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Quantitative analysis of the MRI structural and functional images is a fundamental component in 

the assessment of brain anatomical abnormalities, in mapping functional activation onto human 

anatomy, in longitudinal evaluation of disease progression, and in computer-assisted 

neurosurgery or surgical planning. Image registration and segmentation is central in analyzing 

structural and functional MR brain images.  

However, due to increased variability in brain morphology and age-related atrophy, 

traditional methods for image registration and segmentation are not suitable for analyzing MR 

brain images from elderly individuals. The overall goal of this dissertation is to develop 

algorithms to improve the registration and segmentation accuracy in the geriatric population.  

The specific aims of this work includes 1) to implement a fully deformable registration pipeline 

to allow a higher degree of spatial deformation and produce more accurate deformation field, 2) 

to propose and validate an optimum template selection method for atlas-based segmentation, 3) 

to propose and validate a multi-template strategy for image normalization, which characterizes 

brain structural variations in the elderly, 4) to develop an automated segmentation and 

localization method to access white matter integrity (WMH) in the elderly population, and finally 

5) to study the default-mode network (DMN) connectivity and white matter hyperintensity in 

late-life depression (LLD) with the developed registration and segmentation methods.  

THE REGISTRATION AND SEGMENTATION OF BRAIN MR IMAGES FROM 

ELDLY INDIVIDUALS 

Minjie Wu, Ph.D. 

University of Pittsburgh, 2009
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Through a series of experiments, we have shown that the deformable registration pipeline 

and the template selection strategies lead to improved accuracy in the brain MR image 

registration and segmentation, and the automated WMH segmentation and localization method 

provides more specific and more accurate information about volume and spatial distribution of 

WMH than traditional visual grading methods. Using the developed methods, our clinical study 

provides evidence for altered DMN connectivity in LLD. The correlation between WMH volume 

and DMN connectivity emphasizes the role of vascular changes in LLD’s etiopathogenesis.  

Keywords: image registration, image segmentation, template selection, resting state 

connectivity, late-life depression. 
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1.0  INTRODUCTION 

Magnetic resonance imaging (MRI) plays an increasingly important role in the studies of the 

brain in both modern neuroscience and radiological practice. This non-invasive imaging 

technique is flexible and sensitive to a broad range of tissue properties, which allow for in vivo 

studies of the anatomy, the function, and the metabolism of the human brain. Brain anatomy is 

studied via quantitative analysis of the MRI structural images. Studying anatomical brain 

structures is important for assessing the brain’s anatomical abnormalities, mapping functional 

activation onto human anatomy, longitudinally evaluating disease progression, and planning 

computer-assisted neurosurgery [1]. Brain function is studied via functional Magnetic Resonance 

Imaging (fMRI). One use of this technique is to help measure the localized temporal 

haemodynamic response triggered by neural activity in the brain [2] 

Image registration and segmentation is central in analyzing structural and functional MR 

brain images. However, due to increased variability in brain morphology in the elderly, 

traditional methods for image registration and segmentation of MR brain images are sometimes 

not suitable for analyzing MR brain images of elderly individuals.  The goal of this dissertation 

is to develop algorithms to improve the registration and segmentation accuracy in the MR images 

of the geriatric population.  
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1.1 STANDARD APPROACHES IN BRAIN MRI 

Many approaches have been developed for brain MRI research in the elderly. These include 

utilizing a variety of MR acquisition contrasts, as well as different image registration and 

segmentation methods for image data analyses.  

1.1.1 MR Contrast  

In neuroscience and radiological applications, the MR signal most frequently relies on the 

relaxation property of excited hydrogen nuclei in the water molecules and lipids. The spatial 

encoding of the MR signal is accomplished by superimposing gradient fields at three directions, 

x, y and z. The contrast of an MR image is dependent on the MR imaging protocol. Applying 

radio-frequency (RF) pulses and gradient pulses at carefully chosen timings may produce images 

with different intensity contrasts, which highlight different tissues in the brain.  

Using the intrinsic magnetic properties, three types of image contrasts exist for MR 

imaging of tissue: T1-weighted, T2-weighted and proton density. MRI can also detect the 

intrinsic features of tissue microstructure and microdynamics using diffusion-tensor MRI (DT-

MRI). A montage of a typical MR image at an axial slice, with various MR image types of 

acquisition including T1, T2, proton density weighted images, is shown in Figure 1.1. Echo-

planar-based diffusion weighted image, anisotropy and tensor orientation maps from diffusion-

tensor imaging are also included in Figure 1.1.  
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Figure 1.1. A variety of types of MR images can be acquired for brain imaging. 

 

1.1.2 Image Registration 

Image registration involves aligning one image to another image acquired for different objects or 

the same object but under different conditions. The process requires finding the optimal spatial 

transformation that maps corresponding structures in one image to the other. This is both 

important and ubiquitous in many aspects of medical imaging; particularly in the analysis of MR 

brain imaging. For example, image registration can be used to transform individual brain images 

into the standard stereotactic image space, so as to facilitate the comparison across subjects in 

fMRI. Image registration can also be used in atlas-based image segmentation to automatically 
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label the anatomy of new brain images. Depending on what types of features are used in 

transforming the template image into the subject image space, a given image registration method 

can be classified as either model-based or intensity-driven. 

1.1.2.1 Model-based registration  

Model-based registration approaches involve matching the homologous landmarks or features 

[3]. These landmarks or features may be obtained manually or semi-automatically. The 

advantage of the model-based approaches is that images with different modalities can be 

registered using the extracted landmarks; but manually determining these landmarks could be 

very labor intensive (to the point of infeasibility) and often requires extensive training.  

1.1.2.2 Intensity-based registration  

Intensity-based approaches obtain the spatial transform by maximizing a similarity criterion 

between the two images [4-6]. The spatial transformation describes the spatial relationship 

between the target image and subject image; the metric (similarity criterion or cost function) 

quantitatively describes how well the target image and subject image are registered; the 

optimization method decides the procedure used to search the space of transformation parameters 

to find an optimal transformation as a function of the metric.  

Spatial transformation models 

Several spatial transformation models have been proposed to estimate the deformation 

field from the source image to the target image, including affine linear model [7], nonlinear 

polynomial model [7], linear combination of basis functions [6], elastic registration technique [8-

10], demons registration model [11] and so on.  
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The 12-parameter (9 independent parameters) affine linear model requires that parallel 

lines remain parallel after transformation, which allows rotation, translation, rescaling and 

shearing along the three axes.  

In the polynomial model, the transformed coordinates 

€ 

(yi1,yi2,yi3)  in the target image 

space are computed as a polynomial function of respective location 

€ 

(xi1,xi2,xi3)  in the source 

image.  

To estimate the deformation field, the nonlinear spatial transformation model is expanded 

as a linear combination of some smooth basis functions 

€ 

β(x1,x2,x3) , such as 3D discrete cosine 

transform (DCT) functions [6].   

Elastic registration techniques model the deformation of the source image into a target 

image as the physical deformation of an elastic body under external forces f (x, y, z) . The 

physical deformation involves internal and external forces. The internal force tends to resist any 

change in shape. The deformation of the elastic body stops when the internal force and the 

external force form an equilibrium state. 

Demons registration models the image registration problem as a diffusion process, in 

which the contour (surface) of the target image is considered as a membrane and the deformed 

image is considered as a deformable grid. 

Similarity metrics  

A number of similarity metrics have also been explored for the intensity-based MR brain 

warping. These include least squared differences in voxel intensities [4], ratio image uniformity 

(RIU) [4], normalized cross-correlation [9], and mutual information [12].  
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With least squared difference metric, the difference between the source image and the 

target image is computed at each voxel, and the square of this difference is averaged across 

voxels to generate this cost function. The metric assumes that both images are of the same 

modality and of similar intensity distribution. Intensity histogram matching is needed to 

normalize the intensity scales of the source image and the target image when global intensity 

differences exist between two images.  

For the ratio image uniformity metric, a ratio image is created by dividing the source 

image by the target image at the voxel level. Then, the standard deviation of the ratio image 

normalized by the mean ratio is calculated as the measure for the ratio image uniformity. When 

there is global intensity scaling between the target image and the source image, the registration 

performance with RIU metric improves.  

The mutual information metric is measured from the joint probability distribution of the 

images’ intensities, which evaluates the statistical dependency between the intensity patterns of 

the source image and the target image. The main advantage of this metric in the brain warping is 

that it is suitable for both multi-modality and same-modality image registration. 

Image registration is used in atlas-based segmentation to automatically segment 

anatomical structures on a given subject’s brain image, in which the template image is 

transformed into the subject space (template->subject), carrying the labeling atlas along from the 

template space into the subject image space. Image registration is also used in image 

normalization to warp the individual brain image into a common standard space (subject-

>template), which facilitates voxel-wise comparison between groups in fMRI. 
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1.1.3 Image Segmentation 

Image segmentation plays an important role in many neuroimaging applications including 

neurosurgical planning, diagnosis and assessment of various pathologic conditions, and the 

definition of anatomical regions of interest for functional imaging studies. Image segmentation 

involves assigning a label to every voxel in an image, such that all the voxels in a segment with 

the same label share certain characteristics. Automated and semi-automated segmentation 

methods that have been developed for image segmentation include clustering methods, 

histogram-based methods, neural networks segmentation, and atlas-based segmentation.  

1.1.3.1 Atlas-based segmentation 

Accurate structural or regional segmentation and classification is critical for many MR brain 

image analyses such as volumetric comparison or inter-subject functional activation 

comparisons. Traditional manual region segmentation is not only labor intensive and time-

consuming (to the point of infeasibility with a large dataset and multiple regions), but also 

introduces human subjectivity and often requires extensive training [13]. To overcome these 

drawbacks, atlas-based segmentation was introduced to automatically label the anatomical 

structures for individual brain images [9, 14]. In atlas-based segmentation, the standard labeled 

atlas brain image is registered to the individual brain image using different spatial deformation 

models, and then the labeling information in the atlas is carried into the subject space by warping 

the atlas with the obtained spatial transformation.  In this method, the region segmentation or 

classification task is viewed as a registration procedure, and the key problem becomes finding 

the optimal spatial transformation between the template brain image and the individual brain 

image.   
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As show in Figure 1.2, the standard Montreal Neurological Institute (MNI) template brain 

Colin27 [15], which carries high anatomical details and has a high spatial resolution (1mm x 

1mm x 1mm voxel size), is used as the template. In the figure, an axial image slice of the 

Automated Anatomical Labeling digital atlas (AAL) [16] on MNI Colin27 and one elder subject 

are also shown. 

 

Figure 1.2.  Axial slice of structural MR brain images of MNI template colin27, AAL atlas and one elderly 

subject. 

1.1.4  Image Normalization  

In image normalization, functional and structural data from different individuals are warped into 

a stereotaxic coordinate space (e.g. MNI Colin27) using different registration methods (subject-

>template image registration). Image normalization is a prerequisite in most neuroimaging 

research for voxel-wise functional or structural image analyses. 

For example, when studying brain function within a population or comparing brain 

function between different groups, the motion-corrected low-resolution functional images are 

first registered into an individual structural image using rigid body or linear affine model, then 
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they are warped into MNI colin27 using a fully deformable model, and finally a voxel-by-voxel 

t-test is performed on the warped functional images (in standard image space) to locate 

functional activation, as shown in Figure 1.3. If the same stereotaxic coordinate space (e.g. MNI 

Colin27) is used for different studies, then the anatomical location of functional activation can be 

reported as the standardized coordinates, and with this quantitative spatial reference system 

results (e.g. functional activation maps) from different studies or groups can easily be compared 

and correlated.  

 

 

Figure 1.3.  Image normalization to convert functional MR images of individuals into a common space MNI 

Colin27. Func: low-resolution functional brain image, Struct: low-resolution structure brain image acquired 

at the same location as functional image, SPGR: Spoiled Gradient Recall Acquisition, high-resolution T1-

weighted brain image, and MNI atlas: Montreal Neurological Institute standard template Colin27. 
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1.2  BRAIN MORPHOLOGY IN THE ELDERLY  

1.2.1 Variations in Normal Brains  

Individual brains in a population do not conform to a single anatomic topology. Normal 

variations in the brain structures include difference in sulcal patterns, gyral folding patterns, 

morphological shape, volume, asymmetries between the right and left hemispheres, etc. For 

example, variability in the gyral folding pattern is present in the anterior cingulate cortex (ACC) 

structure; it has been estimated that approximately 30-60% of the population has a paracingulate 

sulcus (PCS)  [17], a normal variant of the ACC in which there is an additional gyral fold (see 

Figure 1.4). 

 

Figure 1.4. The variations in anterior cingulate cortex (ACC) are present in the brains of 4 healthy subjects.  

Two subjects have an additional gyral fold (red) paracingulate sulcus (PCS).  

 

1.2.2 Variations in Elderly Brains  

Due to age-related atrophy, elderly brains have smaller brain volume, larger sulci and larger 

ventricles. The presence of these significant differences is shown in Figure 1.5, in which an 

elderly brain is compared to the standard template (e.g. MNI Colin27). 
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Figure 1.5. The comparison of brain images from (a) young subject versus (MNI Colin27) (b) elderly subjects. 

The magnitude of brain shrinkage during aging varies among brain regions and 

structures. Longitudinal and cross-sectional studies have shown more age-related pronounced 

tissue loss in frontal and parietal than temporal and occipital lobes [18]. However, a different 

brain aging pattern has been reported by Raz et al., in which severe and moderate age-related 

atrophies are observed in prefrontal and temporal cortices while minor differences are observed 

in parietal and occipital cortices [19]. The local patterns of gray matter and white matter loss 

during aging also differ. Age-related gray matter change has been found to be more prominent in 

cingulate, insular, orbital and inferior frontal cortex than medial temporal regions [18]. However, 

white matter volume loss has been observed to be more widespread throughout the elderly brains 

[18]. Figure 1.6 shows a typical T2-weighted attenuated inversion recovery (FLAIR) image of 

the same elderly subject with severe white matter hypertensities (WMH, also known as 

leuokoaraiosis).  
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Figure 1.6. The T1-weighted MR brain image (a) and T2-weighted FLAIR image (b) with severe white matter 

hyperintensities due to demyelination in an elderly subject. 

The rate of brain shrinkage with age also varies throughout the brain. Previous research 

shows linear correlations between age and loss of tissue in the cortex, amygdala, thalamus, 

accumbens, and caudate; it also shows curvilinear relationships between age and shrinkage of the 

cerebral white matter, hippocampus, brainstem, cerebellar white, gray matter, and so on [20].  

 

1.3  MOTIVATION AND GOAL 

In addition to the variations in normal brain anatomical structures, the heterogeneity in age-

related brain atrophy introduces additional variability in the brain morphology of elderly 

individuals. This presents significant difficulties in the image registration and segmentation of 

the MR brain images from elderly population. In this dissertation, possible solutions are 
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proposed to improve the registration and segmentation accuracy of MR brain images of the 

elderly.  

1.3.1 Comparison of Registration Methods 

The standard nonlinear registration algorithms such as Automated Image Registration (AIR)[21] 

and Statistical Parametric Mapping (SPM)[6] either allow linear or nonlinear smooth 

deformation fields or are restricted to small deformations, which may not be sufficient to correct 

the highly nonlinear difference between the elderly subject and the template MNI Colin27 in 

image alignment. The first goal of this dissertation is to implement a fully deformable 

registration pipeline to allow a higher degree of spatial deformation, and to quantitatively 

compare the performance of the deformable model to the popular linear and nonlinear 

registration methods (AIR and SPM) in atlas-based segmentation.  

1.3.2 Template Selection Strategies 

Using an unrepresentative single brain template in atlas-based segmentation or image 

normalization [e.g. the Talairach atlas [22], the MNI Colin27 [15]] introduces a bias in the image 

registration by favoring subjects similar to the template against subjects substantially different 

from the template. A single-brain template, MNI Colin27 for example, is not a good 

representative of geriatric populations given the increased variability in brain morphology in the 

elderly. Different template selection strategies have been proposed to improve the accuracy in 

atlas-based segmentation and image normalization.  
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1.3.2.1 Template Selection in Atlas-based Segmentation  

A second goal of this dissertation is to improve the segmentation accuracy with an optimum 

template selection strategy. Instead of choosing a fixed brain atlas, we use a family of brain 

templates for the atlas-based segmentation. For each subject and each region the template 

selection method automatically selects the ‘best’ template with the highest local region of 

interest (ROI) registration accuracy based on the metric of normalized mutual information. The 

segmentation performances of the optimum template selection method and the single template 

method are quantitatively evaluated and compared.  

1.3.2.2 Template Selection in Image Normalization  

Another goal of this dissertation is to propose multi-template strategies to improve the 

registration accuracy in the image normalization of elderly population. Instead of registering an 

individual brain image directly into the standard MNI space Colin27 during image 

normalization, this method chooses intermediate prototype templates as a bridge between the 

individual brain image and Colin27 (subject->intermediate brain images->Colin27). In order to 

identify a set of intermediate templates, we use a bottom-up clustering algorithm to choose a set 

of prototype templates that spans the space of brain morphometry in the elderly population [23-

26]. The purpose of this strategy is to characterize the anatomical structural variations in brains 

of the elderly population while preserving brain structural details. 

1.3.3 Segmentation and Localization of White Matter Hyperintensities  

White matter hyperintensities (WMH), commonly seen in T2-weighted FLAIR MR images, 

reflect aged-related white matter damage. As a marker for white matter degeneration, WMHs are 
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associated with neuropsychiatric disorders, including vascular dementia [27], Alzheimer’s 

disease [28], and late-onset late-life depression [29, 30]. Previous MRI studies of WMHs have 

primarily relied on the subjective and global (i.e., full-brain) ratings of WMH grade. Another 

goal of this dissertation is to implement and validate an automated method for quantifying and 

localizing WMHs. This automated segmentation method is then used to study the effect of WMH 

burden on the resting-state connectivity in late-life depression.  

1.3.4 Clinical Application 

Using the fully deformable registration and the automated WMH segmentation methods 

developed in the previous sections, we characterize the default-mode network (DMN) 

connectivity in late-life depression (LLD) and the correlation of default-mode network (DMN) 

activity changes with the White Matter Hyperintensity (WMH) burden. We hypothesize that 

LLD subjects will have altered DMN activity, which will correlate with the increased WMH 

burden, providing evidence for the vascular depression hypothesis.  

1.4 DESCRIPTION OF CHAPTERS 

Overall, the goal of this dissertation is to improve the accuracy of image registration and 

segmentation of elderly population. The first chapter gives an overview of standard approaches 

in brain MRI and challenges in analyzing MR brain images from elderly individuals due to age-

related atrophy.  
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The second chapter focuses on developing a deformable pipeline to achieve more 

accurate estimation of the deformation fields (template Colin27->Subject). The performance of 

the deformable model is quantitatively compared to the popular packages in the neuroimaging 

field through a series of experiments.  

The third chapter proposes an optimum template selection strategy to further improve the 

segmentation accuracy in atlas-based segmentation and compares the proposed template 

selection method to the standard single-template strategy.  

 The fourth chapter addresses the template selection problem in image normalization of 

elderly population. A multiple template strategy is proposed and evaluated under different spatial 

deformation models.  

The fifth chapter proposes an automated method to segment and localize the white matter 

damages (white matter hyperintenties) in T2-weighted FLAIR images of the elderly population.  

The sixth chapter focuses on the clinical applications of the previously developed 

methods, and studies the effect of white matter damage on default-mode network in late-life 

depression. 

The final chapter discusses the limitations and contributions of this dissertation. Potential 

directions for further research are also explored.  
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2.0  COMPARISON OF REGISTRATION METHODS 

Typical packages used for co-registration of neuroimages in functional image analyses are 

Automated Image Registration [AIR, 4] and Statistical Parametric Mapping [SPM, 6]. However 

both methods have limited-dimension deformation models; AIR uses a polynomial 

transformation model with limited coefficients, while SPM uses the linear combination of 

smooth basis functions. On the other hand, a fully deformable registration technique [31] which 

combines the piecewise linear registration for coarse alignment with the demons algorithm [11] 

for finer tuning, allows for a higher degree of deformation and a more accurate spatial 

deformation field. Moreover, the fully deformable technique is publicly available (www.itk.org), 

like AIR and SPM. Recent work by our group suggests that a similar fully deformable method 

[32] is more accurate than affine linear methods at hippocampus segmentation in Alzheimer's 

disease patients [33]. In this chapter, we quantitatively compare the performance of AIR, SPM 

and the fully deformable model in three aspects with control subjects: accuracy of automatic 

segmented region against the ground truth region (i.e., hand-drawn region), the sharpness of the 

average brain image, and reliability of functional signal for group analysis.  
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2.1 MATERIALS  

2.1.1 Subjects and MR Imaging Parameters 

Ten subjects (7 male; mean age 24.4, range 20-32 years old; right-handed) participated in this 

study. Scanning was done on a 1.5T GE CVi scanner with 3D SPoiled Gradient Recall 

Acquisition (SPGR, TE/TR=5/25; flip angle = 40; FOV= 24×18cm, slice thickness 1.5mm, 

256×192 matrix). Functional scanning was performed using a one-shot spiral sequence (TR/TE = 

2000/35; flip angle = 70; FOV = 24; slice thickness = 3.8mm; 64×64×26 matrix). Subjects 

performed 8 blocks of a learning task, in which the stimuli appeared in one of four boxes across 

the screen and the subjects were asked to respond as fast and accurately as possible to the 

location of the stimuli with a key press (using the index and middle fingers of the both hands). 

An error for this task is defined as any trial in which the subject pressed the incorrect key while 

responding to the location of a stimulus. The stimuli appeared once every 2 seconds for 40 

seconds, followed by 20 seconds of fixation.  

2.1.2 Manual Segmentation of Brain Regions  

The standard MNI (Montreal Neurological Institute) brain colin27 [15] which carries high 

anatomical details and has a high spatial resolution (1mm x 1mm x 1mm voxel size), was used as 

the template. Two raters manually segmented the right hippocampus and right anterior cingulate 

cortex (ACC) on the template colin27 and on each subject. The segmented regions on the 

template were used as the atlas in atlas-based automatic segmentation [34] and the segmented 

regions on each subject were used as the ground-truth region mask.  
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For the segmentation procedure, the hippocampus was manually traced in the sagittal 

view. The first medial slice was defined as the slice that first showed the cerebral peduncle 

separated from the upper pons and the most lateral slice was defined as the last slice that still 

showed gray matter of the hippocampus. The posterior limit was set as the slice where an ovoid 

mass of gray matter started to appear inferiomedially to the trigone of the lateral ventricle. The 

alveus served as the anterior and superior limit of the head of the hippocampus.  

For the segmentation of the ACC, tracings were made in serial coronal slices. The sagittal 

and axial views were used as a reference to outline the ACC .The posterior limit of the ACC was 

defined by a vertical line perpendicular to the anterior commissure-posterior commissure (AC-

PC) plane and passing through the AC. The cingulate and callosol sulci constituted of the outer 

and inner boundaries of the ACC respectively. When a sulcus running parallel and superior to the 

cingulate sulcus was present, the paracingulate gyrus was included in the tracing. 

Inter-rater reliability for the manual tracings of each one of the two regions of interest 

(ROI) was calculated using the intraclass correlation coefficient (ICC). For the inter-rater 

reliability, the calculated ICCs were: 0.89 (right hippocampus) and 0.97 (right ACC). To obtain 

intra-rater reliability a subset of 5 MR images was retraced by the same rater after 3-4 weeks 

(mean 22.2 ±3.4 days). The ICCs for intra-rater reliability were: 0.99 (right hippocampus) and 

0.93 (right ACC). 
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2.2 METHODS 

2.2.1 Registration Methods  

This section evaluates the image registration accuracies of three methods: AIR, SPM, and the 

fully deformable model. The registration methods were used to co-register the 3D SPGR image 

of each subject and the template Colin27. Prior to the registration, the skull was stripped from 

both colin27 and the subject’s 3D SPGR using the Brain Extraction Tool [BET, 35]. For AIR, 

the registration procedure that we used starts with a 12-parameter affine linear registration and 

then is followed by a second order 30-parameter nonlinear polynomial model. This procedure 

appeared to produce the best registration accuracy [34, 36]. For SPM, we used the standard SPM 

registration method, which begins with an affine linear registration similar to AIR, and then 

proceeds with the nonlinear registration using the spatial transformation model consisting of a 

linear combination of low-spatial-frequency discrete cosine transform functions. Both methods 

use limited parameters to describe the spatial deformation field; hence they only allow a certain 

degree of spatial transformation, which may lead to inaccurate alignment between the individual 

brain image and the template due to local anatomical variability or pathologic brain changes. The 

fully deformable model in this study is similar to that used by Chen [32]. This model was 

implemented using the registration library from Insight Segmentation and Registration Toolkit 

(ITK). This method first uses with a grid-based piecewise linear registration, followed by the 

demons registration algorithm as a fine-tuning procedure for a voxel-level spatial deformation. 

The fully deformable registration allows for more spatial deformation, which seems to give it a 

particular advantage over the other two packages when the brains are significantly different from 

the atlas like the brains of the elderly population.  
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2.2.2 Evaluation Methods 

In this section, we describe the three experiments that were performed to evaluate the relative 

accuracies of AIR, SPM, and the fully deformable model.  These experiments test the accuracies 

of registration using 1. atlas-based segmentation of the hippocampus and anterior cingulate 

cortex, 2. the smoothness of a mean image generated using the three registration approaches, and 

3. the effect-size of the blood-oxygen-level dependent (BOLD) fMRI signal co-localized across 

subjects with these registrations.  

2.2.2.1 Atlas-based Segmentation (Experiment 1) 

In this experiment, the automatic segmented regions were compared to the manually labeled 

ground-truth region masks for all of the 10 subjects. The right hippocampus and right anterior 

cingulate cortex (ACC) of each subject were estimated through atlas-based segmentation 

(template->subject registration) with AIR, SPM, and the fully deformable model respectively. 

The overlap ratio—the ratio of structure voxels (e.g., hippocampus voxels) that the estimated and 

ground-truth regions have in common to the structure voxels of the overall region (manually-

drawn region + auto-segmented region)–is computed for each subject to quantify how well the 

auto-segmented anatomical structures overlap with the hand-drawn ground-truth region mask. 

2.2.2.2  Image Normalization (Experiment 2) 

In Experiment 2, ten individual brain images were warped into the template Colin27 using each 

registration approach, and then a mean brain image was created from the resulting warped 

images. Visual inspection and quantitative smoothness measurement of the mean brain image 

were used to evaluate the performance of the corresponding registration method across subjects 
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in image normalization. Misalignment or error from the registration leads to a blurred mean brain 

image. Differences due to variability in individual anatomy also impact registration accuracy. 

The brain images of the ten subjects are presented in Figure 2.1 to show the variability of 

individual brain anatomy.  

 

Figure 2.1. The ten subject brain images used in these experiments. Variations in anatomical structures for 

these subjects can be observed. 

The program 3dFWHM in Analysis of Functional NeuroImages [AFNI, 37] based on 

algorithms described by Xiong [38] provides a good way to estimate smoothness of the mean 

brain images. In Xiong’s method, the spatial correlation between voxels along each axis is 

characterized by FWHMx, FWHMy, FWHMz (FWHM, for “Full Width Half Maximum”). By 

definition, the reported filter width is the estimation of the FWHM of the Gaussian kernel needed 

to produce the current smoothness; so wider FWHM means a greater degree of smoothness and 

indicates more inter-subject misalignment during the registrations. Therefore the filter widths 
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resulting from 3dFWHM can be used as quantitative smoothness measurements. The 3dFWHM 

algorithm assumes an isotropic image of random or spatially uncorrelated variables. However a 

brain image has spatial correlation. Therefore, the smoothness estimation of the mean brain 

images from 3dFWHM includes the inherent spatial correlation of the anatomical images. The 

smoothness of the anatomical template colin27 was also estimated using 3dFWHM and the result 

was used as the inherent smoothness. The smoothness of the average brain images—generated 

using AIR, SPM, and the fully deformable model—were measured with 3dFWHM and 

compared to the inherent anatomical smoothness (from colin27).  

2.2.2.3  FMRI effect-size (Experiment 3)  

The registration accuracies from these three approaches were also evaluated by comparing the 

functional MRI signals (fMRI) acquired on the auto-segmented dorsal anterior cingulate region 

(dACC). One very consistent finding in fMRI studies of cognitive control is that the dorsal 

anterior cingulate region (dACC) shows significant activity when subjects make an error or have 

response conflicts while performing a task [39].  We used a recent fMRI study that we conducted 

on error and conflict processing [40] to examine how the different registration methods differ in 

their abilities to co-localize the functional MR signal across subjects. In this event-related fMRI 

study of implicit learning, subjects were asked to press a button as rapidly and accurately as 

possible based on the position of a stimuli on the screen.  Due to the time pressure of the task 

subjects made on average 20% errors.  As expected we found significant fMRI activation in the 

dACC on error versus correct trials. In the study, we compared the fidelity of dACC error signal 

when the dACC was identified using the three different methods: AIR, SPM, and the fully 

deformable registration.  The subjects who participated in the fMRI protocol included 8 of the 10 

subjects whose structural images were compared in experiments 1 and 2.  
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The region of interest dACC (taken as the ROI described in Carter et al., [41]) was 

automatically segmented using the atlas-based segmentation technique (template->subject) with 

AIR, SPM, and the fully deformable model for each subject. Then, the signals were extracted on 

the segmented dACC after the functional images were aligned to the anatomical images.  The 

fMRI signals were averaged across the ROI to produce an average activation signal across dACC 

for each trial. Voxel outliers were corrected using the criteria of one standard deviation, and the 

signal was normalized by the first time point at each trial for each voxel.  For each subject the 

average correct activation timeseries was generated by averaging the activation timeseries across 

the correct trials and the average error activation timeseries was generated by averaging the 

activation time series across the error trials (i.e., when the subject inadvertently pressed the 

incorrect key). The peak activation differences between correct trials and error trials for all the 

subjects were statistically examined using a paired two-tailed t-test.  

2.3 PEFORMANCE COMPARISON RESULTS  

The performance of the fully deformable registration method is quantitatively evaluated in three 

applications including atlas-based segmentation, image normalization and fMRI signal 

localization. As predicted the fully deformable registration produced better results in all the three 

aspects. 

2.3.1 Performance in Atlas-Based Segmentation (Experiment 1) 

The mean overlap ratios across all the subjects for the right hippocampus and the ACC are 

shown in Figure 2.2. For both regions, the fully deformable model gave a higher mean overlap 



  25 

ratio than AIR or SPM: 7.3% higher for right ACC and 15.6% higher for right hippocampus.  A 

paired two-tailed t-test of the overlap ratios of the deformable model versus SPM was highly 

significant at t(9) = -5.182, p = 0.00058 (right ACC) and t(9) = -6.372, p = 0.00013 (right 

hippocampus). Similarly the t-test of the overlap ratios of the deformable model against AIR was 

significant at t(9) = -3.819, p = 0.0041 (right ACC) and t(9) = -3.8782, p = 0.0037(right 

hippocampus). However, there was no significant difference in mean overlap ratios between AIR 

and SPM at t(9) = 0.0494, p = 0.962 (right ACC) and t(9) = 0.1853, p = 0.857 (right 

hippocampus).  

 

Figure 2.2. Mean overlap ratios of right anterior cingulate cortex(R ACC) and right hippocampus (R Hi) 

across the 10 subjects were generated from atlas-based segmentation with AIR, SPM and the full deformable 

model (Deform).     

0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


R ACC Rater1
 R ACC Rater2
 R Hi Rater1
 R Hi Rater2


AIR

SPM

Deform




  26 

2.3.2 Performance in Image Normalization (Experiment 2) 

For visual inspection the average brain images from AIR, SPM and the fully deformable model 

are shown in Figure 2.3; the template colin27 is also shown for comparison. As can be seen in 

Figure 2.3, the fully deformable model produces a much sharper average brain image with very 

clear boundaries, from which we can clearly identify the cortical sulci and subcortical regions. 

 

Figure 2.3. The average brain from the 10 subject images using AIR, SPM and the fully deformable model. 

The template colin27 is also displayed for comparison.  

The smoothness measurements from 3dFWHM for the average brain images are shown in 

Table 2.1.  As shown in the table, for the average brain image from the fully deformable model, 

the filter widths along three principal axes were very similar to the 3dFWHM results on the 

template colin27. Additionally, the filter widths were significantly smaller in all three 

dimensions than measurements of mean brain images from AIR or SPM.  These results indicate 

that the fully deformable model introduces fewer inter-subject registration errors than AIR or 

SPM. The second experiment thus shows the superior performance of the fully deformable 
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method over AIR or SPM, at aligning the individual images to the standard MNI reference image 

or image normalization.  

Table 2.1. The Smoothness measurements of the averaged warped images 

Methods\Axes FWHMx FWHMy FWHMz 

Colin27(template) 5.31 5.77 5.59 

AIR 16.65 19.44 17.31 

SPM 14.62 17.66 15.74 

Fully Deform. 6.96 7.68 7.60 

The smoothness of averaged warped images from AIR, SPM, the fully deformable model 
was measured by the full width half maximum of the Gaussian smoothing filter along x, y, 
z axes through 3dFWHM.The smoothness of the template is also measure as a comparison, 
which described the inherent spatial correlation of the template colin27.  

 

2.3.3 Performance in fMRI signal localization (Experiment 3) 

As predicted, there was a greater fMRI signal on the error trials than the correct trials regardless 

of how the region was segmented (i.e., AIR, SPM, or the fully deformable model). However, as 

can be seen in Figure 2.4, with the fully deformable model we extracted higher group difference 

signals (average signals from error trials – average signals from correct trials) than AIR or SPM.  

As shown in Table 2.2, the paired two-tailed t-tests of the 8 subjects’ peak signals of average 

timeseries for correct trials against for error trials was significant at p = 0.0034 for the fully 

deformable model, at p = 0.0295 for AIR, and at p = 0.0668 for SPM. Therefore, the t-test results 

were more significant with the fully deformable method, suggesting this method to be a more 

reliable extraction of the functional imaging signal. 
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Figure 2.4. An average of the peak fMRI activation difference across the 8 subjects. For each subject, peak 

activation difference is the percent signal changes on correct trials versus error trials. 

 

Table 2.2. Statistical results on fMRI signals. 

Method t(7) p value 

AIR -2.7269 0.0295 

SPM -2.1681 0.0668 

Fully Deform. -4.3499 0.0034 

The paired two-tailed t-test results on peak signal of correct timeseries 
against peak signal of error timeseries based on the extracted ROI using 
AIR, SPM, and the fully deformable model. 
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2.4 SUMMARY 

In this chapter, we quantitatively evaluated the co-registration performance of AIR, SPM, and 

the fully deformable model in atlas-based segmentation, image normlization and fMRI signal 

localization through a series of experiments. Compared with AIR and SPM, the fully deformable 

model produced significantly higher overlap ratios for the right hippocampus and the right 

anterior cingulate cortex in experiment 1, which demonstrates it can identify ROI more 

accurately than AIR or SPM. This leads to a more accurate co-localization of the ROI for 

functional images, thus it consistently produces more reliable functional signals as indicated in 

experiment 3.  Experiments 1 and 3 are based on template->subject co-registration, and 

experiment 2 is based on subject->template co (image normalization)-registration. In both 

situations (atlas-based segmentation and image normalization), the fully deformable model 

shows better performance compared to AIR and SPM in co-registration.  

The fully deformable registration, however, is computationally expensive. On a G5 dual-

processor Macintosh it took approximately 1 hour per brain.  This compared to approximately 10 

minutes per brain for SPM (on an IRIX 64), and 2 hours for AIR on an IRIX 64. 

Also, it should be noted that the registration methods are sensitive to accurate skull 

stripping. In this study we used BET [35], which was adequate for the 10 subjects in this sample. 

However, in other studies we have found some discrepancies that have led to certain registration 

inaccuracies. Recently, we have improved the stripping using an automated morphological 

method [42]. This study is limited by a relatively small sample, 10 subjects for the first 2 

experiments, and 8 for experiment 3. Nevertheless the results for all three experiments were 

significant.  
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Overall, our results show that the fully deformable registration, compared to SPM and 

AIR, can improve anatomic alignment of brain images. Moreover, the improved registration 

from this method seems to lead to a more reliable mean BOLD fMRI signal.  Currently, standard 

fMRI analysis pathways use AIR or SPM. Our results suggest that the full deformable could 

improve the reliability of the co-localized fMRI results.  However, this comes at a cost of 

increased complexity of the registration and computation time.  Moreover, replication of these 

results in a larger sample is also needed. 
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3.0  OPTIMUM TEMPLATE SELECTION FOR ATLAS-BASED SEGMENTATION 

In the previous chapter, we found lower segmentation accuracy for the anterior cingulate cortex 

(ACC) than for the hippocampus in atlas-based segmentation [43]. We suspected that the lower 

accuracy for the ACC was due to the inter-subject variability in the gyral folding pattern in this 

structure. It has been estimated that approximately 30-60% of the population have a 

paracingulate sulcus (PCS) [17], a normal variant of the ACC in which there is an additional 

gyral fold. However, a single brain template Colin27 is unable to represent all the possible 

normal anatomical variations in the ACC, and thus the performance of atlas-based segmentation 

suffers.   

3.1 TRADITIONAL TEMPLATE STRATEGIES IN ATLAS-BASED 

SEGMENTATION 

Currently three different template selection strategies have been used in atlas-based 

segmentation: single brain atlas, probabilistic map and multi-atlas strategy. Most previous 

studies involving atlas-based segmentation have used a single fixed template strategy [44-46]. 

Widely used single-brain atlases include the Talairach template [22] and the standard MNI 

(Montreal Neurological Institute) template brain Colin27 [15]. The Talairach template was based 

on the brain of a 60-year-old female subject, and the MNI Colin27 template was averaged from 
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27 co-registered high-resolution scan of a young male subject. Since both atlases are based on 

one particular brain, neither one can fully represent the variety of anatomical structures present 

in the population of normal brains.     

An alternative approach is to construct a probabilistic map by averaging brain images 

from a population of subjects after co-registration with a linear or nonlinear spatial 

transformation model to a stereotaxic space (individual space->stereotaxic space) [47, 48], such 

as MNI305 [49], ICBM152 and ICBM452 (ICBM: International Consortium for Brain 

Mapping)[50]. The probabilistic atlas map reflects the inter-subject variability within the 

population used for template construction. However, due to misalignment from registration 

errors or structural variabilities in the population, the structures in the population-based atlases 

are usually blurry and the atlases also lack anatomical detail.  

Besides the above strategies, the nature of atlas-based segmentation (atlas->subject 

registration) also allows for the possibility of using multiple atlases. Multi-atlas segmentation has 

been found to improve the segmentation performance compared to the individual atlas and the 

averaged atlas approaches [51-55]. In the multi-atlas method, the segmentation procedure with 

each atlas is viewed as an independent classifier, and segmentation results from multiple atlases 

or classifiers are combined or fused to reach a consensus segmentation. Different fusion 

strategies have been explored including a simple voting rule with equal weight of training data 

[51, 53], a voting rule with equal weight within top ranked (similarity based sorting) atlases [55],  

or a voting rule with individual atlas weighted by their EM-based (expectation-maximization) 

performance [52]. The multi-atlas methods can substantially improve the segmentation accuracy 

[52]. 
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In this section, we propose a novel optimum template selection strategy for atlas-based 

segmentation. Instead of choosing a fixed atlas such as Colin27 or a blurred population-based 

atlas (e.g., MNI305), we use a family of brain templates, and for each subject and each region of 

interest we choose the ‘best’ template. The intuition is that the variations in normal brain 

anatomy can be better represented as a small number of prototype atlases (e.g., for ACC, 

presence or absence of paracingulate) rather than as a single average brain. For each subject the 

template, which gives the optimum localized registration for a specific region of interest 

(maximum local similarity over a given ROI), is chosen as the optimum template for the 

segmentation. This approach has previously been shown to be effective in atlas-based 

segmentation of bee brain images [56]. In this study, this atlas selection technique was tested on 

two different human brain image data sets to segment multiple regions of interest (ROIs) 

including right anterior cingulate cortex (ACC), left and right amygdala, caudate, hippocampus, 

pallidum, putamen, and thalamus proper. For both data sets, the ROIs segmented using the 

optimum template selection method were compared to manual segmentations (ground truth) and 

the automated segmentations using a standard single template method. 

3.2 OPTIMUM TEMPLATE SELECTION ALGORITHM  

3.2.1 Materials 

3.2.1.1 Subjects and Brain Templates 

Manual segmentation of multiple ROIs on two sets of data serves as the family of atlases for the 

template selection. Both data sets have been previously described in greater detail: data set 1 in 
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Chapter 2 and data set 2 at http://www.cma.mgh.harvard.edu/ibsr/. Brief descriptions are as 

followed. 

Data Set 1: Nine subjects (6 male; mean age 24.3, range 20-32 years old; right-handed) 

participated. Scanning was done on a 1.5T GE CVi scanner with 3D SPGR (TR/TE = 5/25 ms, 

flip angle = 40º, FOV = 24×18 cm, slice thickness = 1.5 mm, matrix size = 256×192).  

Data Set 2:  Thirteen T1-weighted MR brain images (256×256×128) from Internet Brain 

Segmentation Repository (IBSR) and their manual segmentations were provided by the Center 

for Morphometric Analysis at Massachusetts General Hospital, available at 

http://www.cma.mgh.harvard.edu/ibsr/.  Brain images were acquired from healthy control 

subjects. 

Manual segmentations of the right ACC were done on data set 1, and multiple ROIs 

including the left and right amygdala, caudate, hippocampus, pallidum, putamen, and thalamus 

proper were manually segmented on data set 2. The manual segmentations of both data sets 

served as gold standard segmentations to evaluate the automated atlas-based segmentation 

results. The manual segmentations of the subjects also served as atlases on the subject when used 

as the template.  

All the subjects in data set 1 were used as template candidates in the template selection 

algorithm. Every subject in data set 1 was warped to the 8 remaining atlases and the atlas with 

the best local registration accuracy was chosen as the optimum choice out of these 8 atlases. For 

data set 2, the atlas was selected from a randomly chosen 9-subject subset.  
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3.2.2 Template Selection Algorithm 

For a given subject 

€ 

Si, the steps for the optimum template selection from a family of templates 

€ 

T = {T1,T2,....T9} are shown in Figure 3.1. The number of templates in this testing is fixed at 9 for 

both data sets.  

 

Figure 3.1. Template Selection Flowchart. The processing steps that constitute the template selection 

model, which is used to choose the optimum template from a family of templates (Tk) for the segmentation of 

ROI (R) on a subject (S). 

In atlas-based segmentation, each template 

€ 

Tk (1≤ ∀k ≤ 9)  is registered to a given subject 

S using the deformable model (

€ 

Tk  ->S), which creates a corresponding warped image 

€ 

Wk  and 

automated segmented ROI 

€ 

Rk . The registration accuracies of different templates for the subject 

S and the selected ROI, are evaluated at a common local region area 

€ 

R.  The common local 

region 

€ 

R  is formed as the disjunction image of all the segmented ROIs from atlas-based 
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segmentation using the family of templates 

€ 

T . The common local area is defined as 

€ 

R = R1∪ R2 ⋅ ⋅ ⋅∪Rn , with 

€ 

Rk  as the segmented ROI using template 

€ 

Tk  in 

€ 

T for a given subject.   

To evaluate the local registration performance in 

€ 

Tk ->S registration, normalized mutual 

information (NMI) is used as the metric to measure the local image similarity between the 

warped image 

€ 

Wk  and the subject S at the common ROI 

€ 

R. The following set of equations show 

the derivation for NMI:   

€ 

NMI(x,y) = (H(x) + H(y)) /H(x,y)

H(x) = − P(ix )log2(P(ix ))i=1

k
∑

H(y) = − P(iy )log2(P(iy ))i=1

k
∑

H(x,y) = −
ix =1

kx∑ P(ix,iy )log2(P(ix,iy ))iy =1

ky∑

 

where x is the cropped local ROI image of each warped image (each template 

€ 

Tk ->target) 

and y is the cropped ROI image of the target S at the same local area 

€ 

R; H(x), H(y) are the 

entropies and H(x,y) as the joint entropy of x and y. NMI describes the similarity of the warped 

image and the target image at a local ROI area 

€ 

R, which also evaluates local registration 

accuracy and the performance of the template 

€ 

Tk  in the segmentation of the ROI. Using the 

above equations, the template that gives the maximum local NMI is chosen as the locally 

optimized template for each subject’s ROI. 

Atlas-based segmentation labels the anatomical regions on individual images by 

registering the atlas brain image to the individual brain image space.  We refer to the registration 

method we use as the Automated Labeling Procedure (ALP).  It is derived from the methods 

used by Chen [57], and  consists of a series of preprocessing steps (including skull stripping and 

cropping) and a series of registration techniques including hierarchical registration [58] and 
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demons based registration [59]. We have implemented this method using the Insight 

Segmentation and Registration Toolkit [ITK, 60].  Details of the method are described in Chapter 

2. 

3.3 ATLAS EVALUATION METHODS 

3.3.1 Overlap Ratio 

Overlap ratio (OR) was used to quantify the segmentation quality of each registration. Similar to 

Dice metric [61], OR is defined as the ratio of overlapping voxels to total voxels, as given below:  

  

€ 

overlap ratio =
vol(B∩ ˆ B )
vol(BU ˆ B )

  

where B is the ground-truth mask, and 

€ 

ˆ B  is automatically segmented set. As shown in                                           

Figure 3.2, a perfect overlap between the manually segmented group-truth B and the automated 

€ 

ˆ B  will lead to an OR = 1, while a smaller overlap will result in a smaller value of OR.  

 

                                          Figure 3.2 The illustration of the overlap ratio. 
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The performance of the optimum template was measured as the mean overlap across 

multiple subjects for the ROI segmentation.  

3.3.2 Volume Consistency 

Volume consistency between the automatically segmented ROI and the hand drawn region was 

evaluated using the intraclass correlation coefficient (ICC), with a two way mixed and absolute 

agreement model. The reliability of the estimated volume from the optimum template method 

was compared to the average reliability of individual templates for each ROI. 

3.3.3 Single Atlas Strategy 

For each data set, the segmentation performance of the individual atlas was evaluated based on a 

leave-one-out approach. Each of the 9 subjects for data set 1 was chosen to serve as an individual 

template and was registered to the remaining 8 subjects; 9 subjects out of the 13 subjects for data 

set 2 were randomly chosen as individual atlases and registered to the remaining 12 subjects. For 

each ROI, the performance of a single atlas was evaluated by the mean overlap ratio between the 

segmented ROI and the manual ground truth across multiple subjects using the same atlas. The 

average performance of the single template strategy was measured as the average overlap ratio 

across multiple templates. Additionally, the standard MNI (Montreal Neurological Institute) 

brain colin27 [15], which carries high anatomical details and has a high spatial resolution (1mm3 

voxel size), was also used as the template to segment right ACC on data set 1 for comparison. 
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3.4 RESULT: IMPROVED OVERLAP RATIO AND VOLUME CONSISTENCY 

The segmentation evaluation results for both methods (individual template and optimum 

template) were compared for each data set. Both methods used exactly the same pathway for the 

registration as well as the same thresholds to remove the edges of the automated segmentations. 

The only difference was that they used different atlas selection strategies. We found that for most 

of the ROIs the optimum template produced significantly and consistently better segmentation 

results compared to the single template method.  

3.4.1 Data Set 1 

As predicted, in data set 1 the template selection method produced significantly better mean ORs 

for than any single template in the atlas-based segmentation of right ACC. The mean ACC OR 

when registering with a single template ranged from 42.7% to 52.7% (mean OR 49.5%), and the 

mean OR using the standard template MNI Colin27 was 47.3%. The mean OR with the optimum 

template selection method was 54.7% (using 8 templates) and the OR reached 57.7% when an 

optimized subset of templates was used (3 templates, Figure 3.3). As shown in Figure 3.3, the 

performance of the optimum template selection method was better than that of any template 

candidate or the standard MNI template Colin27. A two-tailed paired t test also indicated that the 

registration result from optimum template (8-template case) based method was significantly 

better than the results from single templates at t(8) = 4.353, p = 0.0024. 
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Figure 3.3. In the anatomical classification of right ACC, mean overlap ratios (OR) are compared between 

individual template strategy (average of the mean OR over the 9 templates) and the optimal template method 

with 8 templates or with the optimized 3 templates. Error bars were calculated as standard error of the 

difference between the mean OR of the optimal template and the individual templates. The OR for the Colin 

template is shown for comparison. 

3.4.2 Data Set 2 

The automated anatomical labeling results for multiple regions (left and right amygdala, caudate, 

hippocampus, pallidum, putamen and thalamus proper) on the IBSR dataset (data set 2) using the 

template selection method and the single template method were each compared to manual 

tracings using OR and volume agreement. For most of the ROIs, the template selection method 

consistently provided more reliable region classification than the single template method. The 

mean percent ORs and ICCs between the estimated volumes and manual traced volumes for both 

methods are shown in Figure 3.4. 

The template selection method gave a higher mean OR than the single template method 

for all ROIs. The OR percentage increase in the template selection method ranged from 4.4% to 
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13.1% (mean increase 8%). The differences in ORs between the two methods were highly 

significant for all ROIs using the pair wise t-test (for right amygdala, t(8) > 3.175, p < 0.013; for 

the remaining ROIs, t(8) > 4.36, p < 0.002).  

Additionally, the template selection method provided a more reliable volume estimate. 

The ICCs between the estimated volumes and the manual tracings from the template selection 

method were higher than the results from single template for 11 of 12 ROIs. The changes in the 

ORs were consistent with the changes in ICCs from the volume agreement. For example, the 

large increase of ORs in regions like the left caudate (11.1% increase), right caudate (12.0%), 

and right pallidum (13.1%) corresponded to more improved ICCs in the left caudate (ICC 0.95), 

right caudate (ICC 0.93) and right pallidum (ICC 0.91) respectively. For all of the ROIs except 

for left and right amygdala and right putamen, the template selection method produced very 

reliable ICCs of volume estimates and the results are comparable to ICCs of inter-rater manual 

tracings. These findings are essential to MR volumetric studies on such ROIs. For instance, the 

template selection method produced ICCs of 0.95 for the left caudate and 0.93 for the right 

caudate, while previous research has reported inter-rater reliability of 0.94 for the left caudate 

and 0.95 for the right caudate [62]. 
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Figure 3.4. Comparison of the reliability of the automated ROIs using the template selection method and 

using a single template. Key: LA—left amygdala, RA—right amygdala, LC—left caudate, RC—right 

caudate, LH—left hippocampus, RH—right hippocampus, LPa—left pallidum, RPa—right pallidum, LPu—

left putamen, RPu—right putamen, LT—left thalamus proper, RT—right thalamus proper. Top: mean 

percent OR comparion. Bottom: the intraclass correlation coefficients (ICCs) of volume agreement for both 

methods. 
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To illustrate the strong agreement between the estimated volumes and the manual 

volumes, the estimated volumes of four ROIs from data set 2 were plotted for both methods 

against the manual volumes in Figure 3.5. As Figure 3.5 illustrates, the accuracy of volume 

estimates improved considerably by using the optimum template method. Overall, the optimum 

template method provided better volume estimates than the single template method. However, 

for the left and right amygdala, neither method gave a good estimate. This is because the 

registration failed to provide an accurate region classification with any of the template 

candidates. 

 

Figure 3.5. Region classification performance of the optimum template method and the single template 

method. The absolute voxel numbers of segmented ROIs from both methods are compared to manual 

segmentation respectively using the linear regression model. Four ROIs (left and right caudate, and left and 

right thalamus proper) were analyzed for 13 subjects. Subject 6 was used as the atlas in the single template 

method; the optimum template was chosen from a 9-subject subset. 
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3.5 TEMPLATE NUMBER AND PERFORMANCE 

In the previous test on Data Set 1, for each subject the remaining 8 brain images were used as 

template candidates for the segmentation of the right ACC in the template selection method.  

However, adding more templates in the optimum template method leads to increased 

computation time, so it is important to determine how many templates are needed to achieve 

robust automated anatomical labeling of certain ROIs with the template selection method. 

In order to test how the performance of the template selection method changes with the 

number of templates and decide how many templates are sufficient for the classification of 

specific ROI, we tried the template selection method on data set 1 using all subsets of the 8 

different templates (from 1 to 8 templates in each subset). The performance of the template 

selection method with a particular number of template candidates was estimated as the average 

overlap ratio (OR) across all subjects for all subsets of templates with that cardinality. For 

example, the performance of the template selection method with 2 templates was estimated as 

the mean OR across the 7 subjects (excluding the 2 templates) and across all possible template 

combinations (C9
2 = 36).  

The mean ORs are plotted in Figure 3.6 against the number of templates used. As 

expected, as the number of templates increased, the average performance of the template 

selection method improved. For each subset of templates (N templates), the performance was 

estimated by the average OR across the remaining subjects (9-N). We observed that among the 

template subsets of the same cardinality, the template set with the widest anatomical variations 
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performed better than other combinations of templates. For example, in the automated 

classification of right ACC, we discovered there was a sufficient set of three templates, which 

included three prototypes: one template with a paracingulate sulcus, one with a thick anterior 

cingulate cortex, and the third with a thin anterior cingulate cortex. The template selection 

method with this optimized subset had the best performance and achieved an average OR of 

0.577 (similar to that of the 8 template case), as shown in Figure 3.7. This suggests that in 

addition to template number, template variability is also important, such that with an 

appropriately variable set of templates, a fewer number of templates are sufficient for high 

accuracy. 

 

Figure 3.6. The performance of the multiple template method with different number of templates. The mean 

ORs across all the combinations of same-number templates were plotted against the number of templates 

used. 
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For one subject image in data set 1, the sufficient set of 3 template images and the 

corresponding NMI results from the template selection model are shown in Figure 3.7. It can be 

noted from the figure that the target subject has a paracingulate sulcus (in red), and that template 

2, which has a similar paracingulate sulcus (in red) was automatically selected as the optimum 

template to segment the right ACC on the subject using the maximum NMI between the warped 

image and the target subject image at local ACC areas. The OR of the automatically labeled right 

ACC from the 3 templates against the manual tracing on the target image was also calculated and 

compared to validate the performance of the template selection model. 

 

Figure 3.7. For data set 1 the optimum template selection model selects the best template from a family of 8 

templates to segment the right ACC on the target image. Three of the templates and the target subject images 

are shown here; the hand-drawn ACC on the subject and templates are also displayed in color (cingulate in 

blue and paracingulate in red).  Also shown are the normalized mutual information (NMI) calculated by 

comparing the warped template with the target image, and the overlap ratios (ORs), calculated by comparing 

the automated segmentation with the ground truth manual segmentation.  

3.6 SUMMARY 

In this section, multiple prototype atlases were used to address the normal brain anatomic 

variations in the atlas-based segmentation of MR brain images. 
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The template selection algorithm uses normalized mutual information to choose the 

template (from a family of templates) that gives the best local registration accuracy. This 

template selection model is of special use for those regions with high variability across subjects 

such as cortical structures [63], where a single template can not readily capture the variability. In  

this, the template selection model produced significantly better ORs and more reliable volume 

estimations in the analyzed multiple ROIs than the single template strategy. In the template 

selection method, the segmentation accuracy improves as the number of the templates used 

increases. In addition to the template number, the anatomical variability within the templates is 

also important, such that a fewer number of templates with appropriate anatomical variations are 

sufficient to achieve high accuracy in the atlas-based segmentation. For example, in the case of 

right ACC, we found a set of 3 prototype templates with wide anatomical variations, which 

performed better than other template combinations. 

Nevertheless, this improved registration accuracy with the template selection model is 

achieved at the cost of higher computation load. Multiple non-rigid registrations are required in 

order to evaluate the performance of multiple templates. Also, although this method produced 

improved anatomical classification accuracy for all the analyzed ROIs, it did not give 

satisfactory region estimates for the left and right amygdala. Alternative classification methods 

(perhaps using feature-based registration) should be used to improve the automated labeling of 

the small and difficult to segment regions such as the left and right amygdala. A more advanced 

method may be needed to evaluate the performance of the templates at such regions. 

The number of available atlases limits the registration accuracy. More atlas candidates 

may lead to higher registration accuracy, but with extra computation load, since we need to 

register each template to the target subject in order to evaluate the templates. Also the number of 
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atlases needed is related to the normal anatomic variations of the region to be segmented. 

Different ROIs may require different numbers of atlas prototypes for the automated anatomical 

classification. In this study, we discussed the possible atlas prototypes for the anterior cingulate 

cortex (thin ACC, thick ACC, and with a paracingulate sulcus). Further research is needed to 

explore the normal variations of the brain anatomy. 

Multiple templates are needed in the template selection method. The templates can either 

be manually traced locally by experts, or downloaded from a public database. There are many 

manually labeled atlases available online, such as the IBSR dataset used in this paper 

(http://www.cma.mgh.harvard.edu/ibsr/), which consists of 18 high-resolution T1-weighted MR 

image data with expert segmentations of 43 individual structures. 

This method chooses the best atlas from a family of atlases for each subject and ROI, and 

the optimum template selection method is independent of the registration techniques. In our 

study, we used the deformable automated labeling pathway for the inter-subject registration. The 

optimum template selection method can be easily accommodated into alternate available 

pathways such as Automated Image Registration (AIR) or Statistical Parametric Mapping 

(SPM). 
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4.0  TEMPLATE SELECTION IN IMAGE NORMALIZATION  

The accurate alignment of brain MR images is essential for most neuroimage analyses pipelines. 

The most common approach relies on the alignment of individual brain images into a common 

template space [64]. However, individual brains in a population do not conform to a unique 

anatomic morphology variant. The normal and pathological variations in human brain anatomical 

structures present a fundamental problem for using a single template in the image alignment [47, 

65]. For geriatric populations the accurate alignment to the selected template can be particularly 

problematic due to increased variability in brain morphology, which is due in part to age-related 

atrophy [66, 67].   

Chapter 3.0  described and evaluated the optimum template algorithm in atlas-based 

segmentation, in which the best template is selected from a family of templates for a given 

subject and ROI to improve the segmentation accuracy. The algorithm may select different 

templates for different subjects or ROIs, and thus it is not suitable for image normalization, as 

the goal of image normalization is to warp individual brain images into a common template 

space.  

This chapter will first discuss the available template selection strategies in image 

normalization, and then will propose and develop a novel multi-template strategy applicable to 

the image normalization of the elderly population. In this method, we use multiple templates as 

intermediate prototype brain images in the image alignment. The purpose of this strategy is to 
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characterize the brain anatomical structural variations in the elderly population while preserving 

brain structural details. We hypothesize that image normalization into Colin27 using 

intermediate images (multi-template strategies) will lead to improved registration accuracy.   

Different strategies for choosing intermediate templates from a training dataset are 

proposed and their performances in improving registration accuracy of image normalization are 

evaluated with a testing dataset. The performance of the multi-template strategy to improve 

registration accuracy is assessed for different registration algorithms. 

4.1 TRADITIONAL TEMPLATE STRATEGIES IN IMAGE NORMALIZATION 

Similar template strategies have been explored in image normalization as in atlas-based 

segmentation, including single brain atlases and averaged brain atlases. Using an 

unrepresentative single brain template in the image normalization [e.g. the Talairach atlas [22], 

the MNI Colin27 [15]] introduces a bias in the image registration by favoring subjects similar to 

the template compared to subjects substantially different from the template. Population-based 

average templates, such as MNI305 [49] and ICBM452 [50], have been constructed to reduce the 

bias in the registration by keeping the group features. However, population-based average 

templates are blurred and lack anatomic details due to misalignment from registration error or 

structural variability in the population.  

In addition to the above approaches, some template selection strategies have also been 

proposed specifically for image normalization. For example, an unbiased template was 

constructed by choosing the brain image closest to the mean geometry of the population under 

consideration [68, 69]. Other methods, such as implicit reference pair-wise (IRP) image 
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registration [70], a template-free approach [71], and an unbiased diffeomorphic atlas [72], jointly 

register a population of images into a hidden common space with different similarity cost 

functions and different deformation models.  

 An alternative approach, known as rapid alignment of brains by building intermediate 

templates (RABBIT), constructs an intermediate template from the target template for a given 

individual brain image via a statistical deformation model. The statistical deformation model is 

built by principal component analysis (PCA) on the deformation fields of the training dataset. 

The final deformation field (template→individual brain image) is a combination of two 

deformation fields (template→intermediate template, intermediate template→individual brain 

image) [73]. 

4.2 MULTI-TEMPLATE METHOD 

In this proposed novel multi-template strategy, multiple prototype templates are used as 

intermediate brain images for the image alignment. Instead of registering an individual brain 

image directly to the standard MNI space Colin27 during image normalization, our method 

chooses intermediate prototype templates as a bridge between the individual brain image and 

Colin27 (subject→intermediate brain images→Colin27). The final deformation field for 

subject→Colin27 registration is the combination of two deformation fields from 

subject→intermediate brain images→Colin27 registration. 

The multi-template method consists of three steps:  

1) Identification of the multiple prototype templates that represent the structural 

variations in the elderly population (or the training database). 
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2) Selection of the appropriate intermediate brain images from the training data for each 

subject of the testing datasets. These intermediate brain images are used for image registration 

(subject→intermediate brain images). 

 3) Transformation of the intermediate brain images into Colin27 (intermediate brain 

images→Colin27) followed by combination of the deformation fields from the transitional 

registrations (subject→intermediate brain images, intermediate brain images→Colin27) in order 

to achieve the deformation of subject brain images into Colin27 space.   

This step-wise approach stems from the anatomic diversity of brain images. Images do 

not necessarily fit a single morphologic prototype, but rather can be better aligned using a set of 

intermediate prototypes.  To achieve this goal we create a set of template prototypes from the 

ADNI training dataset and then utilize these prototypes as intermediate registration targets when 

aligning subjects from a new study (the testing dataset). 

4.2.1 Materials 

In this study, two separate databases of MR brain images were used: one for generating the set of 

prototype templates (referred to as the training dataset) and the other for testing the performance 

of the multi-template method in image normalization (referred to as the testing dataset).  

4.2.1.1 Training Data 

Training data in this study was obtained from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database (www.loni.ucla.edu/ADNI). ADNI was launched in 2003 by the National 

Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering 

(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-
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profit organizations, as a $60 million, 5-year public-private partnership. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer's disease (AD) . Determination of sensitive and specific markers of very early AD 

progression is intended to aid researchers and clinicians to develop new treatments and monitor 

their effectiveness, as well as lessen the time and cost of clinical trials.  

Mild cognitive impairment  (MCI) is defined as the presence of cognitive decline not 

warranting the diagnosis of dementia and/or evidence of decline over time on objective cognitive 

tasks but with preserved basic activities of daily living (Report of the International Working 

Group on MCI –Stockholm, 2004). The typical rate at which MCI patients’ progress to AD is 10-

15% per year [74, 75]. 

The ADNI dataset contains MR images collected as a part of a large multi-site 

neuroimaging study of aging. The dataset is available for use by the research community to 

support studies of aging and dementia. This dataset has been particularly useful for the current 

study because it contains high-quality T1-weighted brain MR images from a diverse sample of 

elderly individuals.  

One hundred MR Brain images of healthy controls and MCI elderly subjects from the 

ADNI database were used as the training database for this study. The ADNI training data were 

gender and age-matched (50M/50F, mean age = 75.4±6.1). Demographic information for the 

selected data is included in Table 4.1.  

Sagittal T1-weighted high-resolution brain images were acquired with 3D magnetization-

prepared rapid acquisition with gradient echo (MP-RAGE) using a range of parameters: 160-208 
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slices, 192 x 192 (or 256 x 256) matrix, FOV = 240 x 240 (or 256 - 260x 240) mm2, TR = 2400 

(or 2300, 3000) ms, TI = 1000 (or 853-900) ms, Flip angle = 8°(or 9°), slice thickness = 1.2mm. 

Detailed information of image acquisition in the ADNI study is described by Jack et al.[76].  

4.2.1.2 Testing Data 

The testing MR data were acquired locally as part of an ongoing study focusing on functional 

MR imaging of elderly depressed individuals (major depression and subsyndromal depression). 

Images from seventy elderly subjects were included. Detailed demographic information is 

provided in Table 4.1. 

Axial T1-weighted images were acquired with 3D MP-RAGE on a Siemens Trio 3T 

scanner using a 12-channel head array coil and the following parameters:: 176 slices, 224 x 256 

matrix, FOV = 224 x 256 mm2, TR = 2300 ms, TE = 3.43 ms, TI = 900 ms, Flip angle = 9°, slice 

thickness = 1mm, and no gap. This study was approved by the University of Pittsburgh 

Institutional Review Board (IRB) and a written informed consent was obtained. 

Table 4.1 Demographic information of the training data and the testing data. 

Training dataset Testing dataset 
 

Female Male All Female Male All 

Subjects (N) 50 50 100 47 23 70 

Age, years 76.0±5.8 74.8±6.4 75.4±6.1 70.7±8.2 69.8±7.3 70.4±7.8 

Healthy 33 33 66 22 8 30 

*MCI 17 17 34 2 1 3 

Others 0 0 0 23 14 37 

* MCI - Mild cognitive impairment.   
 Of the 37 subjects, 28 with major depression, 6 had subsyndromal depression and 3 had mild AD.  
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4.2.2 Finding Prototype Templates  

A bottom-up clustering algorithm is used on the training dataset to identify a set of intermediate 

prototype templates that spans the space of brain morphometry in the elderly population [23-26]. 

The procedure to identify multiple representative templates from the training data is illustrated in 

Figure 4.1. This procedure includes: a) partitioning the training data into subgroups using 

unsupervised classification, and b) assigning a representative template image for each subgroup.  

 

Figure 4.1. The procedure to find prototype templates in the training data. 

The complete-linkage clustering algorithm in graph theory [23-26] was used to divide the 

training data into a finite number of clusters (subgroups) by progressively merging clusters with 

minimum distance or maximum similarity. The distance or similarity of any two images (in the 

training data) was evaluated by the normalized mutual information of the two co-registered 

images (affine co-registration). The normalized mutual information was calculated by the 

following equations: 
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€ 

NMI(x,y) = 2.0*MI(x,y) /(H(x) + H(y))
MI(x,y) = H(x) + H(y) −H(x,y)

H(x) = − P(Ix )log2(P(Ix ))i=1

k
∑

H(y) = − P(Iy )log2(P(Iy ))i=1

k
∑

H(x,y) = −
ix =1

kx∑ P(Ix,Iy )log2(P(Ix,Iy ))iy =1

ky∑

      

where 

€ 

x  and 

€ 

y  are any pair of co-registered images from the training data, and 

€ 

Ix  and 

€ 

Iy  stand 

for the intensity of image 

€ 

x  and 

€ 

y  respectively.  

The affine co-registration corrects for differences in brain size and orientation of the 

images. A fully connected similarity matrix (100x100) 

€ 

X0 is constructed after the pair-wise 

affine co-registration, where the element 

€ 

X0( i, j) is the similarity measurement between the co-

registered training images 

€ 

i and

€ 

j. The similarity matrix 

€ 

X0 is symmetrical and the values on the 

diagonal 

€ 

X0(i,i)  are set to 0 in the clustering algorithm.  

The clustering algorithm starts with the fully connected similarity matrix 

€ 

X0, labels each 

brain image in the training dataset as a subgroup at the 0th iteration, and then iteratively merges 

the two closest or most similar subgroups (subgroup 

€ 

m and 

€ 

n ,

€ 

m > n) into one big subgroup 

€ 

n  

based on the minimum distance or maximum similarity. When subgroup 

€ 

m  and subgroup 

€ 

n  are 

merged at the 

€ 

(t +1)th  iteration, the similarity matrix 

€ 

Xt+1(i, j) 

€ 

∀i, j <100 − (t +1)  is updated 

such that the similarity of any subgroup 

€ 

i  to 

€ 

n  

€ 

Xt+1(i,n) is the minimum of 

€ 

Xt (i,n) and 

€ 

Xt (i,m) .   

We did not know a priori how many clusters would most effectively divide the training 

dataset, and thus we chose to avoid setting a predetermined cluster number K as the stopping 

criteria for the complete-linkage algorithm. Instead, we used a similarity threshold (mean 

similarity -0.5*standard deviation) as the stopping criteria for the clustering algorithm. The mean 



  57 

similarity and standard deviation are calculated from 

€ 

X0( i, j) ∀i > j  in the initial similarity 

matrix

€ 

X0. The flowchart of the clustering algorithm is shown in Figure 4.2.  

The representative brain image for each cluster was then defined as the brain image in the 

cluster that is most similar to Colin27, since the ultimate goal of the image normalization task is 

to transform each subject’s brain image into the standard MNI Colin27 space. The similarity 

between Colin27 and each brain image in the training database is measured by normalized 

mutual information after the deformable co-registration.  

 

 

Figure 4.2. The flowchart of the clustering algorithm on the training data. 
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4.2.3 Image Normalization Using Multiple Templates 

For any given subject from the testing dataset, the similarity between the brain images of the 

subject and any training subject is calculated as the normalized mutual information of the two 

images after affine co-registration. The brain image in the training dataset with maximum 

normalized mutual information is labeled as the most similar image (s-image) for this subject. 

The s-image has been classified into a subgroup of the training data using the complete-linkage 

clustering algorithm (as described in 4.2.2), and the representative brain image of this subgroup 

is chosen as the representative or prototype image (r-image) for this subject. 

To normalize a testing brain image into the standard MNI Colin27 space, we explored 

three intermediate template selection strategies:  

(1) Choosing the most similar brain image (s-image) from the training data as the only 

intermediate template, and then carrying out the registration as subject→s-image→Colin27.  

(2) Choosing the representative image (r-image) of the subgroup that the s-image belongs 

to (subject→r-image→Colin27);  

(3) Choosing both the most similar image and the representative image as intermediate 

templates to Colin27 (subject→s-image→r-image→Colin27).  

4.2.4 Registration algorithm 

We differentiate the registration between the training data and Colin27 (e.g. s-image→Colin27, 

r-image→Colin27, and s-image→r-image→Colin27) from the registration of the testing data to 

the selected intermediate images (subject→s-image or r-image).  
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The registrations between the training data (s-image→r-image) and MNI Colin27 (s-

image→Colin27 and r-image→Colin27) are one-time only investments. These registrations can 

be computed offline, and the computed deformation fields can be repeatedly used for image 

normalization in future studies. Therefore we can afford to use computationally expensive 

algorithms or labor-consuming methods to improve the registration accuracy. In this study, for 

registrations we used a highly deformable registration algorithm with a large number of 

iterations (500 iterations) [43].  

However, the registration of the testing data into the selected intermediate brain 

template(s) is a different challenge. The computed transformation field is specific for each 

subject in the study and cannot translate to other studies. This image normalization procedure is a 

time-consuming computational burden for each study, and needs to be fast and fairly accurate. In 

this study, for the subject→intermediate brain image registration, we tested different registration 

algorithms including affine alignment, nonlinear registration based on finite element method 

(FEM)  [31], SPM nonlinear registration [77], and the highly deformable algorithm [43]. We 

compared their performances under the multi-template strategies in the improvement of 

registration accuracy. 

4.3 EVALUATION METHODS 

All 70 individual brain images (testing dataset) were warped into the MNI Colin27 space using 

different template selection strategies and registration algorithms. For each template strategy and 

registration algorithm, a mean brain image was created from the resulting warped images of all 

70 testing data (subject→intermediate image(s)→Colin27 registration).  
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For comparison, image normalization of the testing data directly into Colin27 

(subject→Colin27) using the same registration methods was also performed and a mean image 

was created from the 70 testing data for each registration algorithm.  

The smoothness of the mean image was used as a quantitative index to evaluate the 

registration accuracy. Misalignment from the registration algorithm and the selection of an 

unrepresentative template lead to a blurred mean brain image in Colin27 space. To isolate the 

effect of different template selection strategies on the accuracy of image normalization, we 

compared the mean images calculated using the same registration method (subject → 

intermediate image for multi-template methods; subject → Colin27 for the single template 

method), but different template selection strategies. The smoothness introduced by the 

registration method was equivalent in these mean images, when the same registration methods 

were used to create these mean images. Therefore, the difference in the smoothness measurement 

was primarily due to the different template selection strategies.  

In this study, smoothness of the mean brain image was estimated using 3dFWHM in 

AFNI [37], based on algorithms described in Xiong et al.[78]. In Xiong’s algorithm, the spatial 

correlation between voxels along each axis is characterized by FWHMx, FWHMy, FWHMz 

(FWHM, for full width half maximum of Gaussian kernel). The averaged smoothness 

measurement across xyz axes is calculated by 

€ 

1
3

FWHMi
i= x,y,z
∑ . 

The performance of the multi-template normalization (subject→s-image→r-

image→Colin27) was also evaluated by the averaged percent reduction (averaged across xyz 

axes) in smoothness compared to single template method (Colin27).  
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 The averaged percent reduction in smoothness(%) is calculated using the following 

equation: 

€ 

1
3

(MFWHMi−SFWHMi)
SFWHMii= x,y,z

∑ *100  where 

€ 

MFWHMi  represents the smoothness 

measurement of the mean image using multiple template strategies along axes 

€ 

i (i = x,y,z) , and 

€ 

SFWHMi is the corresponding measurement from single template method (Colin27).  

For comparison, the smoothness of the anatomical template Colin27 was also estimated 

and used as the inherent smoothness measurement.  

 

4.4 RESULTS 

4.4.1 Partitions in the Population  

The training data (100 subjects) were divided into 9 clusters or subgroups by the complete-

linkage clustering algorithm using the selected similarity threshold (mean – 0.5 * standard 

deviation). The distribution of the training data among the 9 subgroups is shown in Figure 4.3. 
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Figure 4.3. Partitions of the training data using the complete-linkage clustering algorithm. 

All 9 members of cluster 4 are displayed in Figure 4.4, and the representative image of 

cluster 4 is marked with a red square. The image of Colin27 is also shown for comparison.  
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Figure 4.4. All 9 members in cluster 4 are shown here, with the representative image outlined in red.  Colin27 

is also shown as a comparison. 

4.4.2 Performance of Template Selection Strategies  

The mean images averaged from all 70 testing data using different registration methods and 

template selection methods are shown in Figure 4.5; Colin27 is also shown for comparison. 
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Figure 4.5. The mean images using different template selection strategies and registration methods are 

compared to Colin27 (e). Respective mean images from (a) subject→Colin27, (b) subject→s-image→Colin27, 

(c) subject→r-image→Colin27, and (d) subject→s-image→r-image→Colin27 are shown. 

Average smoothness of the mean images in Figure 4.5 was quantitatively measured using 

3dFWHM (AFNI), and the measurements are shown in Table 4.2.  

The performance of the multi-template image normalization (subject→s-image→r-

image→Colin27) was evaluated under different registration methods (Affine, SPM, FEM and 

ALP), and compared to the single template image normalization registration method using the 

fully deformable registration algorithm (subject→ Colin27). The smoothness measurements are 
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shown in Table 4.3. The inherent smoothness of the MNI Colin27 is also included in Table 4.3 

for comparison. 

Table 4.2. The smoothness measurement of the mean images. 

Averaged smoothness *Colin27 ♦s-image r-image s & r 

Affine 14.66 11.85 11.81 10.89 

SPM 13.28 12.42 13.64 11.16 

FEM 9.68 9.35 8.61 8.68 

Deform 7.65 8.58 9.07 8.58 

 Average smoothness of the mean image is measured as averaged full width half maximum width 
(FWHM) of Gaussian kernel along axis x, y or z by 3dFWHM in AFNI. 

* Colin27 as the single template for the image normalization (subject→Colin27). 
♦ s-image (the most similar image) as the intermediate image for the image normalization (subject→s-
image→Colin27). 
 r-image (the representative image of the cluster) as the intermediate image for the image normalization 
(subject→r-image→Colin27). 
 s & r-image (s-image and r-image) as the middle templates for the image normalization (subject→s-
image→r-image→Colin27). 

 

Table 4.3. The average smoothness of the mean image (multi-template vs single template) 

♦Subject→s-image→r-image→Colin27 Smoothness 
Affin

e 

SPM FEM ALP 
*Deform Colin27 

FWHM x 12.63 9.69 7.78 7.91 7.15 5.4 
FWHM y 15.95 12.15 9.21 9.1 7.97 5.77 

FWHM z 15.4 11.64 9.04 8.72 7.84 5.58 
♦ Multi-template image normalization uses both the most similar image and the prototype image 

(Subject→s-image→r-image→Colin27). Different registration methods including affine, SPM, FEM and 
ALP were tested with the template strategy. 

* Deform:  Fully deformable registration with Colin27 as the template (subject→Colin27). 
Colin27: The inherent smoothness of the template Colin27.  

 

The detailed smoothness of the mean images along axis x, y and z for different template 

selection strategies using SPM nonlinear registration is shown and compared in Figure 4.6. 
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Figure 4.6. The comparison of the performance of different atlas selection strategies under SPM. 

Average reduction in smoothness (%) —comparing multi-template strategy (subject→s-

image→r-image→Colin27) to single-template image normalization under different 

transformation models (Affine, SPM, FEM, and a fully deformable model)— is shown in Figure 

4.7. 
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Figure 4.7. The average reduction in the smoothness measurement (%) on the mean images (multi-template 

method vs single-template method). 

4.5 DISCUSSION  

4.5.1 Performance of the Multi-template Strategies 

The accuracy of image normalization is significantly affected by the degree of spatial 

transformation allowed in a given registration method. A transformation model with a higher 

degree of freedom leads to a more accurate alignment. This is confirmed in our results (Figure 

4.5 and Table 4.2). For the same template selection strategy, the mean image becomes visually 

sharper (Figure 4.5) and the quantitative smoothness measurement improves (Table 4.2) as the 

registration algorithm changes from Affine to SPM and FEM.  
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Other than the registration method, the template selection strategy also affects the 

registration accuracy. For the linear and nonlinear registration algorithms (Affine, SPM 

nonlinear and FEM nonlinear models), the multi-template strategies consistently provided better 

image normalization results in both the visual and quantitative evaluations (Figure 4.5 and Table 

4.2). For the tested registration algorithms (Affine, SPM and FEM), the multi-template strategy 

(subject→s-image→r-image→Colin27) outperformed the other template selection strategies by 

providing sharper mean images and better smoothness measurement.   

For the same registration algorithm, it appears that variability in individual anatomical 

structures of the elderly population leads to a lower registration accuracy when using an 

unrepresentative single-brain template; introducing multiple intermediate brain images in the 

image normalization can reduce the misalignment caused by this variability. The ability of the 

multi-template strategy (subject→s-image→r-image→Colin27) to improve registration accuracy 

differs depending on the choice of registration algorithm, since registration algorithms have 

different abilities at compensating for the anatomical variations in the population. For example, 

affine registration only corrects the global misalignment using 9 independent parameters, which 

makes it vulnerable to anatomical variations. As expected, the multi-template image 

normalization significantly improves the registration accuracy by 25.6% (25.6% reduction in 

smoothness measurement of the mean image) when using affine registration, compared to 15.7% 

for SPM nonlinear registration and 10.3% for FEM nonlinear algorithm. However, contrary to 

our prediction, no improvement in image registration with the multi-template strategy was found 

when the highly deformable registration was used. Instead this approach led to a more blurred 

mean image (-12.0%), as indicated in Table 4.3 and Figure 4.7. Possible reasons for this finding 

are: 1) The registration of intermediate images and Colin27 (s-image→r-image, s/r-
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image→Colin27) use the same highly deformable registration algorithm, and thus it does not 

take advantage of the multi-template strategy, and 2) When the registration algorithm progresses 

to a high flexibility, the algorithm may be able to compensate for most, if not all, of the 

anatomical variations in the population. In this case, the multi-template strategy may not help 

improve the registration accuracy. However, previous studies have shown that the highly 

deformable algorithm is not perfect (Wu, et al. 2007). The most likely reason for our finding is 

related to the shared use of the highly deformable registration algorithm by Colin27 and the 

intermediary registration approach. 

The multi-template based image normalization significantly improved the registration 

accuracy for linear and nonlinear registration algorithm by 25.6-10.3%, and lowered the 

registration accuracy by 12.0% for the fully deformable model (Deform). To improve the 

registration accuracy and take full advantage of the multi-template strategies, other registration 

methods can be tested, such as landmark based image registration or FreeSurfer [79, 80]. 

However, these methods are either labor-intensive or exceptionally expensive in computation for 

the offline registration of the intermediate images→Colin27.  

In this study, the multi-template strategy was evaluated in the application of image 

normalization, but it could easily be transferred to atlas-based segmentation. It would be of 

interest to evaluate the performance of the multi-template strategy in atlas-based segmentation.  

Especially this approach might be computationally less expensive than the multi-atlas 

segmentation approach based on multiple-classifier fusion or optimum template selection [51-

55].  
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4.6 SUMMARY 

Given the anatomical brain variations in the elderly population, template selection is an 

important and challenging decision, since it can significantly influence the final registration 

accuracy. The single-subject template strategy fails to characterize the variability of brain 

anatomical structures in the elderly population, and the averaged or statistical templates lack 

anatomical details. Therefore, in this study, several multi-template strategies have been proposed 

and evaluated for the application of image normalization using linear, nonlinear and deformable 

registration algorithms. Based on the results specified in section 4.4, the multi-template strategy 

(subject→s-image→r-image→Colin27) can significantly improve the registration accuracy for 

linear and nonlinear registration algorithms. This multi-template method better represents the 

anatomical variations in the elderly population, and also retains the detailed structures in the 

templates. Also in the multi-template strategy, the registration between the training data (s-

image→r-image) and Colin27 (r-image→Colin27) can be computed offline to take advantage of 

computationally expensive registration algorithms.  
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5.0  SEGMENTATION AND LOCALIZATION OF WHITE MATTER 

HYPERITENSITIES  

A number of previous studies have shown that white matter hyperintensities (WMHs), also 

called leuokoaraiosis and commonly seen on T2-weighted FLAIR MR images, are associated 

with neuropsychiatric disorders including vascular dementia [27], Alzheimer’s disease [28], and 

late-onset late-life depression [29, 81]. 

This chapter will describe the implementation and validation of an automated method for 

quantifying and localizing WMHs. A fuzzy connected algorithm [82, 83] is adapted to automate 

the segmentation of WMHs and a fully deformable image registration (Chapter 2) is used to 

automate the anatomic localization of the WMHs using the Johns Hopkins University White 

Matter Atlas.  

The results of a quantitative WMH assessment of a group of elderly control subjects 

compared to a group of Late-onset Late-life Depression (LLD) subjects are presented in this 

section. The LLD group was chosen because it is known that these subjects have a high WMH 

burden [84]. Also in this section, the WMH volumes identified with our approach are compared 

to the gold standard assessments based on manual expert ratings. Additionally, the anatomical 

localization of the WMHs found with our approach is described, and the WMH burden of the 

control group is region-wise statistically compared to that of the LLD patient group. 
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5.1 TRADITIONAL WMH QUANTIFYING METHODS  

Two analytic strategies have been used to evaluate WMHs on MR brain images: (1) semi-

quantitative rating systems and (2) quantitative volumetric analyses. For semi-quantitative 

systems, the WMHs are visually graded by trained expert raters. The rater assigns each MR 

image a WMH severity score based on its visual similarity to ‘prototype’ MR images. Typical 

rating scales range from low to high severity using 4-point or 10-point scales [85-87]. This 

method requires subjective judgment since it describes the WMHs using 4 or 10 crude grades. It 

does not provide accurate information about the location or volume of the WMHs, and thus may 

not detect some subtle WMH differences across groups. Also, different visual rating scales make 

it difficult to compare or reproduce the findings on WMHs evaluation across medical centers 

[88].  

For quantitative analyses on WMHs, several methods have been explored to 

automatically or semi-automatically segment the WMHs. For example, the K-Nearest Neighbor 

(KNN) classification method was used to automatically or semi-automatically label the T2-

weighted MR brain images as gray matter, CSF and white matter lesions [89-92]. In this method, 

the classification of an image voxel from a new patient relies on the voxel intensities and spatial 

information of a previously manually classified training set. Since the MR image of different 

subjects at the same medical center or across medical centers may have different intensity 

distribution ranges, and the normal anatomic variations across subjects lead to variability in the 

spatial features, this method may not work for some subjects. Other machine learning algorithms 

including artificial neural networks [93] have also been investigated for WMH segmentation, 

though they face similar dependencies of requiring a training set. An automated method has been 

proposed [94] that can delineate large brain lesions on T1-weighted structural images, which 
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involves comparing the smoothed individual T1-weighted image to a control group using the 

general linear model (GLM). The accuracy of this method depends on the performance of the 

spatial normalization technique. The normal anatomical variations in brain structures between 

individual subjects and the control group may present a problem for the registration accuracy and 

GLM. Thus, a Gaussian smoothing filter is used to smooth out the anatomical differences, which 

may also affect the reliability of the volumetric quantification of the lesions [94].  

On T2-weighted FLAIR MR images, the WMHs usually have a higher intensity than 

normal white matter (WM). Some methods automatically or semi-automatically segment the 

WMHs on FLAIR images by defining a cut-off threshold on the images. For example, 3.5 

standard deviations (SD) of the intensity value of the normal WM has been used as the lower 

intensity threshold for WMH segmentation [95]. The histogram of the FLAIR image has been 

used in a regression model to decide on a cut-off intensity threshold, and the voxels above the 

threshold are classified as WMHs [96]. Another method uses the mean and standard deviations 

of the gray matter, white matter and Cerebrospinal fluid (CSF) to estimate the intensity threshold 

for WMH, in which a probability map is used to favor the most likely WM regions [97]. These 

methods use only a single intensity threshold to segment the WMHs for the whole brain or for 

each slice of the brain images, which may misclassify some non-WMHs as WMHs, since some 

gray matter demonstrates signal intensity above the threshold [95] and the image intensity 

inhomogeneities may be problematic. To exclude the misclassified voxels, a manually outlined 

mask of WMHs with surrounding WM, GM and CSF has been used in Hirono’s paper, while in 

Wen’s paper a WM probability map (MNI 152 brains) has been used to favor the most likely 

WM regions. Manually outlining the WMH mask of a 3D brain volume is time-consuming and 
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labor-intensive, while using a WM probability map in a MNI template will make the accuracy of 

WMH segmentation dependent on the quality of the inter-subject registration.  

Previous research suggests that the location or distribution of WMHs is associated with 

specific symptoms [98]. Most previous studies have focused only on WMH visual inspection or 

volume measurement and did not distinguish among anatomically distinct WMHs, while a few 

groups have explored semi-automated or automated methods to localize WMHs into large 

compartments or categories such as periventricular white matter hyperintensities (PVWMHs) 

and deep white matter hyperintensities (DWMHs). For example, in Swatz et al. [91], a 3D 

classification algorithm was applied to separate DWMHs from PVWMHs. Other investigators 

have used nonlinear image registration methods to convert the WMHs across subjects into a 

standard space [99, 100]. 

5.2 AUTOMATED WMH SEGMENTATION AND LOCALIZATION 

This section describes our test data set and methods for the WMH segmentation and localization 

procedure. The data set description includes descriptions of (1) subjects, (2) MR Imaging 

Parameters, and (3) ) ‘gold standard’ White Matter Hyperintensity Ratings. The major steps of 

the methods involve (1) image preprocessing, (2) automated WMH segmentation, and (3) 

automated WMH localization. 
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5.2.1 Test Data Set 

5.2.1.1 Subjects 

Nineteen subjects (eleven patients and eight controls) were recruited through the University of 

Pittsburgh Intervention Research Center for Late-Life Mood Disorders. Subjects were 63 to 81 

years of age (mean age= 72.3, S.D.=4.86), and their WMH visual scores ranged from 0.5 to 6.5 

(mean WMH score=2, S.D.=1.6). All subjects (controls and depressed) received a SCID-IV 

evaluation, which was reviewed in a diagnostic consensus conference. Eleven of the 19 subjects 

were diagnosed as depressed patients; while the remaining eight subjects were termed control 

subjects. The 11 patients had late-onset late-life depression; they met DSM-IV criteria for Major 

Depressive Disorder [101], and their depression began at the age of 60 years or older. The mean 

Hamilton Depression Rating Scale on patients was 20.3 (S.D.=4.9). The subjects did not have 

significant cognitive impairment and their mean Mattis Dementia Rating Scale was 136.3 

(S.D.=5.9). They were all participants in a research trial of antidepressant medications. Other 

than Major Depressive Disorder (for subjects in the depressed group) and anxiety disorders, all 

other Axis I psychiatric disorders were used as exclusion criteria. We chose to include subjects 

with co-morbid anxiety disorders due to the high prevalence (48%) of anxiety disorders in 

subjects with late-life depression [102]. Each subject was assessed by the Mini Mental State 

Examination (MMSE)), Hamilton Rating Scale for Depression (Hamilton), and Mattis Dementia 

Rating Scale (Mattis). Clinical characteristics of the subjects (patients and controls) are 

summarized in Table 5.1. The 2 groups were well balanced with respect to gender and age. The 

MR images used in the current analyses were obtained at the time of subject’s enrollment, before 

the antidepressant medication was started. This study was approved by the University of 

Pittsburgh Institutional Review Board (IRB). Written informed consent was obtained. 
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Table 5.1. Clinical characteristics of the subjects. 

 
Group I 

(Depressed) 
Group II 

(Controls) 
t-test probability 

No. of subjects 11 8  
Age, year (range) 72.2±5.3 (63-80) 72.3±4.8 (67-81) 0.936 

 Gender, M/F 5/6 4/4  

WMH scores ± SD 2.55±1.9 1.25±0.5 0.054 

 MMSE ± SD 27.7±3.6 28.8±1.5 0.406 

 Hamilton ± SD 20.3±4.9 2±2.07 2.248E-08 

 MATTIS ± SD 136.3±5.9 139.9±3.4 0.116 

 Statistical comparisons utilized a two-sample, unequal variance, two-tailed Student’s t-test. 

5.2.1.2 MR Imaging Parameters 

Magnetic resonance images were acquired on a 1.5 Tesla Signa Scanner (GE Medical Systems, 

Milwaukee, WI). The 3D structural MR images were acquired at sagittal orientation using 3D 

Spoiled GRASS (SPGR, TR/TE = 5/25 ms; flip angle = 40º; FOV = 24×18cm, slice thickness = 

1.5mm, matrix = 256×192 matrix). 

The following axial series were also obtained: T1-weighted (TR/TE = 500/11 ms, Nex = 

1) and fast fluid-attenuated inversion recovery (fast FLAIR) (TR/TE 9002/56 ms Ef; TI = 2200 

ms, NEX = 1). Section thickness was 5 mm with a 1-mm inter-section gap. All axial sequences 

were obtained with a 24 cm field of view and a 192 x 256 pixel matrix. Slice thickness and 

orientation were chosen so that the acquired images would be compatible with the WMH rating 

scales described below. 
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5.2.1.3 White Matter Hyperintensity Ratings 

The ‘gold standard’ WMH ratings are based on a system developed for the Cardiovascular 

Health Study [CHS; 85, 86]. A numerical rating for the WMHs was assigned based on the 

comparison of each subject's imaging data to predefined CHS visual standard, representative of 

progressive severity within a 10-point scale (0 through 9). In this study, two raters independently 

evaluated WMH on the FLAIR images. If they differed in their ratings by one point, the final 

rating was the mean of the two values. A greater than one-point difference between raters was 

considered as a disagreement, and was adjudicated by consensus. 

5.2.2 Methods 

5.2.2.1 Image Preprocessing 

Image preprocessing includes skull stripping of the SPGR and FLAIR brain images, which 

improves the accuracies of WMH segmentation and localization. For the skull stripping on the 

FLAIR images, the Brain Extraction Tool [BET, 103] was used on the T1-weighted images, 

which were acquired at the same location and voxel-size as the FLAIR images. The resulting 

stripped T1-weighted image was then used as a brain mask to remove the skull and scalp from 

the FLAIR image. 

5.2.2.2 WMH Segmentation 

The automated WMH segmentation method involves four steps: (1) automatically identifying 

WMH seeds based on the intensity histogram of the FLAIR image, (2) using a fuzzy connected 

algorithm to segment the WMH clusters, (3) iteratively updating the set of seeds, and (4) 

combining the WMH clusters into the final WMH segmentation. The histogram of the skull-
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stripped FLAIR image is used to define a threshold (mean + 3 × SDs) for seed selection; voxels 

beyond this threshold are classified as WMHs and are used as seeds in the fuzzy connected 

algorithm to segment surrounding WMH voxels. The background of the FLAIR image is 

excluded when calculating its intensity histogram, mean intensity and standard deviation. In the 

fuzzy connected algorithm, the fuzzy adjacency and affinity, both between 0 and 1, are defined 

for each pair of voxels 

€ 

(a,b) : the fuzzy adjacency 

€ 

µα (a,b) defines how close the two voxels are, 

while the affinity 

€ 

µk (a,b)  (determined based on adjacency degree 

€ 

µα (a,b)  and intensity 

similarity) indicates how strongly the two voxels “hang together” in space and intensity. A fuzzy 

connected object is a set of voxels 

€ 

O  with properties as follows: any two voxels 

€ 

(a,b) from 

€ 

O 

have an affinity 

€ 

µk (a,b) > x where 

€ 

0 ≤ x ≤1, and for any pair 

€ 

a∈ O,b∉ O , the affinity is 

€ 

µk (a,b) < x,0 ≤ x ≤1. A detailed and precise mathematics definition is given in Udupa, et al. 

[104] and Udupa, et al. [105]. For each selected WMH seed the fuzzy connected algorithm 

generates a fuzzy object, within which each pair of voxels has a strong fuzzy connectedness or 

affinity (above certain threshold, 0.5 in this study), and the system automatically delineates a 3D 

WMH cluster containing the respective seed. Multiple 3D FLAIR image WMH clusters are 

generated from the set of automatically selected seeds and then combined to form an overall 

WMH segmentation volume.  

The flow chart of the WMH segmentation is shown in Figure 5.1. The fully automated 

WMH segmentation system was implemented in C++ and ITK. The WMH segmentation 

algorithm is available upon request through our website 

(http://www.pitt.edu/~aizen/GPN_Home.html).  
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Figure 5.1. WMH Segmentation Flowchart. The processing steps used to automatically segment the WMHs 

on FLAIR MR brain images. 

5.2.2.3 WMH Localization 

Automated Labeling Pathway (ALP, see Figure 5.2) is an automated method developed over a 

series of functional and structural MRI studies to automatically label specific anatomic regions 

of interest [106-108]. The pathway combines a series of publicly available software packages 

such as AFNI (Cox, 1996), BET (Smith, 2002), FLIRT (Jenkinson, 2002) and ITK (Yoo, 2004), 

as well as some locally developed programs to automatically label ROIs on the SPGR image of a 

subject. 
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Figure 5.2. ALP Flowchart. The processing steps that constitute the Automated Labeling Pathway (ALP), 

which is used to generate regional brain volume estimates. The process uses a variety of publicly available 

packages, as well as some locally developed programs, for atlas-based segmentation of MR images. 

The deformable model described in Chapter 2.0 is used in ALP for inter-subject 

registration (template colin27→subject 3D SPGR). The deformable registration allows for a high 

degree of spatial deformation, which seems to give it a particular advantage over other standard 

registration packages, such as Automated Image Registration (AIR) and Statistical Parametric 

Mapping (SPM). 

An overview of the WMH localization procedure is summarized in Figure 5.3. The high-

resolution reference image (MNI colin27) is registered to the T1-weighted SPGR high-resolution 

image of the subject using ALP, and the Johns Hopkins University White Matter Atlas (defined 
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on the reference brain MNI colin27 image) is warped into each individual’s anatomic image 

space.  The anatomic information in subject SPGR space is then transformed further into the 

subject’s FLAIR image space by rigid-body registration between the subject SPGR image and 

subject T1 in-plane image, which was acquired using the same slice prescription as the subject’s 

FLAIR image. In this way, the anatomical information in the atlas is carried into the subject’s 

FLAIR space and the ROIs labeled on the subject’s FLAIR image are used as binary masks to 

localize the WMHs.  The WMH localization task is viewed as a registration procedure. The 

Johns Hopkins University White Matter Atlas used in the current study is based on high-

resolution diffusion tensor MR imaging and 3d tract reconstruction. The atlas has 21 prominent 

white tracts including anterior thalamic radiation (ATR), cingulum (Cg) and other tracts [109], as 

listed in Table 5.2. 

 

Figure 5.3. An overview of the WMH localization procedure. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 WMH Segmentation Evaluation 

A subject with some discrete lesions as well as confluent lesions was chosen to demonstrate the 

results of this WMH extraction algorithm. Nine pairs of the segmented WMH slices versus 

corresponding FLAIR slices from the subject are displayed in Figure 5.4, showing this method’s 

effectiveness in the segmentation of discrete as well as confluent WMHs.  

 The WMH segmentation results of 19 subjects using this automated method were 

statistically compared to the WMH visual grades from the manual ratings. The comparison was 

done with a linear regression model.  In this study we chose to use semi-quantitative CHS ratings 

as the gold standard for comparison.  An alternative approach would have been to use manually 

segmented WMH tracings.  Since the two measures being compared used different metrics, we 

are only demonstrating a correlation between the measures rather an absolute agreement.  

The WMH volumes of the 19 subjects from the automated segmentation method were 

found to be significantly correlated to the visual grades with a R-squared = 0.909 and F(1,18) = 

170.7, P < 0.0001. Since the visual grade is a global index to the WMH severity on the subject 

brain image, the WMH volume is normalized by the overall WM volume (calculated from SPGR 

brain image). The normalized WMH results were also significantly correlated to the visual 

grades (R-squared = 0.909, F(1,18) = 170.3, P < 0.0001). This WM normalization method may 

not be the best way for whole brain adjustment, since previous studies have showed that WMH 

are significantly related to atrophy [110, 111]. A whole brain normalization method, which takes 

brain atrophy into consideration, may be better for WMH assessment.  
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The high correlation between the normalized WMH quantifications from the automated 

method and the visual grades demonstrates that this automated method can successfully segment 

the WMHs on MR FLAIR images.   

 

 

Figure 5.4. Automated WMH segmentation results on the FLAIR MR images of one subject. Nine paired 

image slices on the subject are shown here. In each paired slices, the left slice is the FLAIR slice and the right 

one is the associated automated WMH segmentation result. 

5.3.2 Localization of WMHs 

Using ALP, the Johns Hopkins University White Matter Atlas is transferred to each subject’s 3D 

SPGR image and further carried into subject FLAIR image space. The atlas regions in the 

subjects’ FLAIR image space are then used as ROI masks to localize the WMHs. Figure 5.5 



  84 

shows the segmented ROIs in MNI template colin27 space, individual SPGR structural space and 

FLAIR image spaces; respective MR images are also shown as underlay images. 
 

                        (a)                                         (b)                                               (c) 

Figure 5.5. The result of atlas-based segmentation from ALP.  Segmentation results are shown at axial 

orientation in the top row and the coronal orientation in the bottom row. (a) The MNI template colin 27, 

overlapped with the Johns Hopkins University White Matter Atlas (i.e., Anterior thalamic radiation, corpus 

callosum, corticospinal tract, inferior fronto occipital, inferior longitudinal fasciculus, superior longitudinal 

fasciculus, right uncinate fasciculus etc. (b) A single subject 3d SPGR image, overlapped with the 

transformed ROIs. (c) The same single subject FLAIR image, overlapped with the transformed ROIs. 

 The localized WMH volumes are quantified by multiplying voxel size by the number of 

WMH voxels inside the ROIs including anterior thalamic radiations, corticospinal tracts etc, as 

listed in Table 5.2. The WMH volume estimates from WMH localization describe the spatial 
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distribution of the WMH burden, which can facilitate further research on the role of WMH in 

pathogenesis of neuropsychiatric disorders. In Table 5.2, for each region of interest, the WMH 

volumes of the LLD patient group were statistically compared to the WMH volumes of the 

control group using two-tailed two-sample unequal variance t-test. A significant difference was 

found in whole brain WMH volume between the LLD patient group and the control group. The 

results from the WMH localization method provide more anatomical specificity. As shown in 

Table 5.2, there were significant differences in WMH spatial distributions between the LLD 

patient group and the control group in regions including right anterior thalamic radiation, corpus 

callusum (CC), inferior fronto occipital (IFO), inferior longitudinal fasciculus (ILF), and right 

uncinate fasciculus (UNC). However no significant differences were found in cingulum (CgLL, 

CgLR, CgUL, CgUR) and superior longitudinal fasciculus (SLFBL, SLFBR, SLFTL, SLFTR).  

Table 5.2. Mean Volumes of WMH (mm3) per region for the control group (8 controls) versus the 

patient group (11 patients) and the t-test results on normalized WMHs. 

Region\ Group Mean WMH 
Volume Control (mm3) 

Mean WMH 
Volume Patient (mm3) 

Two tailed t-test on 
Normalized WMH  
       (p value) 

Whole Brain 2737.3 8541.0 0.0427 
ATRL 649.8 2211.4 0.0554 

ATRR 821.2 1764.8 0.0187 

CCF 201.7 1165.6 0.01687 

CCO 416.1 1529.6 0.01277 

CSTL 148.3 309.2 0.05797 

CSTR 158.3 652.5 0.0609 

CgLL 35.1 110.3 0.0811 

CgLR 8.7 40.4 0.0606 

CgUL 11.9 550.1 0.1364 

CgUR 24.2 29.5 0.8187 
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Table 5.3. (continued) 

IFOL 338.1 1226.8 0.03430 
IFOR 478.7 2039.0 0.0391 

ILFL 192.6 716.6 0.0186 

ILFR 214.9 860.4 0.0384 

SLFBL 273.3 929.7 0.3593 

SLFBR 157.0 1441.2 0.3005 

SLFTL 128.7 717.5 0.4059 

SLFTR 46.5 761.5 0.2977 

UNCL 104.0 430.3 0.1685 

UNCR 139.2 327.8 0.0304 
Keys: ATRL/R-anterior thalamic radiation (left or right), CCF/O-corpus callosum (frontal or occipital), CSTL/R-

corticospinal tract (left or right),  CgLL/R-cingulate (lower part left or right), CgUL/R-cingulate (upper part left or 

right), ILFL/R-inferior longitudinal fasciculus (left or right), IFOL/R-interior frontooccipital fasciculus (left or 

right), SLFBL/F- entire superiro longitudinal fasciculus (left or right), SLFTL/F-superiro longitudinal fasciculus (the 

branch to the temporal lobe, left or right),   UNC-uncinate fasiculus(left or right). 

5.3.3 Limitations and Advantages  

The current study is limited by the low-resolution FLAIR image, as well as the limited number 

of subjects (11 patients and 8 control subjects). The analyzed FLAIR images were acquired with 

a slice thickness of 5mm and a 1mm gap, which may be an inadequate resolution for accurate 

volumetric quantification of the WMHs, and accordingly may affect the reliability of the group 

comparison results. A higher image resolution, such as a slice thickness of 2mm with no gap, 

could improve the WMH quantification and improve the registration accuracy, which would lead 

to more accurate WMH localization. Also, a larger group of well-characterized LLD subjects 

with a matched elderly non-depressed control group would add confidence to the WMH 

localization findings in Table 2 that are specific for LLD.  
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Previous research has used a fuzzy connected algorithm for semi-automated WMH 

segmentation [105, 112], which required some user interaction and did not give spatial 

information on the WMHs. Our method automatically identifies WMH seeds, and generates and 

localizes WMH segmentation; our method is objective and does not require any manual 

interaction. For the segmentation, we use the histogram of the FLAIR image to automatically 

generate the WMH seeds, and then use the fuzzy connected algorithm with specific parameters 

to form a WMH cluster for each respective seed. This method updates the seeds iteratively and 

combines the scattered WMH clusters into the final WMH segmentation. Since the fuzzy 

connected algorithm uses different parameters for each seed, this method enables a different 

threshold for each WMH cluster and avoids a single cut-off threshold for the whole brain or 

brain slice. This potentially offers more precise WMH segmentation. A fully deformable 

registration (ALP, Chapter 2.0 and [43]), which combines the piecewise linear registration for 

coarse alignment with Demons algorithm for voxel-level refinement, is used for accurate WMH 

localization on the Johns Hopkins University White Matter Atlas [109]. 

The WMH segmentation and localization method we described provides more specific 

and more accurate information about WMH volume and spatial distribution than visual WMH 

grades. Unlike different visual grading systems, it is very easy to compare the WMH findings 

from this method across different centers. The method relies on the properties of the subject’s 

own FLAIR image such as the intensity distribution of WMHs, and the connectivity and the 

diffusivity of the WMHs for the WMH segmentation, which does not rely on any training dataset 

like some of the reviewed methods [89-92]. 
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5.4 SUMMARY 

In this chapter we presented and validated a new method for fully automated segmentation and 

localization of WMHs on MR images. The method adapts the fuzzy connected algorithm for 

WMH segmentation and uses a demons-based fully deformable registration for WMH 

localization. The automated WMH segmentation method was evaluated by comparing the 

resulting WMH quantifications (non-normalized or normalized by total WM volumes) of the 19 

elderly subjects (11 late-life depressed subjects and 8 elderly controls) with the standard visual 

grading approach for estimating WMH burden. In the comparisons a high correlation of the 

WMH ratings was found between our new semi-automated approach and the manual ratings. 

Specifically, the two methods correlate with R-squared = 0.909, P <0.0001. Further localization 

of WMH followed the expected patterns of LLD: high WMH burden in the subcortical, and 

frontal regions. 

Quantification and localization of WMH volumes is critical for research involving the 

risk factors and pathogenesis of neuropsychiatric disorders. Most previous methods were labor 

intensive, subjective, and provided little if any anatomic localization. The current method solves 

many of the previous limitations: it does not require any manual intervention, provides WMH 

volume estimates, and localizes the WMH burden to a number of anatomic ROIs. The methods 

described in this chapter are particularly relevant given the emergence of large MRI databases, 

such as that provided by the Alzheimer’s Disease Neuroimaging Initiative 

(http://www.loni.ucla.edu/ ADNI/).   

The development and implementation of an automated method for quantifying and 

localizing WMH will facilitate a further, fine-grained understanding of: 1) short- AND long-term 
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treatment response; 2) evolution of cognitive functioning in late life depression; 3) evolution of 

leukoarisosis in LLD; 4) impact of medical and psychiatric treatment on WMHs in LLD; and 5) 

modeling of cognitive impairment in LLD:  e.g., is diminution in speed of information 

processing driven primarily by WMH, beta amyloid deposition, or both?  
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6.0  RESTING STATE CONNECTIVITY AND WHITE MATTER BURDEN IN LATE 

LIFE DEPRESSION 

In this chapter, we use the registration and segmentation methods developed in the previous 

chapters to study the resting state connectivity and white matter burden in late-life depression. 

The brain’s default mode network (DMN), which activates during resting state, has been the 

focus of intense research. In this chapter, we study DMN activity in late-life depression (LLD) 

and the correlation of DMN activity changes with the White Matter Hyperintensity (WMH) 

burden. We hypothesize that LLD subjects will have altered DMN activity, which will correlate 

with the increased WMH burden. 

6.1 PREVIOUS FINDINGS ON LATE-LIFE DEPRESSION 

Late-life major depression (LLD) is associated with emotional suffering, disability, caregiver 

strain, suicide, and poor compliance with other medical treatments [113]. The current 

understanding of LLD’s neurobiology is based on findings from both structural and functional 

neuroimaging studies. Structural changes include both reduced gray matter volumes as well as 

increased white matter hyperintensity (WMH) burden, which are the anatomical correlates of 

both neurodegeneration and cerebrovascular disease [114]. Several studies have reported 

significant bilateral volume reductions of the anterior cingulate, frontal cortex, hippocampus and 
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striatum [114-118]. Increased WMH burden in LLD has also been reported in several studies 

[114, 119-121]. Some [121], but not all [122] studies found that increased WMH burden is 

associated with poor antidepressant treatment response. The association of WMH burden with 

LLD led to the vascular depression hypothesis, which posits that a single vascular lesion or an 

accumulation of lesions may disrupt prefrontal systems that mediate both mood and executive 

function [123, 124].  

PET functional neuroimaging studies have described changes of resting-state cerebral 

activity in LLD subjects when compared with non-depressed control subjects [125], however, 

these findings have not been consistently replicated [126]. Recently, fMRI has been adapted to 

examine the connectivity of the default-mode network (DMN), an organized functional network 

of several brain regions that are active during resting state and inhibited during the performance 

of active tasks [127]. The DMN is thought to reflect the brain’s intrinsic ability to organize and 

stabilize different cerebral ensembles [128]. Analysis of resting state activity may enhance the 

understanding of the biological underpinning of mental illnesses pathophysiology. For example, 

activity in the DMN is affected in Alzheimer’s disease (AD) [129], Major Depressive Disorder 

(MDD) [130, 131] and anxiety disorders [132]. In midlife MDD, resting state functional 

connectivity was significantly increased in depressed subjects compared to healthy control 

subjects, especially in the sub-network comprising the subgenual cingulate and the thalamus 

[130]. Also, the length of incident depressive episode correlated positively with the increased 

functional connectivity in the subgenual cingulate [130].  In contrast to the increased default-

mode activity observed in midlife depression, decreased functional connectivity in the default 

network has been described in AD, suggesting that the pathological changes associated with AD 
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might reduce the DMN activity [129]. To our knowledge, there are no published studies 

characterizing DMN activity in LLD. 

Compared with mid-life major depression, LLD is characterized by a marked 

heterogeneity in both phenotype (e.g., greater cognitive impairment, greater anxiety) and 

pathogenesis (e.g., vascular changes in the brain, neurodegeneration, monoamine dysregulation) 

[133]. Functional MRI with cognitive tasks has shown decreased functional connectivity in LLD, 

thought to reflect vascular and neurodegenerative changes [134]. Given this multilevel 

heterogeneity, characterizing DMN activity in LLD could help in delineating the functional 

neuroanatomy and pathophysiology of the disorder.  

We hypothesize that subjects with LLD will show altered connectivity in the default-

mode network when compared with elderly non-depressed comparison subjects. Moreover, given 

the prominent role of WMH in the LLD vascular hypothesis, we hypothesize that the increased 

burden of WMH will be correlated with the altered activity in the default network. 

6.2 RESTING STATE CONNECTIVITY AND WHITE MATTER BURDEN IN LATE 

LIFE DEPRESSION 

6.2.1 Materials  

6.2.1.1 Subjects 

The data was collected from participants in the second Maintenance Therapies for Late-Life 

Depression study (MTLD-II), conducted at the University of Pittsburgh Advanced Center for 

Intervention and Services Research for Late-Life Mood Disorders between 1999 and 2004. 
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Details of the MTLD-II study protocol are described in Reynolds et al.[135]. In brief, 

participants had a mean age of 70.5, and were diagnosed via Structured Clinical Interview for 

DSM-IV (SCID) [136] with current non-psychotic, non-bipolar major depressive disorder 

(single-episode or recurrent), a 17-item Hamilton Depression Rating Scale (HDRS)[137] of 15 or 

higher, and a Mini Mental State Examination (MMSE) [138] score of 17 or higher. Subjects 

included in this study had a MMSE of 24 or above. Cognitive function was assessed with the 

Dementia Rating Scale [139]. Subjects with a clinical diagnosis of Dementia were excluded from 

the study. 

 During the acute phase of treatment in MTLD-II, subjects were treated openly with 

Paroxetine doses adjusted between 10 and 40 mg/day based on tolerability and response (mean 

(SD) final dose: 26 (11) mg/day), combined with weekly interpersonal psychotherapy (IPT). 

Subjects who responded to acute treatment entered a 16-week continuation phase to stabilize 

their response; they received the same pharmacotherapy and IPT every two weeks [135]. 

Response was defined categorically as a HDRS score of 10 or less [135]. 

Twenty-four participants, who consented to the neuroimaging protocol, had intact 

imaging data and a MMSE of 24 or above were included in this study: 12 elderly depressed 

subjects and 12 elderly comparison subjects. Four out of 12 comparison subjects and 5 out of 12 

depressed subjects received antihypertensive medication. The comparison subjects did not 

receive psychotropic medications and the elderly depressed subjects were psychotropic-free at 

baseline. 
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6.2.1.2 MR Imaging Parameters 

The baseline MR images were obtained at the time of subject enrollment, before initiation of 

pharmacotherapy. Follow-up scans were obtained after 12 weeks of pharmacotherapy, for 8 

depressed subjects who responded to treatment. Post acute-treatment scans were obtained while 

subjects continued on a maintenance dose of Paroxetine. 

There are several methods described in the literature for acquiring fMRI data for resting 

state. Some studies do not employ any explicit task and scan subject at rest, while others use the 

fMRI data from the fixation periods of block-design tasks [140], or from simple sensory-motor 

tasks (e.g. finger tapping). The finger tapping task requires a finger tap every 12 seconds and the 

brain functional activities associated with this simple task do not interfere with the DMN activity 

and has been used in the literature for acquiring resting-state data [129, 141]. Thus, finger 

tapping fMRI data was used to examine the resting state connectivity in LLD in this study.  

Imaging data were collected with a 1.5-T Signa scanner (GE Medical Systems). 3D high-

resolution anatomical images (SPGRs) were acquired in the sagittal orientation using 3D Spoiled 

Grass (SPGR, TR/TE = 5/25 ms, flip angle = 40º; FOV = 24×24 cm, and slice thickness = 1.5 

mm, matrix = 256×256 voxels). Fast fluid-attenuated inversion recovery (fast FLAIR) images 

(TR/TE = 9002/56 ms Ef; TI = 2200 ms, FOV = 24×24cm, NEX = 1, slice thickness = 5 mm, 

gap = 1 mm) were also acquired for WMH volume quantification. 

T1-weighted anatomical images (TR/TE = 500/11 ms, FOV = 24×24cm, slice thickness = 

3.8mm, matrix = 256×256) were acquired parallel to the plane connecting the anterior and 

posterior commissures. Thirty-six oblique axial slices were acquired with an in-plane resolution 

of 0.9375 mm x 0.9375 mm. Slice thickness and orientation were chosen to be similar to fMRI 

data for analysis purposes.  
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The fMRI data were acquired using a one-shot spiral pulse sequence (TR/TE = 2000/35 

ms, FOV = 24×24 cm, slice thickness = 3.8 mm, matrix = 64×64). Twenty-six oblique axial 

slices were acquired with an in-plane resolution of 3.75 mm x 3.75 mm. 

Subjects were instructed to perform a single key-press with both index fingers every time 

they saw the word “tap” appear on a screen. The tap stimulus appeared every 12 seconds and 

remained on the screen for 1 second. In the interim, subjects were instructed to fixate on a white 

cross-hair in the middle of the screen. There were 24 trials in a 5-minute block. The cross-hair 

stimulus appeared every 12 seconds and remained on the screen for 1 second.  

FMRI resting-state data were acquired on all 24 subjects; 8 non-depressed subjects (out 

of 12 total non-depressed comparison subjects) and 11 depressed subjects (out of 12 total 

depressed subjects) had FLAIR images available for WMH assessment. 

This study was approved by the University of Pittsburgh Institutional Review Board and 

we obtained written informed consent from all study participants. 

6.2.2 Methods  

6.2.2.1 WMH burden  

An automated WMH segmentation and localization method described in Chapter 5.0 was used to 

compute the normalized WMH volumes [142]. For each subject, the calculated WMH volume 

was normalized for the overall brain volume. A natural logarithm transformation was performed 

on the normalized WMH to minimize the skewness in data. 
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6.2.2.2 Resting-state fMRI analyses 

Preprocessing. The functional images from each subject were normalized into the standard 

Montreal Neurological Institute (MNI) template space (Colin27) [143] via the following steps: 

(i) the functional data were realigned to the first volume using a least square approach and a 6-

parameter rigid body transformation to correct for motion correction, (ii) the first volume in the 

functional data was registered to the subject’s high-resolution SPGR image using an affine 

transformation model, (iii) the subject’s SPGR image was then warped to the standard template 

MNI Colin27 using a deformable model [142], and (iv) the realigned functional images were 

upsampled and transformed into subject’s SPGR space with the affine matrix from step (ii), 

which were further transformed into the standard space with the computed deformation field 

from step(iii),  (v) the warped functional data were then downsampled to the original resolution 

of  3.75 mm x 3.75 mm x 3.75 mm; a Gaussian smoothing filter (6 mm full width at half 

maximum) was then used on the normalized functional images to reduce spatial noise. The fully 

deformable registration has previously been shown to increase the effect-size with functional 

imaging [142],  and has shown significant improvement in image registration accuracy of aging 

brains [144].  

For each subject, the smoothed, normalized functional images were concatenated to form 

a 3D+time AFNI dataset. A band-pass temporal filter with the cutoff frequencies of [.01 .1] Hz 

was then used to extract the resting-state BOLD signal, which also effectively removed the linear 

trend and high-frequency noise in the data as described in Lowe et al. [145].  

Connectivity Analysis. Functional connectivity is defined as the temporal correlation of 

activity between spatially disconnected areas [129], and it has become a popular tool in studying 

the regional relationships among both healthy individuals and those with clinical disorders [129]. 
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Using this tool, we compared the DMN activity among elderly non-depressed comparison 

subjects and LLD subjects before and after successful antidepressant treatment.  

Region of Interest (ROI). The posterior cingulate cortex (PCC) has been shown to have 

consistently greater activity during resting state than during cognitive tasks [146], and it is 

hypothesized to constitute a core node in the DMN [127]. Thus, the PCC has often been used as 

a seed region to identify the DMN. The left and right PCC from the Automated Anatomical 

Labeling (AAL) atlas [16] (1x1x1 mm) in Colin27 space were down sampled to a voxel 

resolution of 3.75 mm x 3.75 mm x 3.75 mm (left and right PCC combined, 200 voxels). A 

smaller region-of-interest (ROI) of 39 voxels, centered on the PCC, was created on the template 

Colin27 by performing erosions (2 iterations, 6 connected, 2.5-dimensional) with a 3x3x3 

(voxel) structuring element. Figure 6.1 presents the original PCC and the eroded ROI centered at 

PCC on Colin27.  

 

 

Figure 6.1. A) The original posterior cingulate cortex (PCC) and B) the eroded PCC are shown in red.  

For each subject, a reference resting-state time-series was extracted by averaging the 

time-series for all voxels within the PCC ROI. A correlation coefficient map was calculated on 
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the 3D+time resting state data with the reference time-series as the regressor of interest using 

3dDeconvolve from Analysis of Functional NeuroImages (AFNI) [147]. In the map, the 

correlation coefficient at a given voxel shows the time-series correlation between that voxel and 

PCC ROI, which represents the resting state functional connectivity score at the voxel.  

To determine the mean resting-state functional connectivity map for each group 

(depressed and comparison subjects), the correlation coefficient maps were statistically 

compared to the baseline using a 1-sample t-test. The resulting t-maps were then thresholded at a 

corrected p < .001 via Monte Carlo simulations (AlphaSim, AFNI [147], with the whole brain 

template as mask). 

A 2-sample t-test of the correlation coefficient maps (between comparison, pretreatment 

and post-treatment depressed subjects) was used to identify between-group differences in 

resting-state functional connectivity. The resulting t-maps were then thresholded at a corrected p 

< 0.05 via Monte Carlo simulations (AlphaSim, AFNI [147], with the ROI mask defined as the 

conjunctional frontal areas from the compared groups).  

6.2.2.3 Correlation of WMH Burden and Resting-state Connectivity 

The voxel-wise correlation between WMHs and the resting-state functional connectivity score 

was evaluated using 3dDeconvolve (AFNI) [147]. The functional connectivity correlation 

coefficient maps from each group (comparison subjects and depressed subjects) were used as the 

input data and the corresponding log-transformed WMH burden from the same group was used 

as the regressor of interest in 3dDeconvolve. The F-maps were thresholded at a corrected p < 

0.05 using Monte Carlo simulations (AlphaSim, AFNI) [147] with the resting-state connectivity 

map from the related group as ROI mask). 
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6.3 RESULTS 

The clinical characteristics of the subjects (depressed and non-depressed comparison subjects) 

are summarized in Table 1. The difference in Dementia Rating Scale scores between depressed 

and comparison groups is marginally significant at p < 0.05, but becomes non-significant at p < 

0.29 after adjusting for education level.  The CIRC-G cardiovascular and endocrine items did not 

differ between the two groups.  

Table 6.1 Clinical characteristics of the subjects. 

Group Difference 

t-test (t, p) 
 

Group 1 
(Non-

Depressed) 

(N=12) 

Group 2 
(Depressed 

before 
treatment) 

(N=12) 

Group 3 
(Depression 
Remitted) 

(N=8) 1 vs 2 
df = 22 

2 vs 3 
df = 6 

Subjects (N) 12 12 8   
Gender, Female 4/12 7/12 3/8   

Race, Caucasian 10/12 12/12 8/8   

Handedness, Right 12/12 10/12 6/8   

Age, years (mean, SD) 69.0±6.5 70.5±4.9 70.8±5.7 (0.64, 0.53)  

Age of onset, years 
(mean,SD) 

N/A 67.9±5.7 68.7±6.9   
°Number (%) of subjects with 

recurrent depression  
N/A 7/12 (58%) 4/8 (50%)   

Education, years (mean, SD) 16.3±2.7 13.6±3.0 13.4±3.0 (-2.26, 0.034)  

MMSE (mean, SD) 28.9±1.0 28.0±3.5 27.8±2.6 (-0.88, 0.39) ♦ (0.26, 0.85) 

DRS (mean, SD) 140.7±2.8 137.0±5.4 132.1±9.8 * (-1.09, 0.29)  (2.12, 0.087) 

HDRS-17 (mean, SD) 1.5±1.6 19.8±4.1 6.8±4.5 (13.69, <.0001) (5.91, <. 001) 

CIRS-G (mean, SD) 5.5±4.6 6.3±2.6  (0.48, 0.64)  

Statistical analyses were conducted in SPSS statistical package version 11 for Macintosh. 

MMSE: Mini-Mental State Examination; DRS: Dementia Rating Scale; HDRS-17: Hamilton Depression Rating 
Scale (17 item); CIRS-G: Cumulative Illness Rating Scale for Geriatrics.  
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 1 out of 8 depressed patients (after treatment) did not have the pretreatment data, so 7 patients were used in the 
two-tail paired t-test for comparison of patients before and after treatment (2 vs 3). 
 2 out 12 were African Americans.  

* Controlled for education level, df = 21.  
♦  2 out of 7 patients after treatment did not have MMSE measurements, df =4.  

  1 out of 7 patients did not have DRS measurement, df = 5.  

°Number (%) of subjects with recurrent depression (number of episodes of depression >2) 

 

6.3.1 WMH Burden 

The automated WMH segmentation method identified WMHs from the T2-weighted fluid-

attenuated inversion recovery (FLAIR) images. The WMH segmentation result for a comparison 

subject is shown in Figure 6.2. Normalized WMHs (nWMH) for both depressed and comparison 

groups (comparison group: nWMH mean = 0.53%, SD = 0.28%; depressed group: nWMH mean 

= 1.50%, SD = 1.76%) showed that the nWMH of the depressed group is significantly higher 

than the comparison group nWMH (t =1.80, p < 0.05) with a one-tailed unequal variance t-test. 

 

Figure 6.2. Automated WMH segmentation on the FLAIR image of one subject is shown here, (A) A single 

slice from a subject’s FLAIR image (B) WMH segmentation result with underlying flair image for anatomical 

reference. The automated WMH segmentation correlates with semi-quantitative, visual rating methods, such 
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as those used for the Cardiovascular Health Study. In the current study, 37% of the depressed subjects had a 

moderate-severe burden of WMH, as quantified by the Cardiovascular Health Study. 

6.3.2 Resting-State Functional Connectivity Maps  

Figure 6.3 presents the DMN functional connectivity map from the elderly non-depressed group 

(Figure 6.3A), and the depressed subject group before treatment (Figure 6.3B) and after 12 

weeks of pharmacotherapy (Figure 6.3C). The correlation coefficient maps from each group 

were statistically compared to the baseline 0 using a 1-sample t-test, and the resulting t-map  for 

the DMN was then thresholded at a corrected p < .001 (a joint threshold of p < 0.01 and 26-voxel 

cluster size) via Monte Carlo simulations (AlphaSim, AFNI [147],  with whole brain Colin27 as 

the mask). The standard template MNI colin27 is also displayed as the underlying image for 

anatomical reference in Figure 6.3.  
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Figure 6.3. T-maps of the resting-state connectivity for (A) elderly comparison group, late-life depression 

(LLD) group before treatment (B) and after treatment (C). The maps were thresholded at a corrected p < 

0.001. Compared with the elderly comparison group (A), the pretreatment LLD group (B) had significantly 

lower DMN activation in the subgenual anterior cingulate cortex and significantly higher DMN activation in 

the dorso-medial prefrontal cortex and the orbito-frontal cortex. 

Figure 6.4A presents the differences in the functional connectivity activities between the 

comparison group and the pre-treatment depressed group. Figure 6.4B presents the differences in 

the functional connectivity pattern between patients after treatment and before treatment. Figure 

6.4C presents the differences in the functional connectivity pattern between the comparison 

group and the post-treatment depressed group. In Monte Carlo simulations for between-group 

comparisons, the ROI mask used is defined as the conjunctional frontal area of DMNs from both 

groups under comparison.  
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Figure 6.4. The group comparisons of the functional connectivity activities with two-sample t-test (a corrected 

p < 0.05) between (A) the comparison group and pretreatment LLD group; (B) pretreatment LLD group and 

post-treatment LLD group; (C) the comparison group and the post-treatment LLD group. When compared 

with the elderly comparison group, the pretreatment LLD group had decreased connectivity in the (1) sACC 

and increased connectivity in the (2) dmPFC and (3) OFC. Compared to pre-treatment LLD group, the post-

treatment LLD group has improved connectivity in sACC and dmPFC. Compared with the non-depressed 

group, the post-treatment LLD group has decreased connectivity in (1) sACC and increased connectivity in 

(4) rostral ACC and (5) dorsal ACC. 

 

From the above analyses, we found that:  

(1) Compared to non-depressed elderly subjects, elderly depressed subjects pretreatment 

had significantly lower DMN activation in the BA25 subgenual anterior cingulate cortex (sACC; 

Talairach coordinates x=81, y=60, z=64; corrected p < 0.05) and significantly higher DMN 



  104 

activation in the BA 6 dorso-medial prefrontal cortex (dmPFC; Talairach coordinates x=93, 

y=62, z=106; corrected p < 0.05) and the orbito-frontal cortex (OFC; Talairach coordinates 

x=52, y=60, z=57; corrected p < 0.05). For all these regions we used a joint threshold of p < 0.05 

and 21-voxel cluster size (see Figure 6.4A). In Monte Carlo simulations, the ROI mask is defined 

as the conjunctional frontal area of DMNs from non-depresssed and depressed elderly subjects.  

 (2) Compared to themselves before treatment, depressed subjects who responded to 12 

weeks of pharmacotherapy exhibited significant improvement (i.e. normalization) in the resting-

state connectivity in both sACC (corrected p < 0.05; joint threshold of p < 0.05 and 24-voxel 

cluster size, using AlphaSim with the defined ROI mask) and dmPFC (corrected p < 0.05) (see 

Figure 6.4B).  

(3) Compared with non-depressed elderly subjects, post-treatment elderly depressed 

subjects had significantly lower DMN activation in the sACC (corrected p < 0.05; joint threshold 

of p< 0.05 and 21-voxel cluster size, using AlphaSim with the defined ROI mask) and a higher 

DMN activation in the rostral ACC (Talairach coordinates x=79, y=46, z=72; corrected p < 0.05) 

and dorsal ACC (Talairach coordinates x=79, y=69, z=89; corrected p < 0.05) (see Figure 6.4C).  

6.3.3 Correlation of WMH Burden and Resting-state Connectivity 

In LLD subjects pretreatment, there was a significant negative correlation between log-

transformed nWMH volume and resting state connectivity (N= 11, averaged r = -0.72, corrected 

p < 0.05; joint threshold of p < 0.05 and 58-voxel cluster size) in the medial frontal region, i.e., 

higher WMH volume was associated with lower resting state connectivity.  The r and t maps are 

shown in Figure 6.5. In Monte Carlo simulations, the ROI mask used is defined as the resting-

state DMN from the LLD group (see Figure 6.3B).  
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There was a significant negative correlation between log-transformed nWMH volume 

and resting state connectivity in elderly non-depressed comparison subjects in the medial 

prefrontal region (N = 8; averaged r = -0.80; corrected p < 0.05; joint threshold of p < 0.05 and 

58-voxel cluster size). In Monte Carlo simulations, the ROI mask used is defined as the resting-

state DMN from the non-depressed group (see Figure 6.5A). With the assumption that the WMH 

remained unchanged after 12 weeks of treatment, WMH was measured only pretreatment in the 

depressed group. Thus, we cannot make inferences regarding the correlation of WMH and 

resting state scores of post-treatment depressed subjects. 

 

 

Figure 6.5. The WMH burden and resting state score for the pretreatment LLD group shows a significant 

negative correlation (averaged r =-0.72, corrected p < 0.05) in the medial frontal region: (A) t map, (B) signed 

r map.  
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6.4 DISCUSSION AND SUMMARY 

To our knowledge, this is the first study describing the functional connectivity of the DMN in 

LLD. Our results show abnormal connectivity patterns in the prefrontal branch of the DMN in 

acutely depressed elderly subjects. This abnormal functional connectivity is significantly 

correlated with greater WMH volume. Moreover, we found some improvement in functional 

connectivity of DMN following treatment responses. We also confirm previous results regarding 

increased burden of WMH in LLD subjects when compared to non-depressed individuals. 

6.4.1 Altered Resting State Connectivity in LLD   

Previous reports regarding the DMN functional connectivity in midlife depression have reported 

increased subgenual ACC connectivity (sACC) [130]. Our study shows that subjects with LLD 

have overlapping but somewhat different functional connectivity of the DMN than midlife MDD 

subjects. The sACC-PCC connectivity was decreased in acutely depressed elderly, and although 

it improved after treatment response, post-treatment LLD subjects continued to present decreased 

sACC-PCC connectivity when compared to non-depressed control subjects. However, different 

data collection and data analysis methods were used in the midlife depression resting-state 

studies [130]. These differences may impede the comparison of the patterns of activation in 

midlife and late-life depression. 

Our results emphasize the importance of sACC as an impaired hub in the functional 

neuroanatomy of MDD [148, 149]. Our results also suggest the importance of the 

cerebrovascular component of LLD represented by the increased WMH burden.  
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Two areas had increased functional connectivity in the elderly subjects: the dmPFC and 

the OFC (see Figure 6.4). With regards to the dmPFC-PCC increased functional connectivity in 

LLD, while DMN areas are generally attenuated by effortful cognitive tasks, some studies have 

described a split-effect of different stimuli on DMN activation. Thus, increased self-referential 

activities (such as judgments about one’s mental or emotional state) are less deactivating or even 

specifically activate the dmPFC in contrast with other DMN areas; these changes have been 

interpreted as a biological marker of increased negative self-attributional style of depressed 

subjects [130, 150, 151]. Based on these reports, one may speculate that the observed OFC 

hyperactivity may be related to difficulties reappraising information – translated into 

hopelessness and decision-making difficulties - which may be associated with the cognitive 

changes described in LLD [152]. 

6.4.2 Evidence of “vascular depression" hypothesis of LLD  

The correlation between WMH volume and dysfunctional connectivity in the DMN supports the 

“vascular depression” hypothesis of LLD [123], even though the multifactorial etiology of WMH 

(including demelination due to neurodegeneration) does not allow for a definitive conclusion. 

The post-treatment persistence of sACC-PCC hypo-connectivity suggests a possible persistent 

feature of LLD, perhaps associated with the structural brain changes.  

6.4.3 Advantages and Limitations 

Beyond the novel subject population, our study has several other strengths: (1) a comparison 

group, which allowed us to compare LLD pre- and post-treatment to non-depressed elders; (2) an 

automated WMH segmentation method, which provided an objective, quantitative assessment of 
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WMH volume; (3) a fully deformable model for inter-subject image normalization, which has 

previously been shown to significantly improve co-localization of the fMRI signal in aging 

brains; and (4) acquisition of data pre- and post-treatment, allowing us to make inferences 

regarding the persistent biological features of LLD.  

Our report also has some limitations: we had a relatively small sample, especially in the 

post-treatment group and this limitation hampered our ability to analyze possible differences 

between LLD responders and non-responders. Our ability to detect WMH burden differences 

was hampered by the lack of FLAIR images for some of our subjects. Since, we computed the 

whole brain WMH burden, thus we could not make more specific inferences regarding the role 

of region-specific WMH burden and the decreased functional connectivity in the DMN. Also, 

with regard to WMH burden, the significant group difference between LLD and controls was lost 

when a one-tailed t-test was changed to a two-tailed test. Although none of the participants had 

evidence of stroke, we did not quantify the presence of lacunae. Overall, depressed subjects had 

less education than the comparison group, however this had no effect on the pre-post treatment 

findings in depressed subjects. As there was no significant difference between depressed subjects 

and non-depressed comparison subjects with regards to both MMSE and DRS, it is unclear if and 

how the lower education levels of the depressed subjects interfered with the fMRI findings. 

Given the design of the parent study, we have no imaging data on the depressed non-responders, 

as they were excluded from the study. Thus, we cannot make further inferences regarding the 

correlation between DMN changes and treatment response. The between-group comparisons 

were threshold at a corrected p<0.05; the lower significance threshold allows for a greater risk 

for type I error. However, we used the Monte Carlo simulations (AFNI) to correct for multiple 

comparisons. 
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In conclusion, we present novel data highlighting some of the biological basis of LLD. 

Given the high rate of WMH and concordant cerebrovascular disease, further research may 

tackle the treatment advantages of using adjuvant calcium channel blockers in the treatment of 

LLD [153]. Future research is also necessary to understand the correlation between DMN 

changes and various clinical characteristics of LLD, such as severity, duration of current episode, 

recurrence, comorbidity with anxiety or medical conditions, and treatment response.   
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7.0  CONCLUSIONS  

Heterogeneous changes in the human brain during aging have presented a significant challenge 

in analyzing MR brain images of the elderly. Methods developed in this dissertation have been 

shown to improve the accuracy of registration and segmentation for the elderly MR brain 

images. The key contribution is in describing and testing specific models that can characterize 

the aged-related changes in the elderly brains. For example, a deformable registration pipeline 

allows for the highly nonlinear differences present in elderly brains, and thus provides more 

accurate deformation estimation for image registration of elderly brain images.  Similarly, the 

optimum template strategy and the multi-template strategy both can better represent the 

heterogeneous changes in the elderly brains, which lead to improved registration accuracy in 

atlas-based segmentation and image normalization, respectively. 

Experiments have been designed to evaluate the performance characteristics of the 

developed methods, compared to the traditional method. Results from these experiments were 

encouraging and have shown improved performance with the developed methods. Some of the 

results from the designed experiments were intriguing as well. For example, in Chapter 2.0  

lower segmentation accuracy was found for the anterior cingulate cortex (ACC) than for the 

hippocampus in atlas-based segmentation using the deformable registration. This observation 

then intrigued us to suspect that the lower accuracy for the ACC was probably due to the inter-

subject variability in the gyral folding pattern in this structure. Therefore, the optimum template 
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selection strategy was proposed and has shown significantly improved segmentation accuracy for 

ACC using a set of 3 prototype templates with wide anatomical variations.  Some of the results 

were puzzling, for which possible reasons and potential future directions were suggested (see 

details in Chapter 7.2).   

The remainder of this chapter summaries the proposed methods and the experimental 

results, and then discusses potential future directions for neuroimage research in the elderly 

population.  

7.1 GOALS REVISITED  

The motivations and goals of this dissertation presented in Chapter 1.3 are revisited and 

reviewed in this section.  

Goal 1 Implementation of a fully deformable registration pipeline and quantitative comparison 

of the deformable model and AIR and SPM.  

A fully deformable registration has been developed using the registration library from 

ITK. A series of experiments have been designed for quantitative comparison of the deformable 

model, AIR and SPM. Results showed that the performance of the deformable model was 

significantly better than AIR and SPM in the atlas-based segmentation, image normalization as 

well as the co-localization of fMRI signal.  

Goal 2 An optimum template strategy for atlas-based segmentation.  

Given the normal and age-related variations in the brain structures of the elderly 

population, an optimum template strategy has been proposed and developed to improve the 
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segmentation accuracy in the atlas-based segmentation of elderly MR brain images. Results 

showed that, compared to the traditional single template method, the developed optimum 

template method provided significantly superior segmentation results for the most brain regions. 

Results also suggested that in addition to template number, variability in the selected family of 

templates also played an important role in improving the performance of the optimum template. 

We have shown that a small number of templates with appropriate anatomical variations were 

sufficient to achieve high accuracy in the atlas-based segmentation.  

Goal 3 A multi-template strategy for image normalization  

A novel multi-template strategy has been proposed and validated in this dissertation. In 

this method, intermediate prototype templates were used as a bridge in image normalization, and 

the registration was carried out as subject->intermediate brain images->Colin27. Results showed 

that the multi-template strategy (subject→s-image→r-image→Colin27) significantly improved 

the registration accuracy for linear and nonlinear registration algorithms. This multi-template 

method can better characterize the anatomical variations in the elderly population, and at the 

same time retains the detailed structures in the templates. Part of the registration pipeline (s-

image→r-image→Colin27) can be computed offline to take advantage of computationally 

expensive registration methods. 

Goal 4 Segmentation and localization of white matter hyperintensities 

 The fuzzy connected algorithm with automated seed identification was proposed 

and developed for WMH segmentation. A registration pipeline using the deformable model was 

developed for WMH localization. Compared to the traditional visual grading methods, this 

method provided more accurate WMH volume measurement and more specific information on 
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the spatial distribution of the WMHs, and thus it was able to detect subtle WMH differences 

between groups.  

Goal 5 Resting state connectivity and white matter burden in late life depression 

With the developed methods (the deformable model and the WMH segmentation 

method), the resting state connectivity and the effect of white matter hyperintensity were studied 

in late-life depression. In this clinical application, abnormal connectivity patterns were 

discovered in the prefrontal area of the default-mode network in depressed elderly subjects and 

this abnormal functional connectivity was significantly correlated with greater WMH volume. 

These results provided evidence for the “vascular depression" hypothesis of late life depression.  

7.2 FUTURE RESEARCH AND DIRECTIONS  

In this dissertation, the deformable model has been developed to improve the registration 

accuracy of structural and functional MR brain images in the elderly population. The research on 

structural images mainly focuses the overlap and volume brain structures. However, volume 

measurement of the brain structures may not be the best way to characterize the subtle gray 

matter changes in neurodegenerative and psychiatric disorder. Cortical thickness can estimate the 

gray matter changes with more regional specificity and better precision (submillimeter), which 

makes it particular useful in detecting the subtle cortical atrophy at the early stage of 

neurodegenerative diseases [154]. It will be interesting to develop a cortical thickness method 

based on the deformable registration model. This method may be able to provide more accurate 

thickness measurement of the gray matter, given the improved registration accuracy from the 

deformable model.  
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Results from Chapter 3.0 showed that the optimum template selection has produced 

improved anatomical segmentation accuracy for all the analyzed ROIs except for the left and 

right amygdala. In this case, the deformable model failed to provide an accurate segmentation for 

amygdala with the template candidates. Possible reasons for the unsuccessful registration are: 1) 

the deformable registration model is not good enough in amygdala segmentation. Alternative 

segmentation methods (perhaps using feature-based registration) may improve the automated 

labeling of the small and difficult to segment regions such as the left and right amygdala.  2) the 

random selected template candidates do not represent the variability in the amygdala. Further 

research is needed to explore the normal variations of the brain anatomy. 

Chapter 3.0 also showed that the number of templates as well as the anatomical 

varibilities in the templates could affect the performance of the optimum template method. A 

subset of the templates with wide anatomical variations was found to be sufficient to provide 

improved ACC segmentation. However, the anatomical variations in other brain structures have 

not been studied. For future research direction, machine learning algorithms or shape 

morphometry analyses could be combined or used independently to identify sufficient number of 

templates for brain structures of interest.  

The multi-template strategy (subject→intermediate brain images→Colin27) has shown 

superior accuracy in image normalization when using linear and nonlinear registration 

algorithms. However, contrary to our prediction, the multi-template strategy did not improve the 

image normalization when using the deformable model. Possible reasons have also been 

explored in Section 4.5. Improved registration accuracy between the training data and the MNI 

template Colin27 (intermediate brain images→Colin27) will improve overall image 

normalization. The intermediate brain images→Colin27 registration can be computed offline and 
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the obtained deformation fields will be repeatedly used in future studies. To take advantage of 

this feature, in future work, a more computationally expensive registration algorithms or a 

landmark based registration method, or an iterative combination of both methods could be used 

to provide a nearly perfect registration between the training data and the MNI template Colin27.  

An automated method has been developed in Chapter 5.0 to detect the abnormal white 

matter in T2-weighted FLAIR images. This method provides more accurate and more regional 

specific measurement of white matter hyperintensities. However, not all clinical studies include 

T2-weighted FLAIR image in their scanning protocols, but most studies have basic T1-weighted 

and T2-weighted brain images. Future research includes a modification of the current method to 

automatically segment the WMH on T2-weighted images. Different criteria for automated seed 

identification will be explored on T2-weighted image. Images with different modalities can help 

to improve the seed identification, such as T1-weighted image is used to mask out the bright CSF 

on T2-weighted image and etc.  

In the clinical application, the effect of overall white matter burden on resting state 

connectivity was studied. Further multi-modality MR studies can provide additional evidence of 

the relationship between structural and functional alterations in brain connectivity in late-life 

depression. These future studies may provide more specific evidence for the “vascular 

depression" hypothesis of late life depression.  
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