169 research outputs found

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Development of dielectric elastomer actuators for MRI devices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (leaves 100-104).Dielectric elastomer (DE) actuators are an emerging class of polymer actuation devices. They exhibit large strains and have high force and energy densities. They can be designed in a variety of geometries and are inexpensive to manufacture. Currently, the use of DE Actuation is limited because quantitative design information is incomplete and the complex phenomena governing their performance have not been fully characterized. In this study, several such issues are investigated both experimentally and analytically. The actuators designed for this research function as binary actuators, that is, they operate between two set states, OFF and ON. Performance of the actuators is predicted based on theoretical analysis and the results are compared to experimental results. Improvement of fabrication methods and determination of optimum design parameters have been experimentally determined. Since DE actuators can be constructed out of polymers and without any ferromagnetic materials, they can potentially be used in a Magnetic Resonance Imaging (MRI) machine, which has strict compatibility requirements that limit the use of certain materials. MRI is a powerful and effective medical diagnostic tool, but treatment is limited because of the confined space and compatibility issues. It has been well recognized that its value would be increased if it were possible to physically manipulate objects within the MRI machine during imaging, but conventional manipulation systems cannot operate within an MRI due to the incompatibility of ferromagnetic materials. Binary DE actuators eliminate the need for conventional electromagnetic actuators and their associated controlling electronics. This inherent compatibility suggests that a new class of MRI treatment devices(cont.) is possible. Potential applications for use in the MRI environment are introduced, and prototypes for illustrating these applications are fabricated. One such application, a reconfigurable RF coil for flexible imaging capabilities, proves that not only are DE actuators and MRI compatible, but that they can significantly enhance imaging capabilities.by John D. Vogan.S.M

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Design of a shape memory alloy actuator for soft wearable robots

    Get PDF
    Soft robotics represents a paradigm shift in the design of conventional robots; while the latter are designed as monolithic structures, made of rigid materials and normally composed of several stiff joints, the design of soft robots is based on the use of deformable materials such as polymers, fluids or gels, resulting in a biomimetic design that replicates the behavior of organic tissues. The introduction of this design philosophy into the field of wearable robots has transformed them from rigid and cumbersome devices into something we could call exo-suits or exo-musculatures: motorized, lightweight and comfortable clothing-like devices. If one thinks of the ideal soft wearable robot (exoskeleton) as a piece of clothing in which the actuation system is fully integrated into its fabrics, we consider that that existing technologies currently used in the design of these devices do not fully satisfy this premise. Ultimately, these actuation systems are based on conventional technologies such as DC motors or pneumatic actuators, which due to their volume and weight, prevent a seamless integration into the structure of the soft exoskeleton. The aim of this thesis is, therefore, to design of an actuator that represents an alternative to the technologies currently used in the field of soft wearable robotics, after having determined the need for an actuator for soft exoskeletons that is compact, flexible and lightweight, while also being able to produce the force required to move the limbs of a human user. Since conventional actuation technologies do not allow the design of an actuator with the required characteristics, the proposed actuator design has been based on so-called emerging actuation technologies, more specifically, on shape memory alloys (SMA). The mechanical design of the actuator is based on the Bowden transmission system. The SMA wire used as the transducer of the actuator has been routed into a flexible sheath, which, in addition to being easily adaptable to the user's body, increases the actuation bandwidth by reducing the cooling time of the SMA element by 30 %. At its nominal operating regime, the actuator provides an output displacement of 24 mm and generates a force of 64 N. Along with the actuator, a thermomechanical model of its SMA transducer has been developed to simulate its complex behavior. The developed model is a useful tool in the design process of future SMA-based applications, accelerating development ix time and reducing costs. The model shows very few discrepancies with respect to the behavior of a real wire. In addition, the model simulates characteristic phenomena of these alloys such as thermal hysteresis, including internal hysteresis loops and returnpoint memory, the dependence between transformation temperatures and applied force, or the effects of latent heat of transformation on the wire heating and cooling processes. To control the actuator, the use of a non-linear control technique called four-term bilinear proportional-integral-derivative controller (BPID) is proposed. The BPID controller compensates the non-linear behavior of the actuator caused by the thermal hysteresis of the SMA. Compared to the operation of two other implemented controllers, the BPID controller offers a very stable and robust performance, minimizing steady-state errors and without the appearance of limit cycles or other effects associated with the control of these alloys. To demonstrate that the proposed actuator together with the BPID controller are a valid solution for implementing the actuation system of a soft exoskeleton, both developments have been integrated into a real soft hand exoskeleton, designed to provide force assistance to astronauts. In this case, in addition to using the BPID controller to control the position of the actuators, it has been applied to the control of the assistive force provided by the exoskeleton. Through a simple mechanical multiplication mechanism, the actuator generates a linear displacement of 54 mm and a force of 31 N, thus fulfilling the design requirements imposed by the application of the exoskeleton. Regarding the control of the device, the BPID controller is a valid control technique to control both the position and the force of a soft exoskeleton using an actuation system based on the actuator proposed in this thesis.La robótica flexible (soft robotics) ha supuesto un cambio de paradigma en el diseño de robots convencionales; mientras que estos consisten en estructuras monolíticas, hechas de materiales duros y normalmente compuestas de varias articulaciones rígidas, el diseño de los robots flexibles se basa en el uso de materiales deformables como polímeros, fluidos o geles, resultando en un diseño biomimético que replica el comportamiento de los tejidos orgánicos. La introducción de esta filosofía de diseño en el campo de los robots vestibles (wearable robots) ha hecho que estos pasen de ser dispositivos rígidos y pesados a ser algo que podríamos llamar exo-trajes o exo-musculaturas: prendas de vestir motorizadas, ligeras y cómodas. Si se piensa en el robot vestible (exoesqueleto) flexible ideal como una prenda de vestir en la que el sistema de actuación está totalmente integrado en sus tejidos, consideramos que las tecnologías existentes que se utilizan actualmente en el diseño de estos dispositivos no satisfacen plenamente esta premisa. En última instancia, estos sistemas de actuaci on se basan en tecnologías convencionales como los motores de corriente continua o los actuadores neumáticos, que debido a su volumen y peso, hacen imposible una integraci on completa en la estructura del exoesqueleto flexible. El objetivo de esta tesis es, por tanto, el diseño de un actuador que suponga una alternativa a las tecnologias actualmente utilizadas en el campo de los exoesqueletos flexibles, tras haber determinado la necesidad de un actuador para estos dispositivos que sea compacto, flexible y ligero, y que al mismo tiempo sea capaz de producir la fuerza necesaria para mover las extremidades de un usuario humano. Dado que las tecnologías de actuación convencionales no permiten diseñar un actuador de las características necesarias, se ha optado por basar el diseño del actuador propuesto en las llamadas tecnologías de actuación emergentes, en concreto, en las aleaciones con memoria de forma (SMA). El diseño mecánico del actuador está basado en el sistema de transmisión Bowden. El hilo de SMA usado como transductor del actuador se ha introducido en una funda flexible que, además de adaptarse facilmente al cuerpo del usuario, aumenta el ancho de banda de actuación al reducir un 30 % el tiempo de enfriamiento del elemento SMA. En su régimen nominal de operaci on, el actuador proporciona un desplazamiento de salida de 24 mm y genera una fuerza de 64 N. Además del actuador, se ha desarrollado un modelo termomecánico de su transductor SMA que permite simular su complejo comportamiento. El modelo desarrollado es una herramienta útil en el proceso de diseño de futuras aplicaciones basadas en SMA, acelerando el tiempo de desarrollo y reduciendo costes. El modelo muestra muy pocas discrepancias con respecto al comportamiento de un hilo real. Además, es capaz de simular fenómenos característicos de estas aleaciones como la histéresis térmica, incluyendo los bucles internos de histéresis y la memoria de puntos de retorno (return-point memory), la dependencia entre las temperaturas de transformacion y la fuerza aplicada, o los efectos del calor latente de transformación en el calentamiento y el enfriamiento del hilo. Para controlar el actuador, se propone el uso de una t ecnica de control no lineal llamada controlador proporcional-integral-derivativo bilineal de cuatro términos (BPID). El controlador BPID compensa el comportamiento no lineal del actuador causado por la histéresis térmica del SMA. Comparado con el funcionamiento de otros dos controladores implementados, el controlador BPID ofrece un rendimiento muy estable y robusto, minimizando el error de estado estacionario y sin la aparición de ciclos límite u otros efectos asociados al control de estas aleaciones. Para demostrar que el actuador propuesto junto con el controlador BPID son una soluci on válida para implementar el sistema de actuación de un exoesqueleto flexible, se han integrado ambos desarrollos en un exoesqueleto flexible de mano real, diseñado para proporcionar asistencia de fuerza a astronautas. En este caso, además de utilizar el controlador BPID para controlar la posición de los actuadores, se ha aplicado al control de la fuerza proporcionada por el exoesqueleto. Mediante un simple mecanismo de multiplicación mecánica, el actuador genera un desplazamiento lineal de 54 mm y una fuerza de 31 N, cumpliendo así con los requisitos de diseño impuestos por la aplicación del exoesqueleto. Respecto al control del dispositivo, el controlador BPID es una técnica de control válida para controlar tanto la posición como la fuerza de un exoesqueleto flexible que use un sistema de actuación basado en el actuador propuesto en esta tesis.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Elena García Armad

    Applicable Solutions in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore