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Abstract—Classical regression methods take vectors as covari-
ates and estimate the corresponding vectors of regression parame-
ters. When addressing regression problems on covariates of more
complex form such as multi-dimensional arrays (i.e. tensors),
traditional computational models can be severely compromised
by ultrahigh dimensionality as well as complex structure. By
exploiting the special structure of tensor covariates, the tensor
regression model provides a promising solution to reduce the
model’s dimensionality to a manageable level, thus leading to
efficient estimation. Most of the existing tensor-based methods
independently estimate each individual regression problem based
on tensor decomposition which allows the simultaneous projec-
tions of an input tensor to more than one direction along each
mode. As a matter of fact, multi-dimensional data are collected
under the same or very similar conditions, so that data share
some common latent components but can also have their own
independent parameters for each regression task. Therefore, it
is beneficial to analyse regression parameters among all the
regressions in a linked way. In this paper, we propose a tensor
regression model based on Tucker Decomposition, which identifies
not only the common components of parameters across all the
regression tasks, but also independent factors contributing to each
particular regression task simultaneously. Under this paradigm,
the number of independent parameters along each mode is
constrained by a sparsity-preserving regulariser. Linked multiway
parameter analysis and sparsity modeling further reduce the
total number of parameters, with lower memory cost than their
tensor-based counterparts. The effectiveness of the new method
is demonstrated on real data sets.

Keywords-tensor regression; linked multiway parameter
analysis; sparse coding

I. INTRODUCTION

Advancing technologies are constantly producing large
amounts of multi-dimensional data, such as electroencephalog-
raphy (2D matrix), video sequences (3D array) and functional
magnetic resonance images (4D array). In multi-dimensional
data analysis, a challenging problem is to predict the outcome
of a continual criterion variable based on one or more predictor
variables, which is as known as a regression. Traditional
regression approaches in literature work on vector spaces that
are derived by stacking the original multi-dimensional data into
vectors in a random order. This vectorisation of data breaks
the inherent spatial structure of high-dimensional data, and
more seriously, leads to ultrahigh computational complexity
and large memory requirements for multi-dimensional data. A
typical solution is to firstly extract a vector of features from a
given dataset, and then to feed the feature vector into a classical

regression model [2], [11], [14], [12], [19]. Alternatively, as
in [4], one first applies unsupervised dimension reduction (i.e.
often using some variant of principal component analysis) to
the data array, and then fits a regression model in the lower
dimensional vector space. However, this feature selection or
dimension reduction scheme could result in information loss
in a regression setup. Genkin et al. [7] proposed a Bayesian ap-
proach to avoid overfitting, which uses a prior distribution that
favours sparseness in the fitted model. Nonetheless, it hasn’t
solved the substantial problem and that structural information
among the data is lost.

Recently, researchers have resorted to employing tensor in
regression modelling, which naturally takes into account the
spatial structure in the original data as a multi-way array. The
advantages of tensor-based methods seem to stem from the
way tensors are decomposed ( e.g. CANDECOMP/PARAFAC
(CP) decomposition or Tucker decomposition [10]). More
specifically, the estimated output can be expressed by a pre-
dictor tensor along with a low-dimensional factor matrix at
each mode. Factorizing the huge parameter space into low-
dimensional factor components associated with each mode
drastically reduces the number of unknown parameters to be
estimated, as well as accounting structural information of the
predictor spaces. Usually, the parameters associated with each
mode are estimated in an iterative manner, where, at each
iteration, only the parameters corresponding to a specific mode
are updated.

Some works based on tensor decomposition have been
proposed in recent years, such as [9], [25], [13], [21], [24].
Guo et al. [9] first addressed the regression problem using
tensor representation with the CP decomposition. Specifically,
the regression parameters are learnt in an iterative manner. In
this scheme, the input data (tensor) is projected along a certain
mode and the parameters associated with that mode are learned
by solving a linear problem of reduced dimensionality. Zhou
et al. [25] proposed a class of generalised tensor regression
models based on the low rank CP decomposition. Similar work
based on the Tucker Tensor regression model was proposed by
Li et al. [13]. Gao and Wu [6] proposed an algorithm named
Kernel Support Tensor Regression (KSTR) using tensors as
input for function regression. Tan et al. [21] proposed a logistic
tensor regression for classification. Zhao et al. [24] introduced
a generalised partial least square (PLS) framework for high-
order tensors and applied it to tensor subspace regression. In
essence, tensor decomposition acts as a feature selection or



dimensionality reduction scheme to decrease the number of
regression parameters to a manageable level. As a matter of
fact, the parameter number may be further reduced by deeply
exploiting components in each mode, since multi-dimensional
data are usually collected under the same or very similar condi-
tions. For example, a set of face images for different subjects
recorded over many trials and under the same experimental
setup. Such data share some common latent (hidden) spatial
factors embedded across all regressions but can also have
their own independent factors contributing to each particular
regression task. Accordingly, it is quite necessary to separately
analyse these two different types of factors in a linked way.
Unfortunately, most existing tensor-based approaches build
a regression model for each task separately, neglecting the
common components across all the regression tasks; or they
build models jointly without identifying individual factors.

Against this background, we propose a new tensor regres-
sion approach named Linked Multiway Parameter Analysis
based Tensor Regression (LMPA-TR) in this paper. LMPA-
TR imposes constraints on the estimated components for each
mode, which is identically correlated across all the regressions
with regard to their spatial distributions. Our proposed model
employs Tucker Decomposition to identify not only the com-
mon components of parameters across all the regression tasks,
but also independent factors contributing to each particular
regression task simultaneously. Moreover, the number of in-
dependent parameters along each mode is constrained by a
sparsity-preserving regulariser.

The contribution of this paper is two-fold. First, from an
image analysis point of view, our proposal provides a sys-
tematic solution for the integrative analysis of multi-modality
imaging data, such as human-pose estimation and neuroimag-
ing analysis. Second, from a statistical methodology point of
view, our proposal provides a novel and general framework for
regression with multi-dimensional data. Although there have
been some tensor regression methods utilising tensor decom-
position to reduce computational complexity, our proposal, to
the best of our knowledge, is the first work that analyses
the variability and consistency of components for individual
regression and across multiple regressions simultaneously.

The remainder of the paper is organized as follows. Some
preliminaries on tensor and the problem formulation are pre-
sented in Section II. The proposed tensor regression method
is detailed in Section III. Experimental results are reported in
Section IV and we conclude the paper in Section V.

II. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

Here, we briefly introduce some tensor fundamentals and
notations used throughout the paper. More specifically, tensors
(or multi-way arrays) are denoted by calligraphic letters, e.g.
X , matrices by boldface capital letters, e.g. X, and vectors by
boldface lower-case letters, e.g, x. The number of the dimen-
sions (also known as modes) of a tensor is the order of the
tensor. The ith entry of a vector x is denoted by xi, the (i, j)
element of a matrix X by xi,j , and the (i1, i2, . . . , iN ) element
of an N -order tensor X ∈ R

I1×I2×···×IN by xi1,i2,...,iN .

Definition 1 (Kronecker Product): The Kronecker product
of matrices A ∈ R

I×J and B ∈ R
P×L, denoted by A ⊗ B, is

a matrix of size (IP )× (JL) defined by

A ⊗ B =

⎡
⎢⎢⎣

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎤
⎥⎥⎦ (1)

Definition 2 (Tensor Matricisation): Matricisation is the
operation of rearranging the entries of a tensor so that it can
be represented as a matrix. Let X ∈ R

I1×...×IN be a tensor of
order-N , the mode-n matricisation of X reorders the mode-
n vectors to be columns of the resulting matrix, denoted by
X(n) ∈ R

In×(In+1In+2...INI1I2...In−1).

Definition 3 (The n-mode Product): The n-mode product
of a tensor X ∈ R

I1×...×IN by a matrix U ∈ R
R×In , denoted

as X ×n U, is a tensor with entries:

(X ×n U)i1,...,in−1,rn,in+1,...,iN =

In∑
in=1

xi1i2...iNurin (2)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in terms
of tensor matricisation as well:

Y = X ×n U ⇔ Y(n) = UX(n) (3)

Definition 4 (Tucker Decomposition): An N -order tensor
X admits a Tucker decomposition if it can be written as

X ≡ �G;U1, ...,UN � = G ×1 U1 ×2 . . .×N UN

=

R1∑
r1=1

R2∑
r2=1

. . .

RN∑
rN=1

gr1r2...rNur1 ◦ ur2 . . . ◦ urN (4)

where G ∈ R
R1×R2×... RN is called a core tensor and U(i) ∈

R
Ii×Ri(1 ≤ i ≤ N) are the factor matrices at each mode.

For a Tucker tensor X , its mode-n matricisation can be
expressed as

X(n) = UnG(n)(UN⊗· · ·⊗Un+1⊗Un−1⊗· · ·⊗U1)
T (5)

Definition 5 (The Frobenius norm of a matrix): The
Frobenius norm of a matrix X ∈ R

I×R is the square root of
the sum of the squares of all its elements, i.e.,

||X||F=
√√√√

I∑
i=1

R∑
j=1

x2
i,j (6)

Similarly we can define the Frobenius norm for any N -
order tensors.

B. Problem Formulation

A classical linear predictor on a vector space is given by

y = f(x;u, e) = 〈x,u〉+ e (7)

where x is the input data in a vector format, u is the parameter
weight vector, 〈·, ·〉 is the inner product of vectors. e and
y are the error and the regression output, respectively. Note
that scalar output regression is considered here and we have



assumed the bias terms to be zero in the model as it is easy
to centralise output data to achieve zero bias.

When the classic linear predictor is extended from vector
space cases to tensor space cases, the regression model is
formulated as follows

y = f(X ;u, e) = X ×1 u1 ×2 . . .×N uN + e

= �X ;u1,u2, . . . ,uN � + e
(8)

where X ∈ R
I1×I2×···×IN represents the input tensorial

features with N modes and u = {u1,u2, . . . ,uN} is a set of
parameter weight components ui ∈ R

1×Ii along each mode.
Scalars e and y represent error and output values respectively.

Remark 1: In terms of unfolded tensor, Eq. (7) and Eq. (8)
are equivalent. However, if the input space is of high dimen-
sionality, the overfitting and high computational complexity
problem occur in the classical regression model with a large
number of parameters.

Given a dataset containing m N -order data Xq(1 ≤ q ≤
m), each of them has an output vector yq = {y1q , y2q , . . . , yKq }
corresponding to values of K target continuous variables. Our
objective is to learn K tensor regression models as represented
by Eq.(8) for the target output, that is, to find an optimal
parameter weight set uj = {uj

1,u
j
2, . . . ,u

j
N} for task-j where

j = 1, 2, ...,K, such that

min
uj

m∑
q=1

‖yjq −Xq ×1 u
j
1 ×2 u

j
2 · · ·uj

N‖2F (9)

We create an (N + 1)-order tensor X ∈ R
I1×I2×···×IN×m

by stacking all the Xq along the (N + 1)-mode, and an
output vector of a specific output variable in the entire data
set represented by yj = {yj1, yj2, . . . , yjm}, regarded as a
1 × 1 × · · · × 1 × m tensor, where 1 ≤ j ≤ K. Then the
optimisation problem (9) can be equivalent to

min
uj

‖yj −X ×1 u
j
1 ×2 u

j
2 · · ·uj

N ×UN+1‖2F (10)

where UN+1 is the identity matrix of size m (i.e. Im).

III. TENSOR REGRESSION BASED ON LINKED MULTIWAY

PARAMETER ANALYSIS

Various tensor regression methods have been proposed
by employing either CP or Tucker decomposition to find
parameter components for each individual regression estima-
tion independently, usually without imposing any constraints
on components for each mode. However, in many scenarios
some links need to be considered to analyse variability and
consistency of the parameter components across regression
tasks. In other words, components in each mode do not need to
be necessarily independent, they can partially share common
bases for all regressions, which identify the same correlation
with regard to their spatial distribution across all tasks. This
leads to a new type of model called linked multiway parameter
analysis (LMPA).

The LMPA equips us with enhanced flexibility to decide
the suitable number of regression parameters. However our
intention is to further explore the correlation information of
spatial distribution existent across different regression tasks.

To this end, we add additional constraints on parameter com-
ponents to formulate a new tensor-based regression model
represented by Eq. (11). To be specific, for an individual
regression, we decompose each factor component uj

i in Eq.

(10) into uj
iIUiC , where uj

iI ∈ R1×Ri , corresponding to
task-dependent individual components and UiC ∈ R

Ri×Ii

(with 0 ≤ Ri ≤ Ii), corresponding to the common bases for
all regressions. This results in the following multiple tasks
regression problem,

min
uj

I ,UC

K∑
j=1

‖yj−�X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�‖2F (11)

Denote uj
I = [uj

1I ,u
j
2I , . . . ,u

j
NI ] and UC =

[U1C ,U2C , . . . ,UNC ] for simplicity.

Without any prior knowledge or regularisation, all the
entries of uj

iI in problem (11) tend to be nonzero, so it is
hard to pinpoint which predictor features are most relevant to
the response in a task. To identify relevant features for any
tasks, we propose to employ sparse regularization methods.
The state-of-the-art l1 norm regularization [23] is a commonly
used approach in producing sparse solutions with many zeros,
thus it helps in eliminating predictors that are not essential to
the task. To this end, we add a l1 norm regularization on each
independent components uj

iI to Eq. (11), then the problem can
be re-expressed by

min
uj

I ,UC

K∑
j=1

‖yj − �X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�‖2F

+ λ

K∑
j=1

‖uj
I‖1 (12)

We employ an iterative algorithm called the Block Coor-
dinate Descent (BCD) [3] to solve the optimisation problem
(12) by fixing all the other variables to solve for one variable
at a time alternatively.

First, the common components UiC for 1 ≤ i ≤ N are
fixed, the task-dependent coefficients uj

I can be obtained by
solving K independent tensor regression subproblems. That is,
for each j = 1, 2, . . . ,K, uj

I is obtained by minimizing

min
uj

I

‖yj − �X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�‖2F+λ‖uj
I‖1
(13)

with the BCD algorithm as well. For instance, LMPA-TR fixes
uj
1I , . . . , uj

n−1I ,uj
n+1I ,. . . , uj

NI to minimize the variable uj
nI ,

which is equivalent to solve the following problem

min
uj

nI

‖yj − �X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�‖2F+λ‖uj
nI‖1
(14)

Remark 2: Problem (14) can be considered as parameter
estimation on the low-dimensional representation of X . The
common components UnC(1 ≤ n ≤ N) can be extracted
from each mode, and then perform the n-mode product with
X to generate the low dimensional representation of X . Next
a Tucker decomposition on the new representation can be
carried out, with parameters in each mode denoted by unI .



This equivalent formulation of problem (14) is written as

min
uj

nI

‖yj − �G;uj
1I , · · · ,uj

NI�‖2F+λ||uj
nI ||1 (15)

where G = X ×1 U1C ×2 · · · ×N UNC ×N+1 UN+1.

Using tensorial matricisation, problem (14) can be rewritten
in terms of matrices as follows:

min
uj

nI

||yj − uj
nIQ||2F+λ||uj

nI ||1 (16)

where Q = UnCX(j)(UN+1 ⊗ uj
NIUNC · · · ⊗

uj
(n+1)IU(n+1)C ⊗ uj

(n−1)IU(n−1)C · · · ⊗ uj
1IU1C)

T .

Problem (16) can be solved by the Orthogonal Matching
Pursuit (OMP) algorithm [15], [16] or any basic pursuit
algorithm [5], [22].

Secondly, we compute common bases UC by fixing all the
task-dependent components uj

I for (1 ≤ j ≤ K). UC can be
obtained by combining all the K regression models together,
which is formulated as

min
UC

K∑
j=1

‖yj − �X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�‖2F (17)

Similarly, the mode-n common component UnC (1 ≤
n ≤ N) is computed by fixing U1C , . . . , U(n−1)C ,U(n+1)C ,
. . . ,UNC by solving

min
UnC

K∑
j=1

||yj − �X ;uj
1IU1C , · · · ,uj

NIUNC ,UN+1�||2F (18)

Using tensorial matricisation, problem (18) can be rewritten
in terms of matrices as follows:

min
UnC

K∑
j=1

‖yj − uj
nIUnCX(n)V

T
nj‖2F (19)

where Vnj = UN+1 ⊗ uNjUNC ⊗ · · · ⊗ u(n+1)jU(n+1)C ⊗
u(n−1)jU(n−1)C ⊗ · · · ⊗ u1jU1C . This problem is equivalent
to a least square problem. Let

f =

K∑
j=1

‖yj − uj
nIUnCX(n)V

T
nj‖2F

=

K∑
j=1

tr(yjyjT − 2uj
nIUnCX(n)V

T
njy

jT

+ uj
nIUnCX(n)V

T
njVnjX

T
(n)U

T
nCu

j
nI

T
)

(20)

UnC is obtained by making the partial derivative of f with
respect to UnC equal to zero, which is written as

∂f

∂UnC
= 2

K∑
j=1

AjUnCBj − 2C = 0 (21)

where Aj = uj
nI

T
uj
nI , Bj = X(n)V

T
njVnjX

T
(n) and C =

∑K
j=1 u

j
nI

T
yjVnjX

T
(n). The vectorization of UnC can be

obtained by solving Problem (21), that is,

vec(UnC) =

⎡
⎣

K∑
j=1

(BT
j ⊗Aj)

⎤
⎦
−1

vec(C) (22)

The final UnC can be obtained by converting the result in
Eq.(22) into a matrix format.

After iteratively solving subproblem (13) and (17) until the
maximum iterations are achieved or the iteration converges, we
finally obtain the common components across all the tasks and
the independent parameter components along each mode for
each of K regression tasks. Algorithm 1 outlines the whole
process of our proposed method LMPA-TR.

Algorithm 1 Tensor Regression Based on Linked Multiway
Parameter Analysis (LMPA-TR)

Require: K output vectors yj for 1 ≤ j ≤ K, input features
X ∈ R

I1×I2×···×IN×M , sparsity S in the OMP algorithm
and tolerance ε.

Ensure: Common components across all tasks UC =
[U1C ,U2C , . . . ,UNC ] and regression parameters for task-

j uj
I = [uj

1I ,u
j
2I , . . . ,u

j
NI ] (1 ≤ j ≤ K)

1: Initialize common components along each mode UnC(1 ≤
n ≤ N)

2: while reach maximum iteration times or converge to stop
do

3: Get the independent component for mode-n of task-j:
uj
nI using the OMP algorithm for (j = 1 to K and

n = 1 to N );
4: Update the common components for mode-n: UnC by

solving the problem (18) for (n = 1 to N );
5: end while
6: return UC and uj

I(1 ≤ j ≤ K)

IV. EXPERIMENTAL RESULTS

Our baseline methods include two classic vector-based
regression algorithms (i.e. ridge regression (RR) [18] and
support vector regression (SVR) [20]) and a generalized tensor
regression model based on CP decomposition [9] (CPTR). As
our regression model is based on Tucker decomposition, we
also consider a Tucker tensor regression model (TTR), which
allows directly simultaneous projections of an original input
tensor to each direction along each mode, with a sparsity reg-
ularisation on each mode. To facilitate a fair comparison and
to illustrate the advantage of the joint dimensionality reduction
and regression framework (as explained in Remark 2), we also
include a method called Tucker Dimensionality Reduction +
TTR (TDR+TTR) that performs a Tucker decomposition as
dimensionality reduction and TTR on the new low-dimensional
representation as regression, but in a disjoint manner.

In order to investigate the performance of the proposed
method, we conducted experiments using two publicly avail-
able real world data sets for the problem of head-pose, i.e.,
IDIAP [1] and Pointing’04 [8] data sets1.

I. IDIAP Data set: The IDIAP Head Pose dataset comes
from 8 meeting sequences of 360×288 frame resolution, where
two individuals were captured while discussing about various
topics in a 4-person dialogue scenario. The total number of
different subjects captured is 15. They had their head orien-
tations continuously annotated using a magnetic field location

1The code and data can be downloaded from http-
s://sites.google.com/site/yifanfu01/code



TABLE I. ALGORITHM MEMORY AND TIME COMPARISONS

(a) Parameter Number for Each Regression Estimation

IDIAP Pointing’04

RR 5625 110592

SVR 5625 110592

CPTR 450 2021

TTR 150 672

TDR+TTR 50 180

LMPA-TR 50 180

(b) Algorithm Running Time Comparison

IDIAP Pointing’04

RR 3069.26s 11838.26s

SVR 2895.98s 10936.85s

CPTR 269.45s 1804.26s

TTR 275.02s 1854.62s

TDR+TTR 597.26s 3981.23s

LMPA-TR 589.23s 3269.39s

and orientation sensor tracker. A face detector was used to
extract the bounding box of each face in every video frame. All
the acquired image regions were resized to 75×75 pixels. The
ground truth provided is in the form of pan, tilt and roll angles
(i.e. Euler angles with respect to the camera coordination
system). The video repository has been employed for the
CLEAR2007 head orientation estimation challenge, following
the protocol described in [1]: 21152 samples were selected
as training data and 23991 as testing data. Since the training
samples are particularly unbiased on certain orientations, we
flip them and then we randomly extract a subset of 5288
images from above training data as our experimental database.

II. Pointing’04 Data set: The Pointing’04 head-pose
database contains a variety of head poses ranging from −90
degrees to +90 degrees in both horizontal and vertical di-
rections. The data set is formed by 15 subjects of various
skin colours, with or without glasses, each one preforming 13
pose variations horizontally and seven vertically as well as two
extreme cases of the vertical +90 degrees and −90 degrees, to
a total of 2790 images. All the images are of size 384× 288.

1) Performance with respect to different training sample
sizes: It is noted that the majority of linear projection tech-
niques follow an implicit assumption of nearest neighbour,
that is, the local structure is preserved in the low dimensional
subspace. Linear regressors are simple, yet effective for the
training sets with clear nearest neighbour characteristic. How-
ever, it might not be the optimal choice when training samples
do not have such characteristic. Therefore, we investigate the
performance of LMPA-TR with small size of training samples
without explicit nearest neighbour property.

To generate such training sets, we generated 20 random
splits on the IDIAP and Pointing’04 data sets. In each split,
the images are randomly selected from each subject for training
and the rest are used for testing. Then we report the average
performance on all these splits with respect to different size of
training samples in Table II and III. Among various methods,
we note that LMPA-TR performs best with different training
sample sizes ranging from 3 to 7.

As we expected, LMPA-TR based on optimisation on the
subspaces (i.e. common bases) outperforms all the linear pro-
jection based methods. Although tensor based linear regression
methods like TTR and CPTR take spatial structure into con-
sideration, they still follow the nearest neighbour characteristic

that makes them ineffective for small training sets selected in
a random manner. When we compare our proposed method
LMPA-TR to TDR+TTR, better performance gain is observed.
This is probably because separating dimension reduction and
regression updates common bases and task independent bases
independently, component information obtained by one task is
not used for the other optimisation task.

2) Comparison regarding Memory cost and Running time:
We compare the memory cost and the running time on both
data sets among all the baseline methods in Table I. Compared
with vector-based methods, the number of parameters used
in tensor-based counterparts is significantly reduced as shown
in Table I(a). This observation suggests that taking spatial
structure into consideration can effectively reduce memory cost
with respect to the regression parameters, especially for high-
dimensional data set like Pointing’04.

Moreover, integrating hidden subspace exploitation (i.e.
dimension reduction) into tensor regression can further reduce
the memory usage for regression parameters. In terms of
algorithms’ running time, it is apparent that vector-based
techniques like RR and SVR have the highest computational
cost, while tensor-based regression methods CPTR and TTR
are much faster than RR and SVR as the number of estimated
parameters is much less in a format of tensor. We also note that
TDR+TTR and LMPA-TR take longer time to run than CPTR
and TTR, because they need to solve the optimisation problems
on dimension reduction and regression parameter estimation.

To sum up, our proposed method LMPA-TR has small
memory requirements and comparable computational cost.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new tensor regression
method based on linked multiway parameter analysis. The
proposed method identifies the common components of pa-
rameters across all the regression estimations and the inde-
pendent ones for each specific regression task simultaneously.
Meanwhile, sparse coding is employed for the estimation of
task-dependent parameters along each mode, which further
reduces memory requirements regarding these parameters. This
sparsity scheme generates discriminative and general regres-
sion models by identifying the most relevant factors for each
particular regression task, effectively avoiding the overfitting
problem. Experimental results show that our new method has
advantages over state-of-art regression methods in memory and
computational cost and convergence speed, especially when the
size of training samples is small.

In this work, we have chosen the quadratic loss over
the learning function, which is particularly satisfactory for
regression problem. When it comes to classification tasks,
it is reported that the quadratic loss does not work well
for categorial outputs [17]. One of our future work is to
use our framework with other types of loss functions, rather
than the quadratic loss. For example, one can incorporate the
idea of learning the projection matrix in the context of SVM
formulation for classification of multi-dimensional data.
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TABLE II. ANGULAR ERROR FOR THE IDIAP DATA SET

RR SVR CPTR TTR TDR+TTR LMPA-TR

Sample size=3
pan 23.8±1.81 20.6±1.37 20.7±1.27 19.8±1.34 17.2±1.17 16.1±0.97

tilt 8.5±1.42 9.2±1.28 8.7±1.93 8.9±1.66 7.5±1.35 6.1±1.14

roll 12.3±2.01 11.6±1.88 10±1.12 9.7±1.39 9.19±1.06 8.3±1.01

Sample size=5
pan 21.2±1.54 18.4±1.27 16.9±1.98 15.4±1.13 12.7±2.04 10.5±1.45

tilt 7.4±1.27 7.9±2.56 5.3±1.67 5.5±1.09 3.2±1.33 2.9±0.87

roll 11.6±1.69 9.8±1.73 8.6±1.51 7.8±2.09 7.1±1.86 6.9±1.12

Sample size=7
pan 19.6±1.74 16.7±1.98 12.7±1.52 13.01±2.63 9.7±1.54 8.2±1.09

tilt 5.6±2.47 5.8±1.23 3.6±1.48 4.1±1.60 1.8±0.65 1.5±0.38

roll 9.8±3.05 8.5±1.64 6.2±1.23 5.9±0.98 5.4±0.96 4.9±0.93

TABLE III. ANGULAR ERROR FOR THE POINTING’04 DATA SET

RR SVR CPTR TTR TDR+TTR LMPA-TR

Sample size=3
horizontal 5.9±0.81 5.7±1.07 5.3±1.72 5.4±0.98 4.9±1.23 4.6±0.27

vertical 5.4±1.09 5.3±1.36 4.9±1.56 4.8±1.08 4.6±1.77 4.2±1.23

Sample size=5
horizontal 5.4±1.36 5.2±1.08 4.8±1.58 4.6±1.38 4.2±0.98 3.9±1.31

vertical 4.8±1.67 5.0±1.25 4.6±1.02 4.2±1.52 3.9±0.95 3.7±0.66

Sample size=7
horizontal 4.6±1.32 4.2±1.51 3.9±1.09 3.7±1.52 3.5±0.88 3.1±0.95

vertical 4.2±1.23 4.1±2.04 3.8±1.18 3.6±1.26 3.2±0.87 2.9±0.96
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