313 research outputs found

    Spatio-Temporal Multiway Data Decomposition Using Principal Tensor Analysis on k-Modes: The R Package PTAk

    Get PDF
    The purpose of this paper is to describe the R package {PTAk and how the spatio-temporal context can be taken into account in the analyses. Essentially PTAk() is a multiway multidimensional method to decompose a multi-entries data-array, seen mathematically as a tensor of any order. This PTAk-modes method proposes a way of generalizing SVD (singular value decomposition), as well as some other well known methods included in the R package, such as PARAFAC or CANDECOMP and the PCAn-modes or Tucker-n model. The example datasets cover different domains with various spatio-temporal characteristics and issues: (i)~medical imaging in neuropsychology with a functional MRI (magnetic resonance imaging) study, (ii)~pharmaceutical research with a pharmacodynamic study with EEG (electro-encephaloegraphic) data for a central nervous system (CNS) drug, and (iii)~geographical information system (GIS) with a climatic dataset that characterizes arid and semi-arid variations. All the methods implemented in the R package PTAk also support non-identity metrics, as well as penalizations during the optimization process. As a result of these flexibilities, together with pre-processing facilities, PTAk constitutes a framework for devising extensions of multidimensional methods such ascorrespondence analysis, discriminant analysis, and multidimensional scaling, also enabling spatio-temporal constraints.

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Enhancing Deep Learning Models through Tensorization: A Comprehensive Survey and Framework

    Full text link
    The burgeoning growth of public domain data and the increasing complexity of deep learning model architectures have underscored the need for more efficient data representation and analysis techniques. This paper is motivated by the work of (Helal, 2023) and aims to present a comprehensive overview of tensorization. This transformative approach bridges the gap between the inherently multidimensional nature of data and the simplified 2-dimensional matrices commonly used in linear algebra-based machine learning algorithms. This paper explores the steps involved in tensorization, multidimensional data sources, various multiway analysis methods employed, and the benefits of these approaches. A small example of Blind Source Separation (BSS) is presented comparing 2-dimensional algorithms and a multiway algorithm in Python. Results indicate that multiway analysis is more expressive. Contrary to the intuition of the dimensionality curse, utilising multidimensional datasets in their native form and applying multiway analysis methods grounded in multilinear algebra reveal a profound capacity to capture intricate interrelationships among various dimensions while, surprisingly, reducing the number of model parameters and accelerating processing. A survey of the multi-away analysis methods and integration with various Deep Neural Networks models is presented using case studies in different application domains.Comment: 34 pages, 8 figures, 4 table

    Tensor-based regression models and applications

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2017-2018Avec l’avancement des technologies modernes, les tenseurs d’ordre élevé sont assez répandus et abondent dans un large éventail d’applications telles que la neuroscience informatique, la vision par ordinateur, le traitement du signal et ainsi de suite. La principale raison pour laquelle les méthodes de régression classiques ne parviennent pas à traiter de façon appropriée des tenseurs d’ordre élevé est due au fait que ces données contiennent des informations structurelles multi-voies qui ne peuvent pas être capturées directement par les modèles conventionnels de régression vectorielle ou matricielle. En outre, la très grande dimensionnalité de l’entrée tensorielle produit une énorme quantité de paramètres, ce qui rompt les garanties théoriques des approches de régression classique. De plus, les modèles classiques de régression se sont avérés limités en termes de difficulté d’interprétation, de sensibilité au bruit et d’absence d’unicité. Pour faire face à ces défis, nous étudions une nouvelle classe de modèles de régression, appelés modèles de régression tensor-variable, où les prédicteurs indépendants et (ou) les réponses dépendantes prennent la forme de représentations tensorielles d’ordre élevé. Nous les appliquons également dans de nombreuses applications du monde réel pour vérifier leur efficacité et leur efficacité.With the advancement of modern technologies, high-order tensors are quite widespread and abound in a broad range of applications such as computational neuroscience, computer vision, signal processing and so on. The primary reason that classical regression methods fail to appropriately handle high-order tensors is due to the fact that those data contain multiway structural information which cannot be directly captured by the conventional vector-based or matrix-based regression models, causing substantial information loss during the regression. Furthermore, the ultrahigh dimensionality of tensorial input produces huge amount of parameters, which breaks the theoretical guarantees of classical regression approaches. Additionally, the classical regression models have also been shown to be limited in terms of difficulty of interpretation, sensitivity to noise and absence of uniqueness. To deal with these challenges, we investigate a novel class of regression models, called tensorvariate regression models, where the independent predictors and (or) dependent responses take the form of high-order tensorial representations. We also apply them in numerous real-world applications to verify their efficiency and effectiveness. Concretely, we first introduce hierarchical Tucker tensor regression, a generalized linear tensor regression model that is able to handle potentially much higher order tensor input. Then, we work on online local Gaussian process for tensor-variate regression, an efficient nonlinear GPbased approach that can process large data sets at constant time in a sequential way. Next, we present a computationally efficient online tensor regression algorithm with general tensorial input and output, called incremental higher-order partial least squares, for the setting of infinite time-dependent tensor streams. Thereafter, we propose a super-fast sequential tensor regression framework for general tensor sequences, namely recursive higher-order partial least squares, which addresses issues of limited storage space and fast processing time allowed by dynamic environments. Finally, we introduce kernel-based multiblock tensor partial least squares, a new generalized nonlinear framework that is capable of predicting a set of tensor blocks by merging a set of tensor blocks from different sources with a boosted predictive power

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204
    • …
    corecore