean

ResNet-50 82.58 73.98 73.08 77.23 76.34 76.64

ResNet-101 82.50 74.41 75.69 77.47 75.68 77.35

FCN-8s 82.57 75.47 75.53 78.59 74.42 77.32

PSPNet 82.07 74.40 74.49 77.36 74.75 76.61

Deeplab 78.91 68.71 67.33 73.94 69.04 71.58

Attention U-Net 83.99 77.61 75.69 77.99 76.26 78.31

SE-Net 80.91 75.21 71.23 76.57 75.90 75.96

Self-attention 82.53 76.23 75.91 80.29 78.81 78.75

[53] 84.05 75.92 74.89 78.35 74.88 77.62

SCFURNet 84.72 79.84 77.39 83.98 82.40 81.67

* Bold numbers are the best results.



43

Fig. 3.9: Segmentation results using public dataset: (a) original images; (b) groundtruths;
(c) results of ResNet-101 with self-attention mechanism; (d) results of a SE-Net (ResNet-
101); (e) results of attention U-Net; (f) results of ResNet-50; (g) results of ResNet-101; (h)
results of Deeplab; (i) results of PSPNet; (j) results of U-Net with wavelet transform; and
(k) results of FCN-8s; (l) results of proposed SCFURNet.

3.4.5 Semantic Segmentation on Three Public Two-category Datasets

Overall Performance on Three Public Datasets: The proposed spatial-wise fuzzy

block and channel-wise fuzzy block are applied to a U-Net with ResNet-101 network because

it achieves better results compared with U-Net with VGG-16 in Subsection 3.4.4. All other

compared deep networks such as ResNet-50, ResNet-101, and FCN-8s are trained to segment

tumors in these three datasets. Because of the limited number of samples (the total number

of samples for 3 datasets is only 1505), 10-fold validation is utilized: (1) each of the three

datasets is divided into 10 groups randomly; (2) pick 9 groups of each dataset as the training

set and the rest 1 group as the testing set; and (3) the final evaluation metrics are calculated

by the average of 10 experiments.

Fig. 3.9 shows the segmentation results using the three two-category datasets [1–3].

Fig. 3.9 (a) shows the original images and (b) shows the groundtruths. Figs. 3.9 a1-a3

contain small tumors hard to discriminate from the shadow and background areas. There

are some tumors with blurry boundaries in Figs. 3.9 a4 and a5. The results of the proposed

SCFURNet are shown in Fig. 3.9 (l). It achieves impressive improvements, especially for

small tumors (l1-l3) compared with that of the compared deep learning methods. Some
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Table 3.4: Results of two-class semantic segmentation on dataset [1].

TPR FPR JI DS AER
Semi-Automatic Methods

[4] 0.82 0.13 0.73 0.84 0.31
[5] 0.84 0.07 0.79 0.88 0.23

Fully-Automatic Methods
[7] 0.81 0.16 0.72 0.83 0.36
[6] 0.81 1.06 0.60 0.70 1.25
[8] 0.67 0.18 0.61 0.71 0.51

Deeplab 0.89 0.11 0.82 0.89 0.22
ResNet50 0.92 0.08 0.86 0.92 0.16
ResNet101 0.92 0.10 0.85 0.91 0.18

FCN8s 0.94 0.10 0.86 0.92 0.16
PSPNet 0.93 0.09 0.86 0.92 0.16

Attention U-Net 0.92 0.09 0.85 0.91 0.17
SE-Net 0.92 0.10 0.85 0.91 0.18

Self-attention 0.91 0.07 0.86 0.92 0.15
[53] 0.92 0.09 0.86 0.92 0.16

SCFURNet 0.94 0.06 0.88 0.93 0.14
* Bold numbers are the best results.

tumors such as a4 and a5 in Fig. 3.9 contain high uncertainties in the boundary areas. It

is even hard for human to detect these tumors. In Fig. 3.9 a4, all the methods achieve

good results; however, the proposed SCFURNet achieves the best result. In Fig. 3.9 l5, the

proposed SCFURNet achieves the best results than the compared deep learning methods

(Figs. 3.9 c5-l5). The evaluation metrics for different methods on the dataset [1] are listed

in Table 3.4. Five non-deep learning methods [4–8] are also involved in the comparison using

this dataset. Results in Table 3.4 show: (1) deep learning methods obtain improvements

compared with traditional BUS image segmentation methods listed in [1]; (2) some famous

deep learning architectures such as Deeplab, PSPNet, do not obtain improvements for

dataset [1] and the possible reason is the limited number of the samples; and (3) the

proposed method achieves the best results since it can solve the small target problems and

uncertainties in the boundary areas.

The evaluation metrics for datasets [2] and [3] are shown in Table 3.5. The proposed

method achieves the best results among all evaluation metrics compared with state-of-

the-art deep learning methods on three public datasets except the FPR and AER on the
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Table 3.5: Results of two-class semantic segmentation on dataset [2] and dataset [3].

TPR FPR JI DS AER

Dataset [2]

Deeplab 63.68% 36.06% 52.93% 61.91% 72.38%
ResNet50 81.29% 36.58% 68.70% 76.94% 55.29%
ResNet101 83.58% 34.40% 71.43% 79.45% 50.82%

FCN8s 82.72% 41.14% 67.50% 76.87% 58.42%
PSPNet 81.08% 40.42% 69.77% 78.24% 59.34%

Attention-UNet 83.58% 34.40% 71.43% 79.45% 50.82%
Self-attention 82.58% 26.39% 73.83% 81.37% 33.81%

SE-Net 79.23% 36.75% 70.90% 79.10% 35.12%
[53] 81.19% 31.63% 71.48% 80.21% 48.44%

SCFURNet 84.70% 44.69% 73.27% 81.08% 59.99%

Dataset [3]

Deeplab 59.88% 39.39% 49.65% 59.39% 79.52%
ResNet50 78.45% 49.39% 67.09% 76.36% 68.94%
ResNet101 79.40% 46.02% 69.26% 77.90% 66.62%

FCN8s 74.23% 46.69% 63.16% 73.03% 72.63%
PSPNet 77.11% 46.65% 65.21% 74.75% 69.54%

Attention-UNet 77.52% 38.67% 67.81% 76.77% 60.92%
Self-attention 79.02% 29.30% 71.49% 78.46% 55.50%

SE-Net 78.40% 38.95% 68.30% 77.24% 60.55%
[53] 78.07% 42.37% 68.43% 76.96% 64.30%

SCFURNet 79.86% 22.01% 72.14% 80.51% 42.15%
* Bold numbers are the best results.

dataset [2]. The self-attention mechanism in ResNet-101 obtains lower FPR and AER on

the dataset [2]. Lower FPR and AER indicate that non-local context information provided

by the self-attention mechanism can help to reduce errors in segmentation. However, the

proposed method achieves the best overall performance by reducing uncertainty in pixels

and channels. The proposed network also achieves the best results among all evaluation

metrics on the dataset [3]. Finally, the proposed method achieves 2.03%, 1.84%, and 2.85%

in Jaccard Index on three public BUS datasets compared with that of the original U-shape

network with ResNet-101, respectively.

Small Tumor Segmentation: In this part, the effectiveness of the proposed method

on small tumor segmentation is shown. Some patches in the BUS images contain similar

feature values to that of the tumor areas. For example, the patch in Fig. 3.10 a1 marked

by the red rectangle is the background area and has low intensity. The tumor area in Fig.

3.10 a1 is small and close to the red rectangle area. Some methods misclassify the red
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Fig. 3.10: Small tumor segmentation: (a) original images; (b) groundtruths; (c) results
of ResNet-101 with self-attention mechanism; (d) results of a SE-Net (ResNet-101); (e)
results of attention U-Net; (f) results of ResNet-50; (g) results of ResNet-101; (h) results of
Deeplab; (i) results of PSPNet; (j) results of U-Net with wavelet transform; and (k) results
of FCN-8s; (l) results of proposed SCFURNet.

rectangle area to the tumor, such as the U-Net with ResNet-101 in Fig. 3.10 f1. When

applying the proposed spatial and channel-wise fuzzy block to U-Net with ResNet-101, the

misclassification is solved by reducing the original feature values and involving new features.

In Fig. 3.10 a2, the tumor is located near a patch with low intensity. Most of the previous

methods misclassify the image to the tumor. This leads to a bigger segmented tumor area

than the groundtruth (Figs. 3.10 d2-j2). It is because the small tumor contains similar

feature values with noise patches or background patches. However, the proposed method

achieves the best results in small tumor images; therefore, it can achieve the best overall

performance on all datasets.

3.5 Conclusion

In this Chapter, the proposed fuzzy block is extended to two kinds of fuzzy blocks,

and they are applied to the U-shape network with ResNet-101, and the proposed network

is applied to BUS image semantic segmentation. The novel network achieves 2.03%, 1.84%,

and 2.85% improvements in the Jaccard Index using three public BUS datasets than the

original U-shape network with ResNet-101. The proposed method obtained IoU increases

6.72% in tumor segmentation and 4.27% in the overall performance in the five-category

BUS dataset compared with that of the original U-shape network with ResNet-101. The

proposed method achieves the best results due to the following reasons: (1) The proposed
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spatial and channel-wise fuzzy blocks can locate uncertain pixels and uncertain channels

in feature maps and can reduce the influence of uncertain pixels and channels; (2) By

reducing the uncertainty in feature maps, some patches having similar features with that of

tumor areas can be classified correctly, especially for small tumors; (3) The fuzzy entropy

of memberships can measure the uncertainty degree of pixels and channels accurately.
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CHAPTER 4

PYRAMID FUZZY UNCERTAINTY REDUCTION NETWORK AND

DIRECTION-CONNECTEDNESS FEATURE

4.1 Introduction

In this chapter, we continue to improve the performance of the fuzzy block in deep neu-

ral networks. To reflect the uncertainty of feature maps in different resolutions and provide

BUS anatomy information, a novel deep learning architecture that can reduce uncertainty

in feature maps and provide breast anatomy information is proposed. The entire network

structure is shown in Fig. 4.1 (b). The U-shape network with VGG-16 [22] (Fig. 4.1 (a))

is chosen as the base network because it has achieved good performance in BUS image

segmentation [2,53]. Two novel structures are proposed and added to the original U-shape

network: (1) a pyramid fuzzy uncertainty block which can resize input feature map to two

different resolutions and reduce uncertainty; objects in different resolutions have different

uncertain areas; (2) a new feature extraction block which can involve the context informa-

tion, i.e., BUS image layer structure information, using the connectedness between pixels

and the boundary pixels in the up, down, right, left directions is calculated. The details of

these two parts are introduced in Section 4.2 and Section 4.3.

4.2 Pyramid Fuzzy Block

The pyramid fuzzy block contains three portions: down-sampling part, fuzzification

part, and uncertainty representation part (Fig. 4.1 (c)). In the down-sampling section,

the input feature maps are down-sampled into two different resolutions. Then, the feature

maps in various resolutions are fuzzified by a trainable Sigmoid function. The uncertainty

degree of each pixel is calculated by fuzzy entropy for memberships of different categories.

In this research, a pixel with a high fuzzy entropy value is treated as an uncertain pixel.



49

Fig. 4.1: Architectures of the proposed approach: (a) the original U-shape network with
VGG-16; (b) the proposed method with pyramid fuzzy block and direction connectedness
feature; and (c) the structure of the proposed pyramid fuzzy block.

4.2.1 Down-sampling Feature Map

X0 represents the input feature map where X0 ∈ RM×N×D; M and N represent the

width and length of input feature maps; D represents the channel number. X0 is down-

sampled twice to X1 ∈ RM/2×N/2×D and X2 ∈ RM/4×N/4×D (green arrows in Fig. 4.1 (c)).

An object in X1 and X2 has 1/2 and 1/4 of the original size in X0, respectively. Therefore,

the network can learn uncertainty for different sizes of one object, which a non-pyramid

version cannot handle.

4.2.2 Fuzzification

After down-sampling, the feature maps in three resolutions Xl = [X0,X1,X2] are trans-

formed into fuzzy domain by the trainable Sigmoid membership function in Eq. (4.1):

µlik =
1

1 + exp(αlikx
l
i + βlik)

(4.1)

where xli ∈ RD is the feature vector of the ith pixel in Xl. αlik ∈ RD and βlik ∈ R are
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two trainable parameter vectors for the trainable Sigmoid function in the kth category. µlik

represents the memberships in the kth category. Two 1 × 1 convolutional operators with

Sigmoid activation function perform the trainable Sigmoid membership function:

µli = Conv1× 1(Conv1× 1(xli)) (4.2)

where µli ∈ RC represents the membership vector and µli = [µli1, µ
l
i2, ..., µ

l
iC ]; C represents

the number of categories; the inner 1 × 1 convolutional operator contains 64 kernels; the

outer 1 × 1 convolutional operator has C kernels. In this chapter, the multi-layer 1 × 1

convolution can increase the nonlinearity of the membership function. Meanwhile, it is

easier to realize in convolutional networks, and the time complexity can be reduced.

4.2.3 Uncertainty Representation

After getting the memberships of different categories, the uncertainty degree of each

pixel should be calculated by the memberships. There is an observation: if a pixel contains

the same memberships of different categories (take binary segmentation as an example: the

membership of background is 0.5 and the membership of foreground is 0.5), this pixel is hard

to assign a category. This observation can be represented by fuzzy entropy. In this paper,

the uncertainty degree is measured by fuzzy entropy [60] of memberships. The uncertainty

degree in three resolutions (X0, X1, and X2) is calculated by the following equation [60]:

uli = − 1

logC
×

C∑
k=1

µliklogµlik (4.3)

where µlik represents the membership of category k for pixel i; and uli represents the uncer-

tainty degree for pixel i.

4.2.4 Uncertainty Reduction

In the previous subsection, the uncertainty degrees of each pixel in three resolutions

are calculated by the fuzzy entropies of the memberships, and three uncertainty maps
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ul = (u0 ∈ RM×N , u1 ∈ RM/2×N/2,u2 ∈ RM/4×N/4) are composed of uncertainty degrees

(uli) of pixels. ul has the same size as the feature map Xl. ul is in range [0, 1]. 0 means low

uncertainty degree, and 1 means high uncertainty degree. The uncertainty maps of three

resolutions are combined by pixel-wise summation and up-sampling (Fig. 4.1 (c)). The

final uncertainty map is computed by Eq. (4.4):

u = Up sampling((Up sampling(u2)⊕ u1)⊕ u0) (4.4)

where u represents the final uncertainty map for the input feature map X0 and it is nor-

malized to [0, 1] (0 means low uncertainty degree and 1 means high uncertainty degree). ⊕

represents the pixel-wise summation of matrices. The final uncertainty map is utilized as

the weight of the original feature map and pixel-wise multiplication is utilized to combine

the uncertainty map u and the input feature map X0:

X′ = X0 ⊗ (1− u) (4.5)

where X′ represents the feature map after uncertainty reduction; and ⊗ represents the

pixel-wise multiplication of matrices. This operation expresses that if the pixels have high

uncertainty degrees (u is close to 1), they have low weights; and if the pixels have low

uncertainty degrees (u is close to 1), they have high weighs.

The uncertainty maps calculated by the pyramid fuzzy block for input images can

be found in Fig. 4.2 (d). The pyramid fuzzy block can find the high uncertain areas in

background and tumor in (Figs. 4.2 d1 and d2), which indicates that it is hard to classify

background area and tumor. However, the non-pyramid version detects low uncertainty

in those areas (Figs. 4.2 c1 and c2). The background area and tumor contain similar

low intensity (shown in Fig. 4.2 (a)); therefore, the pyramid fuzzy block obtains better

uncertainty maps.

4.3 Direction Connectedness Feature
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Fig. 4.2: Uncertainty maps: (a) original BUS images; (b) groundtruths; (c) uncertainty
maps calculated by non-pyramid fuzzy block; (d) uncertainty maps calculated by pyramid
fuzzy block. Blue represents low uncertainty and red represents high uncertainty.

As introduced in Section 1.3, the BUS images contain a layer structure, shown in Fig.

1.2 There are skin layer, fat layer, mammary layer, muscle layer, and background from

the top to bottom of the BUS image. Connectedness is one of the most important global

topological properties and has been applied to many image segmentation approaches [67–69].

The connectedness between pixels not on the boundary and pixels on the boundary is

important. For example, if two pixels are in one horizontal line (such as the red line in Figs.

4.3 (a) and (b)), they contain a similar high connectedness strength to pixels on the left

and right boundary in the same horizontal line. They also contain similar connectedness

strength to the pixels on the up and bottom boundary in the vertical direction because

the layer structure is fixed in the vertical direction of the BUS image. Therefore, in this

research, connectedness between pixels and boundary pixels in the four principal directions

(up, down, right, and left) is utilized as the context feature to describe breast anatomy.

This subsection is organized as follows: (1) the connectedness between two adjacent pixels

is defined firstly, and (2) the connectedness between pixels and pixels on the boundary along

four principal directions is defined based on the connectedness between two adjacent pixels.

4.3.1 Connectedness between Two Adjacent Pixels

To express the connectedness strength between two adjacent pixels, it is computed by
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Fig. 4.3: BUS image layer structure: (a) original BUS image; (b) groundtruths; (c) direction
connectedness feature.

the feature values of these two neighboring pixels. Let fi and fj represent the feature values

of two adjacent pixels i and j, and the connectedness strength γ is defined as [67]:

γ = exp(−‖fi − fj‖2/2δ2) (4.6)

where δ is the parameter to control the strength of the connectedness; ‖fi− fj‖2 represents

the Euclidean distance between the feature values.

4.3.2 Connectedness in Four Principal Directions

As shown in Fig. 4.4, the boundary pixels are the pixels in the brown color. The

pixels on the left boundary of the BUS image (Fig. 4.4 (a)) only calculate the connected-

ness strength to the pixels along the horizontal right direction. The pixels on the bottom

boundary (Fig. 4.4 (b)) only calculate the connectedness strength along the vertically up

direction. It is similar for the left and down directions (Figs. 4.4 (c) and (d)). There is

only one path to get the pixels inside the image from pixels on the boundary. Take the

left direction as an example: Let xi,j represent a pixel in the image, and xi,1 represent the

pixel on the left boundary in the ith row and let Γlefti,j represent the connectedness strength

between xi,j and xi,1 [67]:

Γlefti,j = min(Γlefti,j−1, exp(−‖fi,j−1 − fi,j‖2/2δ2left)) (4.7)
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where fi,j−1 and fi,j are feature values for pixels xi,j−1 and xi,j ; Γlefti,1 is initialized as 1. The

connectedness strength in the other three principal directions can be expressed similarly [67]:

Γrighti,j = min(Γrighti,j+1, exp(−‖fi,j+1 − fi,j‖2/2δ2right))

Γupi,j = min(Γupi+1,j , exp(−‖fi+1,j − fi,j‖2/2δ2up))

Γdowni,j = min(Γdowni−1,j , exp(−‖fi−1,j − fi,j‖2/2δ2down))

(4.8)

Fig. 4.4: The connectedness in the four principal directions: (a) right; (b) up; (c) left; and
(d) down.

After calculating the connectedness strengths along four directions, the connectedness

strengths are added together to obtain the breast structure context information:

Γi,j = Γlefti,j + Γrighti,j + Γupi,j + Γdowni,j (4.9)

If the gray-level intensity is the feature, the breast structure context information Γi,j

is shown in Fig. 4.3 (c). This information can display the layer structure, therefore it is

applied to U-shape network to represent breast structure directly.

4.3.3 Direction-connectedness Feature Extraction

To use the breast layer structure in a deep neural network, the direction-connectedness

(DC) feature is defined, and a DC feature extraction block is proposed (Fig. 4.5). In the

DC feature extraction block, the input feature map is input to two paths. In the first path,

the input feature map is processed by a 1× 1 convolutional operator. Then, a spatial RNN

is utilized to extract the connectedness between boundary pixels and each pixel in the four
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principal directions (shown in Eqs. (4.7) and (4.8)). The parameters δleft, δright, δup and

δdown are recurrent translation parameters in the spatial RNN. The connectedness strengths

in four directions are added together by pixel-wise summation (Eq. (4.9)). The second

path for the input feature map is three convolutional operators. The output feature map

combines with the connectedness strength in the first path by a pixel-wise multiplication.

The combination is the DC feature.

Fig. 4.5: Direction connectedness feature. Only one round spatial RNN is utilized because it
only focuses on the connectedness strength between pixels and the pixels on the boundaries
along up, down, left, and right directions.

4.3.4 Loss Function

The entire network is shown in Fig. 4.1 (b). It shows that the feature map in each con-

volutional block has three paths: the first one is the next convolutional block to obtain new

convolutional features; the second one is a direction-connectedness module to get direction-

connectedness feature; the third one is a pyramid fuzzy block to reduce uncertainty. Both

convolutional features and DC features are reduced uncertainty by the proposed pyramid

fuzzy blocks. The convolutional features and DC features are combined by pixel-wise sum-

mation. At the end of the network, there is a segmentation task. The loss function for

the segmentation task is defined on the summation of category cross-entropy loss for image
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segmentation and fuzzy entropies from pyramid fuzzy blocks:

Loverall = L+ Lc + Ld (4.10)

where L represents the classic cross entropy loss:

L = −
∑

l(x)log(p(x)) (4.11)

where x represents the input pixel; l(x) is the label of x in one-hot encoding. l(x) is a

vector with C elements, where C represents the number of categories. If x is in the kth

category and the corresponding kth element in l (x) is 1 and other elements are 0; p (x)

is the predicted vector and each element represents the probability for the corresponding

category.

There are five convolutional blocks and five direction connectedness feature extraction

blocks. All the ten features are input to the pyramid fuzzy block to compute the uncertainty

degree by Eq. (4.4). Lc and Ld in Eq. (4.10) are the summation of fuzzy entropy of

convolutional features and direction connectedness features:

Lc =
∑
q

∑
i

uqi

Ld =
∑
r

∑
i

uri

(4.12)

where uqi and uri are the ith pixel for uncertainty degree map u computed by Eq. (4.4) using

the convolutional features and direction connectedness features; q represents the block index

of convolutional block and r represents the block index of direction connectedness block.

4.4 Experimental Results
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4.4.1 Datasets

Two datasets are utilized to evaluate the proposed method: (1) a BUS image bench-

mark [1] which contains pixel-wise groundtruths only for tumors; (2) a multi-object BUS

dataset image which contains five categories: fat layer, mammary layer, muscle layer, tu-

mor, and background. The First dataset contains 562 images. The multi-object BUS

dataset contains 325 images that are the one utilized in Chapter 2 and Chapter 3. To show

the effectiveness of the proposed network, eight state-of-the-art semantic segmentation net-

work structures, such as U-Net [48] with VGG-16, U-Net with ResNet-50/ResNet-101 [15],

Deeplabv3+ [64], FCN-8s [14], PSPNet [18], FCN with information extension [53], and U-

Net with the direction-aware spatial context (DSC) features [36] are compared with the

proposed method.

4.4.2 Training Strategy and Setup

The training images are augmented by horizontal flip, horizontal shift, vertical shift,

rotation, zooming, and shear mapping. They are all gray-level images and mapped to the

intensity range [-1, 1] by (x/127.5-1) [65]. No other pre-processing method is used.

In this research, a computer with Ubuntu 18.04 system, Intel(R) Xeon(R) CPU E5-2620

2.10GHz, and 2 NVIDIA GeForce 1080 graphics cards is used. The network weights are

initialized randomly. The batch size is 8. The optimizing method is the Adam method [59]

with an initial learning rate 10−4, and learning decay rate is 5 × 10−4. The parameter β1

for Adam method is 0.9, and the parameter β2 for Adam’s method is 0.99. All the networks

(compared and proposed) are not pretrained on other datasets. The implementation is

based on the Keras platform with the TensorFlow backend.

4.4.3 Metrics

In the benchmark dataset, five area metrics introduced in Subsection 3.4.3: True Posi-

tive Ratio (TPR), False Positive Ratio (FPR), Jaccard Index (JI), Dice’s Coefficient (DS),

and Area Error Ratio (AER) are utilized to evaluate the performance of all methods. For the
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multi-object dataset, the Intersection over Union (IoU) and mean IoU (mIoU) introduced

in Subsection 3.4.3 are utilized.

4.4.4 Tumor Segmentation Results on Benchmark Dataset

All other compared state-of-the-art deep learning methods such as ResNet-50, ResNet-

101, FCN-8s, and U-Net with the direction-aware spatial context (DSC) features are trained

in the same experiment environment (such as initial methods, batch size, training epoch,

etc.). 10-fold validation is utilized: (1) all images are divided into 10 groups randomly; (2)

pick 9 groups as the training set and the rest 1 group as the testing set; and (3) the final

results are calculated by the average of 10 experiments.

Fig. 4.6 shows the segmentation results of the benchmark [1]. Fig. 4.6 (a) is the

original image; Fig. 4.6 (b) is the groundtruths and the red areas in Figs. 4.6 (b)-(k) are

the tumors. Fig. 4.6 a1 contains a small tumor. This tumor is like black strip structures in

the muscle layer and fat layer. The previous network structures cannot handle this tumor

(shown in Figs. 4.6 c1-i1). In Fig. 4.6 a2, the back area in the muscle layer contains

a similar feature to that of the tumor. The original U-Net (Fig. 4.6 c2), U-Net with

ResNet-50 (Fig. 4.6 d2), Deeplab (Fig. 4.6 f2), U-Net with wavelet transform (Fig. 4.6 h2),

FCN-8s (Fig. 4.6 i2) misclassify the black area in the muscle into the tumor. The proposed

method can solve this by involving breast anatomy and fuzzy uncertainty reduction. The

U-Net with DSC feature can also segment this tumor well because it also involves spatial

context features. However, involving the DSC feature in U-Net cannot handle some cases

such as Figs. 4.6 j1 and j5. The proposed method can handle this tumor better than DSC

because DSC is designed for shadow detection, and the proposed method can reflect breast

anatomy and reduce uncertainty. Adding wavelet information in the input image can also

solve the mis-segmentation in Fig. 4.6 a2 and Fig. 4.6 a5. However, it still cannot handle

Fig. 4.6 a2 and Fig. 4.6 a3 well. It proves that adding other features can solve some

mis-segmentation; however, there still exists uncertainty in the new feature. The proposed

method can overcome this by using a pyramid fuzzy block to reduce the uncertainty in new

features. The proposed method obtains the best results in all samples in Figs. 4.6 a1-a5.
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Fig. 4.6: Segmentation results using benchmark in [1]: (a) original images; (b) groundtruths;
(c) results of U-Net; (d) results of ResNet-50; (e) results of ResNet-101; (f) results of
Deeplab; (g) results of PSPNet; (h) results of U-Net with wavelet transform; (i) results of
FCN-8s; (j) results of U-Net with DSC feature; and (k) results of proposed method.

The evaluation metrics are listed in Table 4.1. Five non-deep learning methods [4–8]

mentioned in the [1] are also adopted for comparison. Bold numbers are the corresponding

best results. Table 4.1 shows that the proposed method achieves the best evolution metrics.

Although FCN-8s achieves slightly higher TPR, it obtains much worse FPR and other

metrics. Deep learning approaches achieve much better results than non-deep learning

methods.

4.4.5 Multi-object Segmentation for BUS Image

The proposed method is also applied to multi-object BUS image segmentation in a

dataset with 325 images. 10-fold validation is still utilized in the experiment because of the

limited number of training samples. The state-of-the-art deep neural network structures

mentioned in the previous chapter are utilized to compared with the proposed method as

well. In this research, five breast layers are segmented by different network structures. Fig.

4.7 (a) shows four BUS images, and the corresponding groundtruths for these BUS images

are in Fig. 4.7 (b). The green areas are fat layers; the yellow areas are mammary layers;

the blue regions are muscle layers; the red areas are tumors, and the background areas are
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Table 4.1: Results of tumor segmentation using dataset [1].

TPR FPR JI DS AER

Semi-Automatic Methods

[4] 0.82 0.13 0.73 0.84 0.31

[5] 0.84 0.07 0.79 0.88 0.23

Fully-Automatic Methods

[7] 0.81 0.16 0.72 0.83 0.36

[6] 0.81 1.06 0.60 0.70 1.25

[8] 0.67 0.18 0.61 0.71 0.51

U-Net 0.92 0.09 0.86 0.92 0.17

Deeplab 0.89 0.11 0.82 0.89 0.22

ResNet50 0.92 0.08 0.86 0.92 0.16

ResNet101 0.92 0.10 0.85 0.91 0.18

FCN-8s 0.94 0.10 0.86 0.92 0.16

PSPNet 0.93 0.09 0.86 0.92 0.16

[53] 0.92 0.09 0.86 0.92 0.16

DSC 0.91 0.10 0.84 0.91 0.18

Proposed 0.93 0.07 0.87 0.93 0.15

black.

In Fig. 4.7, it can be seen that the results of the original U-Net (Figs. 4.7 c1-c4),

ResNet-50/RestNet-101 (Figs.4.7 d1-d4 and e1-e4), Deeplab (Figs. 4.7 f1-f4), PSPNet (Figs.

4.7 g1-g4), and FCN-8s (Figs. 4.7 i1-i4) are not very good. When adding wavelet infor-

mation in the input layer, the U-Net can obtain better results in Figs. 4.7 h1 and h4.

However, adding wavelet information in the input layer can make the segmentation result

worse. For example, in Fig. 4.7 h2, the mammary layer is segmented wrongly into the

muscle layer. Also, in Fig. 4.7 h3, part of the tumor is segmented into the muscle layer and

background wrongly. Such problems do not exist in the original U-Net (Figs. 4.7 c2 and

c3). When adding the DSC feature in U-Net, the segmentation results become better (Figs.

4.7 j1-j4). However, it does not solve the problem in Fig. 4.7 j1 (the green patch under

tumor). It involves more mistakes in Fig. 4.7 j3 than the original U-Net with the gray-level

image as input (Fig. 4.7 c3). These experiment results prove that new features can increase

the feature dimension and solve some mis-segmentation. However, new features contain

new uncertainty and noise and might make it hard to classify those pixels. The proposed
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method adds a new direction connectedness feature to the original U-Net. This feature

obtains breast anatomy information. Moreover, both newly added features and original

convolutional feature in U-Net are processed by fuzzy operations in pyramid fuzzy blocks.

Uncertainty of pixels in both features is reduced weights in the combination of two features.

The feature used to make the final decision is reduced. Hence, the segmentation results for

the proposed method are the best (Figs. 4.7 k1-k4).

Table 4.2: Evaluation results of multi-object segmentation on BUS images. Evaluation
metric using IoU (%).

Fat Mammary Muscle Background Tumor Mean

U-Net 70.34 66.72 66.17 65.91 74.66 68.76

ResNet-50 82.58 73.98 73.08 77.23 76.34 76.64

ResNet-101 81.50 73.41 72.07 74.47 75.29 75.35

FCN-8s 82.57 75.47 75.53 78.59 74.42 77.32

PSPNet 82.07 74.40 74.49 77.36 74.75 76.61

Deeplab 78.91 68.71 67.33 73.94 69.04 71.58

[53] 84.05 75.92 74.89 78.35 74.88 77.62

DSC 83.86 76.38 74.95 77.25 78.07 78.10

Proposed 84.45 76.90 75.48 79.35 79.63 79.16

Fig. 4.7: Semantic segmentation: (a) original images; (b) groundtruths; (c) results of U-
Net; (d) results of ResNet-50; (e) results of ResNet-101; (f) results of Deeplab; (g) results
of PSPNet; (h) results of U-Net with wavelet transform; (i) results of FCN-8s; (j) results of
U-Net with DSC feature; and (k) result of proposed method.
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The evaluation metrics for multi-object BUS image segmentation are shown in Table

4.2. Bold numbers are the best results. The proposed method obtains 4.97% IoU improve-

ment in the tumor category and 10.4% overall mean IoU improvement compared with the

original U-Net with the gray-level image as input. The state-of-the-art deep learning archi-

tectures such as ResNet, PSPNet, and Deeplab do not obtain good results using this dataset

because there are not enough training samples to train the complex network structures.

4.5 Conclusion

This chapter presents a novel network structure using fuzzy logic and spatial context

information applied to BUS image semantic segmentation. The proposed method achieves

the best overall performance in binary semantic segmentation and multi-object semantic

segmentation compared with eight state-of-the-art deep learning architectures. It achieves

improvement because of the following reasons: (1) The proposed pyramid fuzzy block can

find the uncertain pixels and reduce their weights in different resolutions; therefore, the

proposed fuzzy block can provide different-scale uncertainty information. (2) The connect-

edness strength between inside pixels and boundary pixels along the left, right, up, and down

directions can represent breast anatomy better than previous context features. Finally, the

proposed direction connectedness feature is combined with the original convolutional fea-

ture, and the novel feature can obtain better segmentation results.



63

CHAPTER 5

MEDICAL KNOWLEDGE CONSTRAINED CONDITIONAL RANDOM FIELDS

5.1 Introduction

The proposed DC feature in Chapter 4 can provide breast anatomy. Besides the DC

feature, a novel context information term in conditional random fields is proposed in this

study. Conditional random fields (CRFs) are widely used in nature image semantic seg-

mentation combined with deep learning and non-deep learning approaches. Segmentation

is modeled as a minimization energy function of CRFs (Eq. (5.1)) [30]. In the energy

function of CRFs, there are two terms: unary term (θi in Eq. (43)) and pairwise term (θij

in Eq. (5.1)). The unary term is the segmentation probability map obtained from a unary

classifier such as a deep neural network, support vector machine.

E(X) =
∑
i

θi(xi) +
∑
i

∑
j

θij(xi, xj) (5.1)

where yi represents the label for pixel i. The first term in Eq. (5.1), θi (yi) = − logP (yi)

is a unary potential function. In this research, the unary potential function is provided

by the U-shape network with fuzzy blocks introduced in Chapter 2. The segmentation

probability map P (yi) contains the probability belong to each category for each pixel. The

segmentation result of the unary classifier is not reflected by other pixels, which means there

is no context information. The pairwise term in the energy function of CRFs discusses the

relation between different pixels. The pairwise term is defined as:

θij(xi, xj) = µ(xi, xj)
∑
m

ωmkm(fi, fj) (5.2)

where µ (yi, yj) = 1, if yi 6= yj , and µ (yi, yj) = 0 if yi = yj , which is known as the

Potts model. This coefficient shows if two pixels are in the same category, the energy is
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minimum. km is a Gaussian kernel, where fi and fj are the features of pixels i and j.

ωm is the combined weight of the mth Gaussian kernel. There are two Gaussian kernels

in [30]. In the first Gaussian kernel, the feature is defined on the physical position and the

color feature of the pixels. In this research, the color feature (RGB) represents the gray-

level information in the R channel, the approximation coefficient in the G channel, and the

high-frequency information of wavelet transform in the B channel. If the input image is

not preprocessed, only intensity combined with the position is used. The second Gaussian

kernel is only defined on the positions of pixels. The detail of the pairwise potential function

is shown in Eq. (5.3) [30]:

∑
m

ωmkm(fi, fj) = ω1exp(−‖pi − pj‖
2

2σ2α
−‖Ii − Ij‖

2

2σ2β
)+ω2exp(−‖pi − pj‖

2

2σ2γ
),m = 1, 2 (5.3)

where pi represents the position of the ith pixel, and Ii represents the color feature of

the ith pixel. Eq. (5.3) indicates that the pairwise term in the energy function of CRFs

can compute the correlation between pixels. The correlation is dependent on position and

feature.

In this work, breast anatomy is represented by the pairwise term of CRFs. In Fig. 1.2

(b), the BUS image contains 6 different areas: skin, fat, mammary, muscle, background, and

tumor. The skin layer is treated as background because the number of samples containing

the skin layer is small. However, due to the position, the skin layer is different from the

retro-muscle background area. To make the context of different layers more reasonable,

the skin layer is treated as a pre-fat background area. Finally, the contexts of the pre-fat

background area, fat layer, mammary layer, muscle layer, retro-muscle layer, and breast

tumor are used. Vi is defined to represent the category of pixel i assigned by a deep

neural network, Vi ∈ {L1, L2, L3, L4, L5, L6}. L1, L2, L3, L4, L5, L6 represent the pre-fat

background area, fat layer, mammary layer, muscle layer, retro-muscle layer, and breast

tumor, respectively (Fig. 1.2 (b)). The label vector Vi ∈ {L1, L2, L3, L4, L5, L6} is applied

to the pairwise term of CRFs to reflect breast anatomy.
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5.2 Breast-anatomy Constrained Fully Connected CRFs

As discussed in Section 1.3, breast cancer usually begins in the mammary layer. How-

ever, some pixels in the fat layer and muscle layer might be classified into wrong categories;

besides, pixels in the muscle layer have similar intensity levels to that of the pixels in the

mammary layer, which may also cause misclassification. Medical knowledge can overcome

misclassification. After locating the positions of the fat layer, mammary layer, and muscle

layer, the context information can be used to prevent the wrongly classified patches in each

layer. The original fully connected CRFs contain the energy function in Eqs. (5.2) and

(5.3). The Gaussian kernel in Eq. (5.3) consists of pixel positions and color features. To

involve breast anatomy, the category of pixel i assigned by the neural network, which is

defined as Vi, is treated as another feature and a new Gaussian kernel based on Vi, and

position of the pixel, pi is utilized. The new energy function contains three terms:

∑
m

ωmkm(fi, fj) = ω1exp(−‖pi − pj‖
2

2σ2α
− ‖Ii − Ij‖

2

2σ2β
) + ω2exp(−‖pi − pj‖

2

2σ2γ
)

+ ω3exp(−‖pi − pj‖
2

2σ2τ
− ‖Vi − Vj‖

2

2σ2λ
),m = 1, 2, 3

(5.4)

where exp(−‖pi−pj‖
2

2σ2
τ
− ‖Vi−Vj‖

2

2σ2
λ

) is the Gaussian kernel of the layer context information,

and Vi, and Vi, represent categories of pixel i and j assigned by the deep neural network.

στ and σλ are the parameters of CRFs.

Here, two distances on context are defined: 1) context distance between two pixels,

‖Vi − Vj‖2 where i and j represent pixel i and j in the image, and 2) context distance

between two categories, ‖Ls − Lt‖2 where s and t represent the category index. In this

research, 1 ≤ s, t ≤ 6, i ∈ Z. ‖Ls − Lt‖2 is the Euclidean distance of the two category

vectors. ‖Vi − Vj‖2 is the context distance between the category of pixel i and category

of pixel j. For example, if the pixel i is in category L1, and pixel j is in the category L2,

‖Vi − Vj‖2 equals to ‖L1 − L2‖2. The value of the label vector Vi ∈ {L1, L2, L3, L4, L5, L6}

is defined in the following chapter.
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5.3 Label Vector Setting

To demonstrate how to utilize the context distance between pixels and context distance

between and categories and their effectiveness on BUS image segmentation, a simulated

image is shown in Fig. 5.1. In Fig. 5.1 (a), L1, L2, and L3 represent three categories. T

represents a wrongly classified patch, which should be in L1, but assigned to L3 by the unary

classifier. If the context distances among three categories are set as the context distance

between L1 and L2 equals to the context distance between L2 and L3; the context distance

between L1 and L2 is greater than the context distance between L1 and L3; then pixels in T

has the chance to be corrected into L1. Here, four pixels are chosen to demonstrate how it

works: 1) pixel i in area T ; 2) pixel h in L1 area; 3) pixel v in L2 area; 4) pixel j in L3 area.

Pixel i is in area T and area T is now in category L3. Pixel v is in area L2, so the context

distance between pixel i and pixel v equals the context distance between categories L3 and

L2 as introduced in the previous paragraph, i.e., ‖Vi−Vv‖2 = ‖L3−L2‖2. For other pixels,

the situations are the same, i.e., ‖Vi − Vh‖2 = ‖L3 − L1‖2; ‖Vi − Vj‖2 = ‖L3 − L3‖2 = 0.

Therefore, ‖Vi − Vv‖2 = ‖L3 −L2‖2 > ‖Vi − Vh‖2 = ‖L3 −L1‖2 > ‖Vi − Vj‖2 = ‖L3 −L3‖2

because of the assumption made before. Meanwhile, ‖pi − pj‖2 > ‖pi − pv‖2 > ‖pi − ph‖2,

where pi, ph, pv and pj are the position of these pixels in Eq. (5.4). Hence, the pixels in area

T have smaller context distances with pixels in L1 than that in L2, and the pixels in area T

have smaller space distances with the pixels in L1 than that in L2. Even if the pixels in area

T have zero context distances with the pixels in L3 (i.e., they are in the same category),

they have smaller space distances with the pixels in L1 than that in L3. Therefore, the

pixels in area T still can be classified into category L1. In Fig. 5.1 (b), the pixels in area

T are wrongly classified into category L2 and the pixels in area T have the same context

distances as the pixels in L1 and L3, but they have smaller space distances with the pixels

in L1 than that in L3. If the pixels in area T have zero context distances with the pixels

in L2, their space distances with the pixels in L1 are smaller than that with the pixels in

L2. Therefore, the pixels in area T still have the chance to be classified into L1 by properly

setting weight ω3 and parameters στ and σλ in Eq. (5.4).
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(a) (b)

Fig. 5.1: Simulated image to show the context distance among categories.

The BUS images (Figs. 1.2 (a) and (b)) are like the simulated examples. The context

distances between the categories can be classified into three classes (Fig. 1.2 (b)) in the BUS

images: 1) two layers are neighbors to each other (D1), e.g., fat layer (L2) and mammary

layer (L3); 2) two layers are separated by another layer (D2), such as the fat layer (L2) and

muscle layer (L4); 3) two layers are separated by two layers (D3), such as the fat layer (L2)

and retro-muscle background area (L5):

D1 = ‖Li − Li+1‖2, 1 ≤ i ≤ 4, i ∈ Z

D2 = ‖Li − Li+2‖2, 1 ≤ i ≤ 3, i ∈ Z

D3 = ‖Li − Li+3‖2, 1 ≤ i ≤ 2, i ∈ Z

(5.5)

The relations among them are:

D1 > D2 > D3 (5.6)

The reason for setting such relations among them (Eq. (5.6)) is to follow the situation

in the simulated example. The relations encourage a clear boundary and void wrongly

classified patches like T in Fig. 5.1. L1 and L5 have high space distance while their context

distance is not considered because the high space distance plays a more important role in
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the Gaussian kernel. After defining the context distances among the five layers, the context

distances between the tumor and five layers could be defined. The tumor (L6) usually

locates in the mammary layer (L3). Sometimes, the mammary layer above the tumor or

bellow tumor is very thin; and the tumor seems to be in the fat layer (L2) or muscle layer

(L4). The context distance between tumor (L6) and mammary layer (L3) should be the

largest because it encourages a clear boundary between tumor and mammary layer. The

context distances between the tumor (L6) and fat layer (L2) or muscle layer (L4) should

be the second largest, which gives the chance to correct some wrongly classified patches in

these layers. The context distance between tumor (L6) and the background (L1 and L5)

should be the smallest. Because some background areas are likely classified as the tumor,

and such a situation should be voided (refer to Fig. 5.1). The relationships are shown in

Eq. (5.7):

‖L6 − L3‖2 > ‖L6 − L2‖2 ≈ ‖L6 − L4‖2 > ‖L6 − L1‖2 ≈ ‖L6 − L5‖2 (5.7)

The category vectors L1, L2, L3, L4, L5, and L6 should satisfy the constraints in Eqs.

(5.5)-(5.7) to realize the medical anatomy constraints. By solving Eqs. (5.5)-(5.7), L1 =

{61.2, 20, 15}, L2 = {25, 37.1, 0}, L3 = {40, 0, 0}, L4 = {55, 37.1, 0}, L5 = {18.8, 20.7, 15},

and L6 = {40, 30, 26.5}. For D1 ≈ 40, D2 ≈ 30, D3 ≈ 23, ‖L6 − L3‖2 = 40, ‖L6 − L2‖2 ≈

‖L6 − L4‖2 ≈ 30, ‖L6 − L1‖2 ≈ ‖L6 − L5‖2 ≈ 26. The relations among context labels are

shown in Fig. 5.2. If a pixel is classified into category Ls, s = 1, 2, 3, 4, 5, 6, a category map

will be created and the corresponding pixel in the category map will be assigned by the

value of Ls. The category map is used as another feature in Eq. (5.4)

By setting the label vectors with these values, the proposed CRFs energy function

encourages two pixels whose space distance and context distance are both small to be in the

same category. It will remove some wrongly classified patches. The mean-field approximate

algorithm [30] is used to solve the fully connected CRFs energy minimization problem.

5.4 Experiment Results
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Fig. 5.2: The coordinates of the labels.

5.4.1 Datasets, Metrics, and Setup

The same computer, datasets, and metrics with the Chapter 2 are utilized. The U-

Net with VGG16 and the fuzzy block in the Chapter 2 is utilized to provide an initial

segmentation map for CRFs. The CRFs parameters ω1 = 1, ω2 = 2, ω3 = 1, σ2α = 60,

σ2β = 10, σ2γ = 3, σ2τ = 3, and σ2λ = 2. They are determined by experiments, and the medical

context label and the context distance relation are shown in Fig. 5.2. The implementation

is based on MATLAB (R2018b, MathWorks Inc., MA).

5.4.2 Comparison with Original CRFs

The fuzzy U-Net in Chapter 2 is utilized to provide the unary term of CRFs. Breast

anatomy constrained fully connected CRFs uses the medical context information. The origi-

nal fully connected CRFs and the approximation algorithm in [30] are employed to optimize

the energy function of CRFs. It has three effects: 1) correct the wrongly classified pixels;

2) make the boundaries between layers more accurate; 3) increase the overall segmentation

performance. The segmentation results are shown in Fig. 5.3. In Table 5.1, the output

of fuzzy U-Net, the refined results of original CRFs, and proposed CRFs are utilized for



70

comparison.

Table 5.1: Evaluation results of breast anatomy constrained CRFs. Evaluation metrics
using IoU.

Fat Mammary Muscle Background Tumor Mean

Fuzzy U-Net + CRFs 81.52 78.63 75.24 76.48 79.32 78.24

Fuzzy U-Net 84.07 76.01 74.62 78.39 78.53 78.32

Fuzzy U-Net + Pro-
posed CRFs

85.06 77.24 78.66 80.09 81.29 80.47

Figs. 5.3 c1-c4 are the segmentation results for the proposed fuzzy U-Net. Figs. 5.3

d1-d4 are the fine-tuning results of the original fully connected CRFs and Figs. 5.3 e1-e4 are

the fine-tuning results of the proposed CRFs. Comparing with Figs. 5.3 c1, d1, and e1, the

original CRFs fine-tune the tumor boundary and make it close to the groundtruth (Fig. 5.3

b1). However, the original CRFs make the boundary between the mammary layer and the

fat layer worse. The same situation happens in Figs. 5.3 d2-d4. In Fig. 5.3 d2, the boundary

of the tumor is smoother than the result of fuzzy U-Net; however, the muscle layer grows

into the mammary layer using the original CRFs, and in Fig. 5.3 d3, the background area

and fat layer interlace each other. In Figs. 5.3 c4 and d4, there are pixels in the fat layer

classified into the tumor. The original CRFs fail to correct the mis-classification patch. The

proposed CRFs utilize the medical context constraints to overcome such a problem (Figs.

5.3 e1-e4).

Table 5.1 shows the IoU of each category and the overall mean IoU. Bold numbers are

the corresponding best results. The proposed method achieves 81.29% of IoU for tumors,

and 80.47% of overall IoU. In the results of both tumor and overall IoU, the proposed

method achieves about 2% improvements than that of the original CRFs.

5.4.3 Tumor Segmentation Results and Comparison with Previous Non-deep

Learning Segmentation Methods

This subsection compares the proposed fuzzy U-Net + breast-anatomy constrained

CRFs architecture with five non-deep learning methods. The existing non-deep learning
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Fig. 5.3: Segmentation results of breast-anatomy constrained fully connected CRFs: (a)
original images; (b) groundtruths; (c) results of fuzzy U-Net without CRFs; (d) fine-tuning
results using fully connected CRFs; (e) fine-tuning results using the proposed method.

methods only focus on breast cancer segmentation, while semantic segmentation methods

work on multi-object segmentation. In this subsection, the proposed method and the meth-

ods in [4–8] are compared. The semi-automatic BUS image segmentation methods [4,5] are

studied, in which the regions of interest (ROIs) are given, and the methods could segment

the tumor areas automatically. The fully automatic BUS image segmentation methods are

studied [6–8]. The tumor segmentation results are shown in Fig. 5.4.

In Fig. 5.4, the semi-automatic segmentation methods (Figs. 5.4 (c) and (d)) obtain

good results. Semi-automatic segmentation methods are helpful when doctors focus on

specific areas and operate with the CAD systems interactively. Existing fully automatic

segmentation methods get worse results since the performance of these methods relied on

the individual dataset. They can obtain good performance only using their own datasets

and need a massive number of training samples. The proposed method can achieve the
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Fig. 5.4: Tumor segmentation results of the proposed method and existing methods: (a)
original images; (b) groundtruths; (c) results using [4]; (d) results using [5]; (e) results
using [6]; (f) results using [7]; (g) results using [8]; (h) results using the proposed method.

Fig. 5.5: The segmentation results for BUS images without tumors: (a) original images; (b)
groundtruths; (c) results using [6]; (d) results using [7]; (e) results using [8]; (f) results of
the proposed method.

best result even on a small dataset, and its robustness is much higher than that of other

comparison methods.

Table 5.2 shows that the proposed method achieves the best results among all methods

in comparison (Bold numbers are the corresponding best results). Furthermore, the pro-

posed method can process the BUS images without tumors. The previous fully automatic

methods could not solve such a problem; since all of the compared previous methods are

based on the prerequisite, there is only one tumor in the image. As shown in Fig. 5.5,

the two samples do not contain tumors. Figs. 5.5 (c)-(e) are the results of the previous

fully automatic methods [6–8]. The white areas in the results are the tumors by the three

methods, i.e., they do not work well. In Fig. 5.5 (f), the proposed method can classify the

layers in the BUS images well.
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Table 5.2: Evaluation results on tumor segmentation.

TPR FPR IoU

Semi-Automatic Method

Method [5] 83.01% 9.65% 79.74%

Method [4] 84.37% 17.51% 72.65%

Fully-Automatic Method

Method [6] 75.94% 43.84% 63.94%

Method [7] 83.55% 83.28% 65.22%

Method [8] 78.05% 15.43% 73.45%

Proposed 90.33% 9.00% 81.29%

Existing fully automatic segmentation methods [6–8] cannot solve multi-tumor cases

as well. In Fig. 5.6, three BUS images are not in our dataset, and each image contains 2

tumors. The first image is collected by a doctor of the First Affiliated Hospital of Harbin

Medical University; the second one is found in a public dataset [57]; the third one is from

in [70]. In Fig. 5.6, the existing methods (Figs. 5.6 (c)-(e)) can only detect one tumor

for each image, i.e., they cannot obtain good results for containing more than one tumor;

however, the proposed method can (Fig. 5.6 (f)).

Comparing the results of classic BUS image segmentation methods with the proposed

method, here are some conclusions: 1) Classic methods depend on manually selected fea-

tures; however, deep learning methods can automatically encode the convolutional features.

Convolutional features perform better than manually selected features. 2) Compared classic

methods depend on some assumptions. For example, the BUS images must contain a tu-

mor, and the tumor must locate at the center of the whole image. That is why these classic

methods cannot handle BUS images containing more than one tumor or no tumor. The

proposed method reduces the uncertainty of features in the U-Net; therefore, the proposed

method obtains the best result.

5.4.4 Comparison with DC Feature and Medical Knowledge Constrained CRFs

To compare the effectiveness of reflecting breast anatomy using the DC feature in

Chapter 4 and medical knowledge constrained CRFs in this chapter, the comparison of the
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Fig. 5.6: The segmentation results of the BUS images containing two tumors: (a) original
images; (b) groundtruths; (c) results using [6]; (d) results using [7]; (e) results using [8]; (f)
results using the proposed method.

DC feature and medical knowledge constrained CRFs is made. In this experiment, the

unary classifier for medical knowledge constrained CRFs is still the fuzzy U-Net proposed

in Chapter 2. The experiment results are shown in Table 5.3. Bold numbers represent bet-

ter results. The fuzzy U-Net + medical knowledge constrained CRFs architecture achieves

better results in all categories and the overall performance. The experiment results demon-

strate that 1) medical knowledge constrained CRFs can provide the order of layers in BUS

image besides layer structure; however, DC feature only provides layer structure; 2) the

medical knowledge constrained CRFs can refine the segmentation results of deep learning

methods.

Table 5.3: Comparison with DC feature and medical knowledge constrained CRFs.

Fat Mammary Muscle Background Tumor Mean

Proposed CRFs 85.06 77.24 78.66 80.09 81.29 80.47

DC feature 84.45 76.90 75.48 79.35 79.63 79.16

5.5 Conclusion

In this chapter, breast anatomy constrained conditional random fields are proposed to

fine-tune the segmentation result from a deep convolutional neural network. In the breast
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anatomy constrained conditional random fields, the order of the breast tissue layers of

the human breast is modeled in the pairwise-term of the energy function of the conditional

random fields. The order of the breast tissue layers can be reflected during the minimization

of the energy function. Experiment results on the 325-image BUS image dataset show

that the proposed breast anatomy constrained conditional random fields can refine the

segmentation results from deep convolutional networks. The proposed conditional random

fields also obtain better results than the original conditional random fields. The deep

learning + CRFs method outperforms non-deep learning BUS image segmentation methods.

Therefore, the proposed conditional random fields can successfully increase the performance

of the conditional random fields and provide more accurate segmentation results based on

the correlation of pixels and breast anatomy.
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CHAPTER 6

SHAPE-ADAPTIVE CONVOLUTIONAL OPERATOR AND ITS APPLICATION IN

BUS IMAGE SEGMENTATION

6.1 Introduction

In Chapters 4 and 5, the breast anatomy is applied to machine learning algorithms

to provide more information. The information is based on medical knowledge rather than

image features and automatically encoding deep features. Automatically encoding deep

features is one of the most important reasons leading to the success of deep convolutional

neural networks. There are a lot of studies on obtaining better convolutional features and

providing context information in deep learning; however, they do not discuss the higher-

order information in the features. Higher-order information is the information from pixels

with high Euclidean distances to the target pixel (also called non-local information). The

non-local information can provide important information in pixel-wise classification. There

is research for obtaining non-local information such as the non-local network [71], self-

attention mechanism [34], criss-cross attention [35], etc. These non-local operators are

investigated using the self-attention mechanism and calculate the correlation between one

pixel with all other pixels in the feature map through matrix multiplication. The correlation

is utilized as the attention coefficient of the feature map, which means they do not merge the

non-local information. Deformable convolution [37] is the first research that tries to merge

non-local information in the convolutional operator; however, the convolution pixels are still

based on small Euclidean distances. In [72], a dynamic graph convolutional network is used

for citation network and social media classifications. The graph structure is updated during

the period that the network is trained by the k nearest neighbor (k-NN) algorithm and k-

means cluster in the feature domain, and it is only specific for graph data. To extract more

efficient convolutional features for BUS images, we propose a novel convolutional operator,
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(a) (b)

Fig. 6.1: Convolutional operators: (a) 3× 3 convolutional operator; and (b) SAC operator
with 9 pixels.

a shape-adaptive convolutional (SAC) operator, to extract the features rather than in the

Euclidean space. The positions of the pixels are selected by algorithms which means they

can be from non-local positions.

6.2 The Proposed Method

The original 2-dimensional (2D) convolutional operator is reviewed. Then, the SAC op-

erator is designed and compared with the original convolutional operator. Two approaches

to select pixels for the SAC operator are discussed. Finally, the entire network structures

and training strategy are presented.

6.2.1 Shape-adaptive Convolutional Operator

In Fig. 6.1 (a), the standard 3×3 convolutional operator is shown. The standard 3×3

convolutional operator only merges information from pixels with the shortest Euclidean

distance (eight neighbors). However, pixels with larger Euclidean distances (Fig. 6.1 (b))

might also contain important information. In order to define the proposed SAC operator

clearly, the standard convolutional operator is reviewed. For an input feature map M ∈

RH×W×C and a convolutional operator w ∈ RS×S×T , H and W represent the height and

width of the input feature map; C donates the number of channels; S represents the kernel

size, and T represents the number of kernels in the operator. The original convolutional
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operation is defined as:

Out (i, j, t) =
C−1∑
Ch=0

S−1∑
p=0

S−1∑
q=0

M (i+ p− bS/2c , j + q − bS/2c , Ch)w (p, q, t) + bias (t) (6.1)

where i = 0, 1, 2, ...,H−1; j = 0, 1, 2, ...,W −1; t = 0, 1, ..., T −1; Out (i, j, t) represents the

convolutional result for the pixel in the ith row and the jth column using the tth kernel.

The original convolutional operator is a 2D cross-correlation operator of the input feature

map and convolutional kernel. The convolutional kernel will slide through the entire feature

map. In this work, we design a novel convolution operator that can select convolutional

pixels effectively and can extract the higher-order information well.

Suppose for a pixel in the feature map, there are k selected pixels (the approaches for

selecting the k pixels will be discussed in Subsection 6.2.2), and an adjacent matrix Adj ∈

RC×HW×k is defined to store the feature values of the selected k pixels; HW represents

the number of pixels in the input feature map. A 1 × 1 convolutional operator w ∈ RT is

performed on the adjacent matrix:

Q (Ch, u, t) =

k−1∑
kh=0

Adj (Ch, u, kh)w (t) (6.2)

where Ch = 0, 1, 2, ..., C − 1; u = 0, 1, 2, ...,HW − 1; and t = 0, 1, ..., T − 1; Q (Ch, u, t)

represents the convolutional result using the tth kernel. The 1 × 1 convolutional operator

does not contain the bias. The final convolutional result is computed by:

Out (u, t) =

C−1∑
Ch=0

Q (Ch, u, t) + bias (t) (6.3)

where u = 0, 1, 2, ...,HW − 1; and t = 0, 1, ..., T − 1. Out (u, t) represents the final convolu-

tional result of the uth pixel using the tth kernel.

Out (u, t) ∈ RHW×T is reshaped to the size of Out (i, j, t) ∈ RH×W×T and passed to

the next operation. The combination (Eq. (6.4)) of Eq. (6.2) and Eq. (6.3) is equivalent

to the original 2D convolutional operator (Eq. (6.1)) if k pixels are selected by the closest
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Fig. 6.2: Selecting pixels for the SAC operator using self-attention coefficient.

Euclidean distance. Here we choose 9 pixels as an example. The closest 9 pixels to the

target pixel are the target pixel and its neighbors (marked by green and red in Fig. 6.1 (a),

respectively).

Out (u, t) =
C−1∑
Ch=0

k−1∑
kh=0

Adj (Ch, u, kh)w (t) + bias (t) (6.4)

where u = 0, 1, 2, ...,HW − 1; and t = 0, 1, ..., T − 1.

6.2.2 Selecting Pixels for SAC Operator

Two approaches are utilized for selecting k pixels in the SAC operator: the k-NN

algorithm and the self-attention coefficient calculation [34]. In the first approach, we choose

the k pixels according to feature values; in the second approach, each pixel calculates the

self-attention coefficients between other pixels in the feature map; and the k pixels which

have the highest coefficients are selected.

K nearest neighbor: Input feature map M ∈ RH×W×C is reshaped to M ′ ∈ RHW×C .

M ′ (u, :) and M ′ (v, :) represent the uth and vth rows in M ′; the L2 norm between the feature

vector M ′(u, :) and M ′(v, :) are calculated:

D(u, v) = ||M ′(u, :)−M ′(v, :)||2 (6.5)

where u = 0, 1, . . . ,HW − 1; v = 0, 1, . . . ,HW − 1; and D (u, v) represents the L2 norm

between the uth pixel and the vth pixel in the input feature map. The indexes of the smallest
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(a) (b)

Fig. 6.3: (a) The entire network; and (b) the proposed SAC operator.

k values are found, and their feature values are stored in adjacent matrix Adj ∈ RC×HW×k.

Self-attention coefficient: The k pixels are selected based on the self-attention co-

efficient calculated by the self-attention mechanism [34] without attention multiplication.

In Fig. 6.2, the input feature map M is input into two 1 × 1 convolutional operators to

generate two new maps Y,Z ∈ RH×W×C . Then, Y and Z are reshaped to Y ′ ∈ RHW×C

and Z ′ ∈ RC×HW . We perform a matrix multiplication of matrices Y ′ and Z ′ and apply a

Soft-max to calculate the spatial self-attention coefficient matrix Cor.

Cor(u, v) =
exp (Y ′(u, :) · Z ′(:, v))∑HW−1

v=0 exp(Y ′(u, :) · Z ′(:, v))
(6.6)

where u = 0, 1, ...,HW − 1; v = 0, 1, ...,HW − 1; Y ′(u, :) represents the uth row of Y ′;

Z ′(:, v) represents the vth column of Z ′. Cor(u, v) measures the correlation between the

uth pixel and the vth pixel in the input feature map. If two pixels contain similar feature

values, the self-attention coefficient between them is high. Then, the adjacent matrix Adj ∈

RC×HW×k is created based on the feature values of the k pixels with the highest self-

attention coefficients for each pixel.
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6.2.3 Entire Network Structure and Training Details

The proposed SAC operator (Fig. 6.3 (b)) is applied to the U-Net with VGG-16 [22]

and the U-Net with ResNet-101 [15] (Fig. 6.3 (a)), respectively, for comparison. The input

image and feature maps from the convolutional blocks 1-4 are processed by the proposed

SAC operators. The output feature maps of SAC operators are concatenated with the

feature maps of the convolutional blocks. The procedure of the proposed SAC operator is

shown in Algorithm 2.

Experiment environment: The loss function is defined as a category cross-entropy

loss. The weights in the proposed network are initialized randomly. The batch size is

8. The input images are resized to 128 × 128. The optimizing method is the Stochastic

Gradient Descent (SGD), with a learning rate of 0.001 and momentum of 0.99. The details

for selecting k in the SAC operator will be discussed in the experiment section. The training

epoch number is set to 80. The experiments are conducted using a computer with Ubuntu

18.04 system, Intel(R) Xeon(R) CPU E5-2620 2.10 GHz, and 8 NVIDIA GeForce 1080

graphics cards. The implementation is based on PyTorch 1.6.0. and 10-fold validation is

utilized in the experiments.

Algorithm 2 SAC Algorithm

Input: Input feature map M ∈ RH×W×C ; the number of pixels used to calculate convolu-
tion (k); the number of output channels (the number of filters, T ).

Initialization: The weights and bias are initialized by the uniform distribution.
1: Compute the relation matrix (D(u, v) or Cor(u, v) in Subsection 6.2.2) by Eq. (6.5) or

Eq. (6.6).
2: Compute Adj ∈ RC×HW×k by sorting D(u, v) or Cor(u, v) , and selecting feature values

of the top k pixels.
3: Perform 1 × 1 convolution on Adj; the kernel size is 1 × 1 × T ; and the intermediate

result is Q (Ch, u, t).
4: Perform summation in the t dimension of Q (Ch, u, t); the result is Out (u, t).
5: Add bias to Out (u, t).
6: Reshape the result to Out (i, j, t) ∈ RH×W×T .

Output: Output feature map Out (i, j, t) ∈ RH×W×T .
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Fig. 6.4: The relation between segmentation performance and parameter k.

6.3 Experiment Results

6.3.1 Datasets

The proposed network is applied to three datasets. The private multi-object BUS image

dataset collected by a cooperative hospital contains 325 BUS images mentioned and utilized

in the previous chapters. This dataset contains pixel-wise groundtruths for 5 categories: fat

layer, mammary layer, muscle layer, background area, and tumor. We also utilize two public

binary BUS image datasets for further evaluating the proposed method. The binary BUS

image datasets only contain pixel-wise groundtruths for the tumors and background areas.

These two datasets are also mentioned in Table 3.1. The first binary dataset [2] contains

163 BUS images, including 109 benign and 54 malignant images; and the second dataset [3]

contains 780 BUS images, including 437 benign, 210 malignant, and 133 no tumor images.

The non-local operator self-attention mechanism [34] and the deformable convolution

[37] are also applied to the input feature map and 4 convolutional feature maps of U-Net

with ResNet-101, respectively, for comparison. Moreover, five state-of-the-art semantic

segmentation methods: U-Net with VGG-16, U-Net with ResNet-101, Deeplab V3+ [64],

FCN-8s [14], and PSPNet [18] with ResNet-101, are compared with the proposed approach

as well. All methods are not pre-trained using other datasets.
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Fig. 6.5: The positions of k pixels involved in the SAC operators: the green pixels are
target pixels; red pixels are selected to calculate the convolutions of the target pixels; a1-a4
are based on the k-NN selection approach; a5-a8 are based on the self-attention coefficient
selection approach.

6.3.2 Metrics

A metric popularly used in semantic segmentation, Intersection over Union (IoU, also

known as the Jaccard Index in the binary task), is utilized to evaluate the performance of

multi-object segmentation tasks. Mean IoU (mIoU =
∑

IoU/Cn, and Cn represents the

number of categories) over five categories is utilized to evaluate the overall performance.

Five area metrics: True Positive Ratio (TPR), False Positive Ratio (FPR), Jaccard

Index (JI), Dice’s Coefficient (DS), and Area Error Ratio (AER) [1] are utilized to evaluate

the performance on two public binary datasets.

6.3.3 Parameter k in SAC Operator

This part discusses the relationship between segmentation results and parameter k

(the number of selected pixels). We choose the multi-object dataset to train the proposed

network. The parameter k for five SAC operators is the same. The proposed SAC +

ResNet-101 is utilized. Parameter k is changed from 10 to 60, and the step size is 10. The

segmentation performances are shown in Fig. 6.4. When k = 50, the mean IoU and the

IoU for tumors are the highest for both the k-NN selection approach and self-attention

approach. Therefore, the parameter k is set to 50 for both self-attention coefficient and

k-NN selection approach in Subsection 6.3.5 and 6.3.6.
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Table 6.1: Results of multi-object segmentation (IoU (%)).

Fat Mammary Muscle Background Tumor Mean

VGG-16 70.34 66.72 66.17 65.91 74.66 68.76

ResNet-101 81.50 73.41 72.07 74.47 75.29 75.35

FCN-8s 82.57 75.47 75.53 78.59 74.42 77.32

PSPNet 82.07 74.40 74.49 77.36 74.75 76.61

Deeplab 78.91 68.71 67.33 73.94 69.04 71.58

Self-attention 82.53 76.23 75.91 80.29 78.81 78.75

Deformable
Convolution

81.49 75.87 74.12 79.34 76.77 77.52

Method1 82.64 75.67 75.81 80.23 78.34 78.54

Method2 84.10 78.58 76.18 83.61 80.03 80.50

Method3 85.52 80.06 77.34 84.18 79.74 81.37

Method4 86.18 80.65 78.17 84.69 81.07 82.15

* Method1: VGG-16 + SAC with k-NN, Method2: VGG-16 + SAC with self-
attention coefficient, Method 3: ResNet-101 + SAC with k-NN, Method4:
ResNet-101 + SAC with self-attention coefficient.

6.3.4 Positions of k Selected Pixels in SAC Operator

In this part, the positions of the k selected pixels to calculate the SAC operators are

displayed. The input of the first SAC operator is the original image; all the results in Fig.

6.5 are from the first SAC operator. In Fig. 6.5, two images are chosen to exhibit the

pixels used in the SAC operator. The self-attention coefficient approach and k-NN selection

approach are compared, and k = 50 for both approaches.

Fig. 6.5 shows that the proposed SAC operator can select non-local pixels for convolu-

tion; however, the ordinary convolutional operator can only select local pixels. In Figs. 6.5

a1-a4, the selected pixels are based on k-NN and feature values. Two different pixels (green

pixels in Figs. 6.5 a1-a4) in the same category in an image have similar correlated pixels.

However, the selected correlated pixels are distributed in tumor areas, mammary layer, and

background, i.e., they cause segmentation errors. The pixels selected by the self-attention

coefficient (Figs.6.5 a5-a8) are mostly distributed inside the tumor areas, which means the

self-attention coefficient can select the correlated pixels in the correct category. Even for

two different pixels (green pixels in Figs. 6.5 a5-a8) in the same category in one image, they

have similar distributions of the correlated pixels.
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Fig. 6.6: Semantic segmentation: (a) original images; (b) groundtruths; (c) results of U-
Net with VGG-16; (d) results of U-Net with ResNet-101; (e) results of PSPNet; (f) results
of Deeplab; (g) results of FCN-8s; (h) results of ResNet-101 + self-attention mechanism;
(i) results of ResNet-101 + deformable convolution; (j) results of ResNet-101 + SAC with
k-NN; and (k) results of ResNet-101 + SAC with self-attention coefficient.

6.3.5 Multi-object Segmentation for BUS Images

Fig. 6.6 shows the segmentation results using a multi-object dataset. The proposed

approach can segment the BUS images better because the SAC operator can utilize the

correlated pixels determined correctly in convolution for each pixel in BUS images. These

correlated pixels can provide non-local context information. The performance of using the

self-attention coefficient is better than that of using k-NN in the SAC operator (refer Fig.

6.6 j1 and k1) because the correlated pixels provided by the self-attention coefficient are

in the correct categories; meanwhile, the correlated pixels for different pixels in the same

category are similar. Applying the self-attention mechanism to ResNet-101 can reduce

misclassification because the self-attention coefficient provides better non-local context in-

formation. However, the deformable convolution does not perform well because the pixels

used in convolution are still according to the short Euclidean distances with the target pixel.

The evaluation results can be found in Table 6.1. Bold numbers are the correspond-

ing best results. The SAC with self-attention coefficient in the ResNet-101 achieves the

best IoUs in all categories and the overall performance. Applying the self-attention mecha-

nism can increase performance. However, the deformable convolution does not increase the

performance as much as the proposed method or self-attention mechanism. The result in-

dicates that the deformable convolution only contains limited ability in providing non-local
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Table 6.2: Results on public datasets (%).

Datasets Methods TPR FPR JI DS AER

[2]

VGG-16 79.30 45.84 68.16 76.40 66.54
Deeplab 63.68 36.06 52.93 61.91 72.38

ResNet101 83.58 34.40 71.43 79.45 50.82
FCN8s 82.72 41.14 67.50 76.87 58.42
PSPNet 81.08 40.42 69.77 78.24 59.34

Self-attention 82.58 16.39 73.83 81.37 33.81
Deformable
Convolution

84.11 37.15 71.86 79.92 53.04

Proposed1 87.51 27.16 76.40 82.26 38.67
Proposed2 88.21 21.23 77.90 83.21 32.12

[3]

VGG-16 78.66 41.98 68.77 77.37 63.32
Deeplab 59.88 39.39 49.65 59.39 79.52

ResNet101 79.40 46.02 69.26 77.90 66.62
FCN8s 74.23 46.69 63.16 73.03 72.63
PSPNet 77.11 46.65 65.21 74.75 69.54

Self-attention 79.76 35.26 69.74 78.46 55.50
Deformable
Convolution

78.11 40.20 68.88 77.35 62.09

Proposed1 81.05 39.11 71.63 78.27 51.07
Proposed2 82.56 37.12 72.12 79.12 45.01

* Proposed1: ResNet-101 + SAC with k-NN, Proposed2: and
ResNet-101 + SAC with self-attention coefficient. Bolds are the
corresponding best results.

information.

6.3.6 Tumor Segmentation Results Using Public Datasets

Two public BUS image datasets are utilized to evaluate the proposed method as well.

The proposed SAC + ResNet-101 is utilized because it achieves better results than the

proposed SAC + VGG-16 using the multi-object dataset. The overall segmentation perfor-

mance can be found in Table 6.2. Bold numbers are the best results. The proposed SAC

with self-attention coefficient achieves the best metrics except for FPR compared with other

methods; however, using the self-attention mechanism in ResNet-101 obtains lower FPR.

Lower FPR indicates that using the self-attention mechanism in the ResNet-101 can reduce

errors in segmentation results by using non-local context information; however, the pro-
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posed method can achieve better overall performance by combining non-local information

in convolution. The proposed SAC + self-attention coefficient obtains 6.47% and 2.86%

increases of JI scores compared with that of the U-Net with ResNet-101 on datasets [2]

and [3], respectively. The evaluation results indicate that the self-attention coefficient can

provide effective context information; however, using the self-attention coefficient in select-

ing convolutional pixels and merging the long-distance information is better than just using

it as an attention weight.

6.4 Conclusion

In this chapter, we introduce a shape-adaptive convolutional operator to BUS im-

age segmentation. Compared with the DC feature in Chapter 4 and medical knowledge

constrained CRFs in Chapter 5, they provide breast medical knowledge to BUS image seg-

mentation. The SAC operator can extract non-local information better than that in the

Euclidean space. Non-local information is extracted by two methods: 1) k nearest neigh-

bor, and 2) the self-attention coefficient calculation. Experimental results demonstrate that

the two methods can find better-correlated pixels in feature space for the target pixel, and

they can provide more useful information. Moreover, the SAC operator can select pixels

effectively and avoid losing pixels during the deformation of the convolutional kernel. The

proposed method achieves significant improvement on three BUS image datasets. The pro-

posed SAC + self-attention coefficient obtains a 5.78% increase of IoU in tumor category

on a multi-object dataset and 6.47% and 2.86% increases of JI scores on datasets [2] and [3]

compared with that of the U-Net with ResNet-101.
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CHAPTER 7

BREAST ULTRASOUND IMAGE SEGMENTATION USING A MULTI-SCALE FUZZY

GENERATIVE ADVERSARIAL NETWORK

7.1 Introduction

In the previous chapters, many BUS image segmentation approaches have been re-

viewed. These approaches can be divided into five categories: thresholding algorithms,

region-growing algorithms, watershed algorithms, graph-based algorithms, and deep neural

network-based algorithms [11], [38], [39]. We have been proposed five methods for BUS

segmentation in Chapter 2 to Chapter 6. These methods can solve uncertainty in the

channels and pixels in the feature maps and involve breast context information in ma-

chine learning algorithms. To further improve the performance of classic segmentation

networks, Generative Adversarial Network (GAN) is involved in BUS image segmentation.

In the previous research, researchers propose a Generative Adversarial Network (GAN) [73]

which employs an adversarial network to guide the segmentation network to generate more

accurate segmentation results. In [74], a semantic segmentation method including a con-

volutional semantic segmentation network along with an adversarial network is proposed

to eliminate inconsistencies between groundtruth maps and predicted segmentation results.

Xue et al. [75] further propose an adversarial network with multi-scale L1 loss for image

segmentation that can learn features in different scales and capture contextual relationships

to boost the segmentation accuracy. Han et al. [76] propose a semi-supervised generative

adversarial network with a dual-attentive-fusion block to enhance discrimination for BUS

image segmentation.

Despite the good performance of the above methods, they do not consider the un-

certainty in BUS images. In this study, we proposes a novel multi-scale fuzzy generative

adversarial network (MSF-GAN) for BUS image segmentation that uses uncertainty maps
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Fig. 7.1: An overview of the proposed MSF-GAN.

to train the discriminative network. Inspired by reference [75], the proposed MSF-GAN

consists of a generative network (G-net) and a discriminative network (D-net) which re-

spectively minimize and maximize the loss functions. The output of G-net is a segmen-

tation map. The proposed MSF-GAN employs a fuzzy attentive feature generator and a

multi-scale fuzzy entropy (MSF) module, which can transform the segmentation maps and

groundtruth maps into the fuzzy domain to measure uncertainty. The multi-scale fuzzy en-

tropy (MSF) module can distinguish the difference in uncertainty maps from two inputs and

help to train a better segmentation network. The major contributions of the proposed ap-

proach are: (1) Design a novel MSF-GAN for BUS image segmentation that outperforms six

state-of-the-art deep neural network-based methods on three BUS datasets in terms of five

metrics. (2) Design a fuzzy attentive feature generator to generate fuzzy attentive feature

maps for the segmentation maps generated by G-net and ground-truth maps. (3) Design

an MSF module to measure the uncertainty in segmentation maps and groundtruth maps

and calculate a multi-scale L1 loss on uncertainty maps to help to train the segmentation

network.

7.2 The Proposed Method

The proposed MSF-GAN consists of a G-net for the generation of pixel-wise segmen-

tation maps and a D-net for guiding G-net to generate more accurate segmentation maps.

Between G-net and D-net, a fuzzy attentive feature generator is employed to transform the

segmentation maps and groundtruth maps to the fuzzy domain and then generate fuzzy
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attentive feature maps for them. D-net incorporates an MSF module to calculate multi-

scale L1 loss on uncertainty maps extracted from fuzzy attentive maps. In this subsection,

we first present the architecture of MSF-GAN, then present the fuzzy attentive feature

generator, and finally present the MSF module.

7.2.1 Overview

The architecture of the proposed MSF-GAN is illustrated in Fig. 7.1. MSF-GAN

employs a U-ResNet (a U-shape network with ResNet-101 [15] as its backbone) as its G-

net to generate pixel-wise segmentation results, denoted as segmentation maps. All input

BUS images are first resized to 128 × 128 and then fed into G-net. A segmentation map

of size 128 × 128 × C is generated for an input BUS image, where C represents the total

number of categories. Each pixel contains C values in the segmentation map, and each

element represents the probability to the corresponding category. Then, we use a fuzzy

attentive feature generator that takes an original BUS image and its groundtruth map

as inputs to compute a fuzzy attentive groundtruth map. Similarly, we compute a fuzzy

attentive segmentation map by an original BUS image and its segmentation map. The fuzzy

attentive feature generator will be introduced in Subsection 7.2.2 in detail. The D-net is

composed of five convolutional layers with kernels of size 4 × 4, stride 2, padding 1, and

ReLU activation function. It takes a fuzzy attentive groundtruth map and a fuzzy attentive

segmentation map as two inputs and calculates a multi-scale L1 loss on their uncertainty

maps, which will be introduced in Subsection 7.2.3. The objective of G-net is to generate

accurate segmentation maps, and the objective of D-net is to distinguish the uncertainty of

the segmentation maps and groundtruth maps. For an input BUS image, if the uncertainty

map of the segmentation map is very close to the uncertainty map of the groundtruth map,

then it is hard for D-net to discriminate them. In contrast, if the uncertain map of the

segmentation map is not close to the uncertain map of the groundtruth map, it means there

still exists uncertainty in the segmentation map. The goal is to make G-net generate very

accurate segmentation maps which contain similar uncertainty maps to the groundtruth

maps. In this study, we enhance the discriminating ability of the D-net by using a fuzzy



91

Fig. 7.2: Illustration of the proposed fuzzy attentive feature generator.

attentive feature generator and a multi-scale L1 loss calculated on uncertainty maps and

therefore force G-net to generate more accurate segmentation maps that are very close to

the groundtruth maps.

7.2.2 Fuzzy Attentive Feature Generator

The target for fuzzy attentive feature generator is to transform the input of the dis-

criminative network to the fuzzy domain. Fig. 7.2 illustrates the proposed fuzzy attentive

feature generator. It takes a pair of an original BUS image and its segmentation map gen-

erated by the G-net , or a pair of an original BUS image and its groundtruth map as inputs.

Specifically, for an original image, its segmentation map and its groundtruth map are indi-

vidually transformed into the fuzzy domain by a convolutional operator with a kernel size

of 1× 1 and sigmoid function as activation function. The operation of fuzzification can be

represented by:

Fx = Conv 1× 1 (x) (7.1)

where x can be an original BUS image of size 128× 128, a segmentation map generated by

G-net of size 128×128×C, or a groundtruth map of size 128×128×C, where C is the total

number of categories. After fuzzification, x is transformed into Fx of size 128 × 128 × C.

Then, we respectively perform a fuzzy AND operator on a pair of the fuzzified original

image (denoted as Fo) and fuzzified segmentation map (denoted as Fpre), and on a pair
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of Fo and the fuzzified groundtruth map (denoted as Fgt) to generate a fuzzy attentive

groundtruth map FAgt and a fuzzy attentive segmentation map FApre. This operation can

be represented by:

FApre = min(Fo, Fpre) (7.2)

FAgt = min(Fo, Fgt) (7.3)

where min is the AND operator in fuzzy logic that performs a pixel-wise minimization

operation on its two inputs. FApre and FAgt are of size 128 × 128 × C. Different from

reference [75] that directly uses groundtruth map masked images and segmentation map

masked images as the inputs of D-net, we first generate three types of fuzzified maps and

then compute two fuzzy attentive maps by using them as the inputs of D-net. We can train

D-net better by using these fuzzy attentive maps to extract multi-scale features and calculate

a multi-scale L1 loss on uncertainty maps extracted from these fuzzy attentive maps because

through a non-linear transformation of the fuzzification and fuzzy AND operator in fuzzy

feature generator, the fuzzy features are more discriminable than the non-fuzzy features

and we can also measure uncertainty on fuzzy features.

7.2.3 Multi-scale Fuzzy Entropy Module

In D-net, five convolutional layers with kernels of different sizes are used to extract

multi-scale features on the input fuzzy attentive groundtruth map FAgt and fuzzy attentive

segmentation map FApre. These features are then fed into the proposed MSF module to

calculate a multi-scale L1 loss on uncertainty maps, which are calculated via FAgt and

FApre. By training a powerful D-net to better discriminate the uncertainty map of FAgt

and that of FApre, G-net is forced to generate more accurate segmentation maps. As shown

in Fig. 7.1, D-net takes a fuzzy attentive groundtruth map FAgt and a fuzzy attentive

segmentation map FApre as the inputs, then employs five convolutional layers to extract

multi-scale features. Let L denote the total number of convolutional layers in D-net (here

L = 5). Let f l(FApre) and f l(FAgt) denote the feature map extracted by the l-th layer of
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D-net, respectively. Then it performs a 1×1 convolution with ReLU activation function on

f l(FApre) and f l(FAgt) respectively to transform their channel number to C to calculate

fuzzy entropy. The transformed feature maps are denoted as:

T lpre = Conv1× 1 (f l(FApre)) (7.4)

T lgt = Conv1× 1 (f l(FAgt)) (7.5)

Then, it calculates the fuzzy entropy on T lpre and T lgt to represent their uncertainty

maps respectively:

Elpre(i, j) = − 1

logC

C∑
c=1

T lpre(i, j, c) · log T lpre(i, j, c) (7.6)

Elgt(i, j) = − 1

logC

C∑
c=1

T lgt(i, j, c) · log T lgt(i, j, c) (7.7)

where T lpre(i, j, c) and T lgt(i, j, c) represent the values of the i-th row, j-th column and c-

th channel of T lpre and T lgt, respectively. It then computes a multi-scale L1 loss on the

uncertainty maps Elpre(i, j) and Elgt(i, j) by:

min
θG

max
θD
L(θG, θD) =

1

N

N∑
n=1

`mae(E
l,n
pre(i, j), E

l,n
gt (i, j)) (7.8)

where θG and θD denote the parameters of G-net and D-net respectively; N denotes the

total number of training images; El,npre and El,ngt denote the uncertainty map extracted by

the l-th layer on the n-th training image, respectively. `mae is the Mean Absolute Error

(MAE) (L1 loss), defined as:

`mae(E
l
pre, E

l
gt) =

1

L

L∑
l=1

∥∥∥Elpre − Elgt∥∥∥
1

(7.9)

The loss L in Eq. (7.8) can capture a rich contextual relationship between pixels by

using the multi-scale uncertainty maps Elpre and Elgt generated by different convolutional

layers. During the training of MSF-GAN, we minimize L with respect to the parameters θG
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Fig. 7.3: Illustration of segmentation results on multi-layer dataset. (a) Original BUS image;
(b) Groundtruth; (c) U-VGG; (d) U-ResNet; (e) PSPNet; (f) Deeplabv3+; (g) FCN-8s; (h)
SegAN; (i) Proposed MSF-GAN.

of G-net, while maximizing it with respect to the parameters θD of D-net. The objective of

G-net is to generate accurate segmentation maps that contain similar uncertainty to ground-

truth maps so that L is minimized. The uncertainty is represented by fuzzy entropy. In

contrast, the objective of D-net is to distinguish the uncertainty of segmentation maps

from the uncertainty of groundtruth maps and therefore force G-net to generate accurate

segmentation maps. When D-net is powerful enough, it can distinguish these two kinds of

uncertainty maps very well so that L is maximized. To implement this strategy, we train

G-net and D-net in an alternating scheme: first, fix G-net and train D-net to maximize L,

and then fix D-net and train G-net to minimize L. During the training procedure, both

G-net and D-net are becoming more and more powerful. By using fuzzy attentive feature

maps and the multi-scale L1 loss computed from these fuzzy attentive feature maps, the

discriminating ability of D-net is further enhanced compared with [75]. Therefore, our more

powerful D-net can better guide G-net to generate more accurate segmentation maps close

to groundtruth maps.

7.3 Experiment Results
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7.3.1 Datasets and Metrics

We evaluate the performance of the proposed MSF-GAN on three datasets: a multi-

layer dataset (introduced in Subsection 2.5.1 and Subsection 3.4.1), and two public datasets

mentioned in Table 3.1: Dataset 1 [2] and Dataset 2 [3]. The multi-layer dataset is a private

dataset consisting of 325 images with a mean image size of 500×300 pixels. The groundtruth

annotations include four breast anatomical layers (fat layer, mammary layer, muscle layer,

background layer) and tumors. Dataset 1 and dataset 2 are two public BUS datasets where

groundtruth annotations only separate tumors and background. Dataset 1 has 163 images

with a mean image size of 760×570 pixels, where most of the images contain small tumors.

Dataset 2 has 780 images with a mean image size of 500× 500 pixels where tumors are in

different sizes. In total, there are 1268 images used for evaluation.

We further compare the segmentation performance of MSF-GAN and six state-of-the-

art deep neural network-based methods on above mentioned three BUS datasets. The

six compared methods are: U-Net [48] with ResNet-101 [30] as its backbone (denoted as

U-ResNet), U-Net with VGG-16 [22] as its backbone (denoted as U-VGG), FCN-8s [14],

SegAN [75], PSPNet [18], and Deeplabv3+ [64]. We use five metrics for the evaluation.

They are: True Positive Ratio (TPR), False Positive Ratio (FPR), Intersection over union

(IoU), Dice’s Coefficient (DS) (also known as F1-score), and Area Error Ratio (AER).

Table 7.1: Results of multi-layer segmentation (IoU (%)).

Fat Mammary Muscle Background Tumor Mean

U-ResNet 81.50 73.41 72.07 74.47 75.29 75.35

U-VGG 70.34 66.72 66.17 65.91 74.66 68.76

FCN-8s 82.57 75.47 75.53 78.59 74.42 77.32

SegAN 81.68 75.89 72.53 81.69 77.23 77.80

PSPNet 82.07 74.40 74.49 77.36 74.75 76.61

Deeplab 78.91 68.71 67.33 73.94 69.04 71.58

MSF-GAN 83.11 77.05 73.11 81.98 78.50 78.75

* Bold values are the best results for the corresponding classes.
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7.3.2 Segmentation Results on Multi-layer Dataset

Table 7.1 compares the performance of MSF-GAN and six compared methods on the

multi-layer dataset in terms of IoU. Bold values are the best results for the corresponding

classes. On this dataset, MSF-GAN achieves the best segmentation result for all classes

in terms of IoU. Specifically, it achieves the highest mean IoU value of 78.75% among five

classes, including fat layer, mammary layer, muscle layer, background, and tumor. It should

be noticed that the proposed MSF-GAN outperforms SegAN, which is also a GAN-based

network using a multi-scale L1 loss, for all classes in terms of IoU.

Fig. 7.3 presents segmentation results of MSF-GAN and six compared methods for

three representative BUS images in the multi-layer dataset. For image a1 in the top row

containing a tumor and a small tumor-like region, all of six compared methods mistakenly

segment the tumor-like region while MSF-GAN correctly segments the tumor region with

the highest mean IoU value of 71.33%. For image a2 in the middle row containing no tumor,

all six compared methods mistakenly segment a tumor region while MSF-GAN correctly

generates a segmentation result without tumor. Among all methods, GAN-based networks

SegAN (h2) and MSF-GAN (i2) outperform other non-GAN-based networks. The second-

best method SegAN achieves a mean IoU value of 81.73%, while the MSF-GAN achieves

the best mean IoU value of 87.81%. For image a3 in the bottom row containing an irregular

tumor without a clear contour, for the tumor region, four non-GAN-based methods (c3 to

g3) fail to give an accurate segmentation result, and two GAN-based networks (h3 and i3)

give an accurate segmentation result close to groundtruth. SegAN fails to produce accurate

segmentation results for other layers and has a mean IoU value of 60.40%. MG-GAN

achieves the highest mean IoU value of 77.90%. As shown in Table 7.1 and Fig. 7.3, the

proposed fuzzy attentive feature generator and multi-scale L1 loss calculated on multi-scale

uncertainty maps are efficient to enhance the discriminating ability of D-net and force G-net

to generate more accurate segmentation results.

7.3.3 Segmentation Results on Two Public Datasets

Table 7.2 compares the performance of MSF-GAN and six state-of-the-art methods on
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Dataset 1 and Dataset 2 in terms of TPR, FPR, IoU, DS, and AER. MSF-GAN has the

highest TPR value of 84.57%, the highest IoU value of 73.30%, and the highest DS value

of 81.58% on Dataset 1. MSF-GAN achieves the best performance in terms of IoU, FPR,

DS, and AER and a comparable TPR value on Dataset 2. Specifically, it improves the

second-best method by 2.69%, 2.68%, 19.15%, and 14.22% for IoU, DS, FPR, and AER,

respectively. The experiment results show that the proposed MSF-GAN can perform well

on public datasets. It contains high robustness and segmentation ability.

Table 7.2: Results on public datasets (%).

Datasets Methods TPR FPR IoU DS AER

Dataset 1 [2]

U-ResNet 83.58 34.40 71.43 79.45 50.82
U-VGG 79.30 45.84 68.16 76.40 66.54
FCN-8s 82.72 41.14 67.50 76.87 58.42
SegAN 81.13 49.96 70.11 78.05 68.83
PSPNet 81.08 40.42 69.77 78.24 59.34
Deeplab 63.68 36.06 52.93 61.91 72.38

MSF-GAN 84.57 40.31 73.30 81.58 55.73

Dataset 2 [3]

U-ResNet 79.40 46.02 69.26 77.90 66.62
U-VGG 78.66 41.98 68.77 77.37 63.32
FCN-8s 74.23 46.69 63.16 73.03 72.63
SegAN 76.23 25.95 69.21 77.83 49.71
PSPNet 77.11 46.65 65.21 74.75 69.54
Deeplab 59.88 39.39 49.65 59.39 79.52

MSF-GAN 78.34 20.98 71.12 79.99 42.64

7.3.4 Experiment Setup

To ensure a fair comparison, we set these parameters to be the same for all compared

methods. All experiments are conducted on Ubuntu 18.04 system with Intel(R) Xeon(R)

CPU E5-2620 2.00 GHz and two NVIDIA GeForce 1080Ti graphics cards with 11 Gigabyte

memory. An Adam optimizer with learning rate = 0.0002, β1 = 0.9, and β2 = 0.99 is

used for training. The batch size is set as 12, and the number of training epochs is set as

80. The initial weights are initialized randomly. Input images are augmented by horizontal

flip, horizontal shift, vertical shift, rotation, zooming, and shear mapping before fed into
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networks. We employ 10-fold cross-validation to evaluate the performance of MSF-GAN

and six compared methods.

7.4 Conclusion

In this chapter, we propose a novel MSF-GAN method for BUS image segmentation

consisting of a generative network and a discriminative network. MSF-GAN employs a

fuzzy attentive feature generator to extract fuzzy attentive feature maps respectively from

segmentation maps generated by the generative network and from groundtruth maps and

then uses an MSF module to extract multi-scale uncertainty maps from these fuzzy atten-

tive feature maps to calculate a multi-scale L1 loss that can capture the rich contextual

relationship among pixels. By using the fuzzy attentive feature generator and the multi-

scale L1 loss calculated on uncertainty maps, the discriminating ability of the discriminative

network is enhanced and can better guide the generative network to generate more accurate

segmentation results. The proposed MSF-GAN outperforms six state-of-the-art deep neural

network-based methods in terms of TPR, FPR, IoU, DS, and AER on three BUS datasets.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Breast cancer is one of the most serious diseases affecting women’s health all over the

world. The incident rate of breast cancer keeps increasing in recent years. Many researchers

focus on the early detection of breast cancer. Many medical imaging approaches are applied

to clinical diagnosis, such as magnetic resonance imaging (MRI), X-ray, computed tomog-

raphy (CT) imaging, and ultrasound imaging. Since the development of computer science

technology and the Internet, there are many computer-aided diagnosis systems, especially

the rapid growth of deep learning in recent years. The performance of computer-aided

diagnosis systems increases significantly after applying deep learning.

Deep learning is essential to the field of computer vision and pattern recognition. Au-

tomatically encoding deep features is one of the most important reasons for the success of

deep convolutional neural networks. There are a lot of studies on obtaining better convolu-

tional features. The first one is increasing the depth of the convolutional neural networks.

However, based on the backpropagation [77] training method, it is hard to train a network

if the depth increases. A residual neural network (ResNet) [15] is developed, making the

deeper network more trainable than before. Atrous Spatial Pyramid Pooling (ASPP) [17]

and Pyramid Pooling Module (PPM) [18] used spatial multi-scale pooling operation to ob-

tain multi-scale information. In [19], different scales of convolutional filters were utilized

in the same convolutional block to get multi-scale information and enrich the information

in each convolutional block. These researches hope to reflect the information of targets in

different sizes in the same convolutional block. Attention mechanisms such as [20,21,34] can

reduce uncertainty and provide context information in deep convolutional neural networks.

However, deep learning approaches still have some shortcomings. If we apply deep learn-

ing algorithms to medical image analysis, there should be some prior medical knowledge

that can help to increase the performance. Here are some shortcomings for deep learn-
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ing algorithms: (1) existing attention mechanisms can only solve uncertainties caused by

randomness; other uncertainty and noise are not discussed in the previous methods; (2)

although there are researches related to providing context information in deep learning or

classic machine learning methods, context information about breast cancer and breast ultra-

sound image is not involved; (3) context information from non-local pixels can be reflected

by recurrent neural networks, and non-local operators; however, non-local information is

not mentioned in convolutional operator; (4) current deep learning methods are like “black

box” methods, which means we are hard to understand the convolutional features and why

they are useful for final classification. In this dissertation, some of the shortcomings of deep

learning are discussed, and it is applied to breast ultrasound image segmentation.

In Chapter 2, we firstly design a fuzzy block in deep convolutional neural networks,

and we try to solve uncertainty and noise in convolutional neural networks by fuzzy logic.

This research is inspired by previous studies of fuzzy logic in computer vision. However,

previous fuzzy methods do not define uncertainty clearly. In this research, a trainable

Sigmoid membership function and a trainable Gaussian membership function are utilized

to transform the input feature map of the fuzzy block to the fuzzy domain. We define

a pixel whose membership to a category is close to 0.5 as an uncertainty pixel. By this

definition, we design an uncertainty mapping function. After measuring the uncertainty

degree of each pixel, an attention mechanism is utilized to reduce the weight of uncertain

pixels. The proposed fuzzy block contains the fuzzification part, uncertainty mapping part,

and reducing uncertainty part. The fuzzy block is applied to the input image and the first

convolutional feature map.

In Chapter 3, we continue the research on reducing uncertainty in convolutional feature

maps. In this chapter, an improved fuzzy block is proposed. In the fuzzification part

of the fuzzy block, a 1×1 convolutional operator with a Sigmoid activation function is

utilized to replace the trainable Sigmoid and Gaussian membership functions in Chapter

2. In the uncertainty mapping part, fuzzy entropy is chosen to represent the uncertainty

degree because fuzzy entropy has successfully represented uncertainty in previous research.
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Meanwhile, not only the uncertainty for each pixel is measured, but also the uncertainty for

each channel is measured. Therefore, spatial-wise and channel-wise fuzzy blocks are utilized

in all five convolutional blocks of deep neural networks to reduce uncertainty.

In Chapter 4, new research on uncertainty reduction is conducted. Meanwhile, a novel

context feature: the direction-connectedness (DC) feature, is designed to reflect breast

horizontal layer information in deep neural networks. A pyramid fuzzy block is proposed to

measure the uncertainty of objects in different scales by a pyramid structure in one fuzzy

block. The input feature map of the fuzzy block is down-sampled to two different resolutions.

The fuzzy operators designed in Chapter 3 are applied to the two new resolution feature

maps and the original resolution feature map. Since one object has different sizes in different

images, the pyramid structure can detect the uncertainty by using various resolutions of

feature maps at one time. The proposed DC feature can provide breast horizontal layer

structure by calculating the connectedness between one pixel and the boundary pixels in

horizontal left, right, and vertical up, down directions. The DC feature can provide more

information that can help to segment breast cancer well.

In Chapter 5, a deep learning + medical knowledge constrained CRFs architecture is

proposed for BUS image segmentation. Breast anatomy is modeled as a constrained term in

the energy function of CRFs. The initial segmentation results from a deep neural network

are utilized to provide the breast anatomy information. Each pixel in the segmentation

map is given a label vector. Values of the label vectors are specifically defined for different

categories. The context information (the order of the breast layers) is provided during

the energy function optimization. The medical knowledge constrained CRFs can refine the

segmentation results from deep neural networks and involve breast anatomy information.

In Chapter 6, a shape-adaptive convolutional operator is proposed. Besides the breast

horizontal layer structure and the order of breast layers provided in Chapter 4 and Chapter

5, novel context information from non-local pixels is involved in convolutional operators.

The original 2-dimensional (2D) convolutional operator is a cross-correlation operator of

the input feature map and convolutional kernel. The kernel is a square shape, which means
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it can merge information in the neighbor pixels of the target pixel. However, pixels that

are not closed to the target pixel in Euclidean distance might still contain correlation. The

novel shape-adaptive convolutional operator extends the original 2D convolutional operator

to the general version. The pixels used in convolution are not neighbor pixels, and they

are calculated through k nearest neighbor algorithm or self-attention mechanism, which

means the shape of the kernel is not square shape. The novel convolutional kernel can

provide contextual information based on the feature domain and self-attention coefficient

domain. The proposed architecture outperforms six state-of-the-art deep learning methods

on a 325-image dataset and 2 public datasets.

In Chapter 7, to further explore a novel segmentation approach for BUS image seg-

mentation and investigate the ability of Generative Adversarial Network (GAN) in BUS

image segmentation, a novel multi-scale fuzzy generative adversarial network (MSF-GAN)

is proposed for BUS image segmentation. Two novel modules are designed and applied to a

classic multi-scale loss GAN. The first module is a fuzzy feature generator, which takes the

segmentation maps from the generative network + original input image or the groundtruth

map + original input image as inputs. The fuzzy feature generator can transform the input

information to the fuzzy domain and generate input for the adversarial network by the fuzzy

logic operator. The second module is a multi-scale fuzzy (MSF) entropy module in the ad-

versarial network, which distinguishes the uncertainty of fuzzy feature maps generated from

segmentation maps and groundtruth maps from five convolutional layers using L1 loss. The

proposed method can measure and compare the uncertainty in the segmentation maps and

groundtruth maps and help the generative network generate more accurate segmentation

maps. The proposed network outperforms six state-of-the-art deep learning methods on

three datasets.

We develop several approaches for BUS image segmentation, and we also provide new

methods in deep learning which can reduce uncertainty and provide context information.

However, we acknowledge that there are remaining challenges in BUS image CAD systems

and deep learning: (1) only breast layer structure and breast anatomy are utilized as context
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information in our researches; there is other important context information in BUS image

which can also improve the performance of CAD systems; (2) our researches are focus on

BUS image segmentation; however, the classification of malignant and benign tumor [78,79]

and BI-RADS [80,81] are more important because the final object of CAD systems is breast

cancer diagnosis; they are not discussed in this dissertation; (3) the interpretability of deep

learning such as convolutional feature visualization [82], and the correlation convolutional

feature and classification [83] results are not mentioned. In the future, our research will be

on (1) involving more context information using deep learning or classic machine learning

methods, which can increase the current BUS image segmentation and classification meth-

ods; (2) developing other higher-order information (information from long distance pixels)

extraction methods and explore the influence of higher-order information in classification

decision; (3) conducting researches in the classification of malignant and benign tumor and

BI-RADS classification which is the key to CAD systems; (4) exploring the interpretabil-

ity of deep learning in BUS image segmentation and classification (such as the correlation

between convolutional features and the classification decision) which can help to under-

stand and improve deep learning approach; (5) trying to apply uncertainty and context

information researchers to nature image processing and develop some general algorithms

for computer vision.
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