
Tensor-based Regression Models and Applications

Thèse

Ming Hou

Doctorat en informatique
Philosophiæ doctor (Ph.D.)

Québec, Canada

© Ming Hou, 2017

Résumé

Avec l’avancement des technologies modernes, les tenseurs d’ordre élevé sont assez répandus et
abondent dans un large éventail d’applications telles que la neuroscience informatique, la vision
par ordinateur, le traitement du signal et ainsi de suite. La principale raison pour laquelle
les méthodes de régression classiques ne parviennent pas à traiter de façon appropriée des
tenseurs d’ordre élevé est due au fait que ces données contiennent des informations structurelles
multi-voies qui ne peuvent pas être capturées directement par les modèles conventionnels
de régression vectorielle ou matricielle. En outre, la très grande dimensionnalité de l’entrée
tensorielle produit une énorme quantité de paramètres, ce qui rompt les garanties théoriques
des approches de régression classique. De plus, les modèles classiques de régression se sont
avérés limités en termes de difficulté d’interprétation, de sensibilité au bruit et d’absence
d’unicité.

Pour faire face à ces défis, nous étudions une nouvelle classe de modèles de régression, appelés
modèles de régression tensor-variable, où les prédicteurs indépendants et (ou) les réponses
dépendantes prennent la forme de représentations tensorielles d’ordre élevé. Nous les ap-
pliquons également dans de nombreuses applications du monde réel pour vérifier leur efficacité
et leur efficacité.

iii

Abstract

With the advancement of modern technologies, high-order tensors are quite widespread and
abound in a broad range of applications such as computational neuroscience, computer vi-
sion, signal processing and so on. The primary reason that classical regression methods fail to
appropriately handle high-order tensors is due to the fact that those data contain multiway
structural information which cannot be directly captured by the conventional vector-based
or matrix-based regression models, causing substantial information loss during the regression.
Furthermore, the ultrahigh dimensionality of tensorial input produces huge amount of param-
eters, which breaks the theoretical guarantees of classical regression approaches. Additionally,
the classical regression models have also been shown to be limited in terms of difficulty of
interpretation, sensitivity to noise and absence of uniqueness.

To deal with these challenges, we investigate a novel class of regression models, called tensor-
variate regression models, where the independent predictors and (or) dependent responses take
the form of high-order tensorial representations. We also apply them in numerous real-world
applications to verify their efficiency and effectiveness.

Concretely, we first introduce hierarchical Tucker tensor regression, a generalized linear tensor
regression model that is able to handle potentially much higher order tensor input. Then, we
work on online local Gaussian process for tensor-variate regression, an efficient nonlinear GP-
based approach that can process large data sets at constant time in a sequential way. Next,
we present a computationally efficient online tensor regression algorithm with general tenso-
rial input and output, called incremental higher-order partial least squares, for the setting of
infinite time-dependent tensor streams. Thereafter, we propose a super-fast sequential tensor
regression framework for general tensor sequences, namely recursive higher-order partial least
squares, which addresses issues of limited storage space and fast processing time allowed by dy-
namic environments. Finally, we introduce kernel-based multiblock tensor partial least squares,
a new generalized nonlinear framework that is capable of predicting a set of tensor blocks by
merging a set of tensor blocks from different sources with a boosted predictive power.

v

Table des matières

Résumé iii

Abstract v

Table des matières vii

Abbreviations ix

List of Symbols xi

Liste des tableaux xiii

Liste des figures xv

Acknowledgements xvii

1 Introduction 1
1.1 Context and Motivations for Tensor Regression 1
1.2 Tensor-based Regression Models and Their Applications 3
1.3 Main Contributions . 5
1.4 Thesis Outline . 6

2 Tensor Preliminaries 9
2.1 Tensor Basics . 10
2.2 Tensor Decompositions . 17
2.3 Scaling up Tensor Decompositions . 25
2.4 Conclusion . 27

3 Tensor Regression Overview 29
3.1 Tensor Regression . 29
3.2 Our new contributions : the big picture . 49
3.3 Conclusion . 49

4 Hierarchical Tucker Tensor Regression 51
4.1 Introduction . 51
4.2 Hierarchical Tucker Decomposition (HTD) 52
4.3 H-Tucker Tensor Regression Model . 57
4.4 Parameter Estimation . 59
4.5 Experimental Results . 62

vii

4.6 Conclusion . 65

5 Online Local Gaussian Process for Tensor Regression 67
5.1 Introduction . 67
5.2 Tensor GP Regression Review . 68
5.3 Tensor OLGP Regression . 69
5.4 Experimental Results . 72
5.5 Conclusion . 75

6 Incremental Higher-order Partial Least Squares Regression (IHOPLS) 77
6.1 Introduction . 77
6.2 High-order Partial Least Squares Regression (HOPLS) Review 79
6.3 Incremental Higher-order Partial Least Square Regression (IHOPLS) 79
6.4 Experimental Results . 82
6.5 Discussion . 86
6.6 Conclusion . 86

7 Recursive Higher-order Partial Least Squares Regression (RHOPLS) 89
7.1 Introduction . 89
7.2 Recursive Higher-order Partial Least Squares Regression (RHOPLS) 90
7.3 Experimental Results . 98
7.4 Discussion . 109
7.5 Conclusion . 110

8 Partial Least Squares Regression :
A Kernel-based Multiblock Tensor Approach 111
8.1 Introduction . 111
8.2 Kernel-based Multiblock Tensor PLS Regression (KMTPLS) 112
8.3 Experimental Results . 118
8.4 Discussion . 126
8.5 Conclusion . 126

9 Conclusion 127
9.1 Summary of the Contributions . 127
9.2 Possible Future Work . 129

A Mathematical Background 131
A.1 Partial Least Squares Regression (PLS) . 131
A.2 Nonlinear Iterative Partial Least Squares PLS Regression (NIPALS-PLS) . . 134
A.3 Linear Algebra Basics . 135
A.4 Generalized Linear Model (GLM) . 136
A.5 Maximum Likelihood Estimation (MLE) . 137

B Sketch of Proof 139
B.1 Sketch of Proof of Proposition 3 . 139

Bibliographie 141

viii

Abbreviations

ADHD Attention Deficit Hyperactivity Disorder Data Analysis
ADMM Alternating Direction Method of Multiplier
ALTO Accelerated Low-rank Tensor Online Learning
ALM Augmented Lagrangian Method
ALS Alternating Least Squares
ANN Artificial Neural Networks
BCD Block Component Decomposition
BIC Bayesian Information Criterion
BRA Block Relaxation Algorithm
CD Coordinate Descent
CDMTR Common and Discriminative multiblock Tensor Regression
CP Canonical Decomposition/Parallel Factor Analysis
CNMF Convolutive Nonnegative Matrix Factorization
C-PARAFAC Convolutive Parallel Factor Analysis
ECoG Electrocorticography
ED Eigenvalue Decomposition
EEG Electroencephalography
FMRI Functional Magnetic Resonance Image
GLM Generalized Linear Model
GP Gaussian Process
HOOI Higher-Order Orthogonal Iteration
HOPLS Higher-Order Partial Least Squares
HOSVD Higher-Order Singular Value Decomposition
HS Hilbert Space
HTD Hierarchical Tensor Decomposition
IHOPLS Incremental Higher-Order Partial Least Squares
ITP Iterative Tensor Projection
JS Jensen-Shannon Divergence

ix

KL Kullback-Leibler Divergence
KMTPLS Kernel-based Multiblock Tensor Partial Least Squares
KTPLS Kernel-based Tensor Partial Least Squares
MHAD Multimodal Human Action Database
MLE Maximum Likelihood Estimation
MLMTL Multilinear Multitask Learning
MMCR Multiway Multiblock Covariates Regression
MRI Magnetic Resonance Image
MTPLS Multiblock Tensor Partial Least Squares
MTR Multiblock Tensor Regression
MTTKRP Matricized Tensor Times Khatri-Rao Product
NLL Negative Log Likelihood
NPLS N-Way Partial Least Squares
NIPALS Nonlinear Iterative Partial Least Squares
OLGP Online Local Gaussian Process
OMP Orthogonal Matching Pursuit
PARAFAC2 Parallel Factor Analysis 2
PCA Principal Components Analysis
PLS Partial Least Squares
RHOPLS Recursive Higher-Order Partial Least Squares
RMSE Root Mean Square Error
RPLS Recursive Partial Least Squares
RIP Restricted Isometry Property
SED Symmetric Eigenvalue Decomposition
SGD Stochastic Gradient Descent
S-PARAFAC Shifted Parallel Factor Analysis
SVD Singular Value Decomposition
SVR Support Vector Regression
Tensor GP Tensor Gaussian Process
TPG Tensor Projected Gradient
UMPM Utrecht Multi-Person Motion
VAR Vector Auto Regressive

x

List of Symbols

a, b, c, · · · Scalars
a,b, c, · · · Vectors
A,B,C, · · · Matrices
A,B, C, · · · Higher-order Tensors
Φ,Ψ, · · · Higher-order Tensors in High Dimensional Hilbert Space
A⊗B Kronecker Product of A and B
A�B Khatri-Rao Product of A and B
A ∗B Hadamard Product of A and B
vec Vectorization Operator
A(d) d-mode Matricization of A
A(d) d-mode Factor Matrix
a ◦ b Outer Product of a and b
A ◦ B Outer Product of A and B
〈A,B〉 Inner Product of A and B
〈A,B〉1,...,C;1,...,C Contracted Product of A and B along First C Modes
A×d B d-mode Product of A and B
A×̄d b d-mode Product of A and b
‖A‖1 l1 Norm of A
‖A‖F Frobenius Norm of A
‖A‖tr Overlapped Trace Norm of A
‖A‖scaled Scaled Latent Trace Norm of A
AT Transpose of A
A† Pseudo Inverse of A
S↑ Vertical Shift Operator in Up Direction
I, J,K,M, · · · Upper Indices
i, j, k,m, · · · Running Indices

xi

Liste des tableaux

3.1 Summarization of linear tensor regression models. 43
3.2 Summarization of nonlinear tensor regression models. 49
3.3 The overview of our new contributions. 49

4.1 Performance comparison for the misclassification error of H-Tucker regression
and Tucker regression model on ADHD data. 65

5.1 Computational complexity of tensor GP and tensor OLGP using product prob-
abilistic tensor kernel. 71

5.2 Performance comparison for the prediction of movement of shoulder marker
along x-axis on ECoG data, with data size=10 000. 72

5.3 Performance comparison for the prediction of movement of shoulder marker
along x-axis on ECoG data, with data size=36 000 and wgen = 0.4. 73

6.1 Performance comparison of IHOPLS, HOPLS and RNPLS for the averaged Q,
RMSEP and total learning time on UMPM data. 83

6.2 Performance comparison of IHOPLS, HOPLS and RNPLS for the averaged Q,
RMSEP and total learning time on ECoG data. 86

7.1 Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS
for the averaged Q, RMSEP and learning time with I0 = 200 and b = 2 on
UMPM data. 103

7.2 Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS
for the averaged Q, RMSEP and learning time with I0 = 20% of the training
set and b = 2 on ECoG data. 107

7.3 Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS
for the averaged Q, RMSEP and learning time for L = [12, 16], K = [3, 10],
b = 2 on MHAD data. 109

7.4 Forecasting performance for lag = 3, trained with 50% of all the time series,
b = 1 on CCDS data. 110

8.1 Performance comparison of KMTPLS and MMCR for the optimal Rank, Q and
RMSEP on UMPM data. 118

8.2 Performance comparison of KMTPLS and MMCR for the averaged Q, RMSEP
and learning time on MHAD data. 123

xiii

Liste des figures

2.1 Illustration of a third-order tensor X ∈ RI1×I2×I3 9
2.2 Illustration of 1-mode fibers (left), 2-mode fibers (middle) and 3-mode fibers

(right) of a third-order tensor. 10
2.3 Illustration of horizontal slices (left), vertical slices (middle) and frontal slices

(right) of a third-order tensor. 11
2.4 Illustration of the matricization of a third-order tensor X ∈ RI1×I2×I3 in the

first-mode (top) and second-mode (bottom). 13
2.5 Illustration of 2-mode tensor matrix multiplication Y = X ×2 A. 15
2.6 Illustration of tensor vector multiplication in all the modes of a third-order tensor. 16
2.7 Illustration of rank-one third-order tensor X = a(1) ◦ a(2) ◦ a(3) ∈ RI1×I2×I3 . . . 17
2.8 Illustration of R-component CP decomposition of a third-order tensor. 18
2.9 Illustration of PARAFAC2 of a third-order tensor. 21
2.10 Illustration of Tucker decomposition of a third-order tensor. 22
2.11 Illustration of block component decomposition of a third-order tensor. 25

3.1 An illustration of high-order partial least squares (HOPLS) forM = 2 and L = 2. 33
3.2 An illustration of tensor regression layer (TRL). 48

4.1 Illustration of a balanced binary dimension tree T for a 5-order tensor. 54
4.2 Illustration of H-Tucker format for a 5-order tensor. 56
4.3 Performance comparison vs. number of samples for case of 4-order tensor. . . . 63
4.4 Performance comparison vs. number of samples for case of 5-order tensor. . . . 64

5.1 RMSE (top) and NLL (bottom) vs. number of training samples, wgen = 0.5,
R = 6. 74

5.2 Learning time vs. number of training samples, wgen = 0.5, R = 6. 75
5.3 RMSE (top) and NLL (bottom) vs. number of local experts. 76

6.1 Prediction error (top) and CPU cost (bottom) of three methods over time,
R = 8 and λ = 4 for IHOPLS and HOPLS for sequence length of 1050 and
frequency at 5fps on UMPM. 84

6.2 Prediction error (top) and CPU cost (bottom) of three methods over time,
R = 8 and λ = 4 for IHOPLS and HOPLS for sequence length of 5250 and
frequency at 25fps on UMPM. 85

6.3 Prediction errors versus Nmax for R = 8 λ = 8 wgen = 0.4 on ECoG data. . . . 87

xv

7.1 The RHOPLS scheme. The framework generates a set of initial factors for the
initial data (Step 0 red arrow). At every iteration, the framework first generates
a set of incremental factors for the new data (Step 1 yellow arrow). Then, the
information contained in new data, represented in terms of factors, is added
to current model by an appending operation (Step 2 blue arrow). Next, the
augmented set of factors are truncated back into the ones with original sizes to
yield new loadings (Step 3 purple arrow). The new individual core tensors are
produced using an internal tensor representation of model (in terms of factors)
under the projection of the new loadings (Step 4 green arrow). 92

7.2 The initial approximation step of RHOPLS framework for t = 0. 93
7.3 The incremental approximation step of RHOPLS framework for t = 1. 94
7.4 The expansion step of RHOPLS framework for t = 1. 95
7.5 The compression step of RHOPLS framework for t = 1. 96
7.6 The projection step of RHOPLS framework for t = 1. 97
7.7 The whole RHOPLS scheme. 100
7.8 For “triangle” scenario, learning error and learning time versus the iteration. . . 101
7.9 For “table” scenario, learning error and learning time versus the iteration. . . . 102
7.10 The accuracy and learning time versus the number of latent vectors. 104
7.11 The accuracy and learning time versus the number of initial samples. 105
7.12 Performance versus sequence length (frequency). 106
7.13 An example of ground truth (150s time window) and the trajectories predicted

by RHOPLS, HOPLS and RNPLS for Z-coordinate of the monkey’s hand. . . . 108

8.1 Illustration of the framework of kernel-based multiblock tensor partial least
squares (KMTPLS) regression. 114

8.2 Performance comparison of KMTPLS and MMCR for the Q versus the different
combination of cameras on UMPM data. 119

8.3 Performance comparison of KMTPLS for the Q when using the optimal rank
versus the relative importance α on UMPM data. 120

8.4 Visualization of ground truth and the trajectories predicted by MMCR and
KMTPLS in the “table” scenario. 121

8.5 Performance comparison of KMTPLS and MMCR for the best Q, RMSEP
versus the number of input blocks on jumping action on MHAD data. 124

8.6 Performance comparison of KMTPLS and MMCR for the best Q, RMSEP
versus the number of input blocks on bending action on MHAD data. 125

A.1 Illustration of the framework of partial least squares (PLS) regression. 132

xvi

Acknowledgements

I would like to express my sincerest gratitude to my supervisor, Prof. Brahim Chaib-draa, for
his tremendous support to help me open the door of research world and guide me through
the entire Ph.D study with his great advices. His insightful instructions always inspire me
to open my mind and discover novel ideas ; his great patience and continuous encouragement
are source of my strength to keep trying and never give up ; his professional attitudes and
activities in research influence me a lot and will benefit me for my whole research career.

I owe my gratitude to Dr. Yali Wang, who helps me a lot with valuable suggestions and
guidance at early stage of my research.

I am grateful to Dr. Qibin Zhao and Prof. Andrzej Cichocki from RIKEN brain science insti-
tute, who provide me with a lot of precious advices and constructive comments.

I also thankful to Prof. Philippe Giguère, Prof. Claude-Guy Quimper and Prof. Jean-François
Lalonde for their valuable guidance and wonderful courses, which expand my research horizons
and help me lay solid foundations in research.

Finally, and most importantly, I dedicate this thesis to my great parents, my mom Jingyun
Ma and my dad Jingbang Hou, who have always been there for me and supporting me with
their deepest unconditional love.

xvii

Chapitre 1

Introduction

This chapter starts the thesis by introducing the context of our research and its motivations.
Then, it gives the details about our contributions. Finally, it outlines the content of this thesis.

1.1 Context and Motivations for Tensor Regression

Regression is a statistical technique that attempts to study the relationship between two or
more variables [Draper and Smith, 2014; Chatterjee and Hadi, 2015; Montgomery et al., 2015].
Specifically, regression analysis is able to predict one or more dependent variables (responses,
outputs) from a set of independent variables (predictors, inputs), by exploring the correla-
tions among these variables as well as explaining the factors behind the observed patterns.
Regression is especially important because it can help you predict or analyze practically all
types of data generated from complex systems in a large variety of applications. For instance,
regression allows you to model property loss from fire as a function of a collection of variables
such as degree of fire department involvement, response time and property value etc. If you
find that response time is the key factor, you may need to build more fire stations. Extracting
hidden structure and examining variables relationships, you may need to increase equipments
or officers dispatched if you find that involvement variable is the key factor. Another example
is that people may want to employ regression models to predict the amount of rainfall of next
year based on the gauges from historical records.

The most commonly used regression models can typically be categorized, in terms of linearity,
into linear regression and nonlinear regression. In particular, linear regression models describe
relationship between dependent and independent variables using a linear function in parame-
ters. Apart from simple regression model, linear regression models include multiple regression
associated with multiple predictors, and multivariate regression corresponding to the case of
linear regression model with multiple predictors and multiple responses. Normally, one may
often encounter multivariate regression tasks where both the predictors and responses are
arranged as vectors of variables or matrices of variables.

1

As an extension of ordinary linear regression models, the generalized linear model (GLM)
[Nelder and Baker, 1972] is capable of modeling response variables via a particular distribu-
tion other than normal distribution from the exponential family, which unifies logistic regres-
sion [Hosmer and Lemeshow, 2000], multinomial regression, Poisson regression [Cameron and
Trivedi, 2013] and so on. Additionally, the class of partial least squares (PLS) [Wold et al.,
1984; Abdi, 2010] models also belongs to the category of linear regression models.

Unlike linear regression modelings, nonlinear regression models characterizing nonlinear de-
pendencies in data are generally assumed to be parametric, in which responses are modeled as
a function of a combination of nonlinear parameters and predictors, where nonlinear parame-
ters usually take the form of an exponential function, trigonometric function, power function,
etc. Nonparametric nonlinear regression models frequently appear in the context of machine
learning including Gaussian process (GP) [Rasmussen and Williams, 2005], artificial neural
networks (ANN) [Haykin and Network, 2004], decision trees [Quinlan, 1986], support vector
regression (SVR) [Smola and Vapnik, 1997] and so on.

During the past few years, regular regression approaches, though being considered as mature
techniques, have confronted new great challenges posed by numerous real-world regression
tasks whose predictors and (or) responses take the form of high-order high-dimensional ar-
rays with complex structures, also known as tensors [Kolda and Bader, 2009; Cichocki et al.,
2009; Acar and Yener, 2009; Cichocki, 2013; Cichocki et al., 2015; Cong et al., 2015]. With
the advancement of modern technologies, such high-order tensors (multiway arrays) are quite
widespread and abound in a broad range of applications, including analytical chemistry [An-
dersen and Bro, 2003; Bro, 2006], computational neuroscience [Miwakeichi et al., 2004; Ander-
sen and Rayens, 2004], computer vision [Vasilescu and Terzopoulos, 2002; Wang and Ahuja,
2008], industrial process control [Luo et al., 2015], data mining [Acar et al., 2005; Kolda et al.,
2005] and so on.

For instance, wavelet-transformed multichannel electroencephalogram (EEG) data can be or-
ganized as a third-order tensor with modes time × frequency × channels [Miwakeichi et al.,
2004; Cichocki, 2013; Cichocki et al., 2015; Cong et al., 2015] ; fluorescence spectroscopic
data can be arranged as a third-order tensor with modes samples × excitation wavelengths
× emission wavelengths [Andersen and Bro, 2003] ; video sequences can naturally be modeled
as third-order tensor with modes x-coordinates × y-coordinates × frames [Wang and Ahuja,
2008] and face images with various conditions can be represented as a fifth-order tensor having
modes pixels × illuminations × expressions × viewpoints × identities [Vasilescu and Terzopou-
los, 2002]. In addition, the related tensor data analysis (multiway data analysis) [Kolda and
Bader, 2009; Acar and Yener, 2009] approaches and tools have also been studied extensively
in a variety of fields, with the fundamental goals of exploring the correlations among variables
as well as discovering the underlying hidden patterns so as to find a a summarization of tensor
data.

2

The primary reason why regular regression methods fail to appropriately handle high-order
tensors is due to the fact that those data contain multiway structural information (i.e., the
information about the patterns of correlations among different modalities in high-order ten-
sors) which cannot be directly captured by the conventional vector-based or matrix-based
regression models. For instance, in the application of brain imaging data analysis, we aim to
establish the associations between the magnetic resonance imaging (MRI) brain images and
the clinical outcomes. This problem can be formulated as a regression task with predictor
variable taking the form of 3-order tensor and with response variable being the scalar clinical
outcome, predicting whether the subject is healthy or not.

In order to address the high-order input, it is a common practice to apply classical regression
techniques to tensorial brain images by first transforming them into vectors (matrices) via some
vectorization (unfolding) operations and then feeding them to classical models. Nevertheless,
there are two significant challenges as a consequence of this procedure. Firstly, the ultrahigh
dimensionality of tensorial input like 3D or 4D brain images results in a huge amount of pa-
rameters, which undoubtedly leads to an overfitting situation as well as breaks the theoretical
guarantees of classical regression approaches. Secondly, using such operations of vectorizing
(or unfolding) as proposed will inevitably destroy underlying multiway structure contained in
tensorial input and lose intrinsic correlations among the pixels, causing substantial information
loss during the regression.

In addition to above issues, the classical regression models based on the matrix analysis ap-
proaches have also been shown to be inferior in terms of difficulty of interpretation, sensitivity
to noise as well as absence of uniqueness [Acar and Yener, 2009]. Let us take the analysis of
third-order multichannel EEG data as an example. If we unfold the predictor in the channels
mode (i.e., resultant matrix with mode channels × time-frequency) and employ matrix-based
regression model (i.e., unfolded PLS regression [Abdi, 2010], see Appendix A.1), then the set
of factors (signatures, patterns) extracted from the time-frequency mode become very hard to
interpret, leading to the difficulties in understanding the brain activities associated with those
two factors (signatures, patterns).

1.2 Tensor-based Regression Models and Their Applications

Motivated by the extensive applicability of tensor data and the limitations of classical re-
gression models, we propose to investigate in this thesis the tensor based regression models
and their applications. More specifically, we aim to develop a novel class of regression models
dealing with high-order tensorial predictors and (or) high-order tensorial responses and apply
them in various real-life applications. The work is accomplished by making use of multiway fac-
tor modelings (i.e., canonical decomposition/parallel factor analysis (CP) model [Carroll and
Chang, 1970; Harshman, 1970] or Tucker model [Tucker, 1963; De Lathauwer et al., 2000a])

3

and their related tensor (multiway) analysis approaches [Kolda and Bader, 2009; Cichocki
et al., 2009; Acar and Yener, 2009]. In general, these models and analysis approaches are more
beneficial over their matrix-based counterparts since they are designed to naturally repre-
sent and preserve the multiway nature of the tensorial data. Therefore, by combing multiway
modeling ideas with classical regression models, we provided efficient tensor-variate regression
models which are able to effectively capture the underlying inherent structural information in
tensors, resulting in significantly improved predictability.

If we now model the previous MRI images using R-component CP model instead of explicit
long vector, then the number of parameters will be drastically reduced fromO(ID) toO(DIR),
where D is tensor order while I stands for the maximum size in each mode and R � I. In
this case, not only the correlations among pixels are preserved, but also the CP-based model
is in fact statistically simpler, which is not prone to overfitting for the case of MRI application
where the number of observations is rather limited.

Once again, referring back to the previous EEG example, if we apply multiway PLS model
[Bro, 1996] to third-order EEG array, we are able to extract a set of factors that individually
accounts for the temporal pattern of brain activities from time mode as well as the spectral
pattern of brain activities associated with frequency mode, respectively. The latent scores,
extracted from channels mode, can easily be interpreted as the coefficients of the combination
of different brain activity patterns, which are used to measure their relative contributions.
Such advantage in the ease of interpretation can further result in the property of robustness
to noise since the number of components in model can be reasonably specified according to
the scientific assumption and experimental results.

Thus, tensor-variate regression, as we can see, is free of the above discussed limitations of
conventional regression methods and is expected as a promising research direction. In this
thesis, we investigate and extend several tensor-variate modeling strategies from different per-
spectives, including the aspect of multilinear model with potentially much higher-order tensor
input, the aspect of nonlinear online model with scalar output, the aspect of multilinear online
model with general tensor input and tensor output. We also investigate the aspect of model
merging tensor blocks from different sources for boosting the predictive power. Furthermore,
our proposed tensor-variate regression models and algorithms have been validated on a num-
ber of real-world representative applications from different disciplines such as the prediction
of brain disease from medical MRI images in computational neuroscience, the reconstruction
of limb trajectories from monkey’s brain signals in neural signal processing, the estimation of
human pose positions from video sequences in computer vision, etc.

In the following sections, we summarize our contributions and describe the outline of this
thesis.

4

1.3 Main Contributions

1.3.1 Hierarchical Tucker Tensor Regression : Application to Brain
Imaging Data Analysis

In [Hou and Chaib-draa, 2015], we present a novel generalized linear tensor regression model,
which takes tensor-variate inputs as predictors and finds low-rank almost best approximation of
regression coefficient arrays using hierarchical Tucker decomposition. With limited sample size,
our model is highly compact and very efficient as it requires only O(DR3 +DIR) parameters
for order D tensors of mode size I and rank R. Thus, it avoids the exponential growth in
D, in contrast to O(RD + DIR) parameters of Tucker regression modeling. Our model also
maintains the flexibility like classical Tucker regression by allowing distinct ranks on different
modes according to a dimension tree structure. We validated our new model on synthetic data,
and we also applied it to real-life MRI images to show its effectiveness in predicting the human
brain disease of attention deficit hyperactivity disorder.

1.3.2 Online Local Gaussian Process for Tensor-Variate Regression :
Application to Fast Reconstruction of Limb Movement from Brain
Signal

In [Hou et al., 2015], we overcome the computational issues of existing tensor Gaussian process
(tensor GP) regression approaches for large data sets by introducing a computationally-efficient
tensor-variate regression approach in which the latent function is flexibly modeled by using
online local Gaussian process (OLGP). By doing so, the large data set is efficiently processed
by constructing a number of small-sized GP experts in an online fashion. Furthermore, we
introduce two searching strategies to find local GP experts to make accurate predictions with
a Gaussian mixture representation. Finally, we apply our approach to a real-life regression task,
reconstruction of limb movements from brain signal, to show its effectiveness and scalability
for large data sets.

1.3.3 Online Incremental Higher-order Partial Least Squares Regression
for Fast Reconstruction of Motion Trajectories from Tensor Streams

The higher-order partial least squares (HOPLS) is considered as the state-of-the-art tensor-
variate regression modeling for predicting a tensor response from a tensor input. However, the
standard HOPLS can quickly become computationally prohibitive or merely intractable, espe-
cially when huge and time-evolving tensorial streams arrive over time in dynamic application
environments. In [Hou and Chaib-draa, 2016], we present a computationally efficient online
tensor regression algorithm, namely incremental higher-order partial least squares (IHOPLS),
for adapting HOPLS to the setting of infinite time-dependent tensor streams. By incrementally
clustering the projected latent variables in latent space and summarizing the previous data,

5

IHOPLS is able to recursively update the projection matrices and core tensors over time, re-
sulting in greatly reduced costs in terms of both memory and running time while maintaining
high prediction accuracy. For the experiments, we apply IHOPLS to two real-life applications,
i.e., reconstruction of 3D motion trajectories from videos and ECoG streaming signals.

1.3.4 Fast Recursive Tensor Sequential Learning for Regression

In this specific work, we develop a super-fast sequential tensor regression framework, namely
recursive higher-order partial least squares (RHOPLS) [Hou and Chaib-draa, 2017]. It ad-
dresses the great challenges posed by the limited storage space and fast processing time al-
lowed by dynamic environments when dealing with very large-scale high-speed general tensor
sequences. Smartly integrating a low-rank modification strategy of the Tucker into partial
least squares (PLS), we efficiently update the PLS-based regression coefficients by effectively
merging the new data into the previous low-rank approximation of the model at a small-scale
factor (feature) level instead of the large raw data (observation) level. Unlike batch approaches,
which require accessing the entire data, RHOPLS conducts a blockwise consecutive calculation
scheme and thus it stores only a small set of factors. Our approach is orders of magnitude
faster than all other methods while maintaining a highly comparable predictability with the
cutting-edge batch methods, as verified on challenging real-life tasks.

1.3.5 Common and Discriminative Subspace Kernel-based Multiblock
Tensor Partial Least Squares Regression

In [Hou et al., 2016], we introduce a new generalized nonlinear tensor regression framework
called kernel-based multiblock tensor partial least squares (KMTPLS). With this framework,
we can predict a set of dependent tensor blocks from a set of independent tensor blocks through
the extraction of a small number of common and discriminative latent components. By con-
sidering both common and discriminative features, KMTPLS effectively fuses the information
from multiple tensorial data sources and unifies the single and multiblock tensor regression
scenarios into one general model. Moreover, in contrast to multilinear model, KMTPLS suc-
cessfully addresses the nonlinear dependencies between multiple responses and predictor tensor
blocks by combining kernel machines with joint Tucker decomposition, resulting in a signifi-
cant performance gain in terms of predictability. An efficient learning algorithm for KMTPLS
based on sequentially extracting common and discriminative latent vectors is also presented.
Finally, as for the applications, we employ KMTPLS on a regression task in computer vision,
i.e., reconstruction of human pose from multiview video sequences.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 gives an overview of the basic tensor defini-
tions, its associated operations and the most commonly used tensor decomposition tools and

6

their extensions. Chapter 3 summarizes the concepts of tensor regression models and the re-
cent advances in the work related to what we are proposing. The hierarchical Tucker tensor
regression model is presented in Chapter 4. Chapter 5 introduces the nonlinear online local
Gaussian process for regression task with tensor input and scalar output. Another two online
tensor regression models based on PLS framework are introduced in Chapter 6 and 7, with
the goal of addressing the problem of speed and storage complexity when dealing with general
tensor input and tensor output. Chapter 8 proposes a generalized nonlinear tensor regression
framework, as an effective tool of integrating tensorial data from different sources, for predict-
ing a set of dependent tensor blocks from a set of independent tensor blocks. Finally, Chapter
9 concludes the thesis and discuss some future research directions.

7

Chapitre 2

Tensor Preliminaries

This chapter reviews several fundamental parts about tensor that are necessary for understand-
ing tensor-variate regression in the remaining chapters. It begins by introducing some notations
of tensor and some basic definitions of tensor algebra. Then it presents the key concept of ten-
sor decomposition (factorization), also known as multiway models or multilinear models. This
concept turns out to be an extremely useful tool to decompose a high-order tensor object into a
collection of factors in low-dimensional subspace. Subsequently, it introduces several extended
variants of tensor decomposition that are very useful for the regression problems as studied in
this thesis. Finally, it gives a high-level overview of various strategies for scaling up tensor
decompositions.

Figure 2.1 – Illustration of a third-order tensor X ∈ RI1×I2×I3 .

9

2.1 Tensor Basics

2.1.1 Tensor Definitions and Notations

Tensors [Kolda and Bader, 2009; Cichocki et al., 2009; Cichocki, 2013; Cichocki et al., 2015;
Cong et al., 2015] are higher-order generalizations of vectors and matrices. They also refer to as
multiway arrays of real numbers. Throughout the thesis, higher-order tensors will be denoted
as X ∈ RI1×I2×···×ID in calligraphy letters, where D is the order of X . Matrices represented
by boldface capital letters X ∈ RI1×I2 are tensors of order two, while the vectors denote
first-order tensors and are represented by boldface low-case letters x ∈ RI1 . Here, the order
D represents the number of dimensions and each dimension d ∈ D of tensor is called mode or
way [Tucker, 1963, 1964]. The number of variables Id in the mode d is used to represent the
dimensionality of that mode. In other words, D-order tensor X ∈ RI1×I2×···×ID has D modes
(ways) with dimensionality Id in the mode d, where d = 1, ..., D. The ith entry of a vector x
is denoted by xi and the (i, j) entry of a matrix X is denoted by xi,j . Likewise, we denote the
entry (i1, i2, ..., iD) of D-order tensor X ∈ RI1×I2×···×ID as xi1,i2,...,iD . An example of a third
order tensor with three modes is illustrated in Figure 2.1.

Figure 2.2 – Illustration of 1-mode fibers (left), 2-mode fibers (middle) and 3-mode fibers
(right) of a third-order tensor.

The d-mode vector of tensor X , also known as d-mode fiber, is an element of RId , which is
obtained by varying the index Id while keeping other indices fixed. For instance, for a third
order tensor, a fiber x:,4,3 from 1-mode fibers (columns), a fiber x5,:,1 from 2-mode fibers (rows)
and a fiber x2,4,: from 3-mode fibers (tubes) are shown in highlighted color in Figure 2.2,
respectively. Here we use “ : ” to denote free indices that range over a specific mode.

Similarly, if we vary two indices by fixing the other one index in a third order tensor, then we
will get a slice (slab), i.e., a horizontal slice x3,:,:, a vertical slice x:,4,: and a frontal slice x:,:,1

are shown in highlighted color in Figure 2.3.

10

Figure 2.3 – Illustration of horizontal slices (left), vertical slices (middle) and frontal slices
(right) of a third-order tensor.

2.1.2 Relevant Matrix Algebra

The Kronecker product [Smilde et al., 2005] between matrix X ∈ RI×J and matrix Y ∈ RK×L

yielding a block matrix of size IK × JL is denoted by symbol ⊗ as

X⊗Y =

x11Y x12Y · · · x1jY
x21Y x22Y · · · x2jY
· · · · · · · · · · · ·
xi1Y xi2Y · · · xijY

 ∈ RIK×JL, (2.1)

and X⊗Y can also be expressed in form of columnwise Kronecker product as

X⊗Y = [x1 ⊗ y1,x1 ⊗ y2,x1 ⊗ y3, ...,xJ ⊗ yL−1,xJ ⊗ yL] ∈ RIK×JL

= [vec(y1x
T
1), vec(y2x

T
1), vec(y3x

T
1), ..., vec(yL−1x

T
J), vec(yLx

T
J)],

(2.2)

where vec represents the vectorization operation.

The mixed-product property of Kronecker product, which will be found useful in this thesis,
states that if X, Y, A and B are conformable matrices whose dimensions are suitable for
multiplications such that the matrix product XY and AB can be formed, then we have

(X⊗A)(Y⊗B) = XY⊗AB. (2.3)

The Khatri-Rao product [Smilde et al., 2005] between matrix X = [x1, ...,xJ] ∈ RI×J and
Y = [y1, ...,yJ] ∈ RK×J having the equal number of columns is defined using columnwise
Kronecker product of matrices as

X�Y = [x1 ⊗ y1,x2 ⊗ y2, ...,xJ ⊗ yJ] ∈ RIK×J . (2.4)

11

The Hadamard product [Smilde et al., 2005] between matrix X ∈ RI×J and matrix Y ∈ RI×J

with equal matrix size is the entrywise product denoted by symbol ∗

X ∗Y =

x11y11 x12y12 · · · x1jy1j

x21y21 x22y22 · · · x2jy2j

· · · · · · · · · · · ·
xi1yi1 xi2yi2 · · · xijyij

 ∈ RI×J . (2.5)

2.1.3 Tensor Matricization

For high-order tensors, it is usually beneficial to be represented using vectors or matrices so
that the powerful matrix analysis techniques can readily be applied to the lower subspaces.

The d-mode matricization (unfolding, flattening) of a tensor X ∈ RI1×I2×···×ID [Kiers, 2000;
De Lathauwer et al., 2000a], defined asX(d) ∈ RId×I1···Id−1Id+1···ID , is the process of rearranging
the d-mode vectors (fibers) into the columns of the resulting matrix. In other words, according
to a prespecified order, we collect all d-mode vectors of a tensor and then concatenate them
side by side, leading to a matrix with size Id × I1 · · · Id−1Id+1 · · · ID.

Mathematically, the mapping from an entry (i1, i2, ..., iD) of a tensor X ∈ RI1×I2×···×ID to an
entry (id, j) of the unfolded matrix can be established by

j = 1 +
D∑
t6=d

(it − 1)Jt with Jt =
t−1∏
p 6=t

ip. (2.6)

Figure 2.4 demonstrates the examples where a third order tensor X ∈ RI1×I2×I3 is unfolded
in the first-mode and second-mode, resulting in a matrix X(1) of size I1 × I2I3 and a matrix
X(2) of size I2 × I1I3, respectively.

The vectorization of a tensor X ∈ RI1×I2×···×ID is defined as

vec(X) = vec(X(1)), (2.7)

that is, the vectorization of the corresponding first-mode unfolded matrix X(1).

Specifically, the vectorization of a matrixX ∈ RI×J is obtained by stacking the matrix columns
{xj}Jj=1 into a long vector x ∈ RIJ

x = vec(X) =

x1

x2

...

xJ

 ∈ RIJ . (2.8)

Two important properties associated with the matrix vectorization operator are

vec(X)Tvec(Y) = trace(XTY) (2.9)

12

Figure 2.4 – Illustration of the matricization of a third-order tensor X ∈ RI1×I2×I3 in the
first-mode (top) and second-mode (bottom).

and
vec(XYZ) = (ZT ⊗X) vec(Y), (2.10)

where ⊗ stands for the standard Kronecker product.

2.1.4 Tensor Multiplication

The outer product of tensor X ∈ RJ1×···×JP and tensor Y ∈ RK1×···×KQ , which produces a
tensor of size J1 × · · · × JP ×K1 × · · · ×KQ, is denoted as

Z = X ◦ Y (2.11)

with each entry satisfying

zj1,...,jP ,k1,...,kQ = xj1,...,jP yk1,...,kQ . (2.12)

The inner product between two tensors X ,Y ∈ RI1×···×ID having the same order and equal
size is given by

z = 〈X ,Y〉 = 〈vec(X), vec(Y)〉, (2.13)

where z ∈ R is a scalar. In entrywise form, we have

z = 〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
ID∑
iD=1

xi1,...,iDyi1,...,iD . (2.14)

13

Having defined the tensor inner product, the Frobenius norm of tensor X ∈ RI1×I2×···×ID

follows the definition as

‖X‖F =
√
〈X ,X〉. (2.15)

The contracted product between X ∈ RI1×···×IC×J1×···×JP and Y ∈ RI1×···×IC×K1×···×KQ with
equal size along the first C modes yields a tensor Z ∈ RJ1×···×JP×K1×···×KQ in the following
element expression

zj1,...,jP ,k1,...,kQ = 〈X ,Y〉1,...,C;1,...,C(j1, ..., jP , k1, ..., kQ)

=

I1∑
i1=1

· · ·
IC∑
iC=1

xi1,...,iC ,j1,...,jP yi1,...,iC ,k1,...,kQ ,
(2.16)

which means the entries in the resulting tensor are obtained by summing out the product of
each corresponding entry pair along the first few common indices between two tensor multi-
pliers.

On one hand, it is a simple matter to see that the tensor inner product is actually a special
case of the tensor contracted product when all the modes are in common between two tensor
multipliers, e.g., X ∈ RI1×···×IC and Y ∈ RI1×···×IC

z = 〈X ,Y〉 = 〈X ,Y〉1,...,C;1,...,C . (2.17)

On the other hand, with no common indices between two tensors, the tensor contracted product
turns out to be the tensor outer product as introduced in (2.11)

Z = X ◦ Y = 〈X ,Y〉0;0. (2.18)

The tensor-matrix multiplication is generalized from standard matrix multiplication via ma-
trix matricization. Specifically, when a tensor X ∈ RI1×I2×···×ID is multiplied by a ma-
trix A ∈ RJd×Id , it is first unfolded in the dth mode to obtain X(d), then the matrix
product Y = AX(d) is computed. Finally, the resulting Y is reshaped back to a tensor
Y ∈ RI1×···×Id−1×Jd×Id+1×···×ID . This operation is depicted in Figure 2.5 for the case of 2-mode
tensor matrix multiplication of a third order tensor. We refer such tensor-matrix multiplication
as the d-mode tensor matrix product of tensor X ∈ RI1×I2×···×ID and matrix A ∈ RJd×Id

Y = X ×d A ∈ RI1×···×Id−1×Jd×Id+1×···×ID , (2.19)

which can also be expressed in an elementwise form

yi1,...,id−1,jd,id+1,...,iD =

Id∑
id=1

yi1,...,id,...,iDajd,id . (2.20)

14

Figure 2.5 – Illustration of 2-mode tensor matrix multiplication Y = X ×2 A.

Assuming the conforming dimensions among the matrices and tensors, one can easily verify
the following properties :

〈X ×d A,Y〉 = 〈X ,Y ×d AT〉,

(X ×c A)×d B = (X ×d B)×c A, c 6= d,

(X ×d A)×d B = X ×d BA,

(2.21)

and

(X ×1 A(1) · · · ×DA(D))(d) = A(d)X(d)(A(D) ⊗ · · · ⊗A(d+1) ⊗A(d−1) ⊗ · · · ⊗A(1))T. (2.22)

Similarly, d-mode tensor vector product between a tensor X ∈ RI1×I2×···×ID and a vector
a ∈ RId is defined as

Y = X ×̄d a ∈ RI1×···×Id−1×Id+1×···×ID . (2.23)

In element form, we get

yi1,...,id−1,id+1,...,iD =

Id∑
id=1

yi1,...,id,...,iDaid . (2.24)

If we multiply tensor X ∈ RI1×I2×···×ID by a set of vectors {a ∈ RId}Dd=1, each of which is
associated with one specific mode d, then the result is a scalar formulated by

y = X ×̄1 a(1) ×̄2 · · · ×̄D a(D) ∈ R. (2.25)

An example of tensor vector multiplication of a third order tensor is illustrated in Figure 2.6, in
which a third order tensor X ∈ R7×4×3 is sequentially multiplied by vectors a1 ∈ R7, a2 ∈ R4

and a3 ∈ R3 along the mode 1, 2 and 3, respectively, ending up with a scalar y ∈ R.

When satisfying the relative ordering between the modes, the commutative property also holds
for tensor vector product as below

(X ×̄c a) ×̄d b = (X ×̄d b) ×̄c a for c < d. (2.26)

15

Figure 2.6 – Illustration of tensor vector multiplication in all the modes of a third-order
tensor.

2.1.5 Tensor Rank

The d-rank of a tensor X ∈ RI1×I2×···×ID , denoted as rankd(X), is the column rank of the
unfolding matrix X(d). In other words, it is the dimension of the vector space spanned by
d-mode vectors. In the context of d-mode matricization, we can establish that

rankd(X) = rank(X(d)). (2.27)

A tensor X for which rd = rankd(X) for d = 1, ..., D is called a rank-(r1, r2, ..., rD) tensor,
and the D-tuple (r1, r2, ..., rD) is defined as the multilinear rank of X .

In addition to multilinear rank, an alternative notion of rank named tensor rank exists and it
is built on the basis of rank-one tensor. The D-order tensor X is rank-one tensor if it consists
of the outer product of D vectors {a(d) ∈ RId}Dd=1

X = a(1) ◦ a(2) ◦ · · · ◦ a(D), (2.28)

where ◦ is the vector outer product introduced in (2.11). Writing this in an equivalent entry
expression, it gives

xi1,i2,...,iD = a(1)
i1
a(2)
i2
· · · a(D)

iD
. (2.29)

An example of rank-one third-order tensor is shown in Figure 2.7, where it factorizes as the
outer product of three vectors a(1), a(2) and a(3) from three modes.

The tensor rank, namely rank(X), is defined to be the minimum number of the sum of rank-one
tensor that can exactly factorize tensor X

rank(X) := arg min{R ∈ N : X =
R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(D)
r }. (2.30)

Particularly, for matrices (second-order tensors), the following equation holds

rank1(X) = rank2(X) = rank(X). (2.31)

16

Figure 2.7 – Illustration of rank-one third-order tensor X = a(1) ◦ a(2) ◦ a(3) ∈ RI1×I2×I3 .

2.2 Tensor Decompositions

The strength of tensor modelings lies in its associated decomposition tools that are capable
of representing high-order data in terms of low-dimensional factors. The concept of tensor
decomposition (factorization) was originally introduced by Hitchcock [1927, 1928]. Nowadays,
higher-order tensor decompositions (factorizations) are frequently applied in a variety of fields
such as chemometrics, neuroscience, image/video analysis and signal processing. Most of ex-
isting decomposition models can trace back to two fundamental decomposition formats, that
are canonical decomposition/parallel factor analysis (or CANDECOMP/PARAFAC, or sim-
ply CP) [Carroll and Chang, 1970; Harshman, 1970; Kiers, 2000] decomposition and Tucker
[Tucker, 1963; De Lathauwer et al., 2000a] decomposition.

2.2.1 CP decomposition

The CP decomposition [Carroll and Chang, 1970; Harshman, 1970; Kiers, 2000] initially intro-
duced as the polyadic form [Hitchcock, 1927] of a tensor generalizes the bilinear factor models
to multilinear data. Mathematically, the R-component CP model boils down to factorizing a
tensor X ∈ RI1×I2×···×ID as a linear combination of rank-one tensors as

X =

R∑
r=1

λra(1)
r ◦ a(2)

r ◦ · · · ◦ a(D)
r + ε (2.32)

or in equivalent elementwise form

xi1,i2,...,iD =

R∑
r=1

λra
(1)
i1,r

a(2)
i2,r
· · · a(D)

iD,r
+ εi1,i2,...,iD , (2.33)

where the symbol ◦ is the outer product operator. The normalized unit vector a(d)
r for r =

1, ..., R indicates the rth column of factor matrix A(d) = [a(d)
1 ,a(d)

2 , ...,a(d)
R] ∈ RId×R from

d mode. Furthermore, λr is the scalar weighting the different rank-one tensor components

17

and R is the tensor rank. ε is the residual with same size as tensor X . For instance, the
top part of Figure 2.8 demonstrates a R-component CP decomposition of a three-way array,
where a(1)

r , a(2)
r and a(3)

r correspond to the factors associated with rth sub-tensor component
extracted from the corresponding modes, respectively.

Figure 2.8 – Illustration of R-component CP decomposition of a third-order tensor.

The CP in equation (2.32) can also be converted into a more compact matrix form in terms
of d-mode unfolding matrix X(d) using Khatri-Rao product defined in (2.4)

X(d) = A(d)Λ(A(D) � · · · �A(d+1) �A(d−1) � · · · �A(1))T + E, (2.34)

where diagonal matrix Λ = diag(λ1, λ2, ..., λR) and E represents the residual. Applying vec-
torization property (2.10) to matrix form (2.34), we reach the vectorized form of CP as

vec(X) = (A(D) � · · · �A(1)) vec(Λ) + vec(ε). (2.35)

For the special case of third-order tensor, (2.32) can be rewritten in a alternative matrix form
as

Xi = A(1)DiA(2)T + Ei for i = 1, ..., I3, (2.36)

where Xi corresponds to the ith frontal slice of a third-order tensor X . Di = diag(a
(3)
i,:) is a

diagonal matrix with diagonal elements from the ith row of third mode factor matrix A(3). Ei
is the error associated with the ith frontal slice. Note that here in (2.36) the factor matrices
{A(d)}3d=1 are not normalized.

18

For the simplicity of notation, the CP model can be expressed in a succinct way [Kolda and
Bader, 2009] as

X ≈ [Λ,A(1),A(2), ...,A(D)]. (2.37)

One favorable property about CP model is that, under certain mild conditions [Kruskal, 1989],
one is able to obtain a unique CP factorization up to permutation indeterminacy and scaling
indeterminacy. In other words, the CP model can be uniquely identified except that columns of
factor matrices, i.e., A(d) = [a(d)

1 , a(d)
2 , ...,a(d)

R] with d = 1, ..., D, can be arbitrarily reordered.
It can be scaled as long as product of scaling coefficients of columns remains constant.

Nevertheless, such benefit is achieved at the cost of strict constraints imposed on the CP
model, whose factors in distinct modes can only interact factorwise with each other. In other
words, CP model is inadequate in terms of degrees of freedom. For example in Figure 2.8,
the factor a(1)

r in the first mode is required to communicate merely with the factor a(2)
r in the

second mode and the factor a(3)
r in the third mode, leading to the same number of factors

for all modes. Another disadvantage is that a CP approximation may be ill-posed and may
produce unstable estimation of its components [Cichocki et al., 2009].

As a generalization of singular value decomposition (SVD) (see Appendix A.3) to high-order
tensor, CP factorizes a tensor as a sum of rank-one tensors, which is analogous to SVD in the
sense that SVD decomposes a matrix into a sum of rank-one matrices. Nevertheless, unlike
SVD, the orthogonality of CP on factor matrices can hardly be satisfied.

It is worth noting that CP decomposition only demands the storage of O(DIR) entries in
contrast to that of O(ID) for I = max{Id}Dd=1, which become very attractive when R� I.

The classical algorithms for computing CP model [Carroll and Chang, 1970; Harshman, 1970]
are based on the alternating least squares (ALS) style algorithm [Kroonenberg and De Leeuw,
1980] that estimates one factor matrix at a time by keeping the rest factor matrices fixed.
Mathematically, the objective is to minimize the approximation error by iteratively solving
the following least square problem, with respect to one specific factor matrix A(d) at a time

min ‖X − X̄‖ = min ‖X(d) −A(d)(A(D) � · · · �A(d+1) �A(d−1) � · · · �A(1))T‖, (2.38)

where � refers to the Khatri-Rao operator. Thus, the solution of (2.38) regarding the d-mode
factor matrix A(d) can easily be computed as

A(d) = X(d)[(A(D) � · · · �A(d+1) �A(d−1) � · · · �A(1))T]† (2.39)

with † being as the pseudo inverse. Following the similar pattern, the algorithm alternately
updates factor matrices for all d = 1..., D modes and stops when a certain convergence cri-
terion is met. Though as a simple and practical solution for computing CP, the ALS-based
algorithm does not guarantee a global optimum due to the non-convex property of (2.38).

19

Additionally, ALS-based algorithm has a slow convergence rate [Cichocki et al., 2009]. The
CP-ALS procedure is summarized in Algorithm 1, in which equation (2.39) corresponds to
line 6 and 7.

Algorithm 1 CP-ALS [Carroll and Chang, 1970; Harshman, 1970]

1: Input : D-order tensor X ∈ RI1×I2×···×ID , tensor rank R
2: Output : coefficients {λd}Dd=1, factor matrices {A(d) ∈ RId×R}Dd=1

3: Initialize : randomly initialize {A(d)}Dd=1

4: repeat
5: for d = 1, ..., D do
6: Td ← A(1)TA(1) ∗ · · · ∗A(d−1)TA(d−1) ∗A(d+1)TA(d+1) ∗ · · · ∗A(D)TA(D)

7: A(d) ← X(d)(A(D) � · · · �A(d+1) �A(d−1) � · · · �A(1))T†d
8: end for
9: until the convergence criterion is satisfied

One notable extension of standard CP model is referred to as PARAFAC2 [Harshman, 1972]. It
was introduced to model third-order tensors with frontal slices having different dimensionality
in one mode. For example, the data from industrial batch process control, e.g., time duration ×
variables × batches, usually varies in time duration mode due to the unavoidable disturbances
and changes of operating conditions, leading to batch data with uneven-length frontal slices. In
fact, PARAFAC2 simultaneously decomposes a collection of matrices with each having equal
number of columns but different row size. Unlike CP model that applies the same factors across
all frontal slices (e.g., A(1) and A(2) linked with Xi for i = 1, ..., I3 in (2.36)), PARAFAC2
relaxes CP to allow for distinct factors associated with different frontal slices in the first
mode. More formally, PARAFAC2 model can be derived from formulation (2.36) by enforcing
additional constraint on factor matrix in the first mode as

Xi = A(1)
i DiA(2)T + Ei

s.t A(1)T
i A(1)

i = α for i = 1, ..., I3,
(2.40)

where the 1-mode factor matrix A(1)
i corresponds to ith frontal slice. α is a constant. The

constraint imposed on A(1)
i indicates that the matrix product of A(1)

i with its transpose is
invariant for all frontal slices {Xi}I3i=1 of a third order tensor X ∈ RI1×I2×I3 . Such constraint is
introduced for the purpose of inducing the uniqueness properties of PARAFAC2 [Harshman,
1972]. Figure 2.9 shows an example of PARAFAC2 decomposition of an irregular third-order
tensor having 4 frontal slices with different 1-mode sizes.

Another well-known extension of CP model called shifted PARAFAC (s-PARAFAC) is pro-
posed by Harshman et al. [2003] with the aim to handle the shifting factors in sequential data,
e.g., time series or spectral data. Compared to ordinary CP format, s-PARAFAC is relaxed to
allow the factor matrix, in one mode of a third-order tensor, to be shifted by certain amount

20

Figure 2.9 – Illustration of PARAFAC2 of a third-order tensor.

of positions. Concretely, s-PARAFAC for mode 2 looks something like

Xi = A(1)DiSsi(A
(2))T + Ei for i = 1, ..., I3, (2.41)

where almost all the notations are identical to that of (2.36) except that shift function Ssi

shifts all the columns of factor matrix A(2) by some amount according to vector si ∈ RR. The
R elements in vector si are specified the ith row of shift matrix S ∈ RI3×R.

Generalizing convolutive nonnegative matrix factorization (CNMF) [Smaragdis, 2004] to high-
order tensor, convolutive PARAFAC (c-PARAFAC) [Mørup and Schmidt, 2006] was proposed
to model convolutive mixtures of multichannel time-frequency spectral data. Mathematically,
the matrix representation is formulated in terms of frontal slice Xi as

Xi = A(1)
Θ−1∑
θ=0

D(θ+1)
i (S↑(θ)A(2))T + Ei for i = 1, ..., I3, (2.42)

where D(θ)
i is a diagonal matrix whose entries are taken from the ith row of the θth factor

matrixAθ in a set of factor matrices {A(3)
θ }

Θ
θ=1 associated with the third mode. S↑(θ) is denoted

as vertical shift operator that enables us to shift matrix θ rows in the up direction, leaving
the new rows shifted into the matrix from the bottom being zero.

2.2.2 Tucker decomposition

Another tensor decomposition in widespread use is called Tucker decomposition [Tucker, 1963;
De Lathauwer et al., 2000a], which was introduced by relaxing the constraint in CP model
to allow the arbitrary interaction of factors among different modes. The standard Tucker
decomposition can be viewed as high-order principal component analysis. It converts high-
order array X into a core tensor G that is transformed by an orthogonal factor matrix A(d)

along each mode d in the following way

X = G ×1 A(1) ×2 A(2) ×3 · · · ×D A(D) + ε (2.43)

21

or equivalently in the outer product representation

X =

R1∑
j1=1

R2∑
j2=1

· · ·
RD∑
jd=1

gi1,i2,...,iDaj1 ◦ aj2 ◦ · · · ◦ ajD + ε (2.44)

or in an equivalent scalar representation

xi1,i2,...,iD =

R1∑
j1=1

R2∑
j2=1

· · ·
RD∑
jd=1

gi1,i2,...,iDai1,j1ai2,j2 · · · aiD,jD + εi1,i2,...,iD , (2.45)

where A(d) ∈ RId×Rd is the factor matrix. Rd serves as the d-rank of X in mode d. G ∈
RR1×R2×···×RD represents the core tensor indicating the interaction level among factor matrices
from different modes. Thus, this core tensor G provides us with a much better way to capture
the underlying multiway structure of tensor data. ε reflects the residuals.

A Tucker decomposition of a third-order tensor is given in Figure 2.10. When applying matri-
cization in d-mode, Tucker reads

X(d) = A(d)G(d)(A(D) ⊗ · · · ⊗A(d+1) ⊗A(d−1) ⊗ · · · ⊗A(1))T, (2.46)

and in the vectorization form, it becomes

vec(X) = (A(D) ⊗ · · · ⊗A(2) ⊗A(1)) vec(G). (2.47)

Analogous to CP model, the Tucker model can also be concisely expressed as [Kolda and
Bader, 2009]

X ≈ [G,A(1),A(2), ...,A(D)]. (2.48)

Figure 2.10 – Illustration of Tucker decomposition of a third-order tensor.

Hence, the total number of parameters for Tucker decomposition amounts to O(DIR + RD)

for R = max{Rd}Dd=1, which is larger than that of CP but substantially smaller than O(ID)

of original tensor.

22

Essentially, CP model can be viewed as a special case of Tucker model in which the CP format
can be reformulated into Tucker format with the core tensor being a superdiagonal core tensor,
e.g, in following form through tensor matrix multiplication

X = Λ×1 A(1) ×2 A(2) ×3 · · · ×D A(D) + ε, (2.49)

where Λ ∈ RR×···×R denotes the superdiagonal core tensor or super-identity tensor. In this
formulation, a superdiagonal core tensor clearly indicates that the rth vector of factor matrix
from one specific mode can only interact with the rth vector of factor matrix from another
mode. Consequently, the nonzero entry in superdiagonal core tensor is nothing but a vector
of coefficients that is used in weighting linear combination of rank-one tensors. This fact is
clearly depicted in the bottom part of Figure 2.8.

The difference between the structure of core tensors suggests that Tucker is a much flexible
model over CP, as the full dense core tensor enables us to explore more complicated correla-
tion among factors from different modes. However, such flexibility gives rise to the rotational
indeterminacy in Tucker [Kolda and Bader, 2009], e.g., the uniqueness of factor matrix is lost.
To explain this rotational indeterminacy, suppose {B(d}Dd=1 is a set of orthogonal rotators
associated with corresponding mode, we are able to get the same model fit by multiplying the
core tensor and factor matrix along d-mode with the rotator and its inverse, respectively. This
is given by

X = (G×1B(1)T×2B(2)T×3···×DB(D)T)×1A(1)B(1)×2A(2)B(2)×3···×DA(D)B(D)+ε. (2.50)

As an another generalization of SVD to high-order tensor, Tucker decomposition can be com-
puted using higher-order singular value decomposition (HOSVD) algorithm [De Lathauwer
et al., 2000a] where the core tensor is all-orthogonal and factor matrices are orthonormal.

Specifically, in HOSVD the factor matrix A(d) consisting of d-mode singular vectors can be
directly found by the left singular vectors of d-mode matricization Y(d) with singular value
decomposition [Golub and Van Loan, 2012] (see Appendix A.3)

X(d) = A(d)Σ(d)B(d)T. (2.51)

Given the factor matrix formed by d-mode singular vectors, the core tensor G can be computed
according to

G = X ×1 A(1)T ×2 A(2)T ×3 · · · ×D A(D)T. (2.52)

The HOSVD procedure is outlined in Algorithm 2, where line 4 and line 6 correspond to
operation (2.51) and equation (2.52), respectively.

It is well known for matrices that the best rank-R approximation in least squares sense can be
readily obtained from the truncated SVD. As for general higher-order tensors, the truncated

23

Algorithm 2 HOSVD [De Lathauwer et al., 2000a]

1: Input : D-order tensor X ∈ RI1×I2×···×ID , multilinear rank (R1, R2, ..., RD)
2: Output : core tensor G ∈ RR1×R2×···×RD , factor matrices {A(d) ∈ RId×Rd}Dd=1

3: for d = 1, ..., D do
4: A(d) ← Rd left singular vectors of X(d)

5: end for
6: G = X ×1 A(1)T ×2 A(2)T ×3 · · · ×D A(D)T

HOSVD does not provide the best rank-(R1, R2, ..., RD) approximation, only suboptimal so-
lution is delivered [De Lathauwer et al., 2000b]. It is shown by Kolda [2003] that the factors in
best rank-(R1+1, R2+1, ..., RD+1) approximation of a tensor does not necessarily contain the
factors in its best rank-(R1, R2, ..., RD) approximation of that tensor. In contrast to HOSVD,
when applying regular SVD to a matrix, the factors in best rank-(R+1) approximation always
contains the factors in its best rank-R approximation. Nevertheless, with good approximation
guarantees, truncated HOSVD usually performs well in practice.

In order to improve the approximating ability of HOSVD, an iterative alternating least squares
(ALS) based algorithm, known as higher-order orthogonal iteration (HOOI) [De Lathauwer
et al., 2000b,a; Kroonenberg and De Leeuw, 1980], was proposed with the aim to minimize
the approximation error in least squares, which is formulated as follows

min ‖X − X̄‖ = min ‖X − G ×1 A(1) ×2 A(2) ×3 · · · ×D A(D)‖. (2.53)

Specially, HOOI usually uses HOSVD as a initialization, and the factor matrix A(d) is es-
timated one at a time while fixing the rest factor matrices ; this procedure iterates until
convergence. Although being an iterative algorithm, HOOI is pretty efficient in the sense that
it only needs to calculate the R (R� I) left d-mode singular vectors in a dominant subspace.
For instance, at each iteration, given other fixed factor matrices, we first project X onto a
much smaller subspace to get Yd

Yd = X ×1 A(1)T · · ·A(d−1)T ×d−1 A(d+1)T ×d+1 · · · ×D A(D)T. (2.54)

The procedure is summarized in Algorithm 3, where line 6 performs these projection operations
of (2.54) for each mode before R left singular vectors from the d-mode are extracted.

One important extension of Tucker model, called block component decomposition (BCD)
[De Lathauwer, 2008a,b; De Lathauwer and Nion, 2008], has been extensively investigated
in depth in different approaches [Nion and De Lathauwer, 2008; Bro et al., 2009; Acar and
Yener, 2009; Cichocki et al., 2009]. In general, BCD decomposes a tensor into the sum of sub-
tensor components, each of which can be represented by a Tucker decomposition with same
multilinear rank. Formally, BCD model with rank -(R1, R2, ..., RD) can be described as follows

24

Algorithm 3 HOOI [De Lathauwer et al., 2000b,a]

1: Input : D-order tensor X ∈ RI1×I2×···×ID , multilinear rank (R1, R2, ..., RD)
2: Output : core tensor G ∈ RR1×R2×···×RD , factor matrices {A(d) ∈ RId×Rd}Dd=1

3: Initialize : initialize {A(d)}Dd=1 using HOSVD
4: repeat
5: for d = 1, ..., D do
6: Y ← X ×1 A(1)T · · ·A(d−1)T ×d−1 A(d+1)T ×d+1 · · · ×D A(D)T

7: A(d) ← Rd left singular vectors of Y(d)

8: end for
9: until the convergence criterion is satisfied

10: G = X ×1 A(1)T ×2 A(2)T ×3 · · · ×D A(D)T

X =

R∑
r=1

Gr ×1 A(1)
r ×2 A(2)

r ×3 · · · ×D A(D)
r + ε, (2.55)

where Gr ∈ RR1×R2×···×RD and {A(d)
r ∈ RId×Rd}Dd=1, corresponding to rth sub-tensor compo-

nent, are core tensor and factor matrices, respectively. An example of BCD for a third-order
tensor is shown in Figure 2.11, where each of R sub-tensor components admits a Tucker de-
composition. These Tucker decompositions corresponding to sub-tensor components have the
same structures with respect to the multilinear ranks.

Figure 2.11 – Illustration of block component decomposition of a third-order tensor.

2.3 Scaling up Tensor Decompositions

In order to apply tensor decomposition to the big data applications, a number of approaches
have been proposed recently to tackle the issues tensor decomposition with respect to scala-
bility and efficiency. In general, these approaches attempt to find solutions to the scalability
problem from the following four main aspects : (1) compression : rather than decomposing the
full data, one decomposes a compressed representation of the original data ; (2) sparsity : by
taking advantage of useful tools such as sparse matrix multiplication, the scalability can be

25

realized for big sparse tensor in many applications ; (3) sampling : an approximate strategy to
significantly reduce the computational cost while maintaining good accuracy, which is usually
accomplished by drawing a few entries or subtensors from original tensor data ; (4) paral-
lel/distributed computing : the scalability can also be achieved by exploiting parallelization
algorithms or distributed computation environments (e.g., Hadoop/MapReduce). (5) tensor
networks (TNs) [Cichocki, 2014; Cichocki et al., 2016, 2017; Cichocki, 2018] : the use of tensor
networks models is another promising way of scaling up tensor decompositions to big volume
data. The concept of tensor networks is more generic which unifies tensor decompositions as
its special cases (simple tensor networks or sub-networks). In contrast to conventional tensor
decompositions, tensor networks decompose higher-order tensors into a set of sparsely inter-
connected small-scale low-order core tensors. In this manner, large-scale higher-order data can
be approximately represented in highly compressed and distributed formats, resulting in both
enhanced interpretation and computational advantage.

In what follows, we give a brief overview of some scalable algorithms for CP and Tucker
decompositions. For more details, we refer readers to the paper [Papalexakis et al., 2016].

2.3.1 Scaling up CP Decomposition

The very early scalable algorithm through compression traces back to [Bro and Andersson,
1998]. The algorithm first computes Tucker decomposition of the original tensor to produce
core tensor and factor matrices, which follows by a CP decomposition on the core tensor to
obtain compressed factor matrices. The resulting compressed factors are then projected back
to original subspaces using the Tucker factor matrices. It has been shown that the compressed
factor matrices are capable of preserving the variation of the data. In another work based on
compression strategy, Sidiropoulos et al. [2014] employs random projection matrices to create
multiple compressed tensors that are decomposed in a parallel way, which follows by solving
a least squares problem to find the true factors.

Then, some algorithms developed for the scalability of CP by exploiting sparse tensors and
its related operations. In particular, [Kolda et al., 2005] and [Araujo et al., 2014] find multiple
rank-one components using a higher-order power method and a deflation strategy. Combining
the strategies of sparsity and distributed computing, a number of works [Kang et al., 2012;
Choi and Vishwanathan, 2014; Ravindran et al., 2014; Smith et al., 2015] have been dedicated
to scale up the CP-ALS algorithm by improving the efficiency of highly cost operation called
matricized tensor times Khatri-Rao product (MTTKRP) [Papalexakis et al., 2016], which is
also known as “intermediate data explosion” problem [Kang et al., 2012].

To avoid the “intermediate data explosion”, these approaches first divide MTTKRP into smaller
block-based operations such that multiplications can be carried out efficiently on sparse ten-
sors. Meanwhile, block-based operations can be performed in parallel on a distributed architec-

26

ture such as MapReduce framework, significantly scaling up the decomposition. By unifying
the ideas of sparsity, sampling and parallelization together, a few algorithms [Papalexakis
et al., 2012; Erdos and Miettinen, 2013] sample subtensors from full tensor so as to reduce
the dimensionality of the data and parallelize the decomposition. Basically, these approaches
first select dense blocks within a tensor according to some randomization technique and then
decompose these blocks separately. Finally, the partial factors of different blocks are merged
to produce the resulting factors corresponding to the full tensor.

In addition to aforementioned ALS-based algorithms, several other types of algorithms have
been proposed to scale up CP using parallelization computations. Among them, Beutel et al.
[2014] presents a distributed MapReduce algorithm for CP by first dividing tensor into disjoint
blocks and then applying stochastic gradient descent (SGD) to extract factors corresponding to
these blocks. The flexible SGD framework allows one to adapt different types of loss functions
or regularizations. Shin and Kang [2014] introduce another distributed MapReduce algorithm,
based on coordinate descent (CD), to update individual coefficients of factors in column-wise
manner, which is shown to be more beneficial in terms of memory gains.

2.3.2 Scaling up Tucker Decomposition

To tackle the “intermediate data explosion” problem in Tucker model, Kolda and Sun [2008]
take advantage of efficient multiplication operations for sparse tensor to perform Tucker de-
composition on very large-scale tensors. Tsourakakis [2010] applies sparsification of tensor for
Tucker by randomly sampling nonzero elements of the tensor and scaling appropriately. As
for the parallel computation, Jeon et al. [2015] scales both Tucker and CP by finding a decou-
pled implementation of the D-mode product, which can be easily adapted to the MapReduce
framework.

2.4 Conclusion

In this chapter, we reviewed different aspects concerning high-order tensor including the basic
concepts of tensor algebra and its decomposition. For the tensor basics, we introduced all the
essential notations and definitions about tensor and their corresponding tensorial operations.
As for the tensor decomposition formats, we mainly focused on the most widely used CP model
and Tucker model, each of which links to several equivalent formulations that could be useful
for different settings. We also discussed the properties associated with each model as well as
their pros and cons. At last, we described how to scale up CP and Tucker decompositions to
deal with large-scale tensorial data. All the content of this chapter lays a foundation for a
better comprehension of tensor regression models and algorithms throughout this thesis.

The next chapter will give a brief overview of the most commonly used tensor regression
methods that are developed based on the preliminaries of this chapter.

27

Chapitre 3

Tensor Regression Overview

Over the past few years, a variety of tensor regression approaches have been proposed to address
the challenges arising from multivariate regression tasks. In this chapter, these tensor regres-
sion approaches are briefly reviewed from two primary perspectives : linear tensor regression
and nonlinear tensor regression modeling.

3.1 Tensor Regression

Recall from the example introduced in Chapter 1 that a primary goal of MRI diagnosis task
is to build the link between the brain images, usually being the form of higher-order tensors,
and the clinical results. As we mentioned, such kind of task can naturally be reformulated as
a tensor regression task with tensorial image as input and clinical outcome as output.

More formally, the regression task is to recover a function f : RI1×I2×···×ID → R from a
collection of input-output data pairs {(Xn,Yn)}Nn=1 generated from the model

Y = f(X) + ε, (3.1)

where the input X has a tensor structure and the output Y could be a tensor of any order. ε
is also a tensor representing the error.

Depending on whether the function f is linear or not, the tensor regression approach can
typically be categorized into linear tensor regression and nonlinear tensor regression. In the
sections that follow, tensor regression methods are briefly reviewed from these two aspects.

3.1.1 Linear Tensor Regression

The standard multivariate linear regression model assumes f(X) in (3.1) to be a linear function
that often takes the following form via a vectorization operation of tensorial input X and
tensorial coefficient B

y = 〈vec(X), vec(B)〉+ ε. (3.2)

29

Modeling in terms of (3.2), the task can be readily solved by classical regression techniques.
However, the gigantic dimensionality and complex multiway structure of the input X cause
the main difficulty regarding this type of regression problem. In particular, naively vectorizing
an ultrahigh dimensional data array X into a long vector vec(X) will produce huge amount
of parameters. For example, if we take a 3D MRI image of size 128× 128× 128 as the input,
the number of parameters resulting from vetorization operation in (3.2) will be as large as 2

millions. In this case, computation becomes intractable and theoretical guarantees are severely
compromised when applying the classical regression approach. In addition, simply vectorizing
a tensorial input destroys the spatial structure of the image tensor that contains a wealth of
useful information.

In order to cut down huge parameters, one typical solution first carries out a dimension
reduction step, often by principal components analysis (PCA) [Jolliffe, 2002], then fits the
multivariate regression model with the reduced top principal components [Caffo et al., 2010].
However, since PCA is an unsupervised dimension reduction technique, the extracted principal
components may have nothing to do with the output, the loss of information is inevitable in
regression step.

CP Tensor Regression

Lately, Zhou et al. [2013] extended the generalized linear model (GLM) [Nelder and Baker,
1972] to treat higher-order tensor observation as input in linear regression model. Motivated
by the low-rank idea using tensor decomposition tools, the authors combine GLM and CP
decomposition to obtain the linear CP tensor regression model, which is free of the issues
mentioned above. Specifically, Zhou and his colleagues assume a low-rank structure for tensor
regression coefficient, and the linear systematic part of the model reads

y = 〈X ,B〉+ b

= 〈X ,
R∑
r=1

b(1)
r ◦ · · · ◦ b(D)

r 〉+ b,
(3.3)

where y is a scalar output and X ∈ RI1×I2×···×ID is a D-order tensor input. The coefficient ten-
sor B, measuring the effects of tensor input X , is assumed to follow a rank-R CP decomposition
[B1,B2, ...,BD] with Bd = [b(d)

1 , ...,b(d)
R] ∈ RId×R. b is the intercept constant.

Notice that by imposing CP format on the coefficient tensor B, the dimensionality of param-
eters substantially decreases from O(ID) to the scale of O(DIR), which is manageable and
results in an efficient estimation. Although with such a massive dimensionality reduction, Zhou
et al. [2013] demonstrate that this low-rank model could provide a reasonable recovery of even
high rank signals.

30

Tucker Tensor Regression

The key difference between Tucker and CP formats suggests that Tucker is a more flexible
model, as it allows to have the distinct number of basis vectors along each mode. Making
use of this flexibility, Li et al. [2013] assumed that the coefficient tensor B admits a Tucker
decomposition [Tucker, 1963; De Lathauwer et al., 2000a] instead of a CP decomposition. By
approximating the coefficient tensor B with Tucker format

B =

R1∑
r1=1

· · ·
RD∑
rD=1

gr1,...,rDb
(1)
r1 ◦ · · · ◦ b

(D)
rD

, (3.4)

the linear part of Tucker tensor regression model becomes

y = 〈X ,B〉+ b,

= 〈X ,
R1∑
r1=1

· · ·
RD∑
rD=1

gr1,...,rDb
(1)
r1 ◦ · · · ◦ b

(D)
rD
〉+ b,

(3.5)

where G ∈ RR1×···×RD is the core tensor with entries {gr1,...,rD}
R1,...,RD
r1=1,...,rD=1 capturing the

interactions of factor matrices Bd ∈ RId×Rd among different modes.

Now that since the authors adapt Tucker format to the coefficient tensor B, then the total
number of parameters for Tucker regression model turns out to be O(DIR + RD), which is
more than O(DIR) of CP regression but significantly less than that of O(ID) if R� I.

The resulting Tucker regression model, as referred by (3.5), offers several benefits over CP re-
gression model in the context of neuroimaging data analysis. First, Tucker produces a more par-
simonious modeling, meaning a more compact model given limited sample size. For example, a
3D signal B ∈ R16×16×16 admits a Tucker model with multilinear rank-(R1, R2, R3) = (2, 2, 5),
and the number of parameters in this case is 131. On the contrary, B could only be modeled
using a 5-component CP format, which yields 230 parameters. Second, Tucker model allows
to choose different rank along each mode, which is especially useful when data is skewed in
dimensions. Third, Tucker explicitly models the interaction between all factors, allowing for
a finer grid search over a larger modeling space. All above benefits indicate the flexibility of
Tucker regression model over CP regression model. Indeed, being a special case of Tucker for-
mat, the superdiagonal-style core tensor in CP significantly restricts the interactions of factors
among different modes, leading to a model with inadequate predictability.

Both CP and Tucker tensor regression models are solved by alternating least square (ALS)
[Kroonenberg and De Leeuw, 1980] algorithm that sequentially estimate one factor matrix at
a time while keeping others fixed.

High-order Partial Least Squares Regression (HOPLS)

Zhao et al. [2013a] investigated a more general tensor regression model where the response
is also a tensor consisting of multiple correlated outputs rather than a scalar output. The

31

circumstances of tensorial output emerge naturally in many real-world applications, such as
estimation of 3D human pose positions from videos [Guo et al., 2012] and reconstruction of
3D limb trajectories from ECoG brain signals [Chao et al., 2010]. In this paper, Zhao et al.
[2013a] generalize matrix PLS [Wold et al., 1984; Abdi, 2010] to high-order partial least squares
(HOPLS) to handle tensor-output situation.

Generally speaking, HOPLS is a generalized multilinear tensor regression model whose objec-
tive is to predict an output tensor Y from an input tensor X through the extraction of a small
number of common latent variables followed by a regression step against them [Zhao et al.,
2013a]. The principle behind HOPLS is to sequentially conduct a set of joint block Tucker
decompositions of X and Y with constraint that the extracted latent variables capture the
maximum covariance between X and Y.

Specifically, suppose we have a (M+1)th-order tensor X ∈ RN×I1×···×IM and a (L+1)th-order
tensor Y ∈ RN×J1×···×JL , which can be obtained by concatenating N pairs of observations
{(Xn,Yn)}Nn=1 that couple in the first mode with equal number of samples. HOPLS decomposes
X into a sum of rank -(1, H1, ...,HM) Tucker blocks and Y into a sum of rank -(1,K1, ...,KL)

Tucker blocks, respectively. The model reads

X =
R∑
r=1

GXr ×1 tr ×2 P(1)
r × · · · ×M+1 P(M)

r + εX

Y =
R∑
r=1

GYr ×1 tr ×2 Q(1)
r × · · · ×L+1 Q(L)

r + εY ,

(3.6)

where R denotes the number of latent vectors and tr ∈ RN corresponds to the rth latent
column vector. GXr ∈ R1×H1×···×HM and GYr ∈ R1×K1×···×KL represent the rth core tensor.
{P(m)

r }Mm=1 ∈ RIm×Hm and {Q(l)
r }Ll=1 ∈ RJl×Kl are the respective rth projection matrices.

Equivalently, the formula (3.5) can be rewritten in a more compact form as

X = GX ×1 T×2 P(1) × · · · ×M+1 P(M) + εX

Y = GY ×1 T×2 Q(1) × · · · ×L+1 Q(L) + εY ,
(3.7)

where T = [t1, ..., tR] is latent matrix obtained by concatenating R latent vectors. The loading
matrices are P(m) = [P(1)

1 , ...,P(M)
R] andQ(l) = [Q(1)

1 , ...,Q(L)
R], while GX = diag(GX1 , ...,GXR) ∈

RR×RH1×···×RHM and GY = diag(GY1 , ...,G
Y
R) ∈ RR×RK1×···×RKL are core tensors with super

block diagonal structure. The framework of HOPLS is illustrated in Figure 3.1, where both X
and Y are factorized into a sum of R sub-tensor blocks, each of which admits a Tucker format.

Under the model (3.5), HOPLS aims to search for a set of latent vectors {tr}Rr=1 and loading
matrices {{P(m)

r }Mm=1, {Q
(l)
r }Ll=1}Rr=1 for R subtensor blocks, since these factors are essential

for the final prediction. To this end, the authors provide an efficient algorithm to extract
these factors in a sequential way following a deflation procedure. This procedure works as
follows : the set of factors, {t1, {P(m)

1 }Mm=1, {Q
(l)
1 }Ll=1} associated with the first subtensor

32

Figure 3.1 – An illustration of high-order partial least squares (HOPLS) for M = 2 and
L = 2.

component, are extracted. Then, the explained variation via {t1, {P(m)
1 }Mm=1, {Q

(l)
1 }Ll=1} is

subtracted from the variation of tensor pair yet to explain. Next, the same process is conducted
for the second subtensor component. The procedure repeats until the extraction of the Rth
subtensor component is accomplished.

33

Using the extraction of the factors corresponding to the first subtensor as demonstration, the
first step begins with finding two sequences of loading matrices {{P(m)

1 }Mm=1, {Q
(l)
1 }Ll=1}. The

second step then estimates the latent vector t1.

In the first step, the extraction of loadings is accomplished by simultaneously minimizing the
residuals ‖εX ‖F and ‖εY‖F , which is equivalent to maximizing the core tensor ‖GX ‖F and
‖GY‖F jointly as below

max
GX ,GY

‖GX ‖2F · ‖GY‖2F

= max
GX ,GY

‖〈GX ,GY〉{1;1}‖2F

= max
{P(m)

1 ,Q(l)
1 }
‖[〈X ,Y〉{1;1};P

(1)T
1 , ...,P(M)T

1 ,Q(1)T
1 , ...,Q(L)T

1]‖2F,

(3.8)

here tensor contraction 〈X ,Y〉{1;1} is defined as 1-mode cross-covariance tensor

C = COV{1;1}(X ,Y) ∈ RI1×···×IM×J1×···×JL . (3.9)

Finally, the optimization problem becomes

max
{P(m)

1 ,Q(l)
1 }
‖[C;P(1)T

1 , ...,P(M)T
1 ,Q(1)T

1 , ...,Q(L)T
1]‖2F

s.t. P(m)T
1 P(m)

1 = IHm ∀m and Q(l)T
1 Q(l)

1 = IKl
∀l,

(3.10)

where IHm and IKl
are identity matrices. Consequently, the loadings {{P(m)

1 }Mm=1, {Q
(l)
1 }Ll=1}

can be estimated by Tucker decomposition of C using the higher order orthogonal iteration
(HOOI) [De Lathauwer et al., 2000a], which is an efficient technique for computing the fac-
tor matrices of Tucker format, since it just computes an orthonormal basis of the dominant
subspace.

In the second step, having known the loadings {{P(m)
1 }Mm=1, {Q

(l)
1 }Ll=1}, the latent vector t1

can be determined by solving the following problem also via the HOOI algorithm

min
t1
‖X − [GX ; t1,P

(1)
1 , ...,P(M)

1]‖2F. (3.11)

According to the deflation strategy described earlier, only one set of these parameters is
extracted at a time until R sets are obtained or certain accuracy of approximating both X
and Y is achieved.

Finally, the prediction can be made based on the core tensors {GXr ,GYr }Rr=1 as well as the
loading matrices {{P(m)

r }Mm=1, {Q
(l)
r }Ll=1}Rr=1 [Zhao et al., 2013a].

In contrast to unfolded PLS [Abdi, 2010], HOPLS has the advantage in terms of interpre-
tation. The loadings {{P(m)

r }Mm=1, {Q
(l)
r }Ll=1}Rr=1, e.g., like those extracted in the first step,

can be easily interpreted as new subspace signatures of d-mode features, while unfolded PLS

34

has difficulty in interpreting the high dimensional loading matrices, because the unfolding
operation of tensor destroys the multiway structure of the data.

N-way partial least squares (NPLS) [Bro, 1996] is the tensor regression model that jointly
decomposes tensorial input and output into sum of rank-one tensors using CP decomposition,
subject to that the found latent variables have the maximum pairwise covariance. As for
the extraction of factors, NPLS algorithm is developed on the basis of CP-ALS algorithm
[Carroll and Chang, 1970; Harshman, 1970]. Compared to HOPLS, NPLS is more robust to
noise due to the sum of rank-one tensor structure, but it is limited regarding to good fitness.
In contrast, the flexibility of HOPLS allows to balance the fitting and the significance of
latent vectors in terms of model complexity, which implies a good generalization to new data.
Furthermore, HOPLS offers a more efficient solution by boiling down to solving a singular
value decomposition (SVD) problem at each mode, meanwhile NPLS relies on a much slower
iterative ALS-based algorithm.

Extending NPLS to the online setting, the recursive N-way partial least squares (RNPLS)
[Eliseyev and Aksenova, 2013] processes the tensor sequences by unifying the recursive calcu-
lation scheme of recursive partial least squares (RPLS) [Qin, 1998] with the multiway data
representation of NPLS. Inheriting the drawbacks of NPLS, the RNPLS likewise suffers from
the lack of adequate accuracy and the slow convergence rate because its solution is based
on combining an NIPALS-style algorithm [Wold, 1975a] with CP decomposition. Thus, the
speed is rather slow especially when a relatively larger number of latent vectors are required
for sufficient accuracy, which significantly reduces the applicability of RNPLS in time-critical
applications.

Tensor Regression for Multilinear Multitask Learning (MLMTL)

In recent years, several tensor regression methods have been proposed in the context of mul-
tilinear multitask learning problems (MLMTL) [Romera-Paredes et al., 2013; Wimalawarne
et al., 2014; Signoretto et al., 2014]. In these methods the tasks are referred by multiple in-
dices, indicating the complex correlations among all the tasks. For instance, in restaurant
recommendation system, MLMTL can be converted as a regression problem whose objective
is to predict the ratings of I2 aspects (e.g., food quality, service quality, overall quality, etc)
from I3 customers on the basis of I1 features (e.g., cuisine type, price, location, etc). Hence,
there are in total I2 × I3 tasks that are indexed by a pair indices aspect × customer.

To tackle such multimodal correlations between tasks, Romera-Paredes et al. [2013] came up
with a multilinear regression model with a low-rank regularized regression coefficient tensor.

Concretely, Romera-Paredes and their colleagues formulate MLMTL as a set of T linear re-
gression tasks, each of which is associated with a coefficient vector wt ∈ RI1 , t ∈ [T], leading to
a concatenated coefficient matrix W = [w1, ...,wT] ∈ RI1×I2I3 . Then, the resulting coefficient

35

matrix W is naturally refolded into a coefficient tensor W ∈ RI1×I2×I3 where each task t can
be identified by a multi-index (i2, i3) ∈ (I2 × I3). Formally, the coefficient tensor W can be
estimated by solving the following optimization problem

minF(W) + λR(W), (3.12)

where term F(W) representing the convex empirical loss is defined as

F(W) =
T∑
t=1

Nt∑
n=1

L(〈xtn,wt〉, ytn), (3.13)

whereas termR(W) corresponds to low multilinear rank penalty that encourages the dominant
common latent structure between tasks

R(W) =
1

D

D∑
d=1

rankd(W). (3.14)

Here, λ is the tuning hyperparameter andNt denotes the number of training samples {(xtn, ytn)}
available for the task t. Finding the exact solution for (3.12) is extremely difficult due to the
highly non-convex multilinear rank function. Instead, Romera-Paredes et al. [2013] adapt a
convex surrogate, using trace norms of the matricizations, to the regularization term R(W),
called tensor overlapped trace norm [Gandy et al., 2011], and it is defined as

‖W‖tr =
1

D

D∑
d=1

‖W(d)‖tr, (3.15)

and the optimization problem finally becomes

minF(W) + λ‖W‖tr. (3.16)

To solve this problem, they resort to an alternating direction method of multiplier technique
(ADMM) [Boyd et al., 2011].

Although obtaining a global solution, this approach has a major drawback regarding the
storage complexity, since the coefficient tensor W can be sufficiently large. Furthermore, the
storage requirement of N + 1 versions of coefficient tensor W in memory when using ADMM
severely limits the applicability of this method to large-scale datasets.

Adopting the similar low-rank idea based on convex relaxation via trace norm, Signoretto
et al. [2014] presented a general version of ADMM using Douglas-Rachford splitting method
[Eckstein and Bertsekas, 1992]. Likewise, their method also suffers from the issue of scalabil-
ity to large-scale problems. In order to address this issue, Romera-Paredes et al. [2013] also
proposed a non-convex approach by imposing Tucker decomposition on the coefficient tensor
W and employing ALS to estimate the resulting factors. Now the regularized optimization
problem becomes

min
G,A(1),...,A(D)

F(G×1 A(1) · · · ×DA(D)) + λ(‖G‖2F +
1

D

D∑
d=1

‖A(d)‖2F), (3.17)

36

where G is the core tensor and A(d) is the factor matrix.

Exploiting the low-rank structure of W, this strategy substantially reduces the space com-
plexity by eliminating the need for storing the whole coefficient tensor W. Though without
guarantee of global optimality, Romera-Paredes et al. [2013] demonstrate the non-convex so-
lution outperforms the convex counterpart in practice. The computational cost, however, is
rather expensive since a gradient descent procedure needs to be executed when estimating
each factor in the outer loop.

Following the research line of convex relaxation in MLMTL, Wimalawarne et al. [2014] ex-
tended a new tensor norm, named tensor scaled latent trace norm, to overcome the drawback
of the overlapped trace norm (3.15) in situation where the coefficient tensor W usually pos-
sesses heterogeneous dimensions or heterogeneous multilinear ranks. The proposed new norm
reads

‖W‖scaled = inf
W(1)+···+W(D)=W

1

D

D∑
d=1

1√
Id
‖W(d)

(d)‖tr, (3.18)

where W(d) is defined as the sub-tensor component corresponding to the d mode. For the
overlapped trace norm represented by (3.15), it is unclear which mode could actually be low
rank. In contrast, by analyzing the error bounds incurred by different norms, Wimalawarne
et al. [2014] consistently show the superiority of the scaled latent norm in recognizing the
mode with the lowest rank relative to its dimension, thus resulting in a better regularization.

Overall, the existing methods for MLMTL based on the convex relaxation techniques are
computationally very expensive due to the requirement of full SVD operations of large matrices
in alternating direction methods, rendering them infeasible for large-scale applications.

Tensor Regression for Spatio-Temporal Data Analysis (GREEDY)

To deal with the scalability issues of [Romera-Paredes et al., 2013; Wimalawarne et al., 2014],
Bahadori et al. [2014] proposed a low rank learning framework that can be applied to large
climate forecasting task in the context of multivariate spatio-temporal data analysis [Cressie
and Huang, 1999; Cressie and Wikle, 2015]. Their framework takes advantage of low-rank
tensor modeling by representing spatio-temporal data in tensor form to exploit the shared
intrinsic dependency structures among the variables, locations and time.

In spatio-temporal forecasting task [Bahadori et al., 2014], the objective is to predict the
future tensor values utilizing the historical records, where spatio-temporal observations can
naturally be represented as tensor X ∈ RP×T×M of T timestamps of M variables over P
locations. Adopting vector auto regressive (VAR) models of K lag, Bahadori et al. [2014]
describe the relationship between the previous observations and the K-step ahead predictions
by the following matrix representation

X:,t,m =W:,:,mxt,m + ε:,t,m m = 1, ...,M and t = K + 1, ..., T, (3.19)

37

where the colon symbol : is used to index the entire rows or columns. W ∈ RP×KP×M is
the coefficient tensor to be learned. xt,m = [X T:,t−1,m, ...,X T:,t−K,m]T is obtained by stacking K-
lag previous observations before time T . ε:,t,m corresponds to the error terms. To capture the
correlations in data, the low rank constraint imposed onW encourages the commonalities along
three dimensions while reducing the model complexity, leading to the following optimization
problem

min
W
‖X̂ − X‖2F + µ

M∑
m=1

tr(X̂ T:,:,mLX̂:,:,m)

s.t. rank(W) ≤ R X̂:,:,m =W:,:,mxt,m,

(3.20)

where µ is found to balance the data fitting term and regularization term. The Laplacian
regularizer L [Cvetković et al., 1980; Babić et al., 2002] accounts for the spatial proximity of
data using geometrical information.

Recognizing (3.20) as a non-convex problem, Bahadori and his colleagues obtain the optimal
solution using a greedy algorithm, namely GREEDY, that sequentially estimates rank-1 sub-
space based on orthogonal matching pursuit (OMP) [Pati et al., 1993]. Concretely, at each
iteration, the GREEDY algorithm first attempts to search for the best rank-one estimation of
the matricization of coefficient tensor W along a specific mode. This specific mode is selected
whenever the largest amount of decrease in loss function is achieved. Next, the found rank-one
estimation, represented by a set of factors, is refolded back into tensor and added to current
estimation of coefficient tensor Ŵ. In this way, the coefficient tensor Ŵ accumulates using
above rank-one approximation process at each iteration. Finally, the algorithm is completed
by an projection of Ŵ onto the subspace spanned by the top singular vectors of its 1-mode ma-
tricization. The orthogonal projection operation aims at eliminating the redundant rank-one
components to maintain the lowest rank complexity.

Such greedy algorithm has been shown to provide better performance than convex-relaxation-
based approaches in terms of speed and accuracy. Bahadori et al. [2014] also provides a theo-
retical error bound that measures the suboptimality to the globally optimal solution at each
iteration. However, this algorithm is specially designed for spatio-temporal data which requires
the spatial and temporal modes are at least shared in common in terms of tensor structure
between the input and output tensors. In other words, the output tensor has the same tensorial
structure (e.g., the order, the dimensionality) as input tensor.

Accelerated Low-rank Tensor Online Learning (ALTO)

To face the challenges of heavy computational load and short response time that arise in
the setting of online spatio-temporal stream analysis, Yu et al. [2015] leveraged the low-rank
tensor learning via Tucker decomposition to develop a fast algorithm called accelerated low-
rank tensor online learning (ALTO). Similar to GREEDY [Bahadori et al., 2014], with the goal

38

of estimating low-rank constrained coefficient tensor, the framework for the spatio-temporal
can be formulated as

min
W

∑
t,m

‖W:,t,mZ:,t,m −X:,t,m‖2F

s.t. rank(W) ≤ R,
(3.21)

where Z ∈ RKP×T×M , X ∈ RP×T×M and W ∈ RP×KP×M are associated with input, output
and coefficient tensor, respectively. Likewise, T corresponds to the timestamps, M denotes
the number of variables, P is the number of locations and K is number of lags. Note that t
increases at each timestamp.

In brief, ALTO algorithm, which solves the spatio-temporal stream task represented by (3.21),
can be summarized into two stages. Stage 1 aims to update the coefficient tensor W in an
unconstrained manner. In Stage 2, the updated solution is then projected to low-rank tensor
space to satisfy the specified constraint rank(W) ≤ R.

In the setting of online tensor learning, the spatio-temporal observations keep growing in the
temporal mode over time [Sun et al., 2008]. Therefore, the best strategy is to update coefficient
tensor W in an incremental fashion. To this end, Stage 1 recursively updates the coefficient
tensor W each time that a new mini-batch of size b arrives at timestamp T , according to the
following α-rule

W(k) = (1− α)W(k−1) + αXT+1:T+b Z
†
T+1:T+b. (3.22)

Here, the new W(k) can be expressed as a convex combination of the old W(k−1) and a
closed-form solution for the current mini-batch data. To project the unconstrained solution
to low-rank tensor space, Stage 2 takes the low-rank representation from last iteration as a
starting point, that is

W(k−1) = G(k−1) ×1 U
(k−1)
1 ×2 U

(k−1)
2 ×3 U

(k−1)
3 , (3.23)

which follows by an augmentation and orthogonalization process of factor U(k−1)
d ∈ RId×R to

obtain factor V(k−1)
d ∈ RId×(R+K), by introducing K extra random columns. Then, the new

W(k) is transformed by the perturbed space spanned by the columns of V(k−1)
d , yielding the

augmented core G̃(k) ∈ R(R+K)×(R+K)×(R+K) as

G̃(k) =W(k) ×1 V
(k−1)
1 ×2 V

(k−1)
2 ×3 V

(k−1)
3 . (3.24)

The augmented core tensor G̃(k) is thereafter compressed into original size of R×R×R using
Tucker decomposition

G̃(k) ≈ G(k) ×1 Ṽ
(k)
1 ×2 Ṽ

(k)
2 ×3 Ṽ

(k)
3 , (3.25)

and the new factor matrix U(k)
d is also reached by

U(k)
d = V(k−1)

d Ṽ
(k)
. (3.26)

39

Eventually, the projected low-rank coefficient tensor W(k) can readily be written as

W(k) = G(k) ×1 U
(k)
1 ×2 U

(k)
2 ×3 U

(k)
3 . (3.27)

To sum up, ALTO obtains a closed-form solution for the update of the coefficient tensor and
efficiently carries out the low-rank projection by making use of the projected factors from
previous iteration, without suffering from the substantial cost of SVD on unfolding of full size
tensor. In addition, the incorporation of the random variation into projection significantly
overcomes the local optima issue yet with good approximation accuracy guarantees [Yu et al.,
2015]. Nevertheless, ALTO, as its batch counterpart GREEDY [Bahadori et al., 2014], is
limited to spatio-temporal data with a specified format between input and output.

Tensor Regression via Tensor Projected Gradient (TPG)

For accelerating the speed and avoiding the memory bottleneck, an efficient batch tensor re-
gression algorithm called tensor projected gradient (TPG) was recently introduced by Yu and
Liu [2016], building upon the tensor generalization of iterative hard thresholding [Blumen-
sath and Davies, 2009] and a randomized sampling technique. Following the similar low-rank
modeling framework as GREEDY [Bahadori et al., 2014], the authors consider the following
optimization problem in the context of both multi-linear multi-task learning (MLMTL) and
spatio-temporal forecasting

min
W
L(W;X ,Y)

s.t. rank(W) ≤ R,
(3.28)

where L refers to the loss function parameterized by tensor coefficient W. The relationship
between the input X and output Y linked by W is modeled using linear regression model as

Y = 〈X ,W〉+ ε, (3.29)

here X ∈ RT×I1×I3 and Y ∈ RT×I2×I3 , and T in the first mode of both X and Y represents
the sample size. ε corresponds to the Gaussian error term. Yu and Liu [2016] define the tensor
inner product in (3.29) as the matrix multiplication on each slice, i.e.,

〈X ,W〉 =

I3∑
m=1

X:,:,mW:,:,m. (3.30)

To find a solution for (3.28), Yu and Liu [2016] apply the subsampled projected gradient
descent on the regression coefficient tensor W. Basically, each iteration of TPG consists of
a gradient step followed by a proximal point projection step [Rockafellar, 1976]. The gra-
dient step attempts to compute the ordinary gradient of loss function L w.r.t to W in an
unconstrained way

∇L(W;X ,Y) = 〈XT,Y − 〈X ,W〉〉. (3.31)

40

Subsequently, the proximal point projection step PR(W) carries out an tensor projection (ITP)
procedure at each iteration k to locate a nearest low-rank solution. In particular, ITP efficiently
conducts power iterations to sequentially find all the singular vectors in each projection matrix,
onto which the regression coefficient W can be projected.

PR(Wk) = arg min
W
‖Wk −W‖2F (3.32)

s.t. rank(W) ≤ R, (3.33)

For the purpose of acceleration, a randomized subsampling technique called count sketch
[Clarkson and Woodruff, 2013] is leveraged as a preprocessing step to reduce the large sample
complexity as well as data noise.

From the theoretical point of view, under the restricted isometry property (RIP) assumption
[Candes et al., 2006], TPG is shown to converge to an approximate solution in a constant
number of iterations, depending merely on the signal to noise ratio [Yu and Liu, 2016]. Fur-
thermore, estimation error of TPG is proved to be linear to the norm of the observation error.
Although being locally optimal, the authors argue that the obtained solution is robust since
different local optima are highly concentrated for Tucker model [Ishteva et al., 2011].

In summary, the main contribution of [Yu and Liu, 2016] lies in the projection step where they
adapt power method for computing singular vectors in the tensor case. Specifically, they use
power iteration to efficiently determine dominant singular vector for each mode by leveraging
the property of Tucker model. In this way, full SVD can thus be avoided on large coefficient
tensor. However, like GREEDY [Bahadori et al., 2014], TPG is not designed as a general tensor
regression model, it is modeled under restriction with some special data structure between the
input and output. As being a simple linear model described in (3.29), the correlation in the
tensorial output side remains not well exploited.

Higher Order Low Rank Regression (HOLRR)

More recently, Rabusseau and Kadri [2016] extend low rank regression (LRR) [Mukherjee and
Zhu, 2011] to higher order low rank regression (HOLRR) to handle the case of tensorial output
with high multiway dependencies. HOLRR aims to discover a multilinear function that maps
a vector input x ∈ RI0 to tensor output Y ∈ RI1×···×ID from a set of samples generated from
the model

Y =W×̄1x + ε, (3.34)

where W ∈ RI0×I1×···×ID is the regression coefficient tensor and ε is the error. The authors
achieve this goal by formulating the task as minimizing a least squares subject to low multi-
linear rank constraint on W

min
W
‖W ×1 X̃− Ỹ‖2F

s.t. rank(W) ≤ R,
(3.35)

41

which is shown to be equivalent to solving the following problem under Tucker format

min
G,U0,{Ud}

‖W ×1 X̃− Ỹ‖2F

s.t. W = G ×1 U0 ×2 · · · ×D+1 UD and UT
dUd = I ∀d,

(3.36)

here Ud ∈ RId×Rd is the factor matrix for mode d. X̃ ∈ RN×I0 and Ỹ ∈ RN×I1×···×ID are
obtained by stacking N pairs of observations. The above problem (3.36) can be further derived
as

min
U0,{Ud}

‖Ỹ ×1 P0 ×2 · · · ×D+1 PD − Ỹ‖2F

s.t. UT
dUd = I ∀d ,

(3.37)

where P0 = X̃U0(UT
0 X̃

T
X̃U0)−1UT

0 X̃
T
and Pd = UdUT

d (d ≥ 1) correspond to the orthog-
onal projections onto the spaces spanned by columns of X̃U0 and Ud (d ≥ 1), respectively.
Thus, the problem finally boils down to finding D+ 1 subspaces X̃U0 and {Ud}Dd=1 such that
Ỹ has the proximal low-rank projection under them.

Rather than simultaneously estimating all the factor matrices, HOLRR obtains an approxi-
mate solution via solving D + 1 independent eigenvectors problems. For nonlinear setting, A
kernel extension of HOLRR, namely KHOLRR, is also introduced by exploiting the kernel
trick. Theoretically, a generalization bound for the class of tensor-valued regression function is
provided, indicating the error is dominated only by O(

√
(RD+1 + (D + 1)I)(D + 1) log(I)) in-

stead of O(
√
ID+1) when imposing the low multilinear rank constraint [Rabusseau and Kadri,

2016].

To summarize, HOLRR is simple and enjoys the computational efficiency due to the closed-
form solution without iterations. Different from previous models that all involve tensorial pre-
dictors, HOLRR ignores the correlations contained in tensorial predictor by feeding a vector-
based input to the model. In practice, most of real-life tensor-based regression tasks involve
tensorial predictors, thus the applicability of HOLRR might be limited.

Discussion

In Table 3.1, we summarize the existing linear tensor regression methods in terms of the
application context, the input/output data type as well as the applications. Despite arising
from different application domains and modeling settings, all these models share the low-
rank assumption on the regression coefficient tensor. In other words, the coefficient tensor is
assumed to following a low dimensional tensor factorization.

In general, these work can mainly be categorized into two classes of approaches. The first class,
including [Romera-Paredes et al., 2013; Wimalawarne et al., 2014; Signoretto et al., 2014], relies
on a convex relaxation of the low-rank non-convex problem using spectral regularization, i.e.,

42

the trace norm of matricizations. Though enjoying nice convex properties, this class suffers
from slow convergence rate [Gandy et al., 2011]. On the other hand, the second class applies
alternating least squares (ALS) to sequentially estimate one factor at a time while fixing the
rest, such as [Zhou et al., 2013; Li et al., 2013; Bro, 1996; Eliseyev and Aksenova, 2013; Zhao
et al., 2013a]. TPG [Yu and Liu, 2016] performs the gradient descent to directly optimize
coefficient tensor but still resorts to an alternating strategy to estimate projecting factors
during the projection step. The ALS based methods are practically effective but shown to
exhibit unstable convergence properties and sub-optimal solutions [Yu and Liu, 2016].

Most of tensor regression studies are dedicated to the batch setting where the entire tensor
sequence is demanded and processed. For many real-life tasks, however, the inputs and outputs
are the extremely large or even infinite tensor sequences, especially in time-critical dynamic
environments, where the new data keep coming fast over time. Although we can apply the batch
methods to all the data each time a new pair arrives, they will quickly become computationally
prohibitive or merely infeasible. Moreover, it is often impossible to store the whole data or
require them to be available up front. Towards this end, a few sequential methods, like [Eliseyev
and Aksenova, 2013; Yu et al., 2015], focus on such context and resolve the problem to some
degree. Nevertheless, [Eliseyev and Aksenova, 2013] tends to be slow ; [Yu et al., 2015] is
restricted on the special data type and cannot be directly applied to generic tensor sequences.
Thus, more studies need to be targeted on the memory efficient sequential methods.

Table 3.1 – Summarization of linear tensor regression models.

Model/Algorithm Context Input/Output Application

CP reg. [Zhou et al., 2013] bat. tensor/scalar medical imaging
Tucker reg. [Li et al., 2013] bat. tensor/scalar medical imaging
NPLS [Bro, 1996] bat. tensor/tensor chemometrics
RNPLS [Eliseyev and Aksenova, 2013] seq. tensor/tensor neural signal processing
HOPLS [Zhao et al., 2013a] bat. tensor/tensor neural signal processing
MLMTL [Romera-Paredes et al., 2013] bat. vector/vector multi-task learning
GREEDY [Bahadori et al., 2014] bat. tensor/tensor spatio-temporal analysis
ALTO [Yu et al., 2015] seq. tensor/tensor spatio-temporal analysis
TPG [Yu and Liu, 2016] bat. tensor/tensor spatio-temporal analysis
HOLRR [Rabusseau and Kadri, 2016] bat. vector/tensor spatio-temporal analysis

3.1.2 Nonlinear Tensor Regression

The previous section primarily discusses the parametric tensor regression approaches relying
on the linear (multilinear) modeling strategies. However, the linear model might suffer from the
lack of predictive power due to the restriction of linearity. Such kind of model is not desirable
in terms of predictability in situation where the nonlinear dependencies exist between tensor
input and output. In this section, we take a look at some nonlinear tensor regression methods

43

in the literature that solve this issue to some extent.

Tensor Gaussian Process (Tensor GP)

Gaussian process (GP) [Rasmussen and Williams, 2005] is an important class of probabilistic
models that specify a distribution over functions, which is a particular useful to capture the
nonlinearity between input and output variables. GP is typically used in a nonlinear regression
setting where a set of observations {(xn, yn)}Nn=1 is generated according to the model

y = f(x) + ε, (3.38)

where x is the vector input, y is the scalar output and ε is zero-mean gaussian random noise
with variance σ2.

In the context of tensor regression, Zhao et al. [2013b] adapted GP to tensor-valued input
space, leading to tensor GP. Concretely, they extend the standard GP regression model (3.38)
to the following form

y = f(X) + ε. (3.39)

Now the set of observations generated from the nonlinear function f(X) of D-order tensor
X ∈ RI1×···×ID in (3.39) turn out to be {(Xn, yn)}Nn=1. Then, the latent function in (3.39) can
be modeled by a GP

f(X) ∼ GP(m(X), k(X ,X ′)|θ), (3.40)

where m(X) is the mean function that set to be zero, k(X ,X ′) is the covariance function with
tensorial arguments and θ is the associated hyperparameter vector.

The essential difference between classical GP and tensor GP lies in that the latter uses tensor
kernel function k(Xm,Xn) to replace regular kernel function k(xm,xn) as entry of kernel
matrix K. Therefore, the key business of tensor GP is to design an appropriate kernel function
with tensor-valued input, namely tensor kernel, which could effectively exploit the multiway
structure of tensorial representations. Some straightforward standard kernels can readily be
generalized to valid reproducing tensor kernels, including linear kernel

k(X ,Y) = 〈X ,Y〉 = 〈vec(X), vec(Y)〉 (3.41)

and Gaussian RBF kernel

k(X ,Y) = exp(− 1

2β2
‖ X − Y ‖F). (3.42)

However, the above kernel function k naively measures a collection of entry-wise Euclidean
distances between two tensors, which does not take into consideration the underlying multi-
way structural information in tensor, resulting in inadequate ability to capture the similarity
between tensors. Taking gray-scale images (2nd-order tensor) and videos (3rd-order tensor) as
an example, the application of these naive kernels leads to ignoring the relation between each

44

pixel and its neighbours for images, and the temporal structure will be additionally neglected
for videos [Turaga et al., 2010, 2011].

To overcome the information loss when using naive kernels, Zhao et al. [2013b] present a prob-
abilistic tensorial kernel based on generative models and information divergences. In general,
the dissimilarity between two tensorial observations can be gauged by a product of a set of
dissimilarity measures at each mode, i.e., in the form of product kernel [Lin, 2000; Signoretto
et al., 2011]

k(X ,Y) = k1(X(1),Y(1))k
2(X(2),Y(2)) · · · kD(X(D),Y(D)), (3.43)

where kd represents the valid factor kernels for mode d. In their work, the d-mode dissimilarity
in kd is characterized by the information divergence between two probabilistic distribution.
Zhao et al. [2013b] assume the d-mode unfolding of tensor data X ∈ RI1×···×ID to be a matrix
with rows representing Id dimensional multivariate and columns representing I1···Id−1Id+1···ID
samples. These Id dimensional samples are generated from a d-mode parametric distribution
p(x|Ωd), where Ωd is the hyperparameter (for multivariate Gaussian Ωd = {µd,Σd}) which
can be estimated from the d-mode unfolding matrix . Hence, the d-mode dissimilarity measure
can be obtained in terms of information divergence D(p‖q) between two distributions p and q

Sd(X‖Y) = D(p(x|ΩXd) ‖ q(y|ΩYd)). (3.44)

Consequently, the resulting product tensor kernel, built up by multiplying D factor kernels
associated with each mode, is given by

k(X ,Y) = α2
D∏
d=1

exp(− 1

2β2
d

Sd(X ‖ Y)), (3.45)

where α is the magnitude parameter and {βd}Dd=1 are the parameters indicating length-scales.
Note that the probabilistic kernel provides a way to model tensor from D viewpoints corre-
sponding to D different low dimensional vector spaces, in this way multiway structure could
be accounted for by the kernel function.

As for the prediction, tensor GP behaves exactly the same as standard GP except that one
calculates the entries in kernel matrix K using tensor kernel function as referred by (3.45).
Recall that the computational complexity of GP is O(N3), which is not desirable for tensor
GP because the number of samples N needs to be quite large to achieve a good accuracy in
many real-world applications.

Kernel-based Tensor Partial Least Squares (KTPLS)

Applying kernel-based concept to PLS regression, Zhao et al. [2013b] extended HOPLS to
the nonlinear kernel-based tensor PLS (KTPLS) with the objective for predicting an output
tensor from an input tensor with arbitrary orders. For this purpose, the concatenated N pairs

45

of observations {X ∈ RN×I1×···×IM ,Y ∈ RN×J1×···×JL} are mapped into infinite dimensional
inner product feature space by φ and ψ

φ : Xn → φ(Xn) ∈ RH1×,...,×HM

ψ : Yn → ψ(Yn) ∈ RK1×,...,×KL ,
(3.46)

yielding φ(X) and ψ(Y) that are denoted as Φ and Ψ respectively. In the light of HOPLS,
KTPLS conducts the Tucker decompositions of Φ and Ψ simultaneously in the feature space
by

Φ = GX ×1 T×2 P(1) × · · · ×M+1 P(M) + εX

Ψ = GY ×1 U×2 Q(1) × · · · ×L+1 Q(L) + εY

U = TD + E,

(3.47)

where {GX ,GY} are the core tensors while {P(m),Q(l)} refer to the loading matrices, all of
which are in the feature space. U = [u1, ...,uR], T = [t1, ..., tR] and D is a diagonal matrix
denoting the inner relation between latent vectors tr and ur. E is the residual for U. By
defining G̃X and G̃Y as

G̃X = GX ×2 P(1) × · · · ×D1+1 P(M)

G̃Y = GY ×2 Q(1) × · · · ×D2+1 Q(L),
(3.48)

equations in (3.47) can be rewritten as

G̃X = Φ×1 TT

G̃Y = Ψ×1 UT.
(3.49)

On one hand, both G̃X and G̃Y lie in infinite dimensional feature space and thus they cannot
be estimated explicitly. On the other hand, equations (3.49) can be in fact expressed as a
linear combination of observations {φ(Xn)}Nn=1 and {φ(Yn)}Nn=1. Therefore, one only needs to
computeT = [t1, ..., tR],U = [u1, ...,uR] instead of G̃X , G̃Y with pairwise maximum covariance
by sequentially solving the following optimization problem using a deflation procedure

max
{w(d1)

r ,v(d2)
r }

[cov(tr,ur)]2 r = 1, ..., R, (3.50)

where

tr = Φ×2 w(1)T
r × · · · ×D1+1 w(D1)T

r

ur = Φ×2 v(1)T
r × · · · ×D2+1 v(D2)T

r .
(3.51)

Then the latent vectors can be obtained by equivalently solving the following eigenvalue prob-
lem [Rosipal and Trejo, 2002]

Φ(1)Φ
T
(1)Ψ(1)Ψ

T
(1)tr = λtr

ur = Ψ(1)Ψ
T
(1)tr.

(3.52)

46

Actually, Φ(1)Φ
T
(1) and Ψ(1)Ψ

T
(1) can be presented as a kernel matrix KX and KY , respectively.

The preceding equations in (3.52) turn out to be

KXKYtr = λtr

ur = KYtr,
(3.53)

which is where tensor kernel functions (KX)mn = k(Xm,Xn) and (KY)mn = k(Ym,Yn) arise.

In these conditions, for a given new test point X∗, the prediction y∗ is as follows

yT∗ = kT
∗U(TTKXU)−1TTY(1), (3.54)

where (k∗)n = k(X∗,Xn). Note that here y∗ is in a vector form and should be reformulated
into a tensor form Y∗. From this result, we should pay attention that by letting

α = U(TTKXU)−1TTY(1), (3.55)

the response Y∗ can be predicted as a linear combination of N kernel functions

y∗ =
N∑
n=1

αnk(Xn,X∗), (3.56)

which coincides with the result from GP method [Zhao et al., 2013b].

Tensor Regression Networks

Nowadays, deep neural networks (DNN), particularly deep convolutional neural networks
(CNN), have demonstrated remarkable performance improvement in a variety of fields. Several
papers have been devoted to study the connection between DNN and tensor methods. How-
ever, seldom work has been done to investigate the deep tensor regression methods. Recently,
Kossaifi et al. [2017] make their attempts to fist incorporate tensor regression as pluggable
component into CNN.

The key idea behind [Kossaifi et al., 2017] is to reformulate the weight matrix in the fully
connected (FC) layer as regression coefficient tensor which is assumed to be decomposed in a
low-rank Tucker format. Figure 3.2 shows the tensor regression layer where the softmax outputs
y result from the inner products between the activation tensor X̃ and the corresponding low-
rank regression weights W̃.

By replacing FC layer with the proposed tensor regression layer (TRL), huge amount of pa-
rameters in FC layer can be significantly reduced, while the multiway structure information of
activation tensor, generated from the core of CNN, can be preserved. In essence, TRL can be
viewed as a nonlinear embedding of Tucker regression model [Li et al., 2013] into the architec-
ture of CNN to further leverage its efficiency and representational expressivity. Nevertheless,
the applicability of TRL somehow becomes diminished since it is specially designed for the
CNN, typically with 3rd-order tensorial input.

47

Discussion

In this section, we reviewed the existing nonlinear regression models addressing the tensorial
input and output. These approaches are summarized in Table 3.2. Generally, two modeling
strategies can be adopted to capture the nonlinear dependencies between the tensorial input
and output : kernel based and neural networks based methods.

Most of the kerneled based approaches, such as [Zhao et al., 2013b; Rabusseau and Kadri,
2016], are directly extended from their linear counterparts by exploiting the kernel trick. The
key factor to the success of the kernel strategy is how to design appropriate tensorial function
that is able to preserve multiway structure in tensor data while being computationally efficient.
Currently, the most commonly used tensor kernel functions, e.g., chordal distance tensor kernel
[Signoretto et al., 2011] or probabilistic tensor kernel [Zhao et al., 2013b], tend to demand high
computational and storage load.

For anther promising research line, very few work have focused the intersection of tensor re-
gression and deep learning except [Kossaifi et al., 2017]. Benefiting from the deep structure,
one can explore a novel class of nonlinear tensor regression models that can represent the ten-
sorial regression coefficient so as to have a better feature or latent components representation
of data, which is expected to have a further enhanced predictability. The CNN has been shown
empirically effective on 3rd-order tensor input and particularly useful in computer vision re-
lated tasks. Yet, how to extend advantageous deep architecture to more generic high order
tensorial input and output data still remains a challenging problem.

Figure 3.2 – An illustration of tensor regression layer (TRL).

48

Table 3.2 – Summarization of nonlinear tensor regression models.

Model/Algorithm Cont. Input/Output Application

tensor GP [Zhao et al., 2013b] bat. tensor/scalar neural signal processing
KTPLS [Zhao et al., 2013b] bat. tensor/tensor neural signal processing
KHOLRR [Rabusseau and Kadri, 2016] bat. vector/tensor spatio-temporal analysis
TRL [Kossaifi et al., 2017] bat. tensor/vector computer vision

3.2 Our new contributions : the big picture

Before introducing our main contributions in details, it is helpful to first take a glance at
them from the very top level. In Table 3.3, our new tensor regression models introduced in the
remaining chapters are categorized into linear or nonlinear model, sequential or batch model,
as well as model with scalar or tensor-variate output.

Table 3.3 – The overview of our new contributions.

Settings Scalar Output Tensor-variate Output

Linear Batch H-Tucker regression
Sequential IHOPLS ; RHOPLS

Nonlinear Batch KMTPLS
Sequential Tensor OLGP

Under the multilinear assumption, our batch H-Tucker regression model (Chapter 4) is able
to handle the potentially very high-order tensorial input and scalar output. Our sequential
IHOPLS (Chapter 6) is designed for the context of infinite time-dependent streams, while
RHOPLS (Chapter 7) is a general sequential model especially useful for large-scale high-speed
general tensor sequences. Both our IHOPLS and RHOPLS deal with tensor-variate input and
tensor-variate output.

In the setting of nonlinear tensor regression, our sequential tensor OLGP (Chapter 5) with
scalar output can be applied to large-scale tensor sequences in an online fashion. Finally, our
batch KMTPLS (Chapter 8) addresses the nonlineararity between set of tensor-variate input
and output blocks by incorporating the kernel machine into the model, which is used for
merging tensor blocks from different sources to boost the predictability.

3.3 Conclusion

In this chapter, we briefly summarized the technical details of tensor regression and its recent
advance, and categorized them in terms of linear modeling and nonlinear modeling. As for
the linear models, the discussed approaches share the low-rank assumption that the model
is parameterized by a high-order tensor which exists a low dimensional factorization. The

49

nonlinear models mainly take the advantage of kernel-based techniques to develop tensorial
kernels and incorporate them into the well developed regression frameworks to accommodate
high-order tensor input or output. We also gave the big picture of our new contributions to
tensor regression modelings from the very top level. In the remaining chapters, we will intro-
duce our contributions in details that address some of the issues of existing tensor regression
approaches from several different perspectives.

In the next chapter, we will introduce our first contribution to address the tensor regression
task with high-order tensorial input and scalar output.

50

Chapitre 4

Hierarchical Tucker Tensor Regression

In this chapter, a highly compact, flexible, and scalable hierarchical Tucker tensor regression
framework [Hou and Chaib-draa, 2015] is presented based on the hierarchical Tucker decom-
position (HTD, or H-Tucker) [Hackbusch and Kühn, 2009; Grasedyck, 2010]. Specifically, the
new regression model applies the H-Tucker decomposition to approximate the coefficient ten-
sor, leading to a sparse representation of fewer parameters. On one hand, this new approach
shares the advantage of CP based model (presented in Chapter 2) in that its parameter com-
plexity is free from exponential dependence on the order d. On the other hand, it preserves the
flexibility like Tucker model by allowing distinct ranks according to a dimension tree structure.
With this HTD framework, a scalable block relaxation algorithm is developed to conduct the
parameter estimation. Finally, empirical studies on both synthetic simulation and real-life task
demonstrate the effectiveness of this new approach.

4.1 Introduction

Recently, tensor-variate regression approaches have attracted increasing interest in medical
imaging data analysis [Zhou et al., 2013; Li et al., 2013]. As we have already mentioned in
previous chapters, these regression tasks involving higher-order tensors pose great challenges
in two perspectives. On one hand, the ultrahigh dimensionality of tensor input like 3D or 4D

image results in gigantic number of parameters. For instance, in brain image data analysis,
the total number of parameters for a 3D magnetic resonance imaging (MRI) image of size
128 × 128 × 128 amounts to 2 millions, while this number will end up with as high as 268

millions if we have a 4D functional magnetic resonance imaging (fMRI) image of size 128 ×
128× 128× 128. Such huge number of parameters induced by these large-scale images causes
severe issues in both theoretical aspect and practical aspect. As already noticed, the underlying
complex multiway structural information contained in high-order tensors cannot be captured
by simply turning them into a vector or matrix and applying two-way data analysis tools.

To tackle above issues, Zhou et al. [2013] assumed the tensor regression coefficient follows a low-

51

rank structure in terms of CP decomposition, resulting in the following CP tensor regression
model

y = 〈X ,B〉+ b

= 〈X ,
R∑
r=1

b(1)
r ◦ · · · ◦ b(D)

r 〉+ b,
(4.1)

where the output y ∈ R is a scalar and the intercept b ∈ R is also a scalar. The input
X ∈ RI1×I2×···×ID is a D-order tensor, so is the coefficient tensor B ∈ RI1×I2×···×ID . The
factors b(d)

r ∈ RId with r = 1, ..., R, d = 1, ..., D are vectors. The number of parameters in
(4.1) is substantially reduced from O(ID) to O(DIR) with I = max{Id}Dd=1, leading to an
efficient estimation of factors.

However, the resulting model is simple but not flexible, due to the diagonal structure of core
tensor in CP format (see Figure 2.8 and Section 2.2.1). The lack of flexibility might lead to an
underfitting situation. To overcome this inflexibility of the CP based model, Li et al. [2013]
employed Tucker format to tensorial input space instead. Tucker format is much more flexible
since the model uses full core tensor rather than diagonal structured core tensor as CP.

By doing so, it is possible to handle the complex interactions between distinct factors across
different modes. This also enables to model different modes using distinct ranks. Recall that
the linear Tucker tensor regression model is given by

y = 〈X ,B〉+ b

= 〈X ,
R1∑
r1=1

· · ·
RD∑
rD=1

gr1,...,rDb
(1)
r1 ◦ · · · ◦ b

(D)
rD
〉+ b,

(4.2)

where G ∈ RR1×···×RD with entries gr1,...,rD denotes the core tensor. The factor b(d)
rd ∈ RId with

rd = 1, ..., Rd, d = 1, ..., D is the column vector contained in factor matrix Bd ∈ RId×Rd . We
denote R = max{Rd}Dd=1. This Tucker regression model significantly decreases to O(DIR +

RD) parameters while the original coefficient tensor has O(ID) parameters.

Although the compression rate in (4.2) is tremendous, it is worth noting that for small orders,
especially for the case of D = 3, Tucker model could easily replace the CP model. However,
for larger order tensors, e.g., D is 4, 5, 6 and so on, Tucker based model is ineffective and not
scalable since O(RD) becomes the dominant term in O(DIR+RD) and grows exponentially
with the tensor order D, which is known as the curse of dimensionality [Oommen et al., 2008].

4.2 Hierarchical Tucker Decomposition (HTD)

Various other decompositions have been introduced to address the inadequacy of flexibility in
CP model and avoid the exponential parameter growth with tensor order in Tucker model.

52

These new decompositions maintain the advantages of both CP model and Tucker model at the
same time. One of them generalizes Tucker decomposition to hierarchical Tucker decomposition
(HTD) [Hackbusch and Kühn, 2009; Grasedyck, 2010], which is also known as H-Tucker
decomposition. On one hand, H-Tucker representation shares the advantage of CP model in
that the total number of parameters as well as the storage complexity are free from exponential
dependence on D. On the other hand, H-Tucker preserves the flexibility of Tucker model and
allows us to perform efficient linear algebra operations based on SVD of matrix unfoldings of
a tensor.

The H-Tucker is a novel structured format which efficiently represents a higher-order ten-
sor by means of subspace approximation in a multi-level fashion [Hackbusch and Kühn,
2009; Grasedyck, 2010]. In general, the idea behind H-Tucker is to recursively separate the
modes of the tensor, which leads to a binary dimension tree T containing a subset of modes
t ⊂ {1, 2, ..., D} at each node of the tree. In this format, one can find the optimal subspace
corresponding to each node t in T .

A binary dimension tree T for aD-order tensor is a finite tree with root node, root = {1, ..., D},
and depth p such that each node t ∈ T is either

– a singleton mode t = {µ} corresponding to a leaf node, or

– the union of two disjoint successors S(t) = {tl, tr} such that t = tl ∪ tr.

Here we denote L(T) as the set of leaf nodes, while N (T) = T \L(T) is denoted the set of
inner nodes. The set L(T) contains all the leaves, each with a singleton mode. N (T) contains
the interior nodes each with a subset of all modes. For t ∈ N (T), it is a disjoint union of left
and right children t = tl ∪ tr.

In this chapter, we employ the balanced binary tree in which the heights of left subtree and
right subtree of each node differ by at most one. For example, a balanced binary dimension
tree representing a 5-order tensor is illustrated in Figure 4.1. L(T) contains the leaves nodes
{1},{2},{3},{4}, and {5}, each of which links with only one mode. N (T) includes all the
inner nodes {1, 2}, {1, 2, 3} and {4, 5} as well as the root node {1, 2, 3, 4, 5}. Each inner node
is related to a collection of modes, while the root node corresponds to all the modes. The
purpose of the dimension tree is that all modes of tensor can be split and organized in a
hierarchical fashion, such that the subspaces corresponding to these mode partitions can be
efficiently represented in a nested way.

Let X ∈ RI1×···×ID be a D-order tensor. Tucker decomposition represents tensor X via the
subspaces of D unfoldings {X(d)}d=1,...,D, each of which corresponds to one specific mode d.
Unlike Tucker, H-Tucker uses a hierarchy of subspaces of the unfoldings {X(t)}t∈T to represent
X , with each unfolding corresponding to one specific node t in dimension tree T . One such
node t might relate to a set of multiple modes. For each t ∈ T , the X(t) can be obtained
by merging all the modes in subset t into the row indices and all the rest modes into the

53

Figure 4.1 – Illustration of a balanced binary dimension tree T for a 5-order tensor.

column indices. For example, the unfolding X({1,2,3}) of X associated with inner node {1, 2, 3}
in Figure 4.1 is obtained by reshaping X into a matrix, where the row index of an element
of this matrix is determined by the indices from modes 1, 2, and 3, while the column index
of that element is determined by the indices from modes 4 and 5 ; the unfolding X({1}) of X
associated with leaf node {1} is essentially the standard unfolding of X along the mode 1 ; the
unfolding of X({1,2,3,4,5}) of the root node leads to nothing but a long vector, as a consequence
of the standard vectorization operation on X .

With H-Tucker representation, we can then look for a set of basis factor matrices Ut for t ∈ T ,
the columns of which span the column space of matrix X(t), to represent the tensor X . The
dimension of X(t), namely the rank rt = rank(X(t)), is equal to the number of columns of
Ut. Analogous to the d-rank of Tucker, the collection of these ranks at all the nodes (rt)t∈T

is defined as ht-rank of X , i.e., the ht-rank in above example in Figure 4.1 can be denoted
as (1-r123r45-r12r3r4r5-r1r2). Note that here we define the rank r12345 corresponding to the
root node troot as 1, since basis factor matrix Utroot associated with troot incorporates all the
modes into row indices, leaving Utroot as a long vector. In contrast, the d -rank is defined as
the column rank of d-mode matricization for Tucker.

Formally, let T be a dimension tree, the hierarchical rank or ht-rank r= (rt)t∈T of a tensor X
is defined as

rt = rank(X(t)) ∀t ∈ T . (4.3)

54

The set of all tensors of hierarchical rank at most r, called H-Tucker(r) tensors, are given by

H-Tucker(r) = H-Tucker((rt)t∈T) = {X ∈ RI1×···×ID : rank(X(t)) = rt, ∀t ∈ T }. (4.4)

Let us now introduce the following nestedness property according to [Grasedyck, 2010].

Proposition 1 [Grasedyck, 2010] : Let X ∈ RI1×···×ID , for t ∈ N (T), t = tl∪tr and tl∩tr = ∅,
then we have

span(X(t)) ⊂ span(X(tr) ⊗X(tl)), (4.5)

where each non-leaf node has one left child node and one right child node whose modes are
not overlapped, i.e., dimensions corresponding to t is the disjoint union of the dimensions
corresponding to tl and tr. Equation (4.5) says that the column space of unfolding matrix is
the subspace of the column space of tensor product between unfolding matrices of its children
nodes.

This property suggests a relation of subspaces of matricizations between the parent and chil-
dren, which enables us to establish the link between the corresponding basis factor matrices
using a so-called transfer matrix Bt in

Ut = (Utl ⊗Utr)Bt, (4.6)

where Bt ∈ Rrtlrtr×rt and rtl , rtr , rt are the ht-rank at nodes tl, tl and t, respectively. Starting
from the leaf singletons, the construction of H-Tucker proceeds by applying equation (4.6)
recursively until the root is reached. Note that rt is fixed to 1 at the root node. As a result,
this fact implies that the tensor X can be completely parameterized just by the transfer
matrices {Bt}t∈N (T) and basis factor matrices {Ut}t∈L(T). Therefore, the overall complexity
for storage is bounded by O(DIR+DR3), where I = max{Ii}Di=1 and R = max{rt}t∈T .

Example 2 : Let’s consider the H-Tucker format depicted in Figure 4.2 for a 5-order tensor
X ∈ RI1×···×I5 with dimension tree structure described in Figure 4.1.

In Figure 4.2, each subtree, highlighted using dotted rectangle, can be represented by a basis
factor matrix Ut with t corresponding to the root of that subtree. For instance, the subtree
located by the green(2) dotted rectangle can be represented via basis factor matrix U{1,2,3}

that summarizes the subspace corresponding to the inner node {1, 2, 3}, and this basis factor
matrix U{1,2,3} is in turn expressed using a transfer matrix B{1,2,3} and two basis factor
matrices U{1,2}, U{3} associated with its children nodes {1, 2}, {3}. Similarly, the subtree
located by the blue(3) dotted rectangle can be represented via basis factor matrix U{1,2} that
describes the subspace corresponding to the inner node {1, 2}. The factor matrix U{1,2} can be
expressed using a transfer matrix B{1,2} and two basis factor matrices U{1}, U{2} associated
with its two children nodes {1}, {2}. At the leaf level the dimension tree T , all subtrees turn
out to be the leaf singletons and can be directly represented using a single basis factor matrix
U{i} for i = 1, .., 5.

55

Figure 4.2 – Illustration of H-Tucker format for a 5-order tensor.

To show how to represent the 5-order tensor X ∈ RI1×···×I5 in terms of nested subspaces, we
start the procedure from bottom to top of the tree. The basis factor matrix U{1,2} ∈ RI1I2×r12

of inner node {1, 2} is obtained by tensor product of U{1} ∈ RI1×r1 and U{2} ∈ RI2×r2 and
then transformed by the matrix B{1,2} ∈ Rr1r2×r12 as

U{1,2} = (U{1} ⊗U{2})B{1,2}. (4.7)

With U{1,2} in hand, then the basis factor matrix U{1,2,3} ∈ RI1I2I3×r123 of inner node {1, 2, 3}
can be calculated by U{1,2} ∈ RI1I2×r12 , U{3} ∈ RI3×r3 and B{1,2,3} ∈ Rr12r3×r123 as

U{1,2,3} = (U{1,2} ⊗U{3})B{1,2,3}. (4.8)

Following the same pattern, we can reach the basis factor matrix U{4,5} ∈ RI4I5×r45 of inner
node {4, 5} using U{4} ∈ RI4×r4 and U{5} ∈ RI5×r5 and B{4,5} ∈ Rr4r5×r45 as

U{4,5} = (U{4} ⊗U{5})B{4,5}. (4.9)

Finally, for the root node {1, 2, 3, 4, 5}, we assume the dimension of vector space spanned by
the columns of U{1,2,3,4,5} is one, that is, r12345 = 1. We also assume the vectorized tensor
vec(X) lies in this vector space. With U{1,2,3}, U{4,5} and B{1,2,3,4,5} ∈ Rr123r45×r12345 , the

56

basis factor matrix U{1,2,3,4,5} ∈ RI1I2I3I4I5×r12345 of the root note can be achieved as

vec(X) = X({1,2,3,4,5})

= U{1,2,3,4,5}

= (U{1,2,3} ⊗U{4,5})B{1,2,3,4,5}

= ((U{1,2} ⊗U{3})B{1,2,3} ⊗ (U{4} ⊗U{5})B{4,5})B{1,2,3,4,5}

= ((U{1,2} ⊗U{3} ⊗U{4} ⊗U{5})(B{1,2,3} ⊗B{4,5})B{1,2,3,4,5}

= ((U{1} ⊗U{2})B{1,2} ⊗U{3} ⊗U{4} ⊗U{5})(B{1,2,3} ⊗B{4,5})B{1,2,3,4,5}

= (U{1} ⊗U{2} ⊗U{3} ⊗U{4} ⊗U{5})(B{1,2} ⊗ I{3} ⊗ I{4} ⊗ I{5})

(B{1,2,3} ⊗B{4,5})B{1,2,3,4,5}.

(4.10)

From above equations, it is obvious that X depends only on basis factor matrices {U{i}}i=1,...,5

of leaf nodes, and the transferring matrices B{1,2}, B{1,2,3}, B{4,5} and B{1,2,3,4,5} of inner
nodes. I{3}, I{4} and I{5} are the identity matrices.

4.3 H-Tucker Tensor Regression Model

Our modeling strategy for tensor regression is based on the framework of generalized linear
model (GLM) [Nelder and Baker, 1972; McCullagh and Nelder, 1989] (see Appendix A.4).

As previously stated, H-Tucker is developed to keep all the merits of tensor subspace repre-
sentation introduced via Tucker, while avoiding the exponential increase in the parameter size
of the coefficient tensor. In H-Tucker, the concept of tensor subspaces is exploited by choosing
the subspace of tensor product of a pair of basis factors corresponding to children nodes. By
recursively repeating this idea of subspace compression from the root down to the leaves, we
obtain a hierarchical subspace representation with a massively reduced number of parameters.

With these benefits in hand, we naturally apply the H-Tucker decomposition to the input
space. That is, given a dimension tree T and ht-rank r = (rt)t∈T , the coefficient tensor B
is assumed to follow a H-Tucker(r) decomposition. The linear systematic part of generalized
linear H-Tucker tensor regression model [Hou and Chaib-draa, 2015] can be obtained by

g(µ) = η

= 〈B,X〉+ βTz + b

= 〈vec(B), vec(X)〉+ βTz + b.

(4.11)

Similar to the linear part of classical GLM in (A.12) (see Appendix A.4), η is a linear com-
bination of unknown parameters ; µ is the expected response and g(·) is the link function
[McCullagh and Nelder, 1989]. β denotes the regular vector coefficient and z corresponds to
the regular vector predictor. The linear term βTz is incorporated to model the conventional
features, e.g., in medical imaging data analysis, the gender, the age and the handiness of a
subject are described by this term.

57

For the root node, we have

vec(B) = Uroot with rroot = 1, (4.12)

then applying nestedness property (4.6) to (4.12), we get

vec(B) = (Urootr ⊗Urootl)Broot. (4.13)

Substituting (4.13) into (4.11) leads to

g(µ) = η

= 〈(Urootr ⊗Urootl)Broot, vec(X)〉+ βTz + b.
(4.14)

For other inner nodes t ∈ N (T), we then recursively process the nestedness relation by re-
placing the Ut with its corresponding transfer matrix Bt and its children Utl and Utr from
the top of tree to the bottom tree. This procedure stops when we reach all the leaf nodes
t ∈ L(T).

By exploiting the mixed-product property of Kronecker product, the inner product part in
(4.14) is equivalent to

〈vec(B), vec(X)〉 =

〈(
⊗

t∈L(T)

Ut)(
⊗

t∈L(T)L−1

It ⊗
⊗

t∈N (T)L−1

Bt) · · · (
⊗
t∈T l

Bt) · · · (Broot), vec(X)〉, (4.15)

where the level l of the tree T is

T l := {t ∈ T : level(t) = l} with 1 ≤ l ≤ L (4.16)

which denotes the set of all nodes having a distance of exactly l to the root. Particularly, L
refers to the leaf level. We also use L(T)l (N (T)l) to represent the set of leaf nodes (inner
nodes) in the level l. For a balanced binary tree, the leaf nodes may only appear in the
highest or second highest levels, the number of leaf factor matrices to be estimated is D and
the number of interior transfer matrices is equal to D-1. Notice that {It ∈ Rrt×rt}t∈L(T)L−1

are the identity matrices, which are used to take the place of singleton basis factor matrices
{Ut}t∈L(T)L−1 which are used to be in the second highest level. By doing so, all the singleton
basis factor matrices Ut are “pushed” to the highest level.

Finally, the resulting H-Tucker regression model becomes

g(µ) = η

= 〈vec(B), vec(X)〉+ βTz + b

= 〈(
⊗

t∈L(T)

Ut)(
⊗

t∈L(T)L−1

It ⊗
⊗

t∈N (T)L−1

Bt) · · · (
⊗
t∈T l

Bt) · · · (Broot), vec(X)〉+ βTz + b,

(4.17)

58

Similar to the argument of the Tucker based model [Li et al., 2013], the number of free
parameters in H-Tucker model can be obtained as

∑
t∈L(T)

Itrt +
∑

t∈N (T)

rtrrtlrt −
∑

t∈T \root

r2
t , (4.18)

where the last term
∑

t∈T \root r
2
t is used for the propose of nonsingular transformation inde-

terminacy [Li et al., 2013].

We should stress the fact that the number of parameters in coefficient tensor in H-Tucker
regression model (4.17) is free from the exponential growth. Indeed, the total number of
parameters in H-Tucker regression model is linear in order D. For large order D, the number
of parameters in H-Tucker regression model is more than that of in the CP model but far
less than that of in the Tucker model. Such reduction of parameters is essentially useful for
neuroimaging data analysis, since only a limited number of images are available in most of
datasets. Thus, H-Tucker regression model could be more beneficial in terms of robust and
efficient estimation and prediction.

Furthermore, like Tucker tensor regression model, H-Tucker model allows us to have distinct
rank rt at each node of the dimension tree T . This flexibility of H-Tucker retains all the
advantages of Tucker regression model as explained in Section 4.1.

In addition, H-Tucker regression model is a SVD-based method and the binary tree structure
enables to compute all low rank approximations of coefficient tensor by means of standard
linear algebra tools.

4.4 Parameter Estimation

In this section, a highly scalable algorithm is presented using the maximum likelihood estima-
tion (MLE) (see Appendix A.5) for the H-Tucker regression model with linear systems part
of GLM described by formula (4.17).

Given a collection of input-output data pairs D = {(Xn ∈ RI1×I2×···×ID , yn ∈ R)}Nn=1, e.g.,
a set of fMRI images Xn and the associated clinical outcomes yn. The tensor coefficient B ∈
RI1×I2×···×ID in (4.11) can be estimated by solving the following optimization problem

max
B

`(B;D)

s.t. B ∈ H-Tucker((rt)t∈T) rt ≤ R ∀t ∈ T ,
(4.19)

where ` is the concave log-likelihood function. We assume B follows a H-Tucker format with a
low-rank constraint. Based on the model (4.17), the optimization problem reflected by (4.19)

59

can be further written as

max
Ut,Bt,β,b

`({Ut}t∈L(T), {Bt}t∈N (T), β, b;D)

s.t. rt ≤ R ∀t ∈ T ,

(4.20)

In particular, it is well known that if we adopt GLM with a Gaussian response, the problem
reflected by (4.20) is equivalent to the least square minimization problem given by

min
{Ut,Bt,β,b}

{
N∑
n=1

‖yn − 〈(
⊗

t∈L(T)

Ut)(
⊗

t∈L(T)L−1

It ⊗
⊗

t∈N (T)L−1

Bt)

· · ·(
⊗
t∈T l

Bt) · · · (Broot), vec(X)〉 − βTz− b‖2}

s.t. rt ≤ R ∀t ∈ T .

(4.21)

It is worth noticing that in (4.20) or (4.21), the linear systematic part is only linear in each Ut

and each Bt separately. Hence, we can then alternately update one basis factor (or transfer)
matrix Ut (or Bt) at a time while keeping the rest of matrices fixed. This is referred by the
block relaxation algorithm (BRA) [De Leeuw, 1994; Lange, 2010], and it enables us to break
the simultaneous estimation of all parameters into a sequence of low dimensional parameter
optimizations using classical GLM [Nelder and Baker, 1972; McCullagh and Nelder, 1989].
Applying this strategy to our model, the estimation of factor matrices proceeds iteratively by
sweeping all the nodes of dimension tree T from bottom to top in a sequential way.

In order to perform the classical GLM, one needs to isolate the component of interest from
the rest part. Particularly, for the leaf basis factor matrix Ut in the leaf level L, the inner
product in (4.15) can be rewritten as follows :

〈UtLL(
⊗

t′∈L(T)\t
Ut′)T, X(t)〉 = 〈Ut, X(t)(

⊗
t′∈L(T)\t

Ut′)(LL)T〉, (4.22)

where
LL := (

⊗
t′∈L(T)L−1

It
′ ⊗

⊗
t′∈N (T)L−1

Bt′) · · · (
⊗
t′∈T l

Bt′) · · · (Broot). (4.23)

As for the interior node t ∈ T l in intermediate level l, one can individually estimate Bt with
only rtlrtrrt number of parameters by rewriting the inner product in (4.15) as follows :

〈BtLl(
⊗

t′∈T l\t
Bt′)T, Hl〉 = 〈Bt, Hl(

⊗
t′∈T l\t

Bt′)(Ll)T〉, (4.24)

here
Hl := (

⊗
t′∈T l+1

Bt′)T · · · (
⊗

t′∈L(T)

Ut′)Tvec(X) (4.25)

and
Ll := (

⊗
t′∈T l−1

Bt′)(
⊗

t′∈T l−2

Bt′) · · · (Broot). (4.26)

60

The isolation of Ut by (4.22) (or Bt by (4.24)) is in fact the sequential downsizing of the
original data into a smaller and more manageable size.

We iteratively update Ut and (or) Bt for each node t from bottom to top and from left to
right along each level of T until the log likelihood defined for classical GLM ceases to increase.
The outline of the procedure is shown in Algorithm 4. Specifically, we first update the regular
vector coefficient β using the previous factor and transfer matrices in line 3. Note that the
intercept b is absorbed into β. Next, we estimate in lines 4-6 each basis factor matrix Ut from
left to right in the leaf level by fixing the transfer matrices and other factor matrices of the
tree T . Subsequently, we update the transfer matrix Bt of each interior node again by keeping
the factor matrices and other transfer matrices in the tree T fixed (lines 8-10).

To summarize, it has been proven that the block relaxation algorithm (BRA) monotonically
increases the likelihood, and the estimation is guaranteed to converge whenever likelihood
function is bounded [De Leeuw, 1994; Lange, 2010]. As an extension from Tucker regression
model, our algorithm enjoys the same convergence properties as that of [Li et al., 2013], which
is summarized as

Proposition 3 : Suppose the following assumptions are satisfied for `(θ) with parameter θ :=

{β, {Ut}t∈L(T), {Bt}t∈N (T)} in Algorithm 4

1. `(θ) is continuous, bounded above and with compact set, i.e., {θ : `(θ) ≥ `(θ)[0]} ;

2. `(θ) is strictly concave with respect to the update of each factor matrix ;

3. `(θ) has a set of isolated stationary points [Li et al., 2013].

Then, we have

1. global convergence the sequence θ[m] converge to a stationary point of `(θ) ;

2. local convergence the sequence θ[m] are locally attracted to a strict local maximum
θ[∞] if θ[0] sufficiently close to θ[∞].

See Appendix B.1 for a sketch of the proof.

Following the similar arguments in [Li et al., 2013], Algorithm 4 reaches a stationary point
where the likelihood stops increasing. In practice, however, we can always expect Algorithm 4
to converge to at least a local maximum. Therefore, one should run this algorithm multiple
times in order to increase the chance of finding the global optimal estimate.

In tensor regression, regularization is essential when the number of parameters far exceeds the
sample size, otherwise, the regression problem becomes ill-posed and the solution tends to be
overfitting. Although our model is compact, we can further improve the learning performance
by imposing sparsity penalty, i.e., l1-norm, on the transfer matrix {Bt}t∈N (T). Specifically, we

61

instead maximize the penalized likelihood function ` when estimating the transfer matrix Bt

max
Bt

`(α[m+1]), {Ut′}
[m+1]
t′∈L(T), {Bt′}

[m+1]
t′<t,t′∈N (T),B

[m]
t , {Bt′}

[m]
t′>t,t′∈N (T))+λ

∑
rtl ,rtr ,rt

|brtl ,rtr ,rt |,

(4.27)

where brtl ,rtr ,rt corresponds to each entry of Bt, λ is the penalty tuning parameter. This form
of l1-norm regularization causes many coefficients in Bt to be sufficiently small.

Algorithm 4 Block Relaxation Algorithm (BRA) for H-Tucker Tensor Regression

1: Input : N input-output data pairs D = {(Xn ∈ RI1×I2×···×ID , yn ∈ R)}Nn=1

2: Output : β, {Ut}t∈L(T), {Bt}t∈N (T)

3: Initialize β[0], {Ut[0]}t∈L(T), {Bt[0]}t∈N (T)

4: repeat
5: β[m+1] = arg maxβ `(β

[m], {Ut}[m]
t∈L(T), {B

t}[m]
t∈N (T))

6: for each t ∈ L(T) do
7: Ut[m+1] = arg maxUt `(β[m+1], {Ut′}[m+1]

t′<t,t′∈L(T),U
t[m], {Ut′}[m]

t′>t,t′∈L(T), {B
t′}[m]

t′∈N (T))
8: end for
9: for l = L− 1, ..., 1 do

10: for each t ∈ N (T)l do
11: Bt[m+1] = arg maxBt `(β[m+1], {Ut′}[m+1]

t′∈L(T), {B
t′}[m+1]

t′<t,t′∈N (T),B
t[m], {Bt′}[m]

t′>t,t′∈N (T))
12: end for
13: end for
14: until ‖`[m] − `[m+1]‖ < ε

4.5 Experimental Results

4.5.1 Simulations on Synthetic Data

In this simulation using synthetic data, we were interested in how the sample size influences
the estimation accuracy of the proposed model. In this respect, we first generate the true signal
tensor B using Tucker format, where the core tensor G and factor matrices U are randomly
drawn from standard normal distributions. Here, we test two setups of the dimension of B,
which is fixed at 16 for the 4-order tensor and 9 for the 5-order tensor, respectively. The
dimension of G is set as 4 for the 4-order tensor and 3 for the 5-order tensor. We set the
true vector signal β as 1 of length 5 for both cases. Subsequently, the regular predictor vector
z ∈ R5 and tensor predictor X ∈ R16×16×16×16 (or X ∈ R9×9×9×9×9 for the 5-order case) are
all generated from independent standard normals. Finally, the output samples are produced
by

y = 〈B,X〉+ βTz + ε, (4.28)

where ε ∼ N (0, 1) is an additive noise.

62

200 400 600 800 1000 1200 1400 1600 1800

0

10

20

30

40

50

60

70

80

Number of Training Samples

R
M

S
E

16 x 16 x 16 x 16

H−Tucker(1−2,2−4,4,4,4)

H−Tucker(1−4,4−4,4,4,4)

H−Tucker(1−12,12−4,4,4,4)

H−Tucker(1−16,16−4,4,4,4)

Tucker(4,4,4,4)

Figure 4.3 – Performance comparison vs. number of samples for case of 4-order tensor.

For comparison, we investigate the deviation between the learned B̂ and the true B for an
increasing number of samples n in terms of root mean square error (RMSE). Note that the
ht-ranks at leaf singletons are chosen to be the same as d-ranks of the corresponding modes.
Moreover, the total number of free parameters of H-Tucker model is less than or equal to
Tucker’s, e.g., in accord with d-ranks (4,4,4,4), ht-ranks can be (1-2,2-4,4,4,4) or (1-12,12-
4,4,4,4) etc. We repeat the run for 50 times.

As shown in Figure 4.3 and Figure 4.4, it is straightforward to see the RMSE of H-Tucker
model of all settings progressively decreases as the sample size increases from 200 to 1800,
implying the stability of the proposed method. When the sample size is relatively small, the
H-Tucker model of lower ht-rank obviously outperforms the Tucker model. For example, the
Tucker model of rank (3,3,3,3,3) results in 333 free parameters. On the contrary, H-Tucker
model of ht-rank (1-2,2-2,3,3,3-3,3) has 130 free parameters. With only 800 training samples,
the RMSE of learned H-Tucker model is 10.3, which is evidently superior to that 21.9 of
Tucker. This is the case especially for higher order data, since the parameter size of core
tensor expands exponentially in d. This result indicates the H-Tucker is more compact than
Tucker, and scales better to higher order data.

For larger n, we can boost the learning performance by increasing the ht-rank adjusted to
the sample size. If n is big enough, we can perfectly recover the true signal B with the same
number of free parameters as Tucker’s. In this case, the ht-rank we select is (1-9,9-9,3,3,3-3,3),
resulting in the exact 333 free parameters. Though the true signal is generated from the Tucker

63

200 400 600 800 1000 1200 1400 1600

0

10

20

30

40

50

60

70

80

Number of Training Samples

R
M

S
E

9 x 9 x 9 x 9 x 9

H−Tucker(1−2,2−2,3,3,3−3,3)

H−Tucker(1−4,4−4,3,3,3−3,3)

H−Tucker(1−8,8−8,3,3,3−3,3)

H−Tucker(1−9,9−9,3,3,3−3,3)

Tucker(3,3,3,3,3)

Figure 4.4 – Performance comparison vs. number of samples for case of 5-order tensor.

structure, we observe the result obtained by our method is better than Tucker model. When n
is greater than 1400 for H-Tucker (or 1600 for Tucker), the RMSE is almost zero. Comparing
to Tucker model, the H-Tucker is more flexible to efficiently represent the core tensor G by
allowing distinct ranks in the intermediate levels of the tree structure. It can thereby achieve
better estimation accuracy while requiring a small number of free parameters given limited
number of samples.

4.5.2 Experiments on ADHD Brain Imaging Dataset

We also validated our model on the real-life attention deficit hyperactivity disorder (ADHD)
brain imaging data. The ADHD data is freely available from the Neuro Bureau and is prepro-
cessed according to the standard Burner pipeline, resulting in T1 images of size 121×145×121

for each subject [ADHD, 2014]. For our experiment, we obtain 761 training subjects and 169

testing subjects after removing those with missing observations. We treat each MRI image
represented by a 3-order tensor X as the image predictor, and the corresponding response y is
the binary diagnosis outcome. Additionally, the regular vector predictor z, namely individual’s
gender, age and handiness, is also included. To be consistent with the experiment settings of
Tucker regression model, the whole dataset remains non-normalized in this experiment.

We compare our model with the classical Tucker regression model which is regarded as the
state of the art and has been proved to be superior to the CP based modeling in [Li et al., 2013].
Toward this purpose, we downsize the original image into different sizes using the Daubechies

64

Table 4.1 – Performance comparison for the misclassification error of H-Tucker regression
and Tucker regression model on ADHD data.

Dimensions Methods Rank Free Param. Misclassi. Error
Reg Non-Reg

17× 20× 16

H-Tucker Regression
(1-4,3-2,2) 117 0.296 0.302
(1-3,3-3,3) 159 0.302 0.308
(1-3,4-3,3) 170 0.296 0.302

Tucker Regression
(2,2,3) 117 0.308 0.331
(3,3,3) 159 0.308 0.320
(3,3,4) 177 0.302 0.320

12× 14× 12

H-Tucker Regression
(1-4,3-2,2) 83 0.284 0.308
(1-4,3-3,3) 114 0.278 0.290
(1-3,4-3,3) 122 0.284 0.302

Tucker Regression
(2,2,3) 83 0.290 0.314
(3,3,3) 114 0.296 0.314
(3,3,4) 128 0.290 0.314

D4 wavelet transformation [Daubechies, 1992]. The reduced dimensions we consider are 12×
14×12 and 17×20×16. We also experiment with distinct ranks to see how the performance can
be affected by the free parameter size. The performance is gauged by the misclassification error
which is the percentage of misclassified labels in the test data. Note carefully that we follow the
same guideline for choosing the ranks as previous section, and the sample size is approximately
4.5-9 times as large as number of free parameters. In the case of the regularization, we tune
the penalty parameter λ based on the Bayesian information criterion (BIC) [Schwarz, 1978].

Table 4.1 shows the results of misclassification errors on the testing set with respect to different
setups of dimensions and ranks. As expected, the H-Tucker model outperforms the Tucker
model in all cases with smaller or equal number of free parameters. We also observe that the
non-regularized H-Tucker model is already better or comparable to the regularized version of
Tucker model. It is worth noticing that the ADHD-200 is a really hard task, the error rate
around 0.28 achieved by the proposed method is fairly attractive especially when the original
data is unbalanced.

4.6 Conclusion

In this chapter we have first motivated the H-Tucker decomposition and then introduced a
novel generalized linear tensor regression model based on it. The experiment results show
that H-Tucker is a highly compact, flexible and scalable model, which has better low-rank
approximation using only a small number of parameters. This key advantage makes it the
perfect model for the applications, such as MRI, fMRI analysis, where data is quite high
dimensional but with quite restricted sample size.

65

In the next chapter, we will extend the tensor Gaussian process model, with tensorial input
and scalar output, to the online local tensor Gaussian process model that can handle infinite
time-dependent tensor streams.

66

Chapitre 5

Online Local Gaussian Process for
Tensor Regression

In this chapter, a computationally-efficient online tensor GP framework [Hou et al., 2015] is
proposed by introducing online local Gaussian process (OLGP) for tensor-variate regression. In
this context, two efficient search strategies, namely input-based and input-output-based search,
are presented to find the local GP experts so as to maintain the predictive accuracy. Finally,
the effectiveness of tensor OLGP is demonstrated on a large-scale tensor regression task, i.e.,
limb motion reconstruction using brain signal [Chao et al., 2010].

5.1 Introduction

Linear tensor-variate regression approaches have been extensively studied over the past few
years. This is attributed to their simplicity in modeling as well as the reasonable performance
obtained on many high-order datasets. Being as multilinear models, however, they may fail to
capture the nonlinear dependency structure that might exist between the input and output in
many real-world regression tasks.

Recently, some nonlinear tensor regression approaches have been explored to deal with this
nonlinearity. One of them called tensor-variate Gaussian process regression (tensor GP) pro-
posed in [Zhao et al., 2014] is quite promising. This is because, instead of linear assumptions
as is the case in [Zhou et al., 2013; Li et al., 2013; Hou and Chaib-draa, 2015], tensor GP is
able to flexibly model the nonlinearity of the tensorial data by using the powerful Bayesian
nonparametric Gaussian process (GP) [Rasmussen and Williams, 2005; Bishop, 2006; Wang,
2014]. However, the computation load caused by GP, O(N3), often makes tensor GP computa-
tionally prohibitive in practice, since the number of the training points N is often required to
be quite large in practice (where the data points in high-order tensor space tend to be sparse
due to the curse of dimensionality [Oommen et al., 2008]).

67

Compared to tensor GP in [Zhao et al., 2014], the new tensor regression model named tensor
OLGP [Hou et al., 2015] introduced in this chapter takes advantage of online local Gaussian
process (OLGP) [Nguyen-Tuong et al., 2009; Urtasun and Darrell, 2008] by assigning the
data points to a number of the small-sized GP experts in an online fashion, thus significantly
reducing the computation burden for large data sets.

5.2 Tensor GP Regression Review

In a standard tensor-variate regression task, we are given a training set D = {(Xn, yn)}Nn=1

where the scalar output yn ∈ R is generated by a nonlinear function f(Xn) of the D-order
tensor input Xn ∈ RI1×···×ID with an additive Gaussian noise εn ∼ N (0, σ2)

yn = f(Xn) + εn. (5.1)

For simplicity, we concatenate all the tensor inputs into a (D+1)-order tensorX ∈ RN×I1×···×ID

and put all the outputs into a vector y = [y1, ..., yN]T .

Recall that in Section 3.1.2, the tensor GP approach [Zhao et al., 2014] is based on the idea
that the latent function f in (5.1) can be modeled by a GP, i.e.,

f(X) ∼ GP(m(X), k(X ,X ′)|θ), (5.2)

where m(X) is the mean function, k(X ,X ′) is the covariance function and θ is the associated
hyperparameter vector. In this work, we follow a standard GP setting in [Rasmussen and
Williams, 2005] where m(X) = 0. For k(X ,X ′), we follow [Zhao et al., 2014] and adopt the
following product probabilistic kernel :

k(X ,X ′) = α2
D∏
d=1

exp

(
KL(p(x|ΩXd) ‖ q(x′|ΩX ′d))

−2β2
d

)
, (5.3)

where α is the the magnitude hyperparameter, and βd denotes the d-mode length-scales hy-
perparameter. The distributions p and q in the Kullback-Leibler (KL) divergence [Kullback
and Leibler, 1951] are characterized by the hyperparameter Ωd (i.e., for multivariate Gaussian
Ωd = {µd,Σd} with µd being the mean vector and Σd being the covariance matrix) which can
be estimated from the d-mode unfolding matrix X(d) of tensor X by treating each X(d) as a
generative model with Id number of variables and I1 · · ·Id−1Id+1 · · ·ID number of observations.

The goal of a tensor GP regression, as referred by (5.1), aims to infer the predictive distribu-
tion of the latent function value f(X∗) = f∗ at a new test point X∗ given the training data
D. According to the definition of GP, we can obtain that any finite number of latent func-
tion values at the tensorial inputs are Gaussian distributed [Rasmussen and Williams, 2005].
Consequentially, the joint distribution

p(f∗,y|X∗,X , θ, σ2) (5.4)

68

is Gaussian. Moreover, based on the conditional property of Gaussian distribution, the pre-
dictive distribution

p(f∗|X∗,X ,y, θ, σ2) = N (m∗, σ
2
∗) (5.5)

is also Gaussian with

m∗ = kT
X (K + σ2I)−1y

σ2
∗ = k∗ − kT

X (K + σ2I)−1kX ,
(5.6)

where k∗ = k(X∗,X∗) and kX = k(X∗,X). However, as we mentioned, the computational
complexity of GP, which is O(N3), often makes tensor GP computationally expensive because
N is usually required to be quite large to achieve a reliable result for a tensor-variate regression
task [Oommen et al., 2008].

In the following section, a computationally efficient tensor GP framework is proposed, where
a fast data processing mechanism, inspired by online local Gaussian process (OLGP) as pro-
posed in [Nguyen-Tuong et al., 2009; Urtasun and Darrell, 2008], is designed for tensor-variate
regression (tensor OLGP).

5.3 Tensor OLGP Regression

In order to deal with large-scale tensor regression tasks, our tensor OLGP regression approach
consists of the following two stages :

– Stage 1 (GP Experts Construction) : Using the covariance function of GP (5.3) as a
similarity measurement to sequentially partition the training data points into a number
of small-sized experts.

– Stage 2 (Local Prediction) : Finding a fixed-number of local GP experts to make
predictions (for given test tensorial inputs) with a Gaussian mixture.

We now detail these two stages and then see the computational complexity behind our tensor
OLGP.

5.3.1 GP Experts Construction

To achieve the computation efficiency, we propose to use the covariance function of GP re-
ferred by (5.3) (as a similarity measurement) to sequentially allocate the tensorial data into a
collection of local experts. The whole mechanism to construct GP experts is shown in Algo-
rithm 5. Specifically, when a new training data pair {Xnew, ynew} arrives, we first calculate the
similarity between Xnew and the center of each local expert Ck using the probabilistic tensor
kernel (line 3). Subsequently, we choose the closest expert t whose center has the highest sim-
ilarity measure simt with Xnew according to (5.3) (line 5). If simt is greater than a predefined
threshold wgen, then we insert this new data pair into that local expert t, and update the
kernel matrix of expert t accordingly (line 7-12). Otherwise, we defined Xnew as the center of

69

new expert R + 1 (R is the total number of local experts), and thus initialize a new kernel
matrix (line 14-16).

In this stage of GP expert construction, we process the large data set into a number of small-
sized experts in an online fashion, thus naturally speed up the computation efficiency.

Algorithm 5 GP Experts Construction

1: Input : new tensor data pair {Xnew, ynew}, expert centers {Ck}Rk=1, threshold wgen
2: for k = 1 to number of local experts R do
3: Compute the similarity to the kth expert using probabilistic tensor kernel function

(5.3) :
wk = k(Xnew, Ck)

4: end for
5: Choose the nearest local expert t : simt = max(wk)
6: if simt > wgen then
7: Insert {Xnew, ynew} to the nearest local expert t :
8: X t = [X t,Xnew], yt = [yt, ynew]
9: if maximum number of data points is reached then

10: delete another point by permutation
11: end if
12: Update the corresponding kernel matrixKt by computing the kernel vector kt(Xnew,X t)

for Xnew
13: else
14: Create a new expert :
15: CR+1

.
= Xnew

XR+1 = [Xnew], yR+1 = [ynew]
16: Initialize the new kernel matrix KR+1

17: end if

5.3.2 Local Prediction

Once partitioning the data sets into a number of small-sized experts, we then propose two
local search strategies for predicting the new test point X∗ in order to take into account the
tradeoff between accuracy and efficiency : input-based searching strategy and input-output-
based searching strategy.

A. Input-based Searching Strategy

This first strategy exploits M nearest local experts to make the prediction. These M local
experts should have the highest similarities with X∗ among all the local experts according to
the kernel function defined in (5.3). Then the similarity measure wk = k(X∗, Ck) from the input
space between the test point X∗ and the expert center Ck can be used as the weight of local
expert k. Hence, the resulting prediction ŷ∗ can be formulated as the weighted combination

70

from each local prediction

ȳk = kk(X∗,X k)
T(Kk + σ2I)−1yk (5.7)

as follows :

ŷ =

∑M
k=1wkȳk∑M
k=1wk

. (5.8)

B. Input-output-based Searching Strategy

In the regression task the latent function is a mapping between input and output, hence we
propose to explore the experts which do not only consider the input space as in the previous
strategy but also the output space.

This strategy works as follows : Given a test point X∗, we start, in the first step, by finding
its nearest local expert Ck

.
= {XCk , yCk} from the input X -space using tensor kernel function

defined in (5.3), where the pair {XCk , yCk} is some data pair coming from local expert k.

With the nearest local expert Ck
.
= {XCk , yCk} in hand, we aim to find allM candidate experts

which are closest to Ck in output y-space in the second step. More specifically, we search for
M local experts {Cm

.
= {XCm , yCm}}Mm=1 that are being closest to yCk in y-space among all the

local expert centers. In other words, this step intends to find M smallest Euclidian distances
between yCm and yCk . Then, from these already found {yCm}Mm=1, we can easily mark their
corresponding local experts {Cm}Mm=1 as the candidates for prediction. Finally, we use the
same weight described in the first strategy to combine the local predictions.

5.3.3 Computational Complexity

Table 5.1 shows the comparisons of overall computational complexity between classical tensor
GP and our tensor OLGP. In both methods, we have to evaluate the tensor kernel func-
tion defined in (5.3) between any two points to build the kernel matrix K. Such evaluation
mainly depends on the estimation of hyperparameter Ωd whose cost is dominated by the term
O(ID+1), with I = max{Id}Dd=1.

For standard tensor GP, the computational complexity of learning is O(N3), plus the cost of
establishing the kernel matrix O(N2ID+1). The complexity of prediction requires O(NID+1)

to compute the kernel vector kX (X∗,X), where N is the number of training samples.

Table 5.1 – Computational complexity of tensor GP and tensor OLGP using product prob-
abilistic tensor kernel.

Partitioning + Training Prediction
tensor GP O(N2ID+1 +N3) O(NID+1 +N2)
tensor OLGP O(NRID+1 +NSID+1 + S3) O(RID+1 +M(SID+1 + S2))

71

In contrast, the cost of tensor OLGP for learning includes finding the nearest local expert
O(NRID+1) and updating the kernel matrix of that local expert O(NSID+1 + S3), where R
is the number of local experts and S is the maximum number of data points contained in each
local expert. While the computational complexity of prediction arises from finding M nearest
neighbours O(RID+1) and making M local predictions O(M(SID+1 + S2)). As we can see,
the cost of our tensor OLGP for learning is only linear in N comparing to N3 in the case of
standard GP.

5.4 Experimental Results

In this section, we validate our tensor OLGP on a benchmark tensor regression application :
the reconstruction of limb movements from monkey’s brain signals using Neurotycho food
tracking Electrocorticography (ECoG) dataset [Chao et al., 2010]. The input of tensor OLGP
is the preprocessed ECoG signal, that is, a 3-order tensor (i.e., time × frequency × channel),
and its output is the movement distance of the monkey’s limb on different markers (shoulder,
elbow or hand) along each axis (x, y or z). More specifically, the whole ECoG food tracking
task dataset consists of 15 minutes long experiment with motion data sampled at 120Hz.

To illustrate the effectiveness of our approach, we first choose a subsegment of the whole
dataset starting from the 2nd minute comprising 10 000 data pairs. We then conduct the
experiments by randomly selecting a training set with size of 5000. The rest 5000 is used
as the test set. As for the input, the wavelet transformed ECoG data are down-sampled to
5 channels and can thus be written as X ∈ R5×5×5 for each sample. In our experiment, we
choose the motion data corresponding to the shoulder marker along the x-coordinate.

To compare with tensor GP, we perform the evaluation of our tensor OLGP by showing the
learning performance in terms of accuracy and efficiency. In particular, tensor x-OLGP and
tensor xy-OLGP are the two variants of the tensor OLGP which correspond to the input-
based searching strategy and input-output-based searching strategy, respectively. The root
mean square error (RMSE) and negative log likelihood (NLL) are the most commonly used
metrics for accuracy in Gaussian process. For both RMSE and NLL, the lower values imply

Table 5.2 – Performance comparison for the prediction of movement of shoulder marker along
x-axis on ECoG data, with data size=10 000.

wgen Methods RMSE NLL Running Time (s)
Training Testing

0.5
tensor GP 3.05± 0.16 7.26± 0.57 1279.1± 9.2 2480.6± 16.7

tensor x-OLGP 4.71± 0.15 2.86± 0.10 321.0± 3.9 503.5± 4.7
tensor xy-OLGP 4.39± 0.18 4.53± 0.43 321.0± 3.9 492.4± 8.3

0.6
tensor GP 3.05± 0.16 7.26± 0.57 1279.1± 9.2 2480.6± 16.7

tensor x-OLGP 4.56± 0.14 2.66± 0.07 511.1± 3.2 829.9± 6.4
tensor xy-OLGP 3.82± 0.15 4.03± 0.41 511.1± 3.2 822.0± 6.8

72

more accurate results. Unlike RMSE that penalizes the inconsistency only, NLL penalizes both
uncertainty and inconsistency [Deisenroth et al., 2009]. The hyperparameters contained in the
probabilistic tensor kernel are set to the same values empirically for all the methods. We also
manually tune the partitioning threshold parameter wgen whose value balances the trade-off
between accuracy and efficiency of the final performance. Here, wgen is fixed to 0.5 and the R
is set to 6. We repeated the experiment 10 times.

Table 5.2 shows the RMSE, NLL as well as the running time of all the approaches. As expected,
our two tensor OLGP variants (tensor x-OLGP and tensor xy-OLGP) achieve the best results
in terms of running time. The RMSE of our tensor OLGP is competitive to tensor GP and the
NLL of our method outperforms tensor GP. Although tensor GP is slightly better in RMSE,
the nonstationarity in the signal makes GP with high uncertainty, that is why tensor OLGP
tries to capture the local structure to get lower uncertainty with a few nearby local experts.
In particular, the training time of tensor OLGP, which is 321.0 seconds, is about 4 times as
fast as that 1279.1 seconds of tensor GP.

We also observe that the tensor xy-OLGP is slightly better than tensor x-OLGP in RMSE
but somehow worse than tensor x-OLGP in NLL. In another setting, we increase wgen to 0.6

and obtain a similar result with an more obvious gap in RMSE between tensor x-OLGP and
tensor xy-OLGP. This may be because the M most nearby local experts found by the second
strategy tend to make a consistent prediction with the local expert closest to the test point X∗.
We should notice, however, that the found experts may be far away from the test point in the
input space, leading to an uncertain prediction. This somehow explains why the input-based
strategy is better in NLL.

Table 5.3 – Performance comparison for the prediction of movement of shoulder marker along
x-axis on ECoG data, with data size=36 000 and wgen = 0.4.

Methods RMSE NLL Running Time (s)
Training Testing

tensor GP 3.40± 0.19 10.15± 0.81 19141.9± 163.5 39152.4± 230.9
tensor x-OLGP 5.77± 0.19 3.18± 0.12 2819.9± 37.3 5135.2± 66.3
tensor xy-OLGP 5.62± 0.24 4.67± 0.48 2819.9± 37.3 4503.0± 48.1

From the Figure 5.1, it is straightforward to see that both RMSE and NLL of the test set
decrease gradually when the proportion of data used in training increases from 1000 to 5000,
implying the stability of the proposed methods. Comparing to the polynomial growth inO(N3)

of tensor GP, the learning time of tensor OLGP in Figure 5.2 only grows linearly in O(N).

We were also interested on how the performance can be affected by distinct number of local
experts R. In this context, wgen is set to 0.3, and R is listed from 2 to 12. These results are
demonstrated in Figure 5.3. Observe that both RMSE and NLL reduce significantly before
reaching their optimal values when R goes up. The result reflects that fact that a certain

73

1000 2000 3000 4000 5000
2.5

3

3.5

4

4.5

5

5.5

Number of Training Samples

R
M

S
E

tensor x−OLGP

tensor xy−OLGP

tensor GP

1000 2000 3000 4000 5000
2

4

6

8

10

12

14

16

Number of Training Samples

N
LL

Figure 5.1 – RMSE (top) and NLL (bottom) vs. number of training samples, wgen = 0.5,
R = 6.

number of the most nearby local experts are required to guarantee a more accurate and
reliable prediction. The further increase of the R brings no improvement in performance when
the number of local experts becomes saturated.

74

1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

1400

Number of Training Samples

Le
ar

ni
ng

 T
im

e
(s

)

tensor GP

tensor OLGP

Figure 5.2 – Learning time vs. number of training samples, wgen = 0.5, R = 6.

Finally, we show the performance of scalability to a very large dataset when comparing all
the methods. Here, we use the first 5 minutes of ECoG data with total number of 36 000 data
points, and randomly select 18 000 points as training set and use the rest as the testing set.
As is shown in Table 5.3, the results confirm the great superiority of our method to tensor GP
in terms of scalability. Note that we empirically set wgen as 0.4 and R as 20, which makes our
method relatively much faster than the case of 10 000 at only a small cost of accuracy loss.

5.5 Conclusion

In this chapter, a new tensor-variate local GP regression method have been introduced, which
successfully adapts the local GP modeling to the tensor input space. By doing so, the new
method is able to handle the applications of tensor steams in an online fashion. Furthermore,
two different searching strategies have been explored to find the nearest neighbouring local
experts for a reliable prediction. The experimental results have demonstrated the effectiveness
and scalability of this method with very large-scaled data.

In the next chapter, we will focus on the sequential tensor regression method that also re-
cursively address the infinite time-dependent tensor streams but with more general tensorial
input and general tensorial output.

75

2 3 4 5 6 7 8 9 10 11 12
5

5.5

6

6.5

7

7.5

8

Number of Local Experts

R
M

S
E

tensor x−OLGP

tensor xy−OLGP

2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

8

9

10

Number of Local Experts

N
LL

Figure 5.3 – RMSE (top) and NLL (bottom) vs. number of local experts.

76

Chapitre 6

Incremental Higher-order Partial
Least Squares Regression (IHOPLS)

This chapter starts by presenting a brief review of higher-order partial least square (HOPLS)
regression model. Then, a computationally efficient online tensor-variate regression algorithm,
named incremental higher-order partial least square (IHOPLS) [Hou and Chaib-draa, 2016], is
presented. This algorithm extends the standard HOPLS to the setting of infinite time-dependent
tensor streams. Finally, the effectiveness and efficiency of the IHOPLS approach is demon-
strated by experimental results of the real-world applications, i.e., reconstruction of 3D motion
trajectories from video and ECoG streams.

6.1 Introduction

In previous chapters, we mainly focused on the tensor regression modelings with tensor-
structured input and scalar output. Very little has been said about the learning models with
tensor-structured output. Nevertheless, there are a large number of real-world regression tasks
that involve tensorial output data containing abundant multiway structural information. Let
us take the motion capture data from 3D human pose estimation as an example. Indeed,
ignoring the correlations among positions of different parts of human body in this example
might suffer a significant loss of accuracy when making prediction.

In order to leverage such multiway structural information, several approaches have been pro-
posed to handle the output data with tensor structure. As mentioned in previous chapters, one
of them in widespread use is N-way partial least squares (NPLS) [Bro, 1996] which carries out
a joint CP decomposition of tensorial input and output into sum of rank-one tensors. To over-
come the inferior fitness ability and the slow convergence rate of NPLS, the state-of-the-art
higher-order partial least squares (HOPLS) regression model was introduced by Zhao et al.
[2011, 2013a]. HOPLS is based on orthogonal block Tucker decomposition to project input

77

and output tensors onto a new latent space, so that the extracted factors can capture the
covariance between input and output tensorial pair as much as possible. The most preferable
property of HOPLS over NPLS lies in its power to provide superior predictability with optimal
balance between fitness and model complexity [Zhao et al., 2013a].

For many real-world applications, however, the tensorial data that are encountered often take
the form of extremely large or even infinite tensor sequences [Sun et al., 2008], especially in
high-speed or time-critical dynamic environments, where the new tensor pairs keep coming
fast over time. Although we can apply the batch method to all the data each time a new pair
arrives, the HOPLS can nevertheless quickly become computationally prohibitive or merely
infeasible. Moreover, it is often impossible to store the data entirely in the memory or require
the whole dataset to be available up front. This hence sets the stage for the memory efficient
sequential methods that can recursively handle the data.

Among these sequential methods, the recursive N-way partial least squares (RNPLS) [Eliseyev
and Aksenova, 2013] processes the tensor sequences by unifying the recursive calculation
scheme of recursive partial least squares (RPLS) [Qin, 1998] (see Appendix A.1) with the
multiway data representation of NPLS. Inheriting the drawbacks of NPLS, the RNPLS like-
wise suffers from the lack of adequate accuracy and the slow convergence rate because its
solution is based on combining an NIPALS-like algorithm [Wold, 1975a] with CP decomposi-
tion. Thus, the speed is rather slow especially when a relatively larger number of latent vectors
are required for sufficient accuracy, which significantly reduces the applicability of RNPLS in
time-critical applications.

Another recent work named accelerated low-rank tensor online learning (ALTO) [Yu et al.,
2015] has been proposed for the speed of processing spatio-temporal tensor sequence using
a random low-rank projection technique. However, ALTO is specially designed for spatio-
temporal data structure and consequently demands the spatial and temporal modes are at least
shared in common between the input and output tensors. Some other nice recursive calculation
strategies [Sun et al., 2008; O’Hara, 2010] or fast decomposition method [Wang et al., 2015]
have been proposed but just for the input-side tensor, and applied in the unsupervised learning
settings only.

In this chapter, we extend HOPLS to the incremental higher-order partial least square (IHO-
PLS) [Hou and Chaib-draa, 2016] approach for the recursive calculation of infinite time-critical
tensor streams. Compared to HOPLS, our IHOPLS approach aims to track the time-dependent
changes and recursively updates the projection factors over time via an efficient incremental
clustering strategy for the latent variables. In this way, the computational burden for very
large-scale data can be greatly reduced while remaining in a low approximately constant level.
Moreover, benefiting from the advantages of HOPLS over NPLS model, IHOPLS, as shown in
Section 6.4, is much faster and exhibits a better predictive ability than RNPLS.

78

6.2 High-order Partial Least Squares Regression (HOPLS)
Review

Recall that from Section 3.1.1, the principle behind HOPLS aims to sequentially conduct
a set of joint block Tucker decompositions of X and Y with constraints that the extracted
latent variables capture the maximum covariance between X and Y. Specifically, suppose we
have a (M + 1)-order independent tensor X ∈ RN×I1×···×IM and a (L + 1)-order dependent
tensor Y ∈ RN×J1×···×JL , which can be obtained by concatenating N pairs of observations
{(X (n),Y(n))}Nn=1 that couple in the first mode with equal number of samples. Unlike NPLS,
HOPLS decomposes X into a sum of rank -(1, H1, ...,HM) Tucker blocks and Y into a sum of
rank -(1,K1, ...,KL) Tucker blocks, respectively. In this case, X and Y read

X =
R∑
r=1

GXr ×1 tr ×2 P(1)
r × · · · ×M+1 P(M)

r + εX ,

Y =
R∑
r=1

GYr ×1 tr ×2 Q(1)
r × · · · ×L+1 Q(L)

r + εY ,

(6.1)

where R denotes the number of latent vectors and tr ∈ RN corresponds to the rth latent
column vector. GXr ∈ R1×H1×···×HM and GYr ∈ R1×K1×···×KL represent the rth core tensors.
{P(m)

r }Mm=1 ∈ RIm×Hm and {Q(l)
r }Ll=1 ∈ RJl×Kl are the respective rth projection matrices.

To complete HOPLS, [Zhao et al., 2013a] introduced an algorithm exploiting a deflation pro-
cedure to sequentially extract R latent vectors. Note that HOPLS uses a closed-form HOSVD
solution [De Lathauwer et al., 2000a] on the cross-variance tensor to estimate the model pa-
rameters, which is more computationally efficient than an iterative NPLS.

6.3 Incremental Higher-order Partial Least Square Regression
(IHOPLS)

The objective of our IHOPLS approach [Hou and Chaib-draa, 2016] is to deal with infinite
time-evolving tensor streams and adapt HOPLS to online setting. For this purpose, we first
perform a clustering of the incremental data pair in the projected latent subspace. Then, our
model keeps track of the summary of previous data in terms of an internal data representation
using the clustered latent variables and other model parameters. Because the latent variables
are actually the compressed version of data in a low dimensional space, clustering on latent
variables can be very efficient and alleviate the curse of dimensionality problem [Oommen
et al., 2008]. By doing so, the standard HOPLS can be efficiently applied to the small-scale
reconstructed tensors to update model parameters every time when a new tensor pair arrives,
resulting in an much less and roughly constant processing time.

79

Algorithm 6 Incremental Higher-Order Partial Least Squares (IHOPLS)

1: Input : all the old model parameters T̃ = [t̃1, ..., t̃R], {{P̃(m)

r }Mm=1, {Q̃
(l)

r }Ll=1}Rr=1 and
{G̃Xr , G̃Yr }Rr=1, new tensor data pair {Xnew ∈ R1×I1×···×IM ,Ynew ∈ R1×J1×···×JL}

2: Output : all the new model parameters T = [t1, ..., tR], {{P(m)
r }Mm=1, {Q

(l)
r }Ll=1}Rr=1 and

{GXr ,GYr }Rr=1

3: Reconstruct the old internal tensor representation
{X̃ ∈ RNclus×I1×···×IM , Ỹ ∈ RNclus×J1×···×JL} from the old latent matrix T̃, the loadings
{{P̃(m)

r }Mm=1, {Q̃
(l)

r }Ll=1}Rr=1 and the core tensors {G̃Xr , G̃Yr }Rr=1 according to the equation (6.1) :

X̃ =

R∑
r=1

G̃Xr ×1 t̃r ×2 P̃
(1)

r × · · · ×M+1 P̃
(M)

r

Ỹ =

R∑
r=1

G̃Yr ×1 t̃r ×2 Q̃
(1)

r × · · · ×L+1 Q̃
(L)

r

4: Concatenate the {Xnew,Ynew} to {X̃ , Ỹ} in the first mode to generate tensor pair :

X =

[
X̃
Xnew

]
∈ RNclus+1×I1×···×IM Y =

[
Ỹ
Ynew

]
∈ RNclus+1×J1×···×JL

5: Apply the standard HOPLS to {X ,Y} to find newly updated model parameters T,
{{P(m)

r }Mm=1, {Q
(l)
r }Ll=1}Rr=1 and {GXr ,GYr }Rr=1

6: for k = 1 to number of clusters Nclus do
7: Compute the similarity between the projected new data T(Nclus + 1) from the (Nclus + 1)th

row vector of T and the projected cluster center in the kth row vector of T :

wk =<
T(Nclus + 1)

||T(Nclus + 1)||
,

T(k)

||T(k)||
>

8: end for
9: Choose the nearest cluster center v : simv = max(wk)

10: if simv > wgen then
11: Update the number of data points in cluster v : Cv = Cv + 1
12: Set the timestamp of cluster v : TSv = 1
13: Update the timestamps of other clusters v′ : TSv′ = TSv′ + 1
14: Update the cluster center row vector :

T(v) =
(Cv − 1) ∗T(v) + 1 ∗T(Nclus + 1)

Cv

15: Remove the last row vector T(Nclus + 1) from T
16: else
17: Set the number of data points in cluster (Nclus + 1): CNclus+1 = CNclus+1 + 1
18: Set the timestamp of cluster (Nclus + 1): TSNclus+1 = 1
19: Update the timestamps of other clusters v′ : TSv′ = TSv′ + 1
20: Update the number of row vector in T : Nclus = Nclus + 1
21: if maximum number of clusters Nmax is reached then
22: Remove the cluster center represented by the ith row vector with minimum ratio of Ci/TSi,

i = 1, ..., Nclus

23: end if
24: end if

80

The whole mechanism named IHOPLS for incrementally updating all the model parameters
is summarized in Algorithm 6. Similar to RNPLS, IHOPLS is a sequential algorithm that
repeatedly receives and processes a new coming tensor pair over time. More specifically, for a
new tensor pair {Xnew ∈ R1×I1×···×IM ,Ynew ∈ R1×J1×···×JL}, we first reconstruct the internal
tensor representation {X̃ ∈ RNclus×I1×···×IM , Ỹ ∈ RNclus×J1×···×JL} from the previous model
parameters to summarize all the old data and approximate the current modeling state (line
3).

Note that the latent matrix T̃ represents all clusters and each row vector in T̃ stands for a
projected cluster center or a projected data sample in latent subspace, while all the projection
matrices and core tensors can be regarded as tensorial bases onto which the tensorial data
projects. Thus, the number of row vectors Nclus is in fact the number of clusters. We then
concatenate the new tensor pair {Xnew,Ynew} to {X̃ , Ỹ} along the first mode to generate
tensor pair {X ∈ RNclus+1×I1×···×IM ,Y ∈ RNclus+1×J1×···×JL} with sample size Nclus + 1 (line
4). Subsequently, we apply the standard HOPLS to {X ,Y} to extract new model parameters
by incorporating the information contained in {Xnew,Ynew} into the model (line 5).

Having extracted all parameters, we next allocate the projected new data, represented by
the extra row vector T(Nclus + 1) in latent matrix T, into a collection of clusters that are
expressed by the cluster centers using row vectors from 1 to Nclus. To this end, we choose the
nearest cluster v whose center T(v) has the highest similarity measure simv with row vector
T(Nclus + 1) (lines 6-9). If simv is greater than a predefined threshold wgen, then we insert
this new projected data into that cluster v, and update the cluster center T(v) accordingly
(lines 10-15). Otherwise, we define T(Nclus + 1) to be the new cluster center and increase the
number of clusters by one (lines 17-20).

Meanwhile, we keep tracking both the number of data points and timestamps for each cluster
i whose ratio Ci/TSi indicates the relative importance of that cluster in participating in
summarizing the current state of the model. This implies that the cluster with more data
points and more recent timestamps is more important than those far in the past with less
data points. If the number of clusters exceeds the maximum value, then the cluster with
minimum ratio should be removed from T (lines 21-23).

For HOPLS, the overall computational cost is dominated by O(max(NIM+L, IM+L+1)) whose
two terms correspond to establishing and decomposing the cross-covariance tensor, where I
is the maximum index of all modes and is not large in practice. Evidently, as N increases
over time, the first term will eventually surpass the second term owing to the unbounded data
streams. Since the clusters number Nclus is bounded and small, the complexity of IHOPLS,
on the other hand, is mainly affected by a constant O(max(NclusI

M+L, IM+L+1)).

81

6.4 Experimental Results

We compared our IHOPLS approach with RNPLS [Eliseyev and Aksenova, 2013] and with
HOPLS [Zhao et al., 2013a] in an online fashion, that is, first making a prediction for the
new input and then updating the model using the new ground truth. The performance was
quantitatively evaluated in terms of the root mean squares of prediction (RMSEP) [Kim et al.,
2005]

RMSEP =

√
‖Y − Ŷ‖2F
I1I2 · · · ID

(6.2)

and the Q index [Luo et al., 2015] which is defined as

Q = 1− ‖Y − Ŷ‖F
‖Y‖F

(6.3)

where Ŷ is the prediction of D-order tensor Y. Id corresponds to the dimensionality of the
mode d with d = 1, ..., D. The optimal hyperparameters of RNPLS were selected by cross-
validation on the first 1/3 data sequence, including the forgetting factor γ that is introduced
for RPLS in Appendix A.1. In addition, the convergence criterion and the maximum iteration
number for estimating the loadings were selected by cross-validation to be 10−5 and 40 that
optimally balance between accuracy and efficiency. On the other hand, we empirically fixed
number of latent vectors R and number of loading λ for both HOPLS and IHOPLS. We
manually tuned the partitioning threshold parameter wgen and the maximum cluster number
Nmax whose combination actually controls the number of clusters responsible for the recursive
update. We repeatedly run the experiment 10 times.

6.4.1 Utrecht Multi-Person Motion Database

The first experiment was carried out on the Multi-Person Motion (UMPM) benchmark [Aa
et al., 2011] that contains temporally synchronized video sequences and human motion capture
data. In our experiment, the input was an intensity image sequence from the front camera with
a downsized resolution of 32× 24 pixels, taking form of a 3-order predictor tensor (i.e., frames
× width × height). To test on large-sized data, we concatenated videos from four scenarios,
including “triangle”, “grab”, “chair” and “table”, into one big sequence with total 5250 frames at
25 fps (frame per second). The corresponding output containing 3D positions of 37 reflective
markers can be represented as a 3rd-order tensor (i.e., samples × 3D positions × markers).

The averaged predictive performance and the learning time of the IHOPLS, HOPLS and RN-
PLS are summarized in Table 6.1. As we see, our approach significantly outperforms HOPLS
and the best of RNPLS in prediction accuracy with respect to both high and low frame rate
situation, implying the usefulness of IHOPLS for adjacent observations with relatively less
overlapped features. In particular, the averaged improvement by IHOPLS over HOPLS and
RNPLS at 5fps when using 4 latent vectors were significant 0.25, 0.08 in terms of Q, and

82

Table 6.1 – Performance comparison of IHOPLS, HOPLS and RNPLS for the averaged Q,
RMSEP and total learning time on UMPM data.

Size = 1050 and Frequency = 5Hz
Methods Rank and Hyperparameter Q RMSEP Total Time (s)

IHOPLS R = 4, λ = 2, wgen = 0.2, Nmax = 20 0.8240 149.6 505.3
R = 8, λ = 4, wgen = 0.2, Nmax = 20 0.8274 145.2 902.7

HOPLS R = 4, λ = 2 0.5700 349.4 812.5
R = 8, λ = 4 0.5864 332.4 1471.8

RNPLS F = 4, γ = 0.8 0.7433 215.7 6901.3
Size = 5250 and Frequency = 25Hz

Methods Rank and Hyperparameter Q RMSEP Total Time (s)

IHOPLS R = 4, λ = 2, wgen = 0.2, Nmax = 20 0.9645 29.5 2316.3
R = 8, λ = 4, wgen = 0.2, Nmax = 20 0.9664 28.5 4775.2

HOPLS R = 4, λ = 2 0.5778 342.8 21145.3
R = 8, λ = 4 0.6008 320.7 36396.6

RNPLS F = 4, γ = 0.6 0.9337 50.4 19923.0

199.8, 66.1 in terms of RMSEP. This indicates the capability of IHOPLS in capturing local
variation in dynamic streams. In the meantime, the averaged total learning time of IHOPLS,
namely 505.3 seconds, is much faster than that 6901.3 seconds of RNPLS. Figure 6.1 and
Figure 6.2 illustrate the CPU time and prediction error (RMSEP) versus elapsed frames for
low frequency 5fps and high frequency 25fps, respectively.

Overall, the CPU cost for both IHOPLS and RNPLS exhibited a constant trend, while cost of
offline HOPLS keeps increasing over time. In contrast to HOPLS and RNPLS, IHOPLS was
highly computationally efficient no matter which frame frequency was used. Note carefully
that, for both cases, the RMSEP of IHOPLS was relatively large at the beginning learning
period but was quickly reduced to and remained in a low level as the test went on. This is the
case except for a few bursts or bumps that correspond to the points when we concatenated
different video sequences or significant changes of motions in the input streams, which is more
obvious in the case of 5250 samples.

6.4.2 Neurotycho Electrocorticography Database

We also evaluated our IHOPLS approach on an application of reconstruction of limb move-
ments from monkey’s brain signals using Neurotycho food tracking Electrocorticography (ECoG)
dataset [Chao et al., 2010]. Particularly, the wavelet transformed ECoG signal, a 4-order ten-
sor X ∈ RN×10×10×32 (i.e., samples × time × frequency × channels), was employed as the
input. The output was a 3rd-order tensor of 3D movement distances of the monkey’s limb on
different markers.

In Table 6.2, our approach shows a remarkable advantage regarding computational burden

83

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Frames

R
M

S
E

P

Size=1050 Frequency=5fps

HOPLS RNPLS IHOPLS

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

Frames

C
P

U
−

T
im

e
(s

)

Size=1050 Frequency=5fps

Figure 6.1 – Prediction error (top) and CPU cost (bottom) of three methods over time,
R = 8 and λ = 4 for IHOPLS and HOPLS for sequence length of 1050 and frequency at 5fps
on UMPM.

84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

Frames

R
M

S
E

P
Size=5250 Frequency=25fps

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

20

Frames

C
P

U
−

T
im

e
(s

)

Size=5250 Frequency=25fps

IHOPLS RNPLS HOPLS

Figure 6.2 – Prediction error (top) and CPU cost (bottom) of three methods over time,
R = 8 and λ = 4 for IHOPLS and HOPLS for sequence length of 5250 and frequency at 25fps
on UMPM.

85

Table 6.2 – Performance comparison of IHOPLS, HOPLS and RNPLS for the averaged Q,
RMSEP and total learning time on ECoG data.

Size = 900 and Frequency = 1Hz
Methods Rank and Hyperparameter Q RMSEP Total Time (s)
IHOPLS R = 8, λ = 8, wgen = 0.4, Nmax = 100 0.6962 34.4 665.2
HOPLS R = 8, λ = 8 0.7003 33.7 1137.0
RNPLS F = 5, γ = 1 0.7036 33.2 1647.8

Size = 18000 and Frequency = 20Hz
Methods Rank and Hyperparameter Q RMSEP Total Time (s)
IHOPLS R = 8, λ = 8, wgen = 0.4, Nmax = 10 0.9204 9.0 17357.3
HOPLS R = 8, λ = 8 0.7214 30.3 586710.0
RNPLS F = 5, γ = 0.8 0.9011 11.0 160113.4

over other methods. We also observed that IHOPLS achieved the best accuracy in the case
of 20Hz while remaining competitive with HOPLS and RNPLS in the 1Hz case where the
successive samples were selected with non-overlapped features.

Note that the accuracy was improved in the Figure 6.3 as we increased the maximum cluster
number Nmax from 10 to 400 for non-overlapped feature case, reflecting the fact that we need
more clusters to characterize the variation of data. On the contrary, we may need fewer clusters
for highly-overlapped samples so as to obtain a better predictive ability.

6.5 Discussion

We should mention that our IHOPLS method is specially designed for the online tensor stream
setting where it is not feasible to search for the globally optimal model parameters since the
new observations keep arriving. Rather than fixing the projection matrices and core tensors,
we incrementally update them by assuming that the characteristics of the data might change
over time. In practice, the number Nclus turns out to be very small such that the HOPLS
can be executed efficiently owing to that the HOPLS is particularly suitable for small sample
size [Zhao et al., 2013a]. IHOPLS only needs dozens or tens of samples to extract the initial
model parameters. Moreover, it handles the time dependency by combining an appropriate
maximum cluster number with an eliminating strategy based on an importance ratio.

6.6 Conclusion

This chapter presented our new online IHOPLS approach which efficiently adapts the stan-
dard HOPLS to the setting of infinite time-dependent tensor streams. Our approach allows
recursively updating the regression coefficients by incrementally clustering the projected la-
tent variables in latent space, leading to a constant computational load over time. We have

86

10 50 100 200 300 400
32

33

34

35

36

37

38

39

40

41

42

Maximum Number of Clusters

R
M

S
E

P

Size=900 Frequency=1Hz

IHOPLS HOPLS RNPLS

Figure 6.3 – Prediction errors versus Nmax for R = 8 λ = 8 wgen = 0.4 on ECoG data.

validated the effectiveness and scalability of our approach on two different real-life tensor
regression applications with very large-scale data.

In the next chapter, we will address the tensor regression problem for general large tensor
sequences using a more efficient sequential framework, which takes both ‘sample’ complexity
and ‘dimensionality’ complexity into account.

87

Chapitre 7

Recursive Higher-order Partial Least
Squares Regression (RHOPLS)

This chapter begins with the motivation and problem setting of the sequential processing of
general tensor sequences for the regression problem. Then, for this setting, a fast tensor re-
gression framework, called recursive higher-order partial least squares (RHOPLS) [Hou and
Chaib-draa, 2017], is introduced. Finally, the significant speed-ups and high predictability of
RHOPLS are verified on a variety of real-life applications.

7.1 Introduction

In the previous chapter, we proposed a simple recursive extension of HOPLS called incremen-
tal higher-order partial least squares (IHOPLS) to deal with infinite time-dependent tensor
streams [Sun et al., 2008] by incrementally clustering the projected latent variables of data
in latent space and summarizing the previous data. As a result, the computational load of
regression on infinite tensor streams can be reduced to a roughly constant level over time.

In fact, IHOPLS is designed based on K-means clustering [Lloyd, 1982] of latent variables
and consequently it leads to a significant deterioration of predictive performance when the
dimensions of latent space required to be large to meet certain fitness accuracy. In addition,
although successfully reducing the “sample” complexity of HOPLS, the computational load
of IHOPLS, just like HOPLS, still remains a problem when data orders or d-ranks are large.
This is due to the fact that it has to compute and decompose the huge cross-covariance tensor.
Furthermore, IHOPLS suffers the same drawback as RNPLS in that it merges the factors at
a large-scale raw data level and this can result in high computational and storage cost.

In this chapter, we introduce a fast tensor regression framework, called recursive higher-order
partial least squares (RHOPLS) [Hou and Chaib-draa, 2017], for sequential blockwise process-
ing of general tensor sequences. Our contributions are :

89

1. designing a recursive framework that efficiently updates the regression coefficients (fac-
tors) at a small-scale factor (feature) level instead of the large raw data (observation)
level by integrating a low-rank modification strategy of the Tucker [O’Hara, 2010] into
PLS ;

2. developing an efficient algorithm based on a series of computationally advantageous
calculations yet with only a small number of factors for storage ;

3. applying RHOPLS to several challenging tasks such as estimation of human pose from
videos, showing the great potentiality for fast real-time predictions of human pose posi-
tions.

In brief, our RHOPLS framework does not suffer from neither inferior predictability nor poor
convergence rate of NPLS-based (CP-based) models. Our RHOPLS is also free from the com-
putational issues related to the HOPLS-based models when the data order, “sample” complex-
ity or “dimensionality” complexity is high. Finally, our RHOPLS exhibits highly competitive
accuracy with the best batch methods but is much faster than other sequential methods.

7.2 Recursive Higher-order Partial Least Squares Regression
(RHOPLS)

7.2.1 Problem Setting

Without the loss of generality, we consider an Nth-order input tensor X ∈ RI1×···×IN and
an Mth-order output tensor Y ∈ RJ1×···×JM with coupled observations, namely I1 = J1

and we process the data in terms of mini-batch of size b, say {X (t) ∈ Rb×I2×···×IN ,Y(t) ∈
Rb×J2×···×JM } for mini-batch t. I0 stands for the number of initial observations. I denotes the
maximum index of all modes, while R is used to define maximum d-rank of all modes which
are supposed to be small in practice. Finally, F is the number of latent vectors, while L and
K are used to denote the collection of d-ranks for the input and output loadings, respectively.

7.2.2 RHOPLS Framework

As mentioned in Section 1, sequential approaches to regression are capable of handling big data
as well as online data. In this context, the key idea of RPLS [Qin, 1998] (see Appendix A.1)
consists of directly adding the old matrix data to the new arriving matrix data to generate
the joint matrix data, and then use an iterative procedure to extract the new set of factors
from the joint matrix data. Notice that the old matrix data is represented by reformulating
the previous set of factors into a fixed data size.

Extended from RPLS, RNPLS [Eliseyev and Aksenova, 2013] directly adds the old tensor
data, refolded from the previous set of factors, to the new tensor data to form the joint
tensor data, and then applies NPLS to joint tensor data to estimate the new set of factors.

90

Although recursively handling the new data, RNPLS has one major disadvantage in that it
has to perform a slow iterative NIPALS-style procedure on the joint tensor data at the level of
original dimensionality I. Furthermore, RNPLS represents the old tensorial data by refolding
the factor matrices into tensor, such refolding operation on factors may cause undesired errors
of approximating the old tensor data.

Different from RPLS and RNPLS, our RHOPLS framework proposes to recursively merge
the new data into the old one in terms of factors (features) rather than considering the raw
tensor data (observations). By doing so, RHOPLS directly additively updates the PLS-related
parameters at much smaller scale using a closed-form solution, thus keeping track of the
subspace patterns and the summary of model status.

Generally speaking, up to the point t − 1, the set of old factors representing the RHOPLS
model summarizes the total variation in all previous mini-batches, and hence approximates
the current modeling state. Then, a newly arriving mini-batch t is decomposed into a set
of incremental factors which contains the variation merely corresponding to the new data.
Our RHOPLS framework carries out an update procedure in an “incremental approximation-
expansion-compression-projection” fashion that effectively yet inexpensively “absorbs” the in-
cremental factors into the old ones to produce a set of new factors at t. Continuing in the
same spirit, we are able to efficiently process the new data in a mini-batch way over time.

Figure 7.1 illustrates the whole scheme that consists of the five principle steps as explained
below. For the ease of demonstration, we choose N = 3 order input tensor and M = 2 order
output tensor for visualization.

Step 0 : Initial Approximation

As for the initial tensor pair {X (0) ∈ RI0×I2×···×IN ,Y(0) ∈ RI0×J2×···×JM }, we aim to extract
a set of initial factors. Instead of using a deflation process of block tensor terms in HOPLS
[Zhao et al., 2011, 2013a], we simply apply the standard Tucker to jointly decompose the initial
data pair such that the latent components extracted from X (0) and Y(0) have the maximum
pairwise covariance, which is of the form

X (0) ≈ Gx(0)×1 T(0)×2 P(2)(0)×3 · · · ×N P(N)(0),

Y(0) ≈ Gy(0)×1 T(0)×2 Q(2)(0)×3 · · · ×M Q(M)(0),
(7.1)

where {Gx(0) ∈ RL1×L2×···×LN ,Gy(0) ∈ RK1×K2×···×KM } serve as core tensors. T(0) ∈ RI0×L1

is the common latent matrix, while {{P(n)(0)}Nn=2 ∈ RIn×Ln , {Q(m)(0)}Mm=2 ∈ RJm×Km} are
the loadings corresponding to {X (0),Y(0)}. Clearly, we have L1 = K1. To solve above factors,
we first form the 1-mode cross-covariance tensor

C(0) = 〈X (0),Y(0)〉{1:1} (7.2)

91

F
ig

u
r
e
7.1

–
T
he

R
H
O
P
LS

schem
e.

T
he

fram
ew

ork
generates

a
set

of
initial

factors
for

the
initial

data
(S
tep

0
red

arrow
).

A
t
every

iteration,
the

fram
ew

ork
first

generates
a
set

of
increm

ental
factors

for
the

new
data

(S
tep

1
yellow

arrow
).

T
hen,

the
inform

ation
contained

in
new

data,represented
in

term
s
offactors,is

added
to

current
m
odelby

an
appending

operation
(S
tep

2
blue

arrow
).N

ext,
the

augm
ented

set
of

factors
are

truncated
back

into
the

ones
w
ith

originalsizes
to

yield
new

loadings
(S
tep

3
purple

arrow
).T

he
new

individual
core

tensors
are

produced
using

an
internal

tensor
representation

of
m
odel

(in
term

s
of

factors)
under

the
projection

of
the

new
loadings

(S
tep

4
green

arrow
).

92

Figure 7.2 – The initial approximation step of RHOPLS framework for t = 0.

which follows by estimating all the loadings using a higher-order orthogonal iteration (HOOI)
[De Lathauwer et al., 2000b] procedure as

C(0) ≈ Gxy(0)×1 Q(2)(0)×2 · · · ×M−1 Q(M)(0)×M P(2)(0)×M+1 · · · ×M+N−2 P(N)(0). (7.3)

Here, Gxy(0) ∈ RK2×···×KM×L2×···×LN is said to be 1-mode cross-covariance core tensor. Having
obtained all the loadings, the core tensors {Gx(0),Gy(0)} and common latent matrix T(0) can
be computed according to (7.1) using higher-order singular vector decomposition (HOSVD)
[De Lathauwer et al., 2000a]. From now on, these factors (common latent matrix, loadings,
core tensors and the 1-mode cross-covariance core tensor), indicating the initial modeling state,
are the parameters to be updated on new mini-batch. This process is depicted in Figure 7.2
in which the initial data X (0) and Y(0) are illustrated in terms of 3-order tensor and 2-order
tensor (matrix), respectively.

Step 1 : Incremental Approximation

Turning to mini-batch at the timestamp t, a new tensor pair {X (t) ∈ Rb×I2×···×IN ,Y(t) ∈
Rb×J2×···×JM } with small size b comes into the picture. To approximate the incremental data
efficiently, we propose to collect the set of factors by first performing partial Tucker to X (t) and
Y(t) separately, such that all the modes except the first mode are decomposed with d-ranks
rank-(L̄2, ..., L̄N) and rank-(K̄2, ..., K̄M)

X (t) ≈ Ǧx(t)×2 P̄
(2)

(t)×3 · · · ×N P̄(N)
(t), (7.4)

Y(t) ≈ Ǧy(t)×2 Q̄
(2)

(t)×3 · · · ×M Q̄(M)
(t). (7.5)

Thereafter, the 1-mode cross-covariance core tensor Ḡxy(t) is immediately formed exploiting
only the core tensors Ǧx(t) and Ǧy(t) as

Ḡxy(t) = 〈Ǧx(t), Ǧy(t)〉{1:1}, (7.6)

93

Figure 7.3 – The incremental approximation step of RHOPLS framework for t = 1.

where Ḡxy(t) ∈ RK̄2×···×K̄M×L̄2×···×L̄N can be calculated using only O(RM+N−2). In total, the
cost for approximating the incremental data requires merelyO(max(RM+N−2, RIM−1, RIN−1)).
Note that the HOPLS has to compute and decompose the 1-mode cross-covariance tensor of
size J2×·· ·×JM ×I2×·· ·×IN using entire data when estimating each one of R latent vectors
[Zhao et al., 2013a], leading to costs as large as O(RIM+N−1). Thus, calculating and decom-
posing huge tensors R times yields substantial costs especially when data dimensionality, data
order and d-ranks are large. In contrast to HOPLS, our Step 1 overcomes this drawback by
first partially decomposing only the new mini-batch input and output individually via Tucker
and then calculating the desired cross-covariance core tensor to gather the incremental factors.
This step (see Figure 7.3 for t = 1) contributes to the speed-ups mainly from the perspective
of significantly reducing the “dimensionality” complexity, since we extract eigenvectors on two
much smaller-scale individual mini-batch tensors instead of on a massive cross-covariance ten-
sor, and we also form the cross-covariance core tensor at the core tensor scale of R instead of
at the original dimensionality I.

Step 2 : Expansion

Inspired by the work of O’Hara [2010], which additively updates Tucker model using a low-
rank subspace truncation strategy, we first append the set of incremental factors associated
with the new mini-batch to the set of old factors that corresponds to the current model status,
resulting in an augmented set of factors.

Different from the work of O’Hara [2010], we apply this strategy to the cross-covariance core
tensor in a PLS framework involving both input and output sides rather than just input-
side tensor as in O’Hara [2010]. Specifically, concatenating the variation captured by loading
P̄(n)

(t) ∈ RIn×L̄n to P(n)(t− 1) ∈ RIn×Ln , we can get the augmented variation via loading

P̂
(n)

(t) = [P(n)(t− 1) P̄(n)
(t)] ∈ RIn×(Ln+L̄n) with n = 2, ..., N. (7.7)

94

Figure 7.4 – The expansion step of RHOPLS framework for t = 1.

Likewise, we obtain the loading

Q̂
(m)

(t) = [Q(m)(t− 1) Q̄(m)
(t)] ∈ RJm×(Km+K̄m) with m = 2, ...,M. (7.8)

We can also get Ĝxy(t) ∈ R(K2+K̄2)×···×(KM+K̄M)×(L2+L̄2)×···×(LN+L̄N), named as augmented
1-mode cross-covariance core tensor, by appending Ḡxy(t) ∈ RK̄2×···×K̄M×L̄2×···×L̄N to Gxy(t−
1) ∈ RK2×···×KM×L2×···×LN in a super block-diagonal manner, leaving other new entries to be
zeros. Figure 7.4 shows how the factors are concatenated together.

Step 3 : Compression

Continuing on with the same strategy motivated by the work of O’Hara [2010], we next
truncate the set of augmented factors back into the set of factors with the size of original
d-ranks, which means finding the most dominant principal components in the subspaces of
loadings out of the augmented set of loadings.

To this end, the augmented factors {{P̂(n)
(t)}Nn=2, {Q̂

(m)
(t)}Mm=2} and Ĝxy(t) described in the

previous Step 2 are truncated to produce new loadings {{P(n)(t)}Nn=2 ∈ RIn×Ln , {Q(m)(t)}Mm=2 ∈

95

Figure 7.5 – The compression step of RHOPLS framework for t = 1.

RJm×Km} as well as 1-mode cross-covariance core tensor Gxy(t) ∈ RK2×···×KM×L2×···×LN , hence
keeping track of the change of patterns in each loading subspace. Achieving this leads to :

1. compute QR factorization on the augmented loadings :

P̂
(n)

(t) = Ux(n)Vx(n), (7.9)

where Ux(n) ∈ RIn×(Ln+L̄n) and Vx(n) ∈ R(Ln+L̄n)×(Ln+L̄n) for n = 2, ..., N ;

Q̂
(m)

(t) = Uy(m)Vy(m), (7.10)

Uy(m) ∈ RJm×(Km+K̄m) and Vy(m) ∈ R(Km+K̄m)×(Km+K̄m) for m = 2, ...,M .

2. transform cross-covariance core tensor Ĝxy(t) to get

G̃xy(t) = Ĝxy(t) ×1 Vy(2) ×2 ... ×M−1 Vy(M) ×M Vx(2) ×M+1 ... ×M+N−2 Vx(N).

(7.11)

3. calculate the rank-(L2, ..., LN ,K2, ...,KM) orthogonal Tucker on the transformed core
tensor G̃xy(t) to get the resulting 1-mode cross-covariance core tensor Gxy(t) for mini-
batch t

G̃xy(t) ≈ Gxy(t)×1 Zy(2) ×2 ...×M−1 Zy(M) ×M Zx(2) ×M+1 ...×M+N−2 Zx(N), (7.12)

where Zx(n) ∈ R(Ln+L̄n)×Ln , Zy(m) ∈ R(Km+K̄m)×Km and Gxy(t) ∈ RL2×···×LN×K2×···×KM .

4. compute the loadings :

P(n)(t) = Ux(n)Zx(n) ∈ RIn×Ln , (7.13)

Q(m)(t) = Uy(m)Zy(m) ∈ RJm×Km . (7.14)

96

For this Step 3, the computational cost is concentrated in the calculation of Tucker on tensor
G̃xy(t), that is, O(RN+M−1), which is not necessarily an issue since we operate the decompo-
sition on a small scale R rather than a large dimensionality I. The illustration for compressing
all the factors at t = 1 is shown in Figure 7.5.

In a word, Steps 2 and 3 together are applied to 1-mode cross-covariance core tensor for purpose
of updating the loading factors, which contributes in part to the speed-ups from perspective
of reducing the “sample” complexity to a low constant level.

Step 4 : Projection

Now we update the individual core tensors of input and output from the internal represen-
tation of model under the projection of loadings obtained in the last step. These individual
core tensors in conjunction with loadings are exploited to produce the final prediction. This
procedure for t = 1 is shown in Figure 7.6.

More specifically, we begin with reconstruction of the old internal tensor representation Xint(t−

Figure 7.6 – The projection step of RHOPLS framework for t = 1.

97

1) ∈ RI0×L2×···×LN from the latent matrix T(t − 1), the loadings {P(n)(t − 1)}Nn=2 and the
core tensor Gx(t− 1) under the projection of current loadings {P(n)(t)}Nn=2 according to

Xint(t− 1) = Gx(t− 1)×1 T(t− 1)×2 P(2)(t)TP(2)(t− 1)×3 · · · ×N P(N)(t)TP(N)(t− 1).

(7.15)

We also reconstruct the incremental internal tensor representation X̄int(t) ∈ Rb×L2×···×LN

from the core tensor Ǧx(t) and loadings {P̄(n)
(t)}Nn=2 obtained in Step 1 by projecting onto

the subspaces of the current loadings {P(n)(t)}Nn=2, which becomes

X̄int(t) = Ǧx(t)×2 P(2)(t)TP̄(2)
(t)×3 · · · ×N P(N)(t)TP̄(N)

(t). (7.16)

After concatenating X̄int(t) to Xint(t − 1), we get the augmented internal representation
Xint(t) ∈ R(I0+b)×L2×···×LN . Then, Xint(t) is decomposed using Tucker-1 model [Cichocki
et al., 2009] to get the common internal latent matrix Tint(t) ∈ R(I0+b)×L1 and the desired
core tensor Gx(t) ∈ RL1×L2×···×LN as

Xint(t) ≈ Gx(t)×1 Tint(t), (7.17)

where Tint(t) is thereafter truncated to keep the very last I0 rows, leading to the common
T(t) ∈ RI0×L1 for the purpose of internal representation reconstruction of the model in the
subsequent mini-batch.

Similarly, we have Yint(t) ∈ R(I0+b)×K2×···×KM and Gy(t) ∈ RK1×K2×···×KM for the output
side. By employing our proposed projection strategy, the dominating cost of this step is sub-
stantially cut down from O(max(I0I

N , IN+1)) to O(max(I0R
N , RN+1)) with R� I, because

we equivalently represent the model and calculate the new factors in terms of projected in-
ternal tensors that lie in the tensor space with small scale R but large original I. Step 4 is
responsible for efficiently updating the individual core tensors, which also contributes in part
to the total acceleration by reducing the “sample” complexity.

In summary, Step 0 is a preprocessing step that executes only once, while the other steps are
conducted repeatedly for each new mini-batch. The whole framework of RHOPLS is illustrated
again in Figure 7.7 and whole procedure of RHOPLS is outlined in Algorithm 7. With all the
extracted loadings and individual core tensors in hand, the prediction can be made similar to
the one in HOPLS [Zhao et al., 2011, 2013a]. It is important to note that RHOPLS demands
a minimum space complexity in the sense that only a small number of factors, dominating by
O(max(RN+M−2)) of cross-covariance core tensor, are needed to be stored to represent the
running model.

7.3 Experimental Results

In our experiments, the root mean squares of prediction (RMSEP) [Kim et al., 2005] as well
as the Q index [Luo et al., 2015] are used to quantitatively gauge the predictive performance

98

Algorithm 7 Recursive Higher-order Partial Least Squares (RHOPLS)

1: Input : old parameters T(t−1), {P(n)(t−1)}Nn=2, {Q(m)(t−1)}Mm=2 and Gx(t−1),Gy(t−1),
new mini-batch pair {X (t) ∈ Rb×I2×···×IN ,Y(t) ∈ Rb×J2×···×JM }

2: Output : new parameters T(t), {P(n)(t)}Nn=2, {Q(m)(t)}Mm=2 and Gx(t),Gy(t)
3: Center the new data pair {X (t),Y(t)} accumulatively

/* step 0 : Initial Approximation (only executed once on the initial data at
t=0) */

4: C(0)← 〈X (0),Y(0)〉{1:1}
5: Rank-(K2, ...,KM , L2, ..., LN) orthogonal Tucker of C(0) by HOOI as (7.3)
6: Apply HOSVD to estimate T(0), Gx(0) and Gy(0)

/* Step 1 : Incremental Approximation */
7: Rank-(L̄2, ..., L̄N) orthogonal Tucker decomposition of X (t) except the first mode by HOOI

as (7.4)
8: Rank-(K̄2, ..., K̄M) orthogonal Tucker decomposition of Y(t) except the first mode by

HOOI as (7.5)
9: Ḡxy(t)← 〈Ǧx(t), Ǧx(t)〉{1:1}

/* Step 2 : Expansion */
10: P̂

(n)
(t)← [P(n)(t− 1) P̄(n)

(t)] and Q̂
(m)

(t)← [Q(m)(t− 1) Q̄(m)
(t)]

11: Append Ḡxy(t) to Gxy(t − 1) in a super block diagonal way to get the Ĝxy(t), with other
entries being zeros
/* Step 3 : Compression */

12: QR factorization P̂
(n)

(t)→ Ux(n)Vx(n) and Q̂
(m)

(t)→ Uy(m)Vy(m)

13: G̃xy(t)← Ĝxy(t)×1 Vy(2) ×2 ...×M−1 Vy(M) ×M Vx(2) ×M+1 ...×M+N−2 Vx(N)

14: Rank-(L2, ..., LN ,K2, ...,KM) orthogonal Tucker decomposition of G̃xy(t) by HOOI as
(7.12)

15: P(n)(t)← Ux(n)Zx(n) and Q(m)(t)← Uy(m)Zy(m)

/* Step 4 : Projection */
16: Xint(t− 1)← Gx(t− 1)×1 T(t− 1)×2 P(2)(t)TP(2)(t− 1)×3 · · · ×N P(N)(t)TP(N)(t− 1)
17: Yint(t− 1)← Gy(t− 1)×1 T(t− 1)×2 Q(2)(t)TQ(2)(t− 1)×3 · · · ×M Q(M)(t)TQ(M)(t− 1)

18: X̄int(t)← Ǧx(t)×2 P(2)(t)TP̄(2)
(t) · · · ×NP(N)(t)TP̄(N)

(t)

19: Ȳint(t)← Ǧy(t)×2 Q(2)(t)TQ̄(2)
(t) · · · ×MQ(M)(t)TQ̄(M)

(t)
20: Concatenate {X̄int(t), Ȳint(t)} to {Xint(t− 1),Yint(t− 1)}

Xint(t)←
[
Xint(t− 1)
X̄int(t)

]
∈ R(I0+b)×L2×···×LN

Yint(t)←
[
Yint(t− 1)
Ȳint(t)

]
∈ R(I0+b)×K2×···×KM

21: Rank-(L1) orthogonal Tucker-1 decomposition of X (t) by HOSVD as (7.17)
22: Gy(t)← Yint(t)×1 Tint(t)

T

23: T(t)← Tint(t)(b+ 1 : I0 + b, :)

99

Figure 7.7 – The whole RHOPLS scheme.

of our approach. We recorded the CPU time for learning the new mini-batch for all recursive
methods, and we also recorded CPU time for batch methods using the entire training set. We
compared RHOPLS with NPLS [Bro, 1996], RNPLS [Eliseyev and Aksenova, 2013], HOPLS
[Zhao et al., 2013a] and IHOPLS [Hou and Chaib-draa, 2016] on general tensorial sequences
with no special structures assumed in contrast to spatio-temporal data.

To show the robustness, each sequence was randomly shuffled into 10 instances for evaluation,
because our framework is designed for the general setting of sequence though it could be
applied to the stream [Sun et al., 2008]. One half of the shuffled sequence served as training
set while the remaining half was used for test. The optimal hyperparameters of all methods
were determined by cross-validation. In addition, the convergence criterion and the maximum
iteration number of RNPLS for estimating the loadings were set to 10−5 and 40 respectively,
as a result of the optimal balance between accuracy and speed. For simplicity, we assumed the
initial d-ranks are equal to the incremental d-ranks in RHOPLS.

7.3.1 Utrecht Multi-Person Motion Database (UMPM)

We first tested RHOPLS on the Utrecht Multi-Person Motion (UMPM) benchmark [Aa et al.,
2011], which provides the simultaneous recordings of video sequences and 3D ground truth
positions of human natural motions in daily life activities. For our test, the algorithm input
was an intensity image sequence from the front camera with a downsized resolution of 24× 32

pixels at 25fps, taking the form of a 3rd-order predictor tensor (i.e., frames × width × height).
On the other hand, the corresponding output containing 3D positions of 37 reflective markers
can be represented as a 3rd-order tensor (i.e., samples × 3D positions × markers).

100

0 20 40 60 80 100 120 140 160 180 200
120

140

160

180

200

220

240

Iteration

R
M

S
E

P

Triangle I
0
=200 b=2

NPLS F=25

RNPLS F=25

HOPLS F=40 L=[8,12]

RHOPLS F=40 L=[8,12]

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

Iteration

C
P

U
−

T
im

e
(s

)

Triangle I
0
=200 b=2

Figure 7.8 – For “triangle” scenario, learning error and learning time versus the iteration.

101

0 50 100 150 200

140

150

160

170

180

190

200

210

220

230

240

Iteration

R
M

S
E

P

Table I
0
=200 b=2

NPLS F=30

RNPLS F=30

HOPLS F=40 L=[8,12]

RHOPLS F=40 L=[8,12]

0 50 100 150 200
0

5

10

15

20

25

30

Iteration

C
P

U
−

T
im

e
(s

)

Table I
0
=200 b=2

Figure 7.9 – For “table” scenario, learning error and learning time versus the iteration.

102

Table 7.1 – Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS for
the averaged Q, RMSEP and learning time with I0 = 200 and b = 2 on UMPM data.

Scenario “triangle” Input Dimension= 1230× 24× 32
Methods Hyperparameter Q RMSEP CPU Time (s)
NPLS F = 25 .8431 (.0070) 132.0 (6.3) 16.0 (2.6)
RNPLS F = 25, γ = 1 .8011 (.0092) 169.4 (8.7) 6.17 (1.25)

HOPLS F = 40, L = [8, 12],K = [3, 9] .8480 (.0019) 127.8 (2.2) 6.47 (0.34)
F = 40, L = [12, 16],K = [3, 9] .8462 (.0016) 129.0 (2.3) 5.94 (0.22)

IHOPLS F = 40, L = [12, 16],K = [3, 9] .7034 (.0104) 248.5 (8.8) 4.48 (0.45)

RHOPLS F = 40, L = [8, 12],K = [3, 9] .8453 (.0035) 129.6 (2.8) 0.25 (0.01)
F = 40, L = [12, 16],K = [3, 9] .8430 (.0039) 132.3 (3.0) 0.26 (0.01)

Scenario “table” Input Dimension= 1430× 24× 32
Methods Hyperparameter Q RMSEP CPU Time (s)
NPLS F = 30 .8240 (.0067) 151.2 (6.0) 25.4 (2.7)
RNPLS F = 30, γ = 1 .7865 (.0083) 184.7 (7.1) 8.06 (1.47)

HOPLS F = 40, L = [8, 12],K = [3, 9] .8388 (.0045) 139.1 (3.8) 6.94 (0.38)
F = 40, L = [12, 16],K = [3, 9] .8341 (.0058) 142.7 (4.8) 6.04 (0.80)

IHOPLS F = 40, L = [12, 16],K = [3, 9] .7393 (.0069) 227.2 (8.1) 4.53 (0.42)

RHOPLS F = 40, L = [8, 12],K = [3, 9] .8304 (.0058) 145.3 (5.7) 0.24 (0.01)
F = 40, L = [12, 16],K = [3, 9] .8294 (.0072) 146.8 (6.0) 0.25 (0.01)

The averaged predictive performance as well as learning time are compared in Table 7.1. As
we can see, RHOPLS achieves highly comparable accuracy with the batch HOPLS but is much
faster. Spectacularly, the speed-ups of RHOPLS over RNPLS and NPLS for “table” scenario
are more than 30 and 100 times, the acceleration rates are even higher with the larger numbers
of latent vectors. Figure 7.8 and Figure 7.9 show that, for both “triangle” and “table” scenarios,
the predictive error of RHOPLS keeps decreasing at a faster rate as the iteration goes on, while
the CPU cost remains as a low constant trend over time.

In Figure 7.10, we can also observe that the prediction accuracy of RHOPLS stays very close
to that of HOPLS as the number of latent vectors ranges from 10 to 90 for different loadings.
However, the CPU time just slightly increases from 0.19s to 0.38s for RHOPLS with input
loading [8, 12], which is in contrast to that of HOPLS from 1.79s to 19.22s, indicating the
superior scalability of the RHOPLS with increasing number of latent vectors (d-ranks). The
Q is given in Figure 7.11 with varying numbers of initial samples and mini-batch sizes. We
may notice that only 50 initial samples, which is 8% of the whole training data, will suffice to
guarantee a reasonably good result, i.e., nearly 0.78 for mini-batch of 2.

7.3.2 Neurotycho Electrocorticography Dataset (ECoG)

In this section, the tests were carried out on a benchmark tensor regression application which
consists of decoding limb movements from monkey’s brain signals using Neurotycho food
tracking Electrocorticography (ECoG) dataset [Chao et al., 2010]. ECoG data contains a 15

minute-long recording and we downsampled motion data to different frequencies, producing

103

10 20 30 40 50 60 70 80 90
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of Latent Vectors F

Q
 In

de
x

Table K=[3 9] I
0
=200 b=2

HOPLS L=[8,12]

RHOPLS L=[8,12]

HOPLS L=[12, 16]

RHOPLS L=[12, 16]

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Number of Latent Vectors F

C
P

U
−

T
im

e
(s

)

Table K=[3 9] I
0
=200 b=2

HOPLS L=[8, 12]

RHOPLS L=[8, 12]

HOPLS L=[12, 16]

RHOPLS L=[12, 16]

Figure 7.10 – The accuracy and learning time versus the number of latent vectors.

104

50 100 150 200 250 300
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

Number of Initial Samples I
0

Q
 In

de
x

Table F=40 L=[12 16] K=[3 9]

HOPLS b=2

HOPLS b=5

RHOPLS b=2

RHOPLS b=5

50 100 150 200 250 300
0

1

2

3

4

5

6

7

Number of Initial Samples I
0

C
P

U
−

T
im

e
(s

)

Table F=40 L=[12 16] K=[3 9]

HOPLS b=2 & 5

RHOPLS b=2

RHOPLS b=5

Figure 7.11 – The accuracy and learning time versus the number of initial samples.

105

450 (0.5Hz) 900 (1Hz) 1800 (2Hz) 4500 (5Hz)
0.68

0.69

0.7

0.71

0.72

0.73

0.74

Sequence Length (Frequency)

Q
 In

de
x

b=2

F=6

F=10

F=15
F=25

F=4

F=5

F=6 F=8

F=6

F=12 F=15 F=15

F=6

F=10

F=10

F=12

F=10

F=10

F=10

F=10

450 (0.5Hz) 900 (1Hz) 1800 (2Hz) 4500 (5Hz)
0

5

10

15

20

25

30

Sequence Length (Frequency)

C
P

U
−

T
im

e
(s

)

b=2

NPLS

RNPLS gamma=1

HOPLS L=[6,6,10] K=[3,4]

IHOPLS L=[6,6,10] K=[3,4]

RHOPLS L=[6,6,10] K=[3,4]

Figure 7.12 – Performance versus sequence length (frequency).

106

Table 7.2 – Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS for
the averaged Q, RMSEP and learning time with I0 = 20% of the training set and b = 2 on
ECoG data.

Input Dimension= 900× 10× 10× 16 and Frequency=1Hz
Methods Hyperparameter Q RMSEP CPU Time (s)
NPLS F = 10 .7014 (.0072) 33.5 (0.7) 3.15 (0.46)
RNPLS F = 5, γ = 1 .7096 (.0071) 32.6 (0.6) 1.70 (0.35)
HOPLS F = 12,L = [6, 6, 10], K = [3, 4] .7336 (.0039) 29.9 (0.4) 1.86 (0.34)
IHOPLS F = 10,L = [6, 6, 10], K = [3, 4] .7044 (.0082) 33.1 (0.9) 1.64 (0.32)
RHOPLS F = 10,L = [6, 6, 10], K = [3, 4] .7308 (.0027) 30.3 (0.3) 0.16 (0.01)

Input Dimension= 4500× 10× 10× 16 and Frequency=5Hz
Methods Hyperparameter Q RMSEP CPU Time (s)
NPLS F = 25 .7338 (.0023) 29.9 (0.4) 28.6 (1.0)
RNPLS F = 8, γ = 1 .7197 (.0049) 31.6 (0.5) 4.87 (0.69)
HOPLS F = 10,L = [6, 6, 10], K = [3, 4] .7343 (.0011) 29.7 (0.2) 9.07 (0.74)
IHOPLS F = 10,L = [6, 6, 10], K = [3, 4] .7058 (.0086) 33.0 (0.8) 1.74 (0.48)
RHOPLS F = 10,L = [6, 6, 10], K = [3, 4] .7330 (.0012) 30.0 (0.2) 0.20 (0.02)

various lengths of observations with different levels of overlapped features. As for the input,
the wavelet transformed ECoG signal was represented as a 4-order tensor (i.e., samples × time
× frequency × channel). A 3-order tensor of 3D movement distances of the monkey’s limb
on 4 markers was used as the output. The best results are obtained with various numbers of
latent vectors adapting to the corresponding increasing lengths of sequences.

In Table 7.2, RHOPLS again performs consistently better than NPLS, RNPLS, IHOPLS for
the 4-order’s input situation. In Figure 7.12, RHOPLS maintains nearly the same predictability
with HOPLS in the settings of both low frequency (difficult case) and high frequency (easy
case). Meanwhile, RHOPLS remains as really low constant CPU time regardless of the length
of sequence, and exhibits high speed-up rates over RNPLS, i.e., 24 times faster at 4500, and
overall nearly 10 times faster than IHOPLS, while NPLS and HOPLS are almost useless in
fast time-critical applications.

For visualization, an example of the observed and the predicted trajectories of monkey’s hand
at the frequency of 1Hz is given in Figure 7.13. Due to the clarity of demonstration, we
just compare our RHOPLS with the best sequential method RNPLS, the best batch method
HOPLS as well as the ground truth. As expected, RHOPLS archives the similar accuracy as
that of HOPLS while it is much better than RHOPLS.

7.3.3 Multimodal Human Action Database (MHAD)

We also validated our approach on the Berkeley MHAD data [Ofli et al., 2013] that con-
tains temporally synchronized video sequences and human motion capture data. We selected
two most challenging actions that involve dynamics in both upper and lower extremities of

107

human body, namely “jumping in place” and “bending”. All the recordings were taken from
the C1 camera of the L1 cluster. Additionally, the total 5 short recordings per subject were
concatenated into a long recording for each action at 22fps. In Table 7.3, we can see that
RHOPLS achieves almost the best accuracies with much faster speed, and all other methods
scale poorly with d-ranks, especially for CP-based methods, while RHOPLS is not sensitive
to any particular subject or action and large d-ranks.

7.3.4 Comprehensive Climate Dataset (CCDS)

Finally, we verified our approach on the application of climate data analysis. The data was
taken from Comprehensive Climate Dataset (CCDS) [Lozano et al., 2009] that consists of a
collection of climate records of North America. Spanning from 1990 to 2001, this data provides
monthly climate-related observations of 17 variables with 125 different locations. As it turns
out, the time series data correspond to a 3rd-order tensor of size 156 × 125 × 17. Table 7.4
illustrates an excellent trade-off between accuracy and CPU time of RHOPLS. For instance,
it takes only 0.21s to achieve a quite reasonable RMSEP of 0.8681 in contrast to 0.8674 of
GREEDY with more than 28s. In contrast, we are able to obtain the nearly best result of
0.8341 at only an little extra cost of CPU time if there is enough initial samples.

450 500 550 600
−50

0

50

100

150

200

250

Time (s)

P
os

iti
on

Ground Truth RNPLS HOPLS RHOPLS

Figure 7.13 – An example of ground truth (150s time window) and the trajectories predicted
by RHOPLS, HOPLS and RNPLS for Z-coordinate of the monkey’s hand.

108

7.4 Discussion

The drastic accelerations of our RHOPLS are realized in two stages, the first, due to Step
1, focuses on the reduction of “dimensionality” complexity. On the basis of the first stage,
the second stage (i.e., Steps 2,3 and 4) concentrates on making the low constant “sample”
complexity possible. The overall speed-ups stem from directly updating the set of factors
(regression coefficients) in lightweight manner at a small-scale factor (feature) level instead of
the raw data level, such that the relatively expensive eigenvector-style calculations are able to
execute a lot faster on the factor scale.

Table 7.3 – Performance comparison of NPLS, RNPLS, HOPLS, IHOPLS and RHOPLS for
the averaged Q, RMSEP and learning time for L = [12, 16], K = [3, 10], b = 2 on MHAD
data.

Jump (500-600)
Subject Methods Hyperparameter Q RMSEP CPU Time (s)

S6 (F)

NPLS F = 20 .7374 (.0035) 179.7 (2.5) 6.63 (.70)
RNPLS F = 5, γ = 1 .7271 (.0055) 186.8 (4.3) 3.01 (.47)
HOPLS F = 20 .7396 (.0032) 178.1 (2.4) 2.87 (.24)
IHOPLS F = 20, Nmax = 40 .7138 (.0038) 194.0 (3.0) 2.34 (.16)

RHOPLS
F = 20, I0 = 50 .7303 (.0035) 184.5 (2.6) 0.18 (.00)
F = 20, I0 = 100 .7376 (.0032) 179.5 (2.4) 0.18 (.00)
F = 20, I0 = 150 .7394 (.0033) 178.2 (2.5) 0.19 (.01)

S10 (M)

NPLS F = 15 .7368 (.0044) 183.8 (2.3) 5.53 (.95)
RNPLS F = 5, γ = 1 .7255 (.0043) 191.6 (2.7) 2.56 (.45)
HOPLS F = 20 .7406 (.0044) 181.1 (2.4) 3.00 (.25)
IHOPLS F = 20, Nmax = 40 .7086 (.0063) 200.4 (3.5) 2.44 (.13)

RHOPLS
F = 20, I0 = 50 .7314 (.0052) 188.6 (2.3) 0.19 (.01)
F = 20, I0 = 100 .7383 (.0040) 182.6 (1.8) 0.19 (.01)
F = 20, I0 = 150 .7403 (.0042) 181.2 (2.3) 0.19 (.01)

Bend (1300-1500)
Subject Methods Hyperparameter Q RMSEP CPU Time (s)

S6 (F)

NPLS F = 40 .7280 (.0023) 178.7 (1.2) 53.2 (3.4)
RNPLS F = 6, γ = 1 .6570 (.0438) 226.2 (9.8) 3.11 (.55)
HOPLS F = 40 .7299 (.0025) 177.5 (1.1) 6.97 (.11)
IHOPLS F = 40, Nmax = 40 .6705 (.0063) 208.6 (4.3) 5.32 (.28)

RHOPLS
F = 40, I0 = 100 .7170 (.0025) 186.1 (1.6) 0.23 (.01)
F = 40, I0 = 200 .7254 (.0021) 180.3 (0.8) 0.24 (.01)
F = 40, I0 = 300 .7278 (.0023) 178.8 (0.9) 0.26 (.01)

S10 (M)

NPLS F = 40 .7469 (.0024) 168.3 (1.8) 50.1 (4.8)
RNPLS F = 6, γ = 1 .6878 (.0491) 208.0 (10.3) 2.68 (.87)
HOPLS F = 40 .7491 (.0024) 166.8 (1.8) 6.81 (.71)
IHOPLS F = 40, Nmax = 40 .6956 (.0043) 193.6 (3.3) 5.14 (.21)

RHOPLS
F = 40, I0 = 100 .7338 (.0054) 176.9 (2.8) 0.22 (.01)
F = 40, I0 = 200 .7445 (.0027) 169.8 (2.1) 0.23 (.01)
F = 40, I0 = 300 .7472 (.0027) 168.1 (2.1) 0.25 (.01)

109

Table 7.4 – Forecasting performance for lag = 3, trained with 50% of all the time series,
b = 1 on CCDS data.

Methods Rank and Hyperparameter RMSEP CPU Time (s)
GREEDY ORTHO 0.8674 28.25
NPLS F = 10 0.8296 18.13
RNPLS F = 5 γ = 0.9 0.9295 7.11
HOPLS F = 8 L = [45, 14] K = [15, 14] 0.8367 10.05

IHOPLS F = 4 L = [15, 14] K = [5, 14] Nmax = 20 0.8700 2.77
F = 4 L = [45, 14] K = [15, 14] Nmax = 20 0.8449 5.20

RHOPLS

F = 8 L = [15, 14] K = [5, 14] I0 = 25 0.8681 0.21
F = 8 L = [45, 14] K = [15, 14] I0 = 15 0.8699 0.85
F = 8 L = [45, 14] K = [15, 14] I0 = 25 0.8400 0.89
F = 8 L = [45, 14] K = [15, 14] I0 = 35 0.8341 0.92

Note that the incremental SVD-based decomposition tool in [O’Hara, 2010] only considers
input-side data and cannot be directly applied to the tensor regression. We like to stress that
the concepts of tensor decomposition tool and tensor regression are fundamentally different
in terms of the targeted goal, algorithm and applications. Here, we proposed to integrate this
tool as one part of our whole PLS-based framework to extract loadings. All steps in RHOPLS
are essentially important and contribute to the overall speed-ups from different aspects and
thus should not be treated separately.

7.5 Conclusion

In this chapter, we presented our general tensor regression framework RHOPLS. Compared it
to other tensor regression approaches, we have in particular explained how it offers a series of
computationally advantageous operations that effectively incorporate the incremental infor-
mation from new mini-batch into the previous model approximation. We verified significant
speed-ups and high predictability of RHOPLS on a variety of real-life applications. For future
work, in connection with this chapter, our research will focus on how to adaptively select the
rank hyperparameters each time a new mini-bath arrives.

Up to this point, all the tensor regression models in previous chapters involve only single input
or output tensor. In the next chapter, we will address the task of integrating multiple data
tensors.

110

Chapitre 8

Partial Least Squares Regression :
A Kernel-based Multiblock Tensor
Approach

In this chapter, a generalized nonlinear tensor regression framework, called kernel-based multi-
block tensor PLS regression (KMTPLS) [Hou et al., 2016], is introduced. This chapter shows
how KMTPLS integrates the information from multiple tensorial data sources and unifies the
single and multiblock tensor regAression into one model using both common and discriminative
features. Then, it shows how KMTPLS experimental results on real data benefits when applied
to the real-world tensor regression task in computer vision.

8.1 Introduction

Several variants of tensor regression models have been previously investigated, all of which
involve only a single source of tensorial data. Nevertheless, recent advancing technologies have
been producing massive tensorial data streams from multiple sources or modalities that couple
in a common domain, and thus can be analyzed jointly, e.g., the linked EEG and fMRI from
neuroimaging data analysis.

Most of studies have focused on the single-block situation and the predictability is always
restricted due to the limited amount of information contained in the single data source. If
we simply apply the above methods and average the predictions among the blocks, then the
obtained result will not outperform the best singleton case, since the common features of
all data blocks are neglected. Such progress highlights a growing need for the development
and application of tensor regression techniques by considering multiple predictor and response
tensor blocks.

For this purpose, Smilde et al. [2000] proposed the multiway multiblock covariates regression

111

(MMCR) model, to quantitatively analyze a collection of predictor and response tensor blocks.
Generally, MMCR handles all the predictor blocks in a hierarchical way so that a super latent
factor matrix is defined based on all the individual latent factor matrices to make the final
prediction. However, MMCR may suffer from low predictive ability due to the restriction of
linearity, and thus is inadequate in terms of predictability in a situation where the nonlinear
dependencies exist between the response and predictor tensor blocks. Moreover, Westerhuis
et al. [1998] suggested that multilinear multiblock PLS like MMCR is equivalent to PLS model
with all variables combined into a large X -block in terms of predictive ability. Besides, the
developed algorithm for solving MMCR is based on an alternating least square (ALS) style
approach [Carroll and Chang, 1970], which is known to be a suboptimal procedure with slow
convergence rate.

To address the limitations as those of MMCR, we present in this chapter a new generalized
nonlinear tensor regression framework, namely kernel-based multiblock tensor partial least
squares (KMTPLS) [Hou et al., 2016], that serves as an extension to KTPLS [Zhao et al.,
2013b] by incorporating the kernel concept into the context of multiblock tensor regression.
As for the implementation, our algorithm is also extended from the NIPALS-PLS algorithm
[Wold et al., 1984; Rosipal and Trejo, 2002] (see Appendix A.2) to the high-order tensors. To
this end, our contributions are as follows :

1. we introduce a generalized nonlinear framework that effectively fuses the information
from multiple tensorial data sources and integrates single and multiblock tensor regres-
sion scenarios into one general model using both common and discriminative features ;

2. we successfully address the nonlinear dependencies between multiple response and pre-
dictor tensor blocks by combining kernel machines with joint Tucker decomposition,
which leads to a further enhanced predictive power ;

3. we develop an efficient algorithm for KMTPLS based on sequentially extracting common
and discriminative latent vectors, which can easily scale to a number of blocks.

To our knowledge, this is the first work that applies multiblock tensor regression approach to
the multiview or multimodal human motion estimation problem in computer vision.

8.2 Kernel-based Multiblock Tensor PLS Regression
(KMTPLS)

As already mentioned, the main objective of KMTPLS is to predict a set of dependent tensor
blocks from a set of independent tensor blocks through the extraction of a small number of
common and individual latent components followed by a regression step using them.

Without the loss of generality, we consider a (M1 + 1)th-order independent tensor block X1 ∈
RN×I1×···×IM1 , a (M2 + 1)th-order independent tensor block X2 ∈ RN×J1×···×JM2 and a (L +

112

1)th-order dependent tensor block Y ∈ RN×K1×···×KL , which can be obtained by concatenating
N pairs of observations {(X (n)

1 ,X (n)
2 ,Y(n))}Nn=1 that couple in the first mode with the same

sample size. Similar to KTPLS [Zhao et al., 2013b], the tensorial input and output data points
X (n)

1 , X (n)
2 and Y(n) are mapped into the high-dimensional feature space H using a nonlinear

transformation φ as follows :

φ : X (n) → φ(X (n)) ∈ RH1×···×HM . (8.1)

We thus have φ(X1), φ(X2) and φ(Y) for the corresponding blocks, which for simplicity can
be denoted as Φ1, Φ2 and Ψ, respectively.

Unlike KTPLS, we now perform the Tucker decompositions of Φ1, Φ2 and Ψ jointly in H by
taking both common and individual features into account

Φ1 = GX1 ×1 [Tcom|Tdis1]×2 P
(1)
1 × · · · ×M1+1 P

(M1)
1 + εX1 ,

Φ2 = GX2 ×1 [Tcom|Tdis2]×2 P
(1)
2 × · · · ×M2+1 P

(M2)
2 + εX2 ,

Ψ = GY ×1 [Ucom|Udis1 |Udis2]×2 Q(1) × · · · ×L+1 Q(L) + εY ,

Udis1 = Tdis1Ddis1 + Edis1 ,

Udis2 = Tdis2Ddis2 + Edis2 ,

Ucom = TcomDcom + Ecom,

(8.2)

where {GX1 ,GX2 ,GY} stand for the core tensors and {P(m1)
1 ,P(m2)

2 ,Q(l)} denote the corre-
sponding loading factor matrices. {Tcom,Ucom} are defined as the common latent factor ma-
trices, while {Tdis1 ,Udis1} and {Tdis2 ,Udis2} correspond to the discriminative factor matrices.
Note that each pair of latent factor matrices is connected by an inner relation, namely the diag-
onal matrices Dcom, Ddis1 and Ddis2 , assuming that U is linearly approximated by T. Finally,
{εX1 , εX2 , εY} and {Edis1 ,Edis2 ,Ecom} represent the residuals. As we can see, Φ1 and Φ2 are
simultaneously correlated with Ψ by having the largest covariance between latent factors Tcom

and Ucom. Meanwhile, Φ1 singly associates with Ψ by maximizing covariance between latent
factors Tdis1 andUdis1 . Likewise, the individual connection between Φ2 and Ψ is characterized
via the maximum covariance between Tdis2 and Udis2 .

The framework of KMTPLS is shown in Figure 8.1. The latent factor matrix [Ucom|Udis1 |Udis2]

of output block Ψ consists of individual latent factors Udis1 and Udis2 from each respective
input block and common latent factor Ucom from both input blocks. In essence, the common
partTcom captures the variation that is present in all predictor blocks and hence describes what
all blocks have in common. The discriminative parts Tdis1 and Tdis2 explain the variation only
in their own individual tensor block. Rather than explicitly estimating all the high-dimensional
core tensors and loading factors, we only need to compute all the latent factors described in
(8.2).

113

Figure 8.1 – Illustration of the framework of kernel-based multiblock tensor partial least
squares (KMTPLS) regression.

114

In [Zhao et al., 2013b], the optimization objective related to the regression problem of single
input tensor and single output tensor is given by

max
{wr,vr}

[cov(tr,ur)]2 for r = 1, ..., R,

s.t. tr = Φ(1)wr, ur = Ψ(1)vr,
(8.3)

where Φ(1) and Ψ(1) are the matricizations of single input Φ and output Ψ in the first mode,
respectively. Here wr and vr serve as weight vectors. The goal is to maximize the covariance
of latent vector tr of input Φ and latent vector ur of output Ψ for r = 1, ..., R.

In our 2-block input setting, for the common latent factor Tcom = [t1, ..., tR] the optimization
objective related to the regression problem extended from [Zhao et al., 2013b] turns out to be

max
{w1r,w2r,vr}

[cov1(tr,ur)cov2(tr,ur)]2 for r = 1, ..., R,

s.t. tr = Φ1(1)w1r = Φ2(1)w2r, ur = Ψ(1)vr,
(8.4)

where we aim to optimize two covariance cov1 and cov2 at the same time, yielding the maximum
product of pair-wise covariance of latent vectors. Here cov1 involves input block Φ1 and output
block Ψ, while cov2 relates to input block Φ2 and output block Ψ. In the case of discriminative
part Tdis1 (Tdis2), the objective is similar except that only the cov1 (cov2) should be taken
into consideration.

The strategy for solving the above optimization problem (8.4) consists in sequentially extract-
ing by deflation R pairs of the latent vectors {tr,ur} to incorporate the information of Φ1 and
Φ2 into the model simultaneously.

The KMTPLS procedure extending from the NIPALS-PLS algorithm [Wold et al., 1984; Rosi-
pal and Trejo, 2002] is summarized in Algorithm 8, which consists of two major stages. In
Stage 1 (lines 4-15), during each inner iteration the latent vector tr is first updated by the
information of Φ1 at line 7 and then immediately followed by an update of the information of
Φ2 at line 9. Having extracted a new pair of {tr,ur}, the deflations with respect to Φ1(1)Φ

T
1(1),

Φ2(1)Φ
T
2(1) and Ψ(1)Ψ

T
(1) are executed from lines 12 to 14, removing the calculated variation

from the corresponding blocks. The repeated extraction procedure stops when the desired R
number of vector pairs are obtained (line 15). Stage 1 means the common contribution from
Φ1 and Φ2 is collaboratively responsible for Ψ. Substituting these inner steps into each other,
Stage 1 is in fact equivalent to solving the following eigenvalue problems

Φ1(1)Φ
T
1(1)Ψ(1)Ψ

T
(1)Φ2(1)Φ

T
2(1)Ψ(1)Ψ

T
(1)tr = λtr,

ur = Ψ(1)Ψ
T
(1)tr.

(8.5)

It is worth noting that Φ1(1)Φ
T
1(1) and Φ2(1)Φ

T
2(1), containing only the inner products between

vectorized tensorial data points, can be substituted by kernel Gram matrices KX1 and KX2

115

respectively. Likewise, the Ψ(1)Ψ
T
(1) is also replaced with KY . Hence, the previous deflation

step in Algorithm 8 for Φ1(1)Φ
T
1(1) (line 12) finally becomes

KX1 ← (I− trtTr)KX1(I− trtTr), (8.6)

and the previous formulations (8.5) can be rewritten as

KX1KYKX2KYtr = λtr,

ur = KYtr.
(8.7)

Thereafter, we continue to extract the discriminative latent pairs {Tdis1 ,Udis1} and {Tdis2 ,Udis2}
(lines 16-30), which are used to explain the variation of each individual block, from the deflated
Φ1, Φ2 and Ψ obtained in the first stage.

In Stage 2 of KMTPLS in Algorithm 8, we follow the similar extracting pattern as Stage 1

except that {Φ1,Ψ} and {Φ2,Ψ} are considered separately, which implies one separate effect
on the final response Ψ is from Φ1, and the other separate effect on the final response Ψ is
from Φ2.

As shown in Algorithm 8, the computational cost of extraction each pair of latent vectors (e.g.,
common latent vectors {tr,ur} with r = 1, ..., Rcom, or discriminative latent vectors {ti ri ,ui ri}
with ri = 1, ..., Rdis i and i = 1, , , T) is O(N2). Hence, the overall cost is proportional to the
total number of desired latent components in T blocks, i.e., Rcom + Rdis1 + · · · + RdisT ,
which means the algorithm can be scalable to relatively large number of T blocks. We should
mention that the cost of establishing the kernel matrix, depending on the specially designed
tensor kernel function, should also be taken into account.

For the single block case, the final prediction Ynew from single input test point Xnew is given
by Zhao et al. [2013b] as

yT
new = kT

Xnew
U(TTKXU)−1TTY(1), (8.8)

where (kXnew)n = k(Xnew,X (n)).

As for our 2-block input setting, with all the latent factors Tcom, Tdis1 , Tdis2 andUcom,Udis1 ,
Udis2 in hand, the new response Ynew can be jointly predicted from the test point X1new of
the first input block and X2new of the second input block by extending (8.8) to be

yT
new = αkT

X1new
U1(TT

1KX1U1)−1TT
dis1Y(1) +(1−α)kT

X2new
U2(TT

2KX2U2)−1TT
dis2Y(1), (8.9)

where (kX1new)n = k(X1new,X (n)
1) and (kX2new)n = k(X2new,X (n)

2). T1 = [Tcom|Tdis1], T2 =

[Tcom|Tdis2], U1 = [Ucom|Udis1] and U2 = [Ucom|Udis2]. The hyperparameter α varying from
0 to 1 indicates the relative importance of each block, and thus can be heuristically determined
according to their individual predictive ability. Notice that here ynew is in a vector form and
should be reformulated into a tensor form Ynew by refolding.

116

Algorithm 8 Kernel-based Multiblock Tensor Partial Least Squares (KMTPLS)

1: Input : observations of Φ1, Φ2 and Ψ ; number of desired latent vectors R, R1 and R2

2: Output : common matrices Tcom, Ucom and discriminative matrices Tdis1 , Udis1 , Tdis2 ,
Udis2

3: Initialize : randomly initialize ur, u1r1 and u2r2

4: /* Stage 1 : extract common latent factor Tcom, Ucom */
5: repeat
6: repeat
7: tr = Φ1(1)Φ

T
1(1)ur, tr ← tr/‖tr‖

8: ur = Ψ(1)Ψ
T
(1)tr, ur ← ur/‖ur‖

9: tr = Φ2(1)Φ
T
2(1)ur, tr ← tr/‖tr‖

10: ur = Ψ(1)Ψ
T
(1)tr, ur ← ur/‖ur‖

11: until convergence
12: deflate Φ1(1)Φ

T
1(1) matrix :

Φ1(1)Φ
T
1(1) ← (Φ1(1) − trtTr Φ1(1))(Φ1(1) − trtTr Φ1(1))

T

13: deflate Φ2(1)Φ
T
2(1) matrix :

Φ2(1)Φ
T
2(1) ← (Φ2(1) − trtTr Φ2(1))(Φ2(1) − trtTr Φ2(1))

T

14: deflate Ψ(1)Ψ
T
(1) matrix :

Ψ(1)Ψ
T
(1) ← (Ψ(1) − trtTr Ψ(1))(Ψ(1) − trtTr Ψ(1))

T

15: until R pairs of latent vectors of {Tcom,Ucom} or the rank condition is met
16: /* Stage 2 : extract discriminative latent factors Tdis1, Udis1, Tdis2, Udis2 */
17: repeat
18: repeat
19: t1r1 = Φ1(1)Φ

T
1(1)u1r1 , t1r1 ← t1r1/‖t1r1‖

20: u1r1 = Ψ(1)Ψ
T
(1)t1r1 , u1r1 ← u1r1/‖u1r1‖

21: until convergence
22: deflate Φ1(1)Φ

T
1(1) matrix :

Φ1(1)Φ
T
1(1) ← (Φ1(1) − t1r1tT1r1Φ1(1))(Φ1(1) − t1r1tT1r1Φ1(1))

T

23: deflate Ψ(1)Ψ
T
(1) matrix :

Ψ(1)Ψ
T
(1) ← (Ψ(1) − t1r1tT1r1Ψ(1))(Ψ(1) − t1r1tT1r1Ψ(1))

T

24: repeat
25: t2r2 = Φ2(1)Φ

T
2(1)u2r2 , t2r2 ← t2r2/‖t2r2‖

26: u2r2 = Ψ(1)Ψ
T
(1)t2r2 , u2r2 ← u2r2/‖u2r2‖

27: until convergence
28: deflate Φ2(1)Φ

T
2(1) matrix :

Φ2(1)Φ
T
2(1) ← (Φ2(1) − t2r2tT2r2Φ2(1))(Φ2(1) − t2r2tT2r2Φ2(1))

T

29: deflate Ψ(1)Ψ
T
(1) matrix :

Ψ(1)Ψ
T
(1) ← (Ψ(1) − t2r2tT2r2Ψ(1))(Ψ(1) − t2r2tT2r2Ψ(1))

T

30: until R1 pairs of latent vectors of {Tdis1 ,Udis1} or the rank condition is met, and R2

pairs of latent vectors of {Tdis2 ,Udis2} or the rank condition is met

117

Table 8.1 – Performance comparison of KMTPLS and MMCR for the optimal Rank, Q and
RMSEP on UMPM data.

Scenario Methods Camera Rank Q RMSEP

Grab

KMTPLS

F (10) 0.7141 241.4
L (6) 0.7240 230.0
R (10) 0.7789 185.5
F-L (6,4,1) 0.7690 192.7
F-R (8,1,2) 0.7950 172.8
L-R (8,0,2) 0.7995 169.7

MMCR
F-L (3,10,2) 0.6237 347.7
F-R (3,10,8) 0.6111 351.2
L-R (3,10,1) 0.6497 292.7

Triangle

KMTPLS

F (9) 0.7599 202.5
L (9) 0.7462 208.2
R (10) 0.7227 232.3
F-L (8,2,2) 0.7801 181.3
F-R (1,8,0) 0.7629 200.2
L-R (7,1,3) 0.7691 190.6

MMCR
F-L (4,9,1) 0.7168 241.3
F-R (4,10,1) 0.7195 239.9
L-R (5,8,2) 0.7324 224.5

Table

KMTPLS

F (10) 0.6340 298.0
L (9) 0.5995 319.3
R (10) 0.5906 325.9
F-L (1,9,8) 0.6910 247.4
F-R (1,9,0) 0.6414 291.2
L-R (9,0,1) 0.6847 250.7

MMCR
F-L (3,9,9) 0.6713 267.2
F-R (5,10,1) 0.6626 277.2
L-R (4,7,2) 0.6761 260.9

8.3 Experimental Results

In all experiments, the MMCR and KMTPLS were used for comparison including the settings
of single and multiple input blocks for KMTPLS model. For simplicity, the polynomial kernel
function of second degree was employed. The predictive performance was quantitatively eval-
uated by means of the root mean squares of prediction (RMSEP) [Kim et al., 2005] and the
Q index [Luo et al., 2015].

8.3.1 Utrecht Multi-Person Motion Database (UMPM)

We first applied our KMTPLS algorithm to a real-life tensor regression task, i.e., estimation of
articulated 3D human pose positions from multiple video streams, to systematically show the
advantages of our algorithm. The dataset was taken from the Utrecht Multi-Person Motion
(UMPM) benchmark [Aa et al., 2011], which provides synchronized motion capture data and
video sequences from multiple viewpoints.

118

More specifically, the video sequences of 30-60 seconds were captured using 4 Basler calibrated
color cameras with a resolution of 644 × 484 pixels at 50 fps. In addition, to obtain the 3D

ground truth information, a Vicon MoCap system was used to record the 3D positions of
37 reflective markers attached to each subject at a frame rate of 100 fps for describing the
movements of head, shoulders, elbows, wrists, knees and ankles etc. The activities of natural
motions of humans in daily life such as walking, jogging, balancing were captured within a
region of 6m×6m. For our test, we employed the intensity image sequences, with a downsized
resolution of 32× 24 pixels, as inputs of our KMTPLS algorithm. Hence, each video sequence
can be naturally represented as a 3-order predictor tensor (i.e., frames × width × height). As
for the ground truth, the MoCap data was down-sampled at 50 fps, and thus can be expressed
as a 3rd-order tensor (i.e., samples × 3D positions × markers). For each scenario, we split
the video sequence into two different partitions, i.e., a training set from the first 1/3 part and
a test set from the remaining 2/3 part, respectively. The cross-validation applied on training
set was performed to select all the desired tuning parameters.

In our experiments, we chose 3 principal cameras that form an equilateral triangle including
the front camera (F), the left camera (L) and the right camera (R), and we mainly focused
on the 2-block situation while the multiple input blocks cases were studied in the following
section. To be fair, the maximal possible number of latent vectors that can be extracted from
each individual block was set as 10 for both KMTPLS and MMCR.

Table 8.1 summarizes the prediction performance from KMTPLS and MMCR. Clearly, our
method significantly outperformed MMCR in almost all cases in terms of predictive accuracy,

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Q
 In

de
x

KMTPLS F

KMTPLS L

KMTPLS R

KMTPLS F−L

KMTPLS F−R

KMTPLS L−R

MMCR F−L

MMCR F−R

MMCR L−R

Grab

Triangle

Table

Figure 8.2 – Performance comparison of KMTPLS and MMCR for the Q versus the different
combination of cameras on UMPM data.

119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Alpha

Q
 In

de
x

Grab

F−L F−R L−R F L R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

Alpha

Q
 In

de
x

Triangle

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Alpha

Q
 In

de
x

Table

Figure 8.3 – Performance comparison of KMTPLS for the Q when using the optimal rank
versus the relative importance α on UMPM data.

120

0 200 400 600 800 1000 1200 1400 1600 1800
−1000

0

1000

X
3D Front Angle Trajectory

0 200 400 600 800 1000 1200 1400 1600 1800

200

400

Y

0 200 400 600 800 1000 1200 1400 1600 1800
−1000

0

1000

Frame

Z
MMCR F−L Ground Truth KMTPLS F KMTPLS F−L

Figure 8.4 – Visualization of ground truth and the trajectories predicted by MMCR and
KMTPLS in the “table” scenario.

especially in the “grab” scenario where the largest performance improvement were 30.09% with
respect to Q when the front camera and the right camera were integrated. Meanwhile, as also
shown in Figure 8.2, we can see that the considerably improved predictability were achieved
by all 2-block situations in comparison to the corresponding single block cases. For example,
in the “table” scene, the optimal Q obtained by the left and the right cameras were 0.5995

and 0.5906, while it was boosted to 0.6847, with the improvement of 14.21% and 15.93%, as
we effectively fuse two cameras using KMTPLS.

To investigate the effects of α, which indicates the relative importance of each block as reflected
in (8.9), on the predictive performance, Q is given in Figure 8.3 for varying α at the retained
ranks. We may notice that the optimal α, which is the measurement of involvement in the
final prediction, can somehow roughly reflect the relatively predictive power of each individual
block. Specifically, the optimal α in the “grab” scene were 0.1 and 0.2 for the “F-R” and “L-R”,
indicating the model intended to attach more importance to the camera “R” with the best
singleton predictive accuracy of 0.7789. For the visualization, Figure 8.4 further demonstrates
the ground truth and the predicted 3D front angle trajectories for the test sequence using the
front and left cameras. We can see that our KMTPLS “L-R” achieves much better accuracy
than both KMTPLS “L” and MMCR “L-R” cases.

8.3.2 Berkeley Multimodal Human Action Database

In order to validate the superiority of KMTPLS in the context of several cameras from mul-
tiple views, a second experiment was carried out on the Berkeley Multimodal Human Action
Database (MHAD) [Ofli et al., 2013] and it consists of temporally synchronized data simul-

121

taneously recorded by several different systems, including an optical motion capture system,
four multi-view stereo camera clusters and two Microsoft Kinect cameras.

The MHAD comprises 11 actions performed by 12 subjects, with each subject performing 1

or 5 repetitions of each action per recording. We chose the 2 most challengeable actions with
5 repetitions that involve dynamics in both upper and lower extremities, namely “jumping in
place” and “bending-hands up all the way down”.

In this experiment, we were particularly interested in how the predictive performance is af-
fected by the number of predictor blocks in the process of fusion. To this end, we selected 4 of
C1 cameras from 4 clusters as well as 2 of C2 cameras from clusters L1 and L2, resulting in a
total number of 6 cameras from all available 12 cameras. Note that each time we chose a subset
of these 6 cameras as candidates to jointly make the prediction, we therefore have “6 choose
T ” (CT6) different combinations for the T -block situation. Similar to the previous experiment,
both video sequence and MoCap data are represented as 3-order tensors. In the case of the
ground truth, the 3D positions of 43 LED markers affixed to different parts of the body were
captured within the space of 2m×2m. We took the first recording of each action as training
set and the second recording as test set. The optimal number of common and discriminative
latent vectors was selected by cross validation on the training set. The maximal number of
latent vectors from each block for both models was fixed as 8. Finally, the total number of
predictor tensor blocks T grew up to 4, and the importance parameter α for each block was
simply fixed to be 1/T .

The averaged prediction results as well as the learning time of the two methods are compared
in Table 8.2. As was expected, KMTPLS exhibited much better performance than MMCR
with respect to all the measurements. In particular, for the “bending” action, the averaged
improvement by KMTPLS over MMCR when using 4 blocks were 7.53%, 8.28% and 4.28% in
terms of Q, and 15.8%, 19.5% and 8.3% in terms of RMSEP for subjects “s6”, “s10” and “s12”,
respectively. On the other hand, KMTPLS shows a consistently enhanced predictability as the
number of blocks increases from 1 up to an optimal number, demonstrating the effectiveness
of our fusion strategy. Specifically, comparing to 1-block KMTPLS, the improved accuracy of
action “jumping” with respect to Q by 4-block KMTPLS accumulated to 2.40%, 1.71% and
2.92% for subjects “s6”, “s10” and “s12”.

Figure 8.5 and Figure 8.6 illustrate the best prediction results among the CT6 combinations
in each T -block case. We note that the predictive enhancement becomes smaller as more
blocks were incorporated into the model, which was then followed by a slight decrease when
the number of blocks exceeded an optimal threshold. For instance, in Figure 8.5, the optimal
number of blocks for subject “s10” in “jumping” action is 3. This reflects the fact that adding
too many blocks, on the other hand, may increase the chances of overfitting or bring noise
into the model, leading to a degraded predictive ability.

122

Table 8.2 – Performance comparison of KMTPLS and MMCR for the averaged Q, RMSEP
and learning time on MHAD data.

Action Subject Methods Blocks Q RMSEP Time (ms)

Jumping

S6

KMTPLS

1 0.6836 (0.0056) 209.3 (4.2) 38 (19)
2 0.6955 (0.0043) 200.7 (2.9) 70 (27)
3 0.6986 (0.0030) 199.3 (1.9) 92 (58)
4 0.7000 (0.0025) 198.5 (1.6) 139 (81)

MMCR
2 0.6717 (0.0050) 218.3 (3.0) 1616 (999)
3 0.6762 (0.0027) 215.4 (1.6) 2530 (1235)
4 0.6790 (0.0019) 213.7 (1.1) 2954 (788)

S10

KMTPLS

1 0.7141 (0.0057) 196.8 (4.3) 45 (13)
2 0.7230 (0.0047) 190.4 (3.5) 74 (43)
3 0.7253 (0.0038) 188.3 (2.8) 134 (63)
4 0.7263 (0.0027) 187.9 (2.0) 195 (85)

MMCR
2 0.6930 (0.0047) 211.3 (3.4) 2248 (2175)
3 0.6967 (0.0021) 208.7 (1.5) 2771 (2551)
4 0.6989 (0.0010) 207.2 (0.8) 2985 (2408)

S12

KMTPLS

1 0.7059 (0.0065) 198.9 (5.3) 16 (6)
2 0.7199 (0.0032) 189.2 (2.3) 31 (12)
3 0.7240 (0.0029) 186.3 (2.2) 41 (13)
4 0.7265 (0.0016) 184.3 (1.2) 69 (23)

MMCR
2 0.6909 (0.0051) 208.1 (3.4) 1689 (983)
3 0.6943 (0.0041) 205.4 (2.5) 2568 (1039)
4 0.6959 (0.0036) 204.2 (2.1) 4280 (2136)

Bending

S6

KMTPLS

1 0.6991 (0.0059) 188.7 (4.4) 71 (12)
2 0.7076 (0.0030) 182.8 (2.3) 122 (15)
3 0.7112 (0.0021) 179.9 (1.6) 173 (13)
4 0.7129 (0.0015) 179.0 (1.2) 324 (44)

MMCR
2 0.6524 (0.0179) 217.3 (11.1) 4510 (2201)
3 0.6602 (0.0045) 212.8 (3.1) 8154 (3077)
4 0.6630 (0.0029) 210.8 (1.8) 13116 (3974)

S10

KMTPLS

1 0.7329 (0.0055) 168.9 (3.9) 49 (22)
2 0.7449 (0.0029) 160.2 (2.2) 110 (26)
3 0.7493 (0.0029) 157.3 (1.3) 149 (21)
4 0.7516 (0.0015) 155.6 (1.1) 199 (27)

MMCR
2 0.7010 (0.0100) 188.9 (6.3) 8118 (3676)
3 0.6945 (0.0164) 193.0 (10.5) 11575 (4390)
4 0.6941 (0.0133) 193.4 (8.7) 15540 (4837)

S12

KMTPLS

1 0.6755 (0.0060) 195.3 (4.3) 69 (16)
2 0.6841 (0.0020) 189.5 (1.4) 138 (19)
3 0.6859 (0.0015) 188.8 (1.0) 226 (38)
4 0.6867 (0.0015) 188.4 (1.0) 314 (45)

MMCR
2 0.6541 (0.0032) 208.1 (1.7) 3256 (1318)
3 0.6564 (0.0033) 206.8 (1.3) 7289 (2180)
4 0.6585 (0.0020) 205.5 (1.0) 10649 (2925)

123

1 2 3 4

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

Number of Input Blocks

Q
 In

de
x

Jumping in the Place

KMTPLS S6

KMTPLS S10

KMTPLS S12

MMCR S6

MMCR S10

MMCR S12

1 2 3 4
180

185

190

195

200

205

210

215

Number of Input Blocks

R
M

S
E

P

Jumping in the Place

Figure 8.5 – Performance comparison of KMTPLS and MMCR for the best Q, RMSEP
versus the number of input blocks on jumping action on MHAD data.

124

1 2 3 4
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Number of Input Blocks

Q
 In

de
x

Bending

KMTPLS S6

KMTPLS S10

KMTPLS S12

MMCR S6

MMCR S10

MMCR S12

1 2 3 4
150

160

170

180

190

200

210

Number of Input Blocks

R
M

S
E

P

Bending

Figure 8.6 – Performance comparison of KMTPLS and MMCR for the best Q, RMSEP
versus the number of input blocks on bending action on MHAD data.

125

8.4 Discussion

Some remarks about our KMTPLS approach can be noticed. This approach can actually be
regarded as a generalized kernel-based nonlinear tensor regression framework that includes
the KTPLS [Zhao et al., 2013b] as a special case by setting the number of latent components
from other tensor blocks to be zero. Additionally, KMTPLS enables us to straightforwardly
extend both model and algorithm to more general cases in which more than two predictor
tensor blocks and one response tensor block are involved. Furthermore, based on common and
discriminative features, KMTPLS is superior to MMCR with respect to the interpretability.
Inheriting the advantage from KTPLS, KMTPLS is capable of flexibly adapting different types
of specially defined tensor kernel functions, namely

(KX1)nn′ = kx1(X (n)
1 ,X (n′)

1)

(KX2)nn′ = kx2(X (n)
2 ,X (n′)

2)

(KY)nn′ = ky(Y(n),Y(n′)),

(8.10)

to different individual tensor blocks, leading to a better performance than that of combining
all variables in one large X -block. Note that our algorithm is extended from the NIPALS-PLS
algorithm [Wold et al., 1984; Rosipal and Trejo, 2002], which has proved to be very robust for
solving the eigenvalue related problems, providing a robust procedure for iteratively estimating
latent components in our setting. Therefore, we can reliably extract a desired number of pairs
of latent components up to the point when the rank of the corresponding unfolded tensor
block is reached.

8.5 Conclusion

We have proposed a generalized nonlinear tensor regression framework KMTPLS that effec-
tively fuses the information from multiple tensorial data sources and unifies the single and
multiblock tensor regression into one model using both common and discriminative features.
Comparing to multilinear model MMCR [Smilde et al., 2000], our approach can successfully
deal with the nonlinear dependencies between multiple responses and predictor tensor blocks
by combining kernel machines with joint Tucker decomposition, resulting in significantly en-
hanced predictive power.

The experimental results on both UMPM and MHAD databases have demonstrated the ad-
vantages of our method when applied to the real-world tensor regression task in computer
vision. For future work, in connection with KMTPLS approach, we would like to mention that
performance could be further improved at the cost of running time for designing and adapt-
ing more sophisticated tensorial kernel functions by exploiting more structural information of
tensorial data than simply using polynomial or Gaussian kernel functions.

In the next chapter, we conclude the thesis and discuss some possible future work.

126

Chapitre 9

Conclusion

In this thesis, we have introduced several novel tensor-variate regression models and applied
them to numerous real-world applications. Our proposed approaches provide promising solu-
tions to different issues and problems confronted by the existing tensor regression models from
different perspectives. These solutions have been validated on a number of challenging tensor-
variate regression tasks with high accuracy and efficiency. In this last chapter, we sum up our
contributions of the thesis as well as some suggestions for the future work.

9.1 Summary of the Contributions

Hierarchical Tucker Tensor Regression

In [Hou and Chaib-draa, 2015] and in Chapter 4, we first focused our attention on the mul-
tilinear regression model with tensorial input and scalar output, and we proposed a low-rank
generalized linear tensor regression model by approximating the tensor regression coefficient
with hierarchical Tucker representation.

Compared to the existing models [Zhou et al., 2013; Li et al., 2013], our proposed model pre-
serves all the advantages in terms of simplicity and flexibility. The resulting model is highly
compact as only O(DR3 + DIR) parameters are needed for order D tensors of mode size I
and rank R, which is free from the exponential growth in D. With this compression rate, our
model can be found quite beneficial when applied to regression tasks with potentially very
high order tensor input. (e.g., fifth-order face images with pixels × illuminations × expres-
sions × viewpoints × identities [Vasilescu and Terzopoulos, 2002]). In addition, our model is
particularly useful for application such as medical imaging data analysis (e.g., fMRI images)
where only very limited number of samples are available, resulting in a better generalization
performance. Moreover, as shown in Proposition 3 and Appendix B.1, our model is guaranteed
to have good convergence properties as those of models in [Zhou et al., 2013; Li et al., 2013].

127

Tensor Online Local Gaussian Process Regression

In [Hou et al., 2015] and in Chapter 5, we then worked on the nonlinear nonparametric
regression modeling with tensorial input and scalar output in the context of online setting.
We extended tensor Gaussian process (tensor GP) [Zhao et al., 2014] to tensor online local
Gaussian process (tensor OLGP) by constructing a number of small-sized GP experts in an
sequential way, such that large-scale or even infinite tensor streams can be efficiently processed
with a low constant computational load. Additionally, two effective searching strategies for
finding local GP experts were presented to make accurate predictions.

In contrast to tensor GP, the cost of tensor OLGP for learning is reduced fromO(N2ID+1+N3)

to O(NRID+1 +NSID+1 +S3), where N is the number of training samples, R is the number
of local experts and S denotes the maximum number of data points contained in each local
expert. While the computational complexity of prediction for tensor OLGP requires only
O(RID+1 +M(SID+1 + S2)) as compared to O(NID+1 +N2) in tensor GP.

For the application, the effectiveness and scalability were validated on the regression task
with large ECoG signal streams as the input. To our knowledge, we provide the first nonlinear
tensor-variate regression algorithm that can be employed to the online setting.

Incremental Higher-order Partial Least Squares Regression

In [Hou and Chaib-draa, 2016] and in Chapter 6, we considered the multilinear tensor regres-
sion problems with both tensorial input and tensorial output in the context of time-critical
dynamic environment. More specifically, we introduced incremental higher-order partial least
squares (IHOPLS) algorithm to adapt the cutting-edge HOPLS [Zhao et al., 2013a] model to
the setting of infinite time-dependent tensor streams.

Our IHOPLS is able to recursively update the projection matrices and core tensors over time
by incrementally clustering the projected latent variables in latent space and summarizing
the previous data in terms of a compact internal representation. As a result, in contrast to
the batch HOPLS, IHOPLS greatly reduces the “sample” complexity to a low-cost constant
level while maintaining high prediction accuracy. Furthermore, there is no need for IHOPLS
to store the entire data as required by HOPLS. For the applications, we successfully applied
IHOPLS to the reconstructions of 3D motion trajectories from video streams and also from
ECoG streaming signals.

Recursive Higher-order Partial Least Squares Regression

Thereafter, we continued to work on multilinear tensor regression problems with both tensorial
input and tensorial output for the setting of the large or infinite tensor sequences. To this end,
we introduced in Chapter 7 a fast low-rank sequential tensor regression framework, called
recursive higher-order partial least squares (RHOPLS) [Hou and Chaib-draa, 2017], to further

128

address the tensor-variate regression tasks with high “sample” complexity or “dimensionality”
complexity. Especially, our proposed framework is designed to deal with the great challenges
posed by the limited storage space and fast processing time allowed by dynamic environments
when facing with very large-scale high-speed general tensor sequences.

Concretely, RHOPLS efficiently updates the regression coefficients at a small-scale factor (fea-
ture) level instead of the large raw data (observation) level by integrating a low-rank mod-
ification strategy of the Tucker [O’Hara, 2010] into PLS. Thus, our consecutive calculation
scheme requires only a small set of factors to be stored. Compared to the existing approaches,
our RHOPLS does not suffer from neither inferior predictability nor poor convergence rate
of NPLS-based (CP-based) models. Our method is also free from the computational issues
related to the HOPLS-based models when the data order, “sample” complexity or “dimension-
ality” complexity is high. Finally, our RHOPLS exhibits highly competitive accuracy with the
best batch methods but is much faster than other sequential methods. For applications, we
validated it on the challenging tasks of estimation of human pose from videos, showing the
great potentiality for fast real-time predictions of human pose positions.

Kernel-based Multiblock Tensor Partial Least Squares Regression

At last, in [Hou et al., 2016] and in Chapter 8, we were interested in a more general tensor
regression framework with the objective of predicting a set of dependent tensor blocks from a
set of independent tensor blocks with a boosted predictive power. To this end, we proposed
a kernel-based multiblock tensor partial least squares (KMTPLS) regression framework to
achieve this goal through the extraction of a small number of common and discriminative
latent components.

In this way, our framework effectively integrates the information from multiple tensorial data
sources with different modalities, and unifies the single and multiblock tensor regression sce-
narios into one general model. Furthermore, comparing to multilinear model, KMTPLS suc-
cessfully addresses the nonlinear dependencies between multiple inputs and outputs by com-
bining kernel machines with joint Tucker decomposition, which leads to further enhanced pre-
dictability. Moreover, our algorithm for KMTPLS, based on sequentially extracting common
and discriminative latent vectors, can easily scale to a number of input and output blocks.

To our knowledge, this is the first work that applies multiblock tensor regression approach to
the multiview or multimodal human motion estimation problem in computer vision.

9.2 Possible Future Work

As we have already seen, most of existing tensor regression models are multilinear models that
are based on the low-rank factorizations or decompositions, i.e., CP family and Tucker family,
whose factors extracted from each mode are linear combinations of variables in that mode.

129

On one hand, multilinear tensor regression models have been extensively studied and seem to
reach a performance bottleneck. On the other hand, it is well known that multilinear models
have drawbacks in capturing the nonlinear structures in tensorial data. Therefore, nonlinear
regression modeling approaches should be further explored in the context of tensors in order
to overcome the limitations of multilinear models.

Recently, deep learning has emerged as a new promising area of machine learning research,
which is a class of machine learning algorithms that are based on the learning of multiple levels
of features or representations of the data with increasing level of abstraction [Hinton et al.,
2006; Larochelle et al., 2009; Bengio et al., 2013; Havaei et al., 2016]. Higher level features are
derived from lower level features to form a hierarchical representation using nonlinear trans-
formations. In this way, deep learning frameworks have exhibited several favorable advantages
over traditional learning methods, i.e., deep architectures can be representationally efficient ;
deep hierarchical representations allow non-local generalization and provide good comprehen-
sibility, etc. Deep learning has already been successfully applied to a variety of applications
with significant improvement in performance, e.g., image classification [Simonyan and Zisser-
man, 2014; He et al., 2015], object detection [Girshick et al., 2014; Girshick, 2015; Ren et al.,
2015] and so on.

For the future research, it seems promising to combine deep learning concepts with tensor
regression modeling. By taking advantage of deep structure, one can explore a novel class of
nonlinear tensor regression models with powerful predictability. One possible direction is to
find a framework using multiple levels of factors to represent the tensorial regression coef-
ficients so as to have a better feature or latent components representation of data, which is
expected to have a significantly enhanced accuracy. On the basis of that, one can further inves-
tigate possible solutions to speed up learning and prediction process of deep tensor regression
framework.

130

Annexe A

Mathematical Background

A.1 Partial Least Squares Regression (PLS)

Partial least squares (PLS) regression is an regression approach that is particularly useful in
predicting a set of depend variables from a very large set of independent predictors through
the extraction of a small number of latent variables.

PLS regression developed by [Wold et al., 1984] originated in econometrics, it then gained its
popularity in computational chemistry. Most recently, PLS regression is being widely used in
many applications especially in medical imaging or neuroimaging data analysis [Abdi, 2010;
Krishnan et al., 2011].

The primary goal of PLS regression is to predictY ∈ RI×M fromX ∈ RI×J by exploiting their
common structure called latent variables (or latent vectors). More specifically, PLS regression
first looks for a set of latent variables that performs a simultaneous decomposition of X and
Y that projects both X and Y onto a new subspace, meanwhile with constraint that these
latent vectors explain as much as possible of the covariance of X and Y. Then, PLS carries
out a regression step where the factors extracted from decomposition of X and Y are used to
predict a new response. The standard PLS regression takes the form of

X = TPT + E =
R∑
r=1

trpT
r + E,

Y = UQT + F =

R∑
r=1

urqT
r + F,

(A.1)

where T = [t1, ..., tR] and U = [u1, ...,uR] are extracted orthogonal latent vectors from X and
Y respectively with the constraint that T and U have the largest covariance. R represents
the matrix rank. Here T and U are also referred as the score matrices, and P = [p1, ...,pR]

and Q = [q1, ...,qR] are called as the loading matrices, E and F are the residuals of X and
Y. Figure A.1 is the illustration of PLS model corresponding to equations (A.1). Note that

131

Figure A.1 – Illustration of the framework of partial least squares (PLS) regression.

U in (A.1) is depicted in expression of ur = drrtr, where the regression coefficients {drr}Rr=1

are the elements of diagonal matrix D. Both X and Y can be decomposed as sum of rank-one
matrices.

To specify T and U, we need to find two sets of weights w and q so as to create a linear
combination of X as well as a linear combination of Y with the maximum covariance between
them. Thus, we have t = Xw and u = Yq and formulate the following optimization problem

max{w,q}{wTXTYq}

s.t. wTw = 1 and qTq = 1. (A.2)

One is able to obtain the prediction for Y by substituting U with T and D as

Y ≈ TDQT , (A.3)

132

where D = diag(d11, ..., dRR) is a diagonal matrix with weights with

drr =
uTr tr
tTr tr

. (A.4)

The above equation demonstrates that one is interested in finding latent factor T both explain
X and closely related Y.

Wold [1975b] introduced a iterative procedure, namely nonlinear iterative partial least squares
(NIPALS-PLS), to sequentially extract the latent vectors t and u from X and Y by means of
a deflation strategy. In the deflation procedure, when the first pair of latent vectors t and u
are found, their effects, in the form of rank-one matrices tpT and uqT , are subtracted from
both X and Y, the procedure iterates repeatedly until X becomes the null matrix.

In order to handle sequential observations and time-dependent changes in the data, Qin [1998]
extended the ordinary PLS regression to recursive partial least squares (RPLS) regression.
More specifically, in addition to satisfy the conditions of (A.1), the following constraints are
also held by construction

TTE = 0,

TTF = 0,
(A.5)

meaning that the latent T should be orthogonal to residuals E and F.

Furthermore, Qin [1998] shows that the residual E holds for the equation

ETE = 0. (A.6)

if the rank R is sufficiently large, and this leads to

XTX = PPT,

XTY = PDQT.
(A.7)

(A.7) implies that P can be treated as summarization of X. Likewise, DQT in (A.7) can be
considered as summarization of Y. In other words, the old data X and Y could be represented
just by the factors P and DQT with fixed sizes. Therefore, at each timestamp, the new
arriving pair of observations, i.e., {Xnew,Ynew}, can be directly concatenated to a internal
representation via P and DQT, resulting in the following data representation with constant
sizes { [

X
Xnew

] [
Y
Ynew

] }
=

{ [
P
Xnew

] [
DQT

Ynew

] }
(A.8)

In this manner, the ordinary batch PLS can always be applied to (A.8) each time when new
a pair of data block comes, resulting in a constant computation load overtime. This approach
is called recursive PLS (RPLS).

133

Algorithm 9 Nonlinear Iterative Partial Least Squares (NIPALS)

1: Input : matrix X
2: Output : latent vector t and weight vector w
3: Initialize : randomly initialize t
4: repeat
5: w = XTt
6: t = Xw, t← t/‖t‖
7: until convergence
8: deflate matrix X : X← (X− ttTX)

Taking the time-varying process into account, the data representation of RPLS becomes{ [
γP
Xnew

] [
γDQT

Ynew

] }
, (A.9)

where γ represents the forgetting factor usually ranging from 0 to 1.

A.2 Nonlinear Iterative Partial Least Squares PLS Regression
(NIPALS-PLS)

The basic nonlinear iterative partial least squares (NIPALS) [Wold, 1966] is developed to
solve the singular value decomposition problems and is closely related to the power method
[Golub and Van Loan, 2012]. The NIPALS for one iteration is outlined in Algorithm 9. For
the extraction of each pair of latent vector t and weight vector w, the lines 5-6 are iteratively
executed until convergence, which is followed by a deflation of X using t in line 8. The whole
procedure can be performed repeatedly in order to extract multiple pairs of variables that are
by construction orthogonal to each other.

Algorithm 10 Nonlinear Iterative Partial Least Squares for PLS Regression (NIPALS-PLS)

1: Input : input matrix X, output matrix Y
2: Output : latent vector t and u, weight vector w and q
3: Initialize : randomly initialize u
4: repeat
5: w = XTu
6: t = Xw, t← t/‖t‖
7: q = YTt
8: u = Yq, u← u/‖u‖
9: until convergence

10: deflate matrix X : X← (X− ttTX)
11: deflate matrix Y : Y← (Y− ttTY)

134

As have been shown in the previous section, in order to establish a linear relationship between
the input variable X ∈ RI×J and the output variable Y ∈ RI×M , PLS applies a linear combi-
nation of X and a linear combination of Y to create a collection of uncorrelated latent vectors
T = [t1, ..., tR] ∈ RI×R and a collection of uncorrelated latent vectors U = [u1, ...,uR] ∈ RI×R

respectively, such that T and U have the maximum covariance between them. The weight
vector wr of combination of input variable X and weight vector qr of combination of output
variable Y are proportional to the covariance when the corresponding latent vectors tr and
ur are extracted (as reflected in (A.2)), with r = 1, ..., R. Having obtained all latent vectors
T and U, a least squares regression step can be carried out against T and U.

To determine these latent vectors and weights, Wold et al. [1984] adapted the basic NIPALS
algorithm to the PLS regression, leading to the NIPALS-PLS algorithm. The procedure of
NIPALS-PLS for one iteration is summarized in Algorithm 10. Similar to NIPALS, NIPALS-
PLS can be used to sequentially extract latent vectors and weights but from both input and
output matrices.

A.3 Linear Algebra Basics

A.3.1 Eigenvalue Decomposition

Assume a nonzero square matrix A ∈ Rn×n, scalars λ ∈ R and nonzero vectors u ∈ Rn that
satisfy the following equation

Au = λu, (A.10)

or in an equivalent form
(A− λI)u = 0, (A.11)

then u is called eigenvector and λ is called eigenvalue associated with eigenvector u.

Let {λi}ni=1 be a set of eigenvalues and let {ui}ni=1 be a set of corresponding eigenvectors.
Typically, the eigenvectors can be rearranged into the columns of matrix U = [u1, ...,un],
while the associated eigenvalues are stored in a diagonal matrix Λ = diag(λ1, ..., λn). Then,
equation (A.10) becomes

AU = UΛ. (A.12)

Assume that the eigenvectors are linearly independent, then U−1 exists, and equation (A.12)
can be rewritten as

A = UΛU−1, (A.13)

which is known as the eigenvalue decomposition (ED) of the matrix A.

Furthermore, if A ∈ Rn×n is real symmetric matrix, then A can be factorized as

A = UΛUT, (A.14)

135

where U is orthogonal, e.g., satisfies UTU = I. The diagonal Λ contains {λi}ni=1 with real
numbers. The factorization (A.14) is call symmetric eigenvalue decomposition (SED) of the
matrix A. In an alternative form, SED also reads

A =
n∑
i=1

λiuiuT
i . (A.15)

A.3.2 Singular Value Decomposition

Suppose a nonzero matrixA ∈ Rm×n with rank(A) = r. Then there exists matricesU ∈ Rm×r,
Σ ∈ Rr×r and V ∈ Rn×r such that U and V are isometries, that is, UTU = I and VTV = I,
and Σ = diag(σ1, σ2, ..., σR) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and

A = UΣVT. (A.16)

The factorization in (A.16) is called singular value decomposition (SVD) of A. The columns of
U are orthonormal vectors called left singular vectors, the columns of V are orthonormal vec-
tors referred to right singular vectors and entries {σi}ri=1 of Σ, which are uniquely determined,
are called singular values of A. Equivalently, SVD can also be formed as

A =
r∑
i=1

σiuivT
i , (A.17)

where ui ∈ Rm corresponds to the left singular vector and vi ∈ Rn corresponds to the right
singular vector.

The SVD of a matrix A closely relates to the SED of nonnegative definite matrix ATA in the
following way

ATA = VΣ2VT = [V, V̂]

[
Σ2 0

0 0

]
[V, V̂]T, (A.18)

where [V, V̂] is orthogonal. From equation (A.18), it is not hard to see that nonzero eigenvalues
of ATA are the square of singular values of A, and the associated eigenvectors of ATA are
the right singular vectors of A.

A.4 Generalized Linear Model (GLM)

The generalized linear model (GLM) was proposed in [Nelder and Baker, 1972; McCullagh and
Nelder, 1989] whose response variable y is from an exponential family distribution including
Normal, Gamma, Binomial and Poisson distributions and can be defined as

p(y|θ, φ) = exp{yθ − b(θ)
a(φ)

+ c(y, φ)} (A.19)

where θ and φ are the natural and dispersion parameters, respectively.

136

In classical GLM, the relationship between the vector predictor x ∈ RI and the mean µ =

E(y|x) of response y ∈ R of (A.19) is established by a strictly increasing link function g(·) as

g(µ) = η

= βTx + b,
(A.20)

or equivalently,

µ = g−1(η) (A.21)

= g−1(βTx + b), (A.22)

where η denotes the linear systematic part of GLM consisting of the coefficient vector β ∈
RI and the intercept b ∈ R. Most commonly used standard link functions g(·) are Identity
(Normal), Inverse (Gamma), Logit (Binomial) and Log (Poisson).

A.5 Maximum Likelihood Estimation (MLE)

The maximum likelihood estimation (MLE) procedure is a most commonly used approach for
parameter estimation. Specifically, let p(x; θ) be a parametric model, where p(x) represents a
probability density function of x that is parameterized by a parameter vector θ = (θ1, ..., θm)

with m dimensionality. Given n training samples {xi}ni=1, the goal of MLE is to determine
parameter θ such that the probability of obtaining these training samples is maximized. For
this propose, the probability that training samples {xi}ni=1 are generated under parameter θ
can be viewed as a function of θ. Such function denoted by `(θ) is called likelihood. With an
i.i.d assumption, `(θ) can be formulated as

`(θ) =
n∏
i=1

p(xi; θ). (A.23)

Therefore, the ML estimator θ̂ML can be found by maximizing the likelihood function `(θ)

θ̂ML = arg max
θ∈Θ

`(θ) = arg max
θ∈Θ

n∏
i=1

p(xi; θ) (A.24)

Having known θ̂ML, the density estimator p̂(x) can be obtained by

p̂(x) = p(x; θ̂ML). (A.25)

In practice, it is usually more convenient and computationally easy to use log-likelihood log `(θ)

instead of likelihood `(θ). One can easily verify that the maximizer of log `(θ) is same as the
maximizer of `(θ), which is due to the fact that log is a monotone increasing function. Thus,
the ML estimator θ̂ML of log `(θ) function turns out to be

θ̂ML = arg max
θ∈Θ

log `(θ) = arg max
θ∈Θ

n∑
i=1

log p(xi; θ). (A.26)

137

Annexe B

Sketch of Proof

B.1 Sketch of Proof of Proposition 3

The proof of global convergence property can be directly derived from the standard theory for
algorithms with monotone increasing objective functions. Since the block relaxation algorithm
is a monotone increasing algorithm, the global convergence can be achieved under the following
conditions [De Leeuw, 1994; Lange, 2004, 2010] :

1. ` has a compact set {θ : `(θ) ≥ `(θ)[0]} ;

2. ` has a set of isolated stationary points ;

3. the algorithmic mapping M is continuous ;

4. θ[m] is a fixed point of algorithm if and only if θ[m] is a stationary point of ` ;

5. θ[m] is fixed point of algorithm if and only if `(θ[m+1]) ≥ `(θ[m]) with equality.

The arguments of proving our block relaxation algorithm for H-Tucker model satisfying
above conditions are similar to those of [Li et al., 2013] except condition 4. To see con-
dition 4 is satisfied, according to Fermat’s theorem (theorem of stationary points), θ[m] =

{β, {Ut}t∈L(T), {Bt}t∈N (T)} is a fixed point of the block relaxation algorithm whenD`(β) = 0,
D`(Bt) = 0 for t ∈ N (T) and D`(Ut) = 0 for t ∈ L(T). Therefore, θ[m] is a fixed point of
H-Tucker block relaxation algorithm if and only if it is a stationary point of `. As for the
satisfaction of other conditions, see [Li et al., 2013] for more details.

The local convergence property is derived from Ostrowski theorem. The theorem states that
the sequence θ[m+1] = M(θ[m]) is locally attracted to local maximum θ[∞] if the spectral radius
of the differential of the algorithmic map is less than 1, i.e., ρ(DM(θ[∞])) < 1. This condition
is satisfied based on assumption 2 of proposition, see [Zhou et al., 2013; Li et al., 2013] for
more details.

139

Bibliographie

Aa, N., Luo, X., Giezeman, G., Tan, R., and Veltkamp, R. (2011). Utrecht multi-person motion
(UMPM) benchmark : A multi-person dataset with synchronized video and motion capture
data for evaluation of articulated human motion and interaction. In HICV Workshop in
IEEE International Conference on Computer Vision (ICCV’11).

Abdi, H. (2010). Partial least squares regression and projection on latent structure regression
(PLS regression). Wiley Interdisciplinary Reviews : Computational Statistics, 2(1) :97–106.

Acar, E., Çamtepe, S. A., Krishnamoorthy, M. S., and Yener, B. (2005). Modeling and multi-
way analysis of chatroom tensors. In International Conference on Intelligence and Security
Informatics (ISI’05), pages 256–268. Springer.

Acar, E. and Yener, B. (2009). Unsupervised multiway data analysis : A literature survey.
IEEE Transactions on Knowledge and Data Engineering, 21(1) :6–20.

ADHD (2014). The Burner Data of ADHD-200 Consortium. ADHD-200 Consortium.

Andersen, A. H. and Rayens, W. S. (2004). Structure-seeking multilinear methods for the
analysis of fMRI data. NeuroImage, 22(2) :728–739.

Andersen, C. M. and Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence
excitation-emission data. Journal of Chemometrics, 17(4) :200–215.

Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Pa-
palexakis, E. E., and Koutra, D. (2014). Com2 : Fast automatic discovery of temporal
(comet) communities. In Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD’14), pages 271–283. Springer.

Babić, D., Klein, D., Lukovits, I., Nikolić, S., and Trinajstić, N. (2002). Resistance-distance
matrix : A computational algorithm and its application. International Journal of Quantum
Chemistry, 90(1) :166–176.

Bahadori, M. T., Yu, Q. R., and Liu, Y. (2014). Fast multivariate spatio-temporal analysis via
low rank tensor learning. In Advances in Neural Information Processing Systems (NIPS’14),
pages 3491–3499.

141

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning : A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8) :1798–
1828.

Beutel, A., Talukdar, P. P., Kumar, A., Faloutsos, C., Papalexakis, E. E., and Xing, E. P.
(2014). FlexiFaCT : Scalable flexible factorization of coupled tensors on hadoop. In SIAM
International Conference on Data Mining (SDM’14), pages 109–117. SIAM.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blumensath, T. and Davies, M. E. (2009). Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27(3) :265–274.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1) :1–122.

Bro, R. (1996). Multiway calidration. multilinear PLS. Journal of Chemometrics, 10 :47–61.

Bro, R. (2006). Review on multiway analysis in chemistry 2000–2005. Critical Reviews in
Analytical Chemistry, 36(3-4) :279–293.

Bro, R. and Andersson, C. A. (1998). Improving the speed of multiway algorithms Part
II : Compression. Chemometrics and Intelligent Laboratory Systems, 42(1) :105–113.

Bro, R., Harshman, R. A., Sidiropoulos, N. D., and Lundy, M. E. (2009). Modeling multi-way
data with linearly dependent loadings. Journal of Chemometrics, 23(7-8) :324–340.

Caffo, B. S., Crainiceanu, C. M., Verduzco, G., Joel, S., Mostofsky, S. H., Bassett, S. S., and
Pekar, J. J. (2010). Two-stage decompositions for the analysis of functional connectivity for
fmri with application to alzheimer’s disease risk. NeuroImage, 51(3) :1140–1149.

Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data, volume 53.
Cambridge University Press.

Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8) :1207–
1223.

Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika,
35(3) :283–319.

Chao, Z. C., Nagasaka, Y., and Fujii, N. (2010). Long-term asynchronous decoding of arm
motion using electrocorticographic signals in monkeys. Frontiers in Neuroengineering, 3.

142

Chatterjee, S. and Hadi, A. S. (2015). Regression Analysis by Example. John Wiley & Sons.

Choi, J. H. and Vishwanathan, S. (2014). DFacTo : Distributed factorization of tensors. In
Advances in Neural Information Processing Systems (NIPS’14), pages 1296–1304.

Cichocki, A. (2013). Tensor decompositions : a new concept in brain data analysis ? arXiv
preprint arXiv :1305.0395.

Cichocki, A. (2014). Tensor networks for big data analytics and large-scale optimization
problems. arXiv preprint arXiv :1407.3124.

Cichocki, A. (2018). Tensor Networks for Dimensionality Reduction, Big Data and Deep
Learning. Springer International Publishing.

Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., and Mandic, D. (2016). Tensor
networks for dimensionality reduction and large-scale optimization : Part 1 low-rank tensor
decompositions. Foundations and Trends in Machine Learning, 9(4-5) :249–429.

Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., and Phan, H. A.
(2015). Tensor decompositions for signal processing applications : from two-way to multiway
component analysis. IEEE Signal Processing Magazine, 32(2) :145–163.

Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., and Mandic, D.
(2017). Tensor networks for dimensionality reduction and large-scale optimization : Part
2 applications and future perspectives. Foundations and Trends in Machine Learning,
9(6) :431–673.

Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-i. (2009). Nonnegative Matrix and Ten-
sor Factorizations : Applications to Exploratory Multi-way Data Analysis and Blind Source
Separation. John Wiley & Sons.

Clarkson, K. L. and Woodruff, D. P. (2013). Low rank approximation and regression in input
sparsity time. In ACM Symposium on Theory of Computing (STOC’13), pages 81–90. ACM.

Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Astikainen, P., and Ristaniemi, T. (2015).
Tensor decomposition of EEG signals : A brief review. Journal of Neuroscience Methods,
248 :59–69.

Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary
covariance functions. Journal of the American Statistical Association, 94(448) :1330–1339.

Cressie, N. and Wikle, C. K. (2015). Statistics for Spatio-temporal Data. John Wiley & Sons.

Cvetković, D. M., Doob, M., and Sachs, H. (1980). Spectra of Graphs : Theory and Application,
volume 87. Academic Press.

143

Daubechies, I. (1992). Ten Lectures on Wavelets, volume 61. SIAM.

De Lathauwer, L. (2008a). Decompositions of a higher-order tensor in block terms-Part
I : Lemmas for partitioned matrices. SIAM Journal on Matrix Analysis and Applications,
30(3) :1022–1032.

De Lathauwer, L. (2008b). Decompositions of a higher-order tensor in block terms-Part
II : Definitions and uniqueness. SIAM Journal on Matrix Analysis and Applications,
30(3) :1033–1066.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000a). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4) :1253–1278.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000b). On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and
Applications, 21(4) :1324–1342.

De Lathauwer, L. and Nion, D. (2008). Decompositions of a higher-order tensor in block
terms-Part III : Alternating least squares algorithms. SIAM Journal on Matrix Analysis
and Applications, 30(3) :1067–1083.

De Leeuw, J. (1994). Block-relaxation algorithms in statistics. In Information Systems and
Data Analysis, pages 308–324. Springer.

Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. (2009). Analytic moment-based gaussian
process filtering. In International Conference on Machine Learning (ICML’09).

Draper, N. R. and Smith, H. (2014). Applied Regression Analysis. John Wiley & Sons.

Eckstein, J. and Bertsekas, D. P. (1992). On the douglas rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming,
55(1-3) :293–318.

Eliseyev, A. and Aksenova, T. (2013). Recursive N-way partial least squares for brain-computer
interface. PloS One, 8(7) :e69962.

Erdos, D. and Miettinen, P. (2013). Walk’n’Merge : A scalable algorithm for boolean tensor
factorization. In IEEE International Conference on Data Mining (ICDM’13), pages 1037–
1042. IEEE.

Gandy, S., Recht, B., and Yamada, I. (2011). Tensor completion and low-n-rank tensor recovery
via convex optimization. Inverse Problems, 27(2) :025010.

Girshick, R. (2015). Fast r-cnn. In IEEE International Conference on Computer Vision
(ICCV’15), pages 1440–1448.

144

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’14), pages 580–587.

Golub, G. H. and Van Loan, C. F. (2012). Matrix Computations, volume 3. JHU Press.

Grasedyck, L. (2010). Hierarchical singular value decomposition of tensors. SIAM Journal on
Matrix Analysis and Applications, 31(4) :2029–2054.

Guo, W., Kotsia, I., and Patras, I. (2012). Tensor learning for regression. IEEE Transactions
on Image Processing, 21(2) :816–827.

Hackbusch, W. and Kühn, S. (2009). A new scheme for the tensor representation. Journal of
Fourier Analysis and Applications, 15(5) :706–722.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure : Models and conditions for
an explanatory multi-modal factor analysis. UCLA working papers in phonetics, 16 :1–84.

Harshman, R. A. (1972). PARAFAC2 : Mathematical and technical notes. UCLA Working
Papers in Phonetics, 22 :30–47.

Harshman, R. A., Hong, S., and Lundy, M. E. (2003). Shifted factor analysis-Part I : Models
and properties. Journal of Chemometrics, 17(7) :363–378.

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin,
P.-M., and Larochelle, H. (2016). Brain tumor segmentation with deep neural networks.
Medical Image Analysis.

Haykin, S. and Network, N. (2004). A comprehensive foundation. Neural Networks, 2(2004).

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
ArXiv Preprint ArXiv : 1512.03385.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18(7) :1527–1554.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1) :164–189.

Hitchcock, F. L. (1928). Multiple invariants and generalized rank of a P-way matrix or tensor.
Journal of Mathematics and Physics, 7(1) :39–79.

Hosmer, D. W. and Lemeshow, S. (2000). Introduction to the logistic regression model. Applied
Logistic Regression, Second Edition, pages 1–30.

145

Hou, M. and Chaib-draa, B. (2015). Hierarchical tucker tensor regression : Application to brain
imaging data analysis. In IEEE International Conference on Image Processing (ICIP’15),
pages 1344–1348. IEEE.

Hou, M. and Chaib-draa, B. (2016). Online incremental higher-order partial least squares
regression for fast reconstruction of motion trajectories from tensor streams. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’16), pages
6205–6209. IEEE.

Hou, M. and Chaib-draa, B. (2017). Fast recursive low-rank tensor learning for regression. In
Internatiaonal Joint Conference on Artificial Intelligence (IJCAI’17), pages 1851–1857.

Hou, M., Wang, Y., and Chaib-draa, B. (2015). Online local gaussian process for tensor-variate
regression : Application to fast reconstruction of limb movements from brain signal. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’15), pages
5490–5494. IEEE.

Hou, M., Zhao, Q., Chaib-draa, B., and Cichocki, A. (2016). Common and discriminative
subspace kernel-based multiblock tensor partial least squares regression. In Association for
the Advancement of Artificial Intelligence Conference (AAAI’16).

Ishteva, M., Absil, P., Van Huffel, S., and De Lathauwer, L. (2011). Tucker compression and
local optima. Chemometrics and Intelligent Laboratory Systems, 106(1) :57–64.

Jeon, I., Papalexakis, E. E., Kang, U., and Faloutsos, C. (2015). Haten2 : Billion-scale tensor
decompositions. In IEEE International Conference on Data Engineering (ICDE’15), pages
1047–1058. IEEE.

Jolliffe, I. (2002). Principal Component Analysis. Wiley Online Library.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C. (2012). Gigatensor : Scaling ten-
sor analysis up by 100 times-algorithms and discoveries. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’12), pages 316–324. ACM.

Kiers, H. A. (2000). Towards a standardized notation and terminology in multiway analysis.
Journal of Chemometrics, 14(3) :105–122.

Kim, H., Zhou, J. X., Morse III, H. C., and Park, H. (2005). A three-stage framework for
gene expression data analysis by L1-norm support vector regression. International Journal
of Bioinformatics Research and Applications, 1(1) :51–62.

Kolda, T. G. (2003). A counterexample to the possibility of an extension of the Eckart-Young
low-rank approximation theorem for the orthogonal rank tensor. SIAM Journal on Matrix
Analysis and Applications, 24(3) :762–767.

146

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review,
51(3).

Kolda, T. G., Bader, B. W., and Kenny, J. P. (2005). Higher-order web link analysis using
multilinear algebra. In IEEE International Conference on Data Mining (ICDM’05), pages
8–pp. IEEE.

Kolda, T. G. and Sun, J. (2008). Scalable tensor decompositions for multi-aspect data mining.
In IEEE International Conference on Data Mining (ICDM’08), pages 363–372. IEEE.

Kossaifi, J., Lipton, Z. C., Khanna, A., Furlanello, T., and Anandkumar, A. (2017). Tensor
regression networks. arXiv preprint arXiv :1707.08308.

Krishnan, A., Williams, L. J., McIntosh, A. R., and Abdi, H. (2011). Partial least squares
(PLS) methods for neuroimaging : A tutorial and review. Neuroimage, 56(2) :455–475.

Kroonenberg, P. M. and De Leeuw, J. (1980). Principal component analysis of three-mode
data by means of alternating least squares algorithms. Psychometrika, 45(1) :69–97.

Kruskal, J. B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way arrays. In
Multiway Data Analysis, pages 7–18. North-Holland Publishing Company.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical
Statistics, 22(1) :79–86.

Lange, K. (2004). Optimization. Springer Texts in Statistics. Springer-Verlag, New York.

Lange, K. (2010). Numerical Analysis for Statisticians. Springer Science & Business Media.

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies for
training deep neural networks. Journal of Machine Learning Research, 10 :1–40.

Li, X., Zhou, H., and Li, L. (2013). Tucker tensor regression and neuroimaging analysis. ArXiv
Preprint ArXiv : 1304.5637.

Lin, Y. (2000). Tensor product space anova models. Annals of Statistics, pages 734–755.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2) :129–137.

Lozano, A. C., Li, H., Niculescu-Mizil, A., Liu, Y., Perlich, C., Hosking, J., and Abe, N.
(2009). Spatial-temporal causal modeling for climate change attribution. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’09), pages 587–
596. ACM.

Luo, L., Bao, S., and Gao, Z. (2015). Quality prediction based on HOPLS-CP for batch
processes. Chemometrics and Intelligent Laboratory Systems, 143 :28–39.

147

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, volume 37. CRC Press.

Miwakeichi, F., Martınez-Montes, E., Valdés-Sosa, P. A., Nishiyama, N., Mizuhara, H., and
Yamaguchi, Y. (2004). Decomposing eeg data into space–time–frequency components using
parallel factor analysis. NeuroImage, 22(3) :1035–1045.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2015). Introduction to Linear Regression
Analysis. John Wiley & Sons.

Mørup, M. and Schmidt, M. N. (2006). Sparse non-negative tensor 2D deconvolution
(SNTF2D) for multi channel time-frequency analysis. Technical University of Denmark.

Mukherjee, A. and Zhu, J. (2011). Reduced rank ridge regression and its kernel extensions.
Statistical analysis and data mining : the ASA data science journal, 4(6) :612–622.

Nelder, J. A. and Baker, J. (1972). Generalized linear models. Wiley Online Library.

Nguyen-Tuong, D., Peters, J. R., and Seeger, M. (2009). Local gaussian process regression
for real time online model learning. In Advances in Neural Information Processing Systems
(NIPS’09), pages 1193–1200.

Nion, D. and De Lathauwer, L. (2008). A block component model-based blind DS-CDMA
receiver. IEEE Transactions on Signal processing, 56(11) :5567–5579.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. (2013). Berkeley MHAD : A com-
prehensive multimodal human action database. In IEEE Winter Conference on Applications
of Computer Vision (WACV’13), pages 53–60. IEEE.

O’Hara, M. J. (2010). On low-rank updates to the singular value and tucker decompositions.
In SIAM International Conference on Data Mining (SDM’10), pages 713–719. SIAM.

Oommen, T., Misra, D., Twarakavi, N. K., Prakash, A., Sahoo, B., and Bandopadhyay, S.
(2008). An objective analysis of support vector machine based classification for remote
sensing. Mathematical Geosciences, 40(4) :409–424.

Papalexakis, E. E., Faloutsos, C., and Sidiropoulos, N. D. (2012). Parcube : Sparse paral-
lelizable tensor decompositions. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD’12), pages 521–536. Springer.

Papalexakis, E. E., Faloutsos, C., and Sidiropoulos, N. D. (2016). Tensors for data mining and
data fusion : Models, applications, and scalable algorithms. ACM Transactions on Intelligent
Systems and Technology, 8(2) :1–44.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching
pursuit : Recursive function approximation with applications to wavelet decomposition. In

148

Asilomar Conference on Signals, Systems and Computers (ASILOMAR’93), pages 40–44.
IEEE.

Qin, S.-Z. J. (1998). Recursive PLS algorithms for adaptive data modeling. Computers and
Chemical Engineering, 22(4) :503–514.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1) :81–106.

Rabusseau, G. and Kadri, H. (2016). Low-rank regression with tensor responses. In Advances
in Neural Information Processing Systems (NIPS’16), pages 1867–1875.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning.
MIT Press.

Ravindran, N., Sidiropoulos, N. D., Smith, S., and Karypis, G. (2014). Memory-efficient par-
allel computation of tensor and matrix products for big tensor decomposition. In Asilomar
Conference on Signals, Systems and Computers (ASILOMAR’14), pages 581–585. IEEE.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN : Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing
Systems (NIPS’15), pages 91–99.

Rockafellar, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5) :877–898.

Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N., and Pontil, M. (2013). Multilinear
multitask learning. In International Conference on Machine Learning (ICML’13), pages
1444–1452.

Rosipal, R. and Trejo, L. J. (2002). Kernel partial least squares regression in reproducing
kernel hilbert space. Journal of Machine Learning Research, 2 :97–123.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2) :461–464.

Shin, K. and Kang, U. (2014). Distributed methods for high-dimensional and large-scale
tensor factorization. In IEEE International Conference on Data Mining (ICDM’14), pages
989–994. IEEE.

Sidiropoulos, N. D., Papalexakis, E. E., and Faloutsos, C. (2014). Parallel randomly com-
pressed cubes : A scalable distributed architecture for big tensor decomposition. IEEE Signal
Processing Magazine, 31(5) :57–70.

Signoretto, M., De Lathauwer, L., and Suykens, J. A. (2011). A kernel-based framework to
tensorial data analysis. Neural Networks, 24(8) :861–874.

149

Signoretto, M., Dinh, Q. T., De Lathauwer, L., and Suykens, J. A. (2014). Learning with
tensors : A framework based on convex optimization and spectral regularization. Machine
Learning, 94(3) :303–351.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. ArXiv Preprint ArXiv : 1409.1556.

Smaragdis, P. (2004). Non-negative matrix factor deconvolution ; extraction of multiple sound
sources from monophonic inputs. In International Conference on Independent Component
Analysis and Signal Separation (ICA’04), pages 494–499. Springer.

Smilde, A., Bro, R., and Geladi, P. (2005). Multi-way Analysis : Applications in the Chemical
Sciences. John Wiley & Sons.

Smilde, A. K., Westerhuis, J. A., and Boque, R. (2000). Multiway multiblock component and
covariates regression models. Journal of Chemometrics, 14(3) :301–331.

Smith, S., Ravindran, N., Sidiropoulos, N. D., and Karypis, G. (2015). SPLATT : Efficient and
parallel sparse tensor-matrix multiplication. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS’15), pages 61–70. IEEE.

Smola, A. and Vapnik, V. (1997). Support vector regression machines. In Advances in Neural
Information Processing Systems (NIPS’97), volume 9, pages 155–161.

Sun, J., Tao, D., Papadimitriou, S., Yu, P. S., and Faloutsos, C. (2008). Incremental tensor
analysis : Theory and applications. ACM Transactions on Knowledge Discovery from Data
(TKDD’08), 2(3) :11.

Tsourakakis, C. E. (2010). MACH : Fast randomized tensor decompositions. In SIAM Inter-
national Conference on Data Mining (SDM’10), pages 689–700. SIAM.

Tucker, L. R. (1963). Implications of factor analysis of three-way matrices for measurement
of change. In Problems in measuring change, pages 122–137. University of Wisconsin Press.

Tucker, L. R. (1964). The extension of factor analysis to three-dimensional matrices. In
Contributions to mathematical psychology, pages 110–127. Holt, Rinehart and Winston.

Turaga, P., Veeraraghavan, A., Srivastava, A., and Chellappa, R. (2010). Statistical analysis
on manifolds and its applications to video analysis. In Video Search and Mining, pages
115–144. Springer.

Turaga, P., Veeraraghavan, A., Srivastava, A., and Chellappa, R. (2011). Statistical compu-
tations on grassmann and stiefel manifolds for image and video-based recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(11) :2273–2286.

150

Urtasun, R. and Darrell, T. (2008). Sparse probabilistic regression for activity-independent
human pose inference. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’08), pages 1–8. IEEE.

Vasilescu, M. and Terzopoulos, D. (2002). Multilinear analysis of image
ensembles : Tensorfaces. In European Conference on Computer Vision (ECCV’02),
pages 447–460. Springer.

Wang, H. and Ahuja, N. (2008). A tensor approximation approach to dimensionality reduction.
International Journal of Computer Vision, 76(3) :217–229.

Wang, Y., Tung, H.-Y., Smola, A. J., and Anandkumar, A. (2015). Fast and guaranteed
tensor decomposition via sketching. In Advances in Neural Information Processing Systems
(NIPS’15), pages 991–999.

Wang, Y. L. (2014). Interactions between Gaussian processes and Bayesian estimation. PhD
thesis, Université Laval.

Westerhuis, J. A., Kourti, T., and MacGregor, J. F. (1998). Analysis of multiblock and
hierarchical PCA and PLS models. Journal of Chemometrics, 12(5) :301–321.

Wimalawarne, K., Sugiyama, M., and Tomioka, R. (2014). Multitask learning meets tensor
factorization : Task imputation via convex optimization. In Advances in Neural Information
Processing Systems (NIPS’14), pages 2825–2833.

Wold, H. (1966). Estimation of principal components and related models by iterative least
squares. Multivariate Analysis, 45(1) :391–420.

Wold, H. (1975a). Path models with latent variables : The NIPALS approach. In Quantita-
tive Sociology : International Perspectives on Mathematical and Statistical Model Building.
Academic Press.

Wold, H. (1975b). Soft modeling by latent variables : The nonlinear iterative partial least
squares approach. Perspectives in Probability and Statistics, pages 520–540.

Wold, S., Ruhe, A., Wold, H., and Dunn, III, W. (1984). The collinearity problem in linear
regression. the partial least squares (PLS) approach to generalized inverses. SIAM Journal
on Scientific and Statistical Computing, 5(3) :735–743.

Yu, R., Cheng, D., and Liu, Y. (2015). Accelerated online low-rank tensor learning for
multivariate spatio-temporal streams. In International Conference on Machine Learning
(ICML’15).

Yu, R. and Liu, Y. (2016). Learning from multiway data : Simple and efficient tensor regression.
In International Conference on Machine Learning (ICML’16).

151

Zhao, Q., Caiafa, C. F., Mandic, D. P., Chao, Z. C., Nagasaka, Y., Fujii, N., Zhang, L., and
Cichocki, A. (2013a). Higher order partial least squares (HOPLS) : A generalized multilin-
ear regression method. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(7) :1660–1673.

Zhao, Q., Caiafa, C. F., Mandic, D. P., Zhang, L., Ball, T., Schulze-Bonhage, A., and Cichocki,
A. (2011). Multilinear subspace regression : An orthogonal tensor decomposition approach.
In Advances in Neural Information Processing Systems (NIPS’11), volume 2011, pages 1269–
1277.

Zhao, Q., Zhou, G., Adali, T., Zhang, L., and Cichocki, A. (2013b). Kernelization of tensor-
based models for multiway data analysis : Processing of multidimensional structured data.
IEEE Signal Processing Magazine, 30(4) :137–148.

Zhao, Q., Zhou, G., Zhang, L., and Cichocki, A. (2014). Tensor-variate gaussian processes
regression and its application to video surveillance. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP’14), pages 1265–1269. IEEE.

Zhou, H., Li, L., and Zhu, H. (2013). Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association, 108(502) :540–552.

152

	Résumé
	Abstract
	Table des matières
	Abbreviations
	List of Symbols
	Liste des tableaux
	Liste des figures
	Acknowledgements
	Introduction
	Context and Motivations for Tensor Regression
	Tensor-based Regression Models and Their Applications
	Main Contributions
	Thesis Outline

	Tensor Preliminaries
	Tensor Basics
	Tensor Decompositions
	Scaling up Tensor Decompositions
	Conclusion

	Tensor Regression Overview
	Tensor Regression
	Our new contributions2mu-:6muplus1muthe big picture
	Conclusion

	Hierarchical Tucker Tensor Regression
	Introduction
	Hierarchical Tucker Decomposition (HTD)
	H-Tucker Tensor Regression Model
	Parameter Estimation
	Experimental Results
	Conclusion

	Online Local Gaussian Process for Tensor Regression
	Introduction
	Tensor GP Regression Review
	Tensor OLGP Regression
	Experimental Results
	Conclusion

	Incremental Higher-order Partial Least Squares Regression (IHOPLS)
	Introduction
	High-order Partial Least Squares Regression (HOPLS) Review
	Incremental Higher-order Partial Least Square Regression (IHOPLS)
	Experimental Results
	Discussion
	Conclusion

	Recursive Higher-order Partial Least Squares Regression (RHOPLS)
	Introduction
	Recursive Higher-order Partial Least Squares Regression (RHOPLS)
	Experimental Results
	Discussion
	Conclusion

	Partial Least Squares Regression2mu-:6muplus1mu A Kernel-based Multiblock Tensor Approach
	Introduction
	Kernel-based Multiblock Tensor PLS Regression (KMTPLS)
	Experimental Results
	Discussion
	Conclusion

	Conclusion
	Summary of the Contributions
	Possible Future Work

	Mathematical Background
	Partial Least Squares Regression (PLS)
	Nonlinear Iterative Partial Least Squares PLS Regression (NIPALS-PLS)
	Linear Algebra Basics
	Generalized Linear Model (GLM)
	Maximum Likelihood Estimation (MLE)

	Sketch of Proof
	Sketch of Proof of Proposition 3

	Bibliographie

